Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Review Article Volume 5 Issue 1

Predictive influence of variables on the odds ratio and in the logistic model

S K Bhattacharjee,1 Atanu Biswas,2 Ganesh Dutta,3 S Rao Jammalamadaka,4 M Masoom Ali5

1Indian Statistical Institute, North-East Centre, Tezpur, Assam-0, India
2Indian Statistical Institute, India
3Basanti Devi College, India
4Department of Statistics and Applied Probability, University of California, USA
5Department of Mathematical Sciences, Ball State University, USA

Correspondence: S Rao Jammalamadaka, Department of Statistics and Applied Probability, University of California, USA

Received: October 01, 2016 | Published: February 1, 2017

Citation: Bhattacharjee SK, Biswas A, Dutta G, et al. Predictive influence of variables on the odds ratio and in the logistic model. Biom Biostat Int J. 2017;5(1):25-37. DOI: 10.15406/bbij.2017.05.00125

Download PDF

Abstract

We study the influence of explanatory variables in prediction by looking at the distribution of the log-odds ratio. We also consider the predictive influence of a subset of unobserved future variables on the distribution of log-odds ratio as well as in a logistic model, via the Bayesian predictive density of a future observation. This problem is considered for dichotomous, as well as continuous explanatory variables.

AMS subject classification: Primary 62J12, Secondary 62B10, 62F15

Keywords: predictive density/probability, log-odds ratio, logistic model, predictive influence, missing/unobserved variable, kullback-leibler divergence

Introduction

Odds ratio (OR) is perhaps the most popular measure of treatment difference for binary outcomes and is extensively used in dealing with 2×2 tables in biomedical studies and clinical trials. The distribution of the log of sample OR is often approximated by a normal distribution with true log OR as the mean and with variance estimated by the sum of the reciprocal of the four cell frequencies in the 2×2 table Breslow.1 Böhning et al.2 provide detailed book-length discussion on the OR. For logistic regression, ORs enable one to examine the effect of explanatory variables in that relationship.

Logistic link is perhaps the most popular way to model the success probabilities of a binary variable. Pregibon,3 Cook and Weisberg4 and Johnson5 have considered the problem of the influence of observations for logistic regression models. Several measures have been suggested to identify observations in the data set which are influential relative to the estimation of the vector of regression coefficients, the deviance, the determination of predictive probabilities and the classification of future observations.

Bhattacharjee & Dunsmore6 considered the effect on the predictive probability of a future observation of the omission of subsets of the explanatory variables. Mercier et al.7 used logistic regression to determine whether age and/or gender were a factor influencing severity of injuries suffered in head-on automobile collisions on rural highways. Zellner et al.8 considered the problem of variable selection in logistic regression to compare the performance of stepwise selection procedures with a bagging method.

In the present paper, our aim is to measure the predictive influence of a subset of explanatory variables in log-odds ratio of a logistic model using a Bayesian approach. We are also interested in studying the effect of missing future explanatory variables on Bayes prediction, on a logistic model as well as on the log-odds ratio.

In Section 2, we derive the predictive densities of a future log-odds ratio for both the full model and a subset deleted model. We derive the predictive density of log-odds ratio in Section 3, when a subset of future explanatory variables is missing. To derive the predictive densities we assume that the future explanatory variables x f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGdaahaaWcbeqaaKqzadGaamOzaaaaaaa@3A76@ are distributed as multivariate normal, both when these xf's are independent or dependent. In Section 4, we discuss the influence of future missing explanatory variables by considering the predictive probability of a future response in a logistic model. This is done by assuming that the future explanatory variables x f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGdaahaaWcbeqaaKqzadGaamOzaaaaaaa@3A76@ are multivariate normal for the continuous case. Also considered is the dichotomous case. Since the predictive probabilities are not mathematically tractable for the logistic model, we use several approximations.

In Section 2 and 3 we employ Kullback-Leibler9 directed measure of divergence DKL to assess the influence of variables and also the influence of future missing variables on the log-odds ratio. The form of the Kullback-Leibler9 measure used here is given by

D KL =f( a' W f |. )log( f( a' W f |. ) f ( r+s ) ( a' W f |. ) )d( a' W f ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseada WgaaqcfasaaiaadUeacaWGmbaajuaGbeaacqGH9aqpcqGHRiI8caWG MbWaaeWaaeaacaGGHbGaai4jaiaadEfadaahaaqabKqbGeaacaWGMb aaaKqbakaacYhacaGGUaaacaGLOaGaayzkaaGaciiBaiaac+gacaGG NbWaaeWaaeaadaWcaaqaaiaadAgadaqadaqaaiaacggacaGGNaGaam 4vamaaCaaajuaibeqaaiaadAgaaaqcfaOaaiiFaiaac6caaiaawIca caGLPaaaaeaacaWGMbWaaSbaaeaadaWgaaqcfasaaKqbaoaabmaaju aibaGaamOCaiabgUcaRiaadohaaiaawIcacaGLPaaaaeqaaKqbaoaa bmaabaGaamyyaiaacEcacaWGxbWaaWbaaeqajuaibaGaamOzaaaaju aGcaGG8bGaaiOlaaGaayjkaiaawMcaaaqabaaaaaGaayjkaiaawMca aiaadsgadaqadaqaaiaadggacaGGNaGaam4vamaaCaaabeqcfasaai aadAgaaaaajuaGcaGLOaGaayzkaaGaaiOlaaaa@677A@

To assess the influence of missing future variables or to measure the predictive probability in a logistic model we use the absolute difference of the two predictive probabilities.

Influence of variables in log-odds ratio

Consider a phase III clinical trial with two competing treatments, say A and B, having binary responses. Suppose n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gaaa a@376C@ patients are randomly allocated with n A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gada WgaaqcfasaaiaadgeaaKqbagqaaaaa@390F@ and n B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gada WgaaqcfasaaiaadkeaaKqbagqaaaaa@3910@  patients to treatments A and B respectively. The patient responses are influenced by a covariate vector x p×1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada ahaaqabKqbGeaacaWGWbGaey41aqRaaGymaaaaaaa@3B8D@ where one component of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhaaa a@3776@ may be 1 (which covers the constant term). Let ( Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfada WgaaqcfasaaiaadMgaaKqbagqaaaaa@3922@ ; Z i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQfada WgaaqcfasaaiaadMgaaKqbagqaaaaa@3923@ ; x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadMgaaKqbagqaaaaa@3941@ ) be the data corresponding to its patient, where Yi is the indicator of response ( Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfada WgaaqcfasaaiaadMgaaKqbagqaaaaa@3922@ =1 or 0 for a success or failure), z i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaS WaaSbaaeaajugWaiaadMgaaSqabaaaaa@39D6@  is the indicator of the treatment assignment ( z i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaS WaaSbaaeaajugWaiaadMgaaSqabaqcLbmacqGH9aqpcaaIXaaaaa@3CC5@ )

or 0 according as treatment A or B is applied to the its patient), and x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhaaa a@3776@ is the covariate vector. We assume a logit model for the responses:

Pr( Y i =1| Z i , x i )= exp( Δ Z i + x i β ) 1+exp( Δ Z i + x i β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWGzbWaaSbaaKqbGeaacaWGPbaajuaGbeaacqGH 9aqpcaaIXaGaaiiFaiaadQfadaWgaaqcfasaaiaadMgaaKqbagqaai aacYcacaWG4bWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiGacwgacaGG4bGaaiiCamaabmaabaGaey iLdqKaamOwamaaBaaajuaibaGaamyAaaqcfayabaGaey4kaSIaamiE amaaBaaajuaibaGaamyAaaqcfayabaGaeqOSdigacaGLOaGaayzkaa aabaGaaGymaiabgUcaRiGacwgacaGG4bGaaiiCamaabmaabaGaeyiL dqKaamOwamaaBaaajuaibaGaamyAaaqcfayabaGaey4kaSIaamiEam aaBaaajuaibaGaamyAaaqcfayabaGaeqOSdigacaGLOaGaayzkaaaa aaaa@638D@ i=1,2,....,n. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaGa aiOlaiaacYcacaWGUbGaaiOlaaaa@4061@   (i)

Then the odds for treatments A and B with covariate vector xi are respectively

O A = Pr( Y i =1| Z i =1, x i ) Pr( Y i =0| Z i =1, x i ) =exp( Δ+ x i β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad+eada WgaaqcfasaaiaadgeaaKqbagqaaiabg2da9maalaaabaGaciiuaiaa ckhadaqadaqaaiaadMfadaWgaaqcfasaaiaadMgaaKqbagqaaiabg2 da9iaaigdacaGG8bGaamOwamaaBaaajuaibaGaamyAaaqcfayabaGa eyypa0JaaGymaiaacYcacaWG4bWaaSbaaKqbGeaacaWGPbaajuaGbe aaaiaawIcacaGLPaaaaeaaciGGqbGaaiOCamaabmaabaGaamywamaa BaaajuaibaGaamyAaaqcfayabaGaeyypa0JaaGimaiaacYhacaWGAb WaaSbaaKqbGeaacaWGPbaajuaGbeaacqGH9aqpcaaIXaGaaiilaiaa dIhadaWgaaqcfasaaiaadMgaaKqbagqaaaGaayjkaiaawMcaaaaacq GH9aqpciGGLbGaaiiEaiaacchadaqadaqaaiabgs5aejabgUcaRiaa dIhadaWgaaqcfasaaiaadMgaaKqbagqaaiabek7aIbGaayjkaiaawM caaaaa@6765@ , O B = Pr( Y i =1| Z i =0, x i ) Pr( Y i =0| Z i =0, x i ) =exp( x i β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad+eada WgaaqcfasaaiaadkeaaKqbagqaaiabg2da9maalaaabaGaciiuaiaa ckhadaqadaqaaiaadMfadaWgaaqcfasaaiaadMgaaKqbagqaaiabg2 da9iaaigdacaGG8bGaamOwamaaBaaajuaibaGaamyAaaqcfayabaGa eyypa0JaaGimaiaacYcacaWG4bWaaSbaaKqbGeaacaWGPbaajuaGbe aaaiaawIcacaGLPaaaaeaaciGGqbGaaiOCamaabmaabaGaamywamaa BaaajuaibaGaamyAaaqcfayabaGaeyypa0JaaGimaiaacYhacaWGAb WaaSbaaKqbGeaacaWGPbaajuaGbeaacqGH9aqpcaaIWaGaaiilaiaa dIhadaWgaaqcfasaaiaadMgaaKqbagqaaaGaayjkaiaawMcaaaaacq GH9aqpciGGLbGaaiiEaiaacchadaqadaqaaiaadIhadaWgaaqcfasa aiaadMgaaKqbagqaaiabek7aIbGaayjkaiaawMcaaaaa@651B@

and hence the log-odds ratio is

logOR= log O A log O B =Δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGacYgaca GGVbGaai4zaiaad+eacaWGsbGaeyypa0ZaaSaaaeaaciGGSbGaai4B aiaacEgacaWGpbWaaSbaaKqbGeaacaWGbbaajuaGbeaaaeaaciGGSb Gaai4BaiaacEgacaWGpbWaaSbaaKqbGeaacaWGcbaajuaGbeaaaaGa eyypa0JaeyiLdqeaaa@4906@

Let us partition

xβ= x A β A + x B β B + x AB β AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq aHYoGycqGH9aqpcaWG4bWaaSbaaKqbGeaacaWGbbaajuaGbeaacqaH YoGydaWgaaqcfasaaiaadgeaaKqbagqaaiabgUcaRiaadIhadaWgaa qcfasaaiaadkeaaKqbagqaaiabek7aInaaBaaajuaibaGaamOqaaqc fayabaGaey4kaSIaamiEamaaBaaajuaibaGaamyqaiaadkeaaKqbag qaaiabek7aInaaBaaajuaibaGaamyqaiaadkeaaKqbagqaaaaa@4F1D@

Where x A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadgeaaKqbagqaaaaa@3919@  indicates the variables used in treatment A only, x B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadkeaaKqbagqaaaaa@391A@  is for treatment B only, and x AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavababe qaaKqzadGaamyqaiaadkeaaKqbagqabaqcLbsacaWG4baaaaaa@3B7C@ is for both treatments A and B. Then the model can be partitioned for treatments A and B as:

log O A =u=Δ+ x A β A + x AB β AB = x ( A ) β ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGacYgaca GGVbGaai4zaiaad+eadaWgaaqcfasaaiaadgeaaKqbagqaaiabg2da 9iaadwhacqGH9aqpcqGHuoarcqGHRaWkcaWG4bWaaSbaaKqbGeaaca WGbbaajuaGbeaacqaHYoGydaWgaaqcfasaaiaadgeaaKqbagqaaiab gUcaRiaadIhadaWgaaqcfasaaiaadgeacaWGcbaajuaGbeaacqaHYo GydaWgaaqcfasaaiaadgeacaWGcbaajuaGbeaacqGH9aqpcaWG4bWa aSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaK qbagqaaiabek7aInaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaa caGLOaGaayzkaaaajuaGbeaaaaa@5ABB@ (ii)

log O B =v= x A β B + x AB β AB = x ( B ) β ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGacYgaca GGVbGaai4zaiaad+eadaWgaaqcfasaaiaadkeaaKqbagqaaiabg2da 9iaadAhacqGH9aqpcaWG4bWaaSbaaKqbGeaacaWGbbaajuaGbeaacq aHYoGydaWgaaqcfasaaiaadkeaaKqbagqaaiabgUcaRiaadIhadaWg aaqcfasaaiaadgeacaWGcbaajuaGbeaacqaHYoGydaWgaaqcfasaai aadgeacaWGcbaajuaGbeaacqGH9aqpcaWG4bWaaSbaaKqbGeaajuaG daqadaqcfasaaiaadkeaaiaawIcacaGLPaaaaKqbagqaaiabek7aIn aaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGcbaacaGLOaGaayzkaaaa juaGbeaaaaa@5877@ (iii)

The predictive density of future log-odds for A, u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhada ahaaqabKqbGeaacaWGMbaaaaaa@38AE@  , for non-informative prior (vague prior) with normal or any spherical symmetric errors is of Student form Jammalamadaka et al.10 and is given by

f( u f | x ( A ) f ,data )St( nk, x ( A ) f β ^ ( A ) , s ( A ) 2 ( 1+ x ( A ) f' ( x ' ( A ) x A ) 1 x ( A ) f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaK qbaoaabmaakeaajugibiaadwhajuaGdaahaaWcbeqaaKqzadGaamOz aaaajuaGdaabbaGcbaqcLbsacaWG4bWcdaqhaaqaamaabmaabaqcLb macaWGbbaaliaawIcacaGLPaaaaeaajugWaiaadAgaaaaakiaawEa7 aKqzGeGaaiilaiaadsgacaWGHbGaamiDaiaadggaaOGaayjkaiaawM caaKqzGeGaeyyyIORaam4uaiaadshajuaGdaqadaGcbaqcLbsacaWG UbGaeyOeI0Iaam4AaiaacYcacaWG4bWcdaqhaaqaamaabmaabaqcLb macaWGbbaaliaawIcacaGLPaaaaeaajugWaiaadAgaaaqcLbsacuaH YoGygaqcaSWaaSbaaeaadaqadaqaaKqzadGaamyqaaWccaGLOaGaay zkaaaabeaajugibiaacYcacaWGZbWcdaqhaaqaamaabmaabaqcLbma caWGbbaaliaawIcacaGLPaaaaeaajugWaiaaikdaaaqcfa4aaeWaaO qaaKqzGeGaaGymaiabgUcaRiaadIhalmaaDaaabaWaaeWaaeaajugW aiaadgeaaSGaayjkaiaawMcaaaqaaKqzadGaamOzaiaacEcaaaqcfa 4aaeWaaOqaaKqzGeGaamiEaiaacEcalmaaBaaabaWaaeWaaeaajugW aiaadgeaaSGaayjkaiaawMcaaaqabaqcLbsacaWG4bWcdaWgaaqaaK qzadGaamyqaaWcbeaaaOGaayjkaiaawMcaaSWaaWbaaeqabaqcLbma cqGHsislcaaIXaaaaKqzGeGaamiEaSWaa0baaeaadaqadaqaaKqzad GaamyqaaWccaGLOaGaayzkaaaabaqcLbmacaWGMbaaaaGccaGLOaGa ayzkaaaacaGLOaGaayzkaaaaaa@8D4F@

where β ^ ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbek7aIz aajaWaaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGL PaaaaKqbagqaaaaa@3C12@ is the MLE of β ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIn aaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa juaGbeaaaaa@3C02@ , s ( A ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadohada qhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqa aiaaikdaaaaaaa@3B88@  is the MLE of σ A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4Wdm 3cdaqhaaqcfayaaKqzadGaamyqaaqcfayaaKqzadGaaGOmaaaaaaa@3D64@ and k is the number of parameters in the model (ii). See Bhattacharjee et al.11 in this context. If the sample size is large then this predictive density can be well approximated by its asymptotic normal form

N( x ( A ) f β ^ ( A ),   s ( A ) 2 ( 1+ x ( A ) f' ( x ( A ) ' x ( A ) ) 1 x ( A ) f )( nk )/( nk2 ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6eada qadaqaaiaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGa ayjkaiaawMcaaaqaaiaadAgaaaqcfaOafqOSdiMbaKaadaqadaqaai aadgeaaiaawIcacaGLPaaacaGGSaaeaaaaaaaaa8qacaGGGcGaaiiO a8aacaWGZbWaa0baaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawI cacaGLPaaaaeaacaaIYaaaaKqbaoaabmaabaGaaGymaiabgUcaRiaa dIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawM caaaqaaiaadAgacaGGNaaaaKqbaoaabmaabaGaamiEamaaDaaajuai baqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaajuaGbaGaai 4jaaaacaWG4bWaaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaa wIcacaGLPaaaaKqbagqaaaGaayjkaiaawMcaamaaCaaabeqcfasaai abgkHiTiaaigdaaaqcfaOaamiEamaaDaaajuaibaqcfa4aaeWaaKqb GeaacaWGbbaacaGLOaGaayzkaaaabaGaamOzaaaaaKqbakaawIcaca GLPaaadaqadaqaaiaad6gacqGHsislcaWGRbaacaGLOaGaayzkaaGa ai4lamaabmaabaGaamOBaiabgkHiTiaadUgacqGHsislcaaIYaaaca GLOaGaayzkaaaacaGLOaGaayzkaaGaaiOlaaaa@7522@

Similarly one can find the same for treatment B, v f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhada ahaaqabKqbGeaacaWGMbaaaaaa@38AF@ .

Let us define w f = ( u f , v f ) ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEhada ahaaqabKqbGeaacaWGMbaaaKqbakabg2da9maabmaabaGaamyDamaa CaaabeqcfasaaiaadAgaaaqcfaOaaiilaiaadAhadaahaaqabKqbGe aacaWGMbaaaaqcfaOaayjkaiaawMcaamaaCaaabeqaaiaacEcaaaaa aa@42D1@ and a= ( 1,1 ) ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggacq GH9aqpdaqadaqaaiaaigdacaGGSaGaeyOeI0IaaGymaaGaayjkaiaa wMcaamaaCaaabeqaaiaacEcaaaaaaa@3DCE@ . Then the predictive density of future log odds ratio a ' w f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggada ahaaqabeaacaGGNaaaaiaadEhadaahaaqabKqbGeaacaWGMbaaaaaa @3A63@ is given by

f( a ' w f | x ( A ) f , x ( B ) f ,data )N( θ, δ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadggadaahaaqabeaacaGGNaaaaiaadEhadaahaaqabKqb GeaacaWGMbaaaKqbakaacYhacaWG4bWaa0baaKqbGeaajuaGdaqada qcfasaaiaadgeaaiaawIcacaGLPaaaaeaacaWGMbaaaKqbakaacYca caWG4bWaa0baaKqbGeaajuaGdaqadaqcfasaaiaadkeaaiaawIcaca GLPaaaaeaacaWGMbaaaKqbakaacYcacaWGKbGaamyyaiaadshacaWG HbaacaGLOaGaayzkaaGaeyisISRaamOtamaabmaabaGaeqiUdeNaai ilaiabes7aKnaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLOaGaayzk aaaaaa@58C8@   (iv)

Where

θ= x ( A ) f β ^ ( A ) x ( B ) f β ^ ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXj abg2da9iaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGa ayjkaiaawMcaaaqaaiaadAgaaaqcfaOafqOSdiMbaKaadaWgaaqcfa saaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqabaqcfaOa eyOeI0IaamiEamaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGcbaaca GLOaGaayzkaaaabaGaamOzaaaajuaGcuaHYoGygaqcamaaBaaajuai baqcfa4aaeWaaKqbGeaacaWGcbaacaGLOaGaayzkaaaajuaGbeaaaa a@50F8@

and

δ 2 = s ( A ) 2 ( 1+ x ( A ) f' ( x ( A ) ' x ( A ) ) 1 x ( A ) f )( nk )/( nk2 )+ s ( B ) 2 ( ( 1+ x ( B ) f' ( x ( B ) ' x ( B ) ) 1 x ( B ) f )( nq )/( nq2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes7aKn aaCaaabeqcfasaaiaaikdaaaqcfaOaeyypa0Jaam4CamaaDaaajuai baqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabaGaaGOmaa aajuaGdaqadaqaaiaaigdacqGHRaWkcaWG4bWaa0baaKqbGeaajuaG daqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaeaacaWGMbGaai4jaa aajuaGdaqadaqaaiaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGa amyqaaGaayjkaiaawMcaaaqaaiaacEcaaaqcfaOaamiEamaaBaaaju aibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaajuaGbeaa aiaawIcacaGLPaaadaahaaqabKqbGeaacqGHsislcaaIXaaaaKqbak aadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaa wMcaaaqaaiaadAgaaaaajuaGcaGLOaGaayzkaaWaaeWaaeaacaWGUb GaeyOeI0Iaam4AaaGaayjkaiaawMcaaiaac+cadaqadaqaaiaad6ga cqGHsislcaWGRbGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiabgUcaRi aadohadaqhaaqcfasaaKqbaoaabmaajuaibaGaamOqaaGaayjkaiaa wMcaaaqaaiaaikdaaaqcfa4aaeWaaeaadaqadaqaaiaaigdacqGHRa WkcaWG4bWaa0baaKqbGeaajuaGdaqadaqcfasaaiaadkeaaiaawIca caGLPaaaaeaacaWGMbGaai4jaaaajuaGdaqadaqaaiaadIhadaqhaa qcfasaaKqbaoaabmaajuaibaGaamOqaaGaayjkaiaawMcaaaqcfaya aiaacEcaaaGaamiEamaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGcb aacaGLOaGaayzkaaaajuaGbeaaaiaawIcacaGLPaaadaahaaqabeaa cqGHsislcaaIXaaaaiaadIhadaqhaaqcfasaaKqbaoaabmaajuaiba GaamOqaaGaayjkaiaawMcaaaqaaiaadAgaaaaajuaGcaGLOaGaayzk aaWaaeWaaeaacaWGUbGaeyOeI0IaamyCaaGaayjkaiaawMcaaiaac+ cadaqadaqaaiaad6gacqGHsislcaWGXbGaeyOeI0IaaGOmaaGaayjk aiaawMcaaaGaayjkaiaawMcaaaaa@99C4@

Our interest is to measure the influence of explanatory variables in the predictive density (iv) for the following cases:

Case 1: Influence of r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaaa a@3770@ explanatory variables x A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadgeaaeaacaWGYbaaaaaa@3983@  of x A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadgeaaKqbagqaaaaa@3919@  in treatment A.

Case 2: Influence of r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaaa a@3770@  explanatory variables x B r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadkeaaeaacaWGYbaaaaaa@3984@  of x B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadkeaaKqbagqaaaaa@391A@  in treatment B.

Case 3: Influence of s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadohaaa a@3771@  explanatory variables x AB s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadgeacaWGcbaabaGaam4Caaaaaaa@3A4B@  of x AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavababe qaaKqzadGaamyqaiaadkeaaKqbagqabaqcLbsacaWG4baaaaaa@3B7C@ in treatment A.

Case 4: Influence of S explanatory variables x AB s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadgeacaWGcbaabaGaam4Caaaaaaa@3A4B@ of x AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavababe qaaKqzadGaamyqaiaadkeaaKqbagqabaqcLbsacaWG4baaaaaa@3B7C@ in treatment B.

Case 5: Joint influence of r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhaaa a@3770@  explanatory variables x A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadgeaaeaacaWGYbaaaaaa@3983@ of x A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadgeaaKqbagqaaaaa@3919@  and s explanatory variables x AB s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadgeacaWGcbaabaGaam4Caaaaaaa@3A4B@ of x AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavababe qaaKqzadGaamyqaiaadkeaaKqbagqabaqcLbsacaWG4baaaaaa@3B7C@ in treatment A.

Case 6: Joint influence of r explanatory variables x B r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadkeaaeaacaWGYbaaaaaa@3984@  of x B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadkeaaKqbagqaaaaa@391A@  and s explanatory variables x AB s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadgeacaWGcbaabaGaam4Caaaaaaa@3A4B@ of x AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavababe qaaKqzadGaamyqaiaadkeaaKqbagqabaqcLbsacaWG4baaaaaa@3B7C@ in treatment B.

To see the influence of explanatory variables in log-odds ratio, we construct a reduced log-odds model deleting a subset of explanatory variables. Then we derive the predictive density of future log-odds ratio for reduced model and compare it with the predictive density (iv) for full model. It is enough to consider Case 5 for illustration. We construct the reduced model by deleting variables x A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadgeaaeaacaWGYbaaaaaa@3983@ of x A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaadgeaaKqbagqaaaaa@3919@  and x AB s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadgeacaWGcbaabaGaam4Caaaaaaa@3A4B@  of x AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaavababe qaaKqzadGaamyqaiaadkeaaKqbagqabaqcLbsacaWG4baaaaaa@3B7C@ in (ii) as

u=Δ+ x A * β A * + x A * B β AB * = x ( A ) * β ( A ) * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwhacq GH9aqpcqGHuoarcqGHRaWkcaWG4bWaa0baaKqbGeaacaWGbbaabaGa aiOkaaaajuaGcqaHYoGydaqhaaqcfasaaiaadgeaaeaacaGGQaaaaK qbakabgUcaRiaadIhadaqhaaqcfasaaiaadgeaaeaacaGGQaaaaKqb aoaaBaaajuaibaGaamOqaaqcfayabaGaeqOSdi2aa0baaKqbGeaaca WGbbGaamOqaaqaaiaacQcaaaqcfaOaeyypa0JaamiEamaaDaaajuai baqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabaGaaiOkaa aajuaGcqaHYoGydaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGa ayjkaiaawMcaaaqaaiaacQcaaaaaaa@58D7@

Then the predictive density of u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqcfasaaiaadAgaaaaaaa@38B9@ is given by

f( u f | x ( A ) *f ,data )=St( nk+r+s, x ( A ) *f β ^ ( A ) * ,   S ( A ) *2 ( 1+ x ( A ) *f' ( x ( A ) *' x ( A ) * ) 1   x ( A ) *f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadwhadaahaaqcfasabeaacaWGMbaaaKqbakaacYhacaWG 4bWaa0baaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPa aaaeaacaGGQaGaamOzaaaacaGGSaqcfaOaamizaiaadggacaWG0bGa amyyaaGaayjkaiaawMcaaiabg2da9iaadofacaWG0bWaaeWaaeaaca WGUbGaeyOeI0Iaam4AaiabgUcaRiaadkhacqGHRaWkcaWGZbGaaiil aiaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkai aawMcaaaqaaiaacQcacaWGMbaaaKqbakqbek7aIzaajaWaa0baaKqb GeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaeaacaGGQa aaaKqbakaacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiaadofadaqh aaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqaai aacQcacaaIYaaaaKqbaoaabmaabaGaaGymaiabgUcaRiaadIhadaqh aaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqaai aacQcacaWGMbGaai4jaaaajuaGdaqadaqaaiaadIhadaqhaaqcfasa aKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqaaiaacQcaca GGNaaaaKqbakaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyq aaGaayjkaiaawMcaaaqaaiaacQcaaaaajuaGcaGLOaGaayzkaaWaaW baaeqabaGaeyOeI0IaaGymaaaapeGaaiiOa8aacaWG4bWaa0baaKqb GeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaeaacaGGQa GaamOzaaaaaKqbakaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@8A71@

The normal approximation of the predictive density is

N( x ( A ) *f β ^ ( A ) * , s ( A ) *2 ( 1+ x ( A ) *f' ( x ( A ) *' x ( A ) * ) 1 x ( A ) *f )( nk+r+s )/( nk+r+s2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6eada qabaqaaiaadIhadaqhaaqaamaabmaabaGaamyqaaGaayjkaiaawMca aaqaaiaacQcacaWGMbaaaiqbek7aIzaajaWaa0baaeaadaqadaqaai aadgeaaiaawIcacaGLPaaaaeaacaGGQaaaaiaacYcacaWGZbWaa0ba aeaadaqadaqaaiaadgeaaiaawIcacaGLPaaaaeaacaGGQaGaaGOmaa aadaqadaqaamaabiaabaGaaGymaiabgUcaRiaadIhadaqhaaqaamaa bmaabaGaamyqaaGaayjkaiaawMcaaaqaaiaacQcacaWGMbGaai4jaa aadaqadaqaaiaadIhadaqhaaqaamaabmaabaGaamyqaaGaayjkaiaa wMcaaaqaaiaacQcacaGGNaaaaiaadIhadaqhaaqaamaabmaabaGaam yqaaGaayjkaiaawMcaaaqaaiaacQcaaaaacaGLOaGaayzkaaWaaWba aeqabaGaeyOeI0IaaGymaaaacaWG4bWaa0baaeaadaqadaqaaiaadg eaaiaawIcacaGLPaaaaeaacaGGQaGaamOzaaaaaiaawMcaamaabmaa baGaamOBaiabgkHiTiaadUgacqGHRaWkcaWGYbGaey4kaSIaam4Caa GaayjkaiaawMcaaiaac+cadaqadaqaaiaad6gacqGHsislcaWGRbGa ey4kaSIaamOCaiabgUcaRiaadohacqGHsislcaaIYaaacaGLOaGaay zkaaaacaGLOaGaayzkaaaacaGLOaaaaaa@74BD@

Since no variable is missing in υ=log O B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyXdu Naeyypa0JaciiBaiaac+gacaGGNbGaam4tamaaBaaajuaibaGaamOq aaqcfayabaaaaa@3E99@ , the predictive density of υ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyXdu 3aaWbaaeqajuaibaGaamOzaaaaaaa@3986@ is unaltered along with its normal approximation. Hence the predictive density of log-odds ratio a ' w f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaCaaabeqaaiaacEcaaaGaam4DamaaCaaabeqcfasaaiaadAgaaaaa aa@3A6E@  under Case 5 is given by

f ( r+s ) ( a ' w f | x ( A ) *f , x ( B ) f ,data )N( θ * , δ *2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGa ayjkaiaawMcaaaqcfayabaWaaeWaaeaacaWGHbWaaWbaaeqabaGaai 4jaaaacaWG3bWaaWbaaeqajuaibaGaamOzaaaajuaGcaGG8bGaamiE amaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaa aabaGaaiOkaiaadAgaaaqcfaOaaiilaiaadIhadaqhaaqcfasaaKqb aoaabmaajuaibaGaamOqaaGaayjkaiaawMcaaaqaaiaadAgaaaqcfa OaaiilaiaadsgacaWGHbGaamiDaiaadggaaiaawIcacaGLPaaacqGH ijYUcaWGobWaaeWaaeaacqaH4oqCdaahaaqabeaacaGGQaaaaiaacY cacqaH0oazdaahaaqabKqbGeaacaGGQaGaaGOmaaaaaKqbakaawIca caGLPaaaaaa@60F2@   (v)

Where

θ * = x (A) *f β ^ * (A) x ( B ) f β ^ ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCjuaGdaahaaqabeaajugWaiaacQcaaaqcLbsacqGH9aqpcaWG4bWc daqhaaqcfayaaKqzadGaaiikaiaadgeacaGGPaaajuaGbaqcLbmaca GGQaGaamOzaaaajugibiqbek7aIzaajaGaaiOkaSWaaSbaaKqbagaa jugWaiaacIcacaWGbbGaaiykaaqcfayabaqcLbsacqGHsislcaWG4b WcdaqhaaqcfasaaSWaaeWaaKqbGeaajugWaiaadkeaaKqbGiaawIca caGLPaaaaeaajugWaiaadAgaaaqcLbsacuaHYoGygaqcaSWaaSbaaK qbGeaalmaabmaajuaibaqcLbmacaWGcbaajuaicaGLOaGaayzkaaaa juaGbeaaaaa@5C18@

and

δ *2 = s ( A ) *2 ( 1+ x ( A ) *f' ( x ( A ) *' x ( A ) * ) 1 x ( A ) *f )( nk+r+s )/( nk+r+s2 ) + s ( B ) 2 ( 1+ x ( B ) f' ( x ( B ) ' x ( B ) ) 1 x ( B ) f )( nq )/( nq2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abes7aKTWaaWbaaKqbagqajuaibaqcLbmacaGGQaGaaGOmaaaajugi biabg2da9iaadohalmaaDaaajuaibaWcdaqadaqcfasaaKqzadGaam yqaaqcfaIaayjkaiaawMcaaaqaaKqzadGaaiOkaiaaikdaaaqcfa4a aeWaaeaajugibiaaigdacqGHRaWkcaWG4bWcdaqhaaqcfasaaSWaae WaaKqbGeaajugWaiaadgeaaKqbGiaawIcacaGLPaaaaeaajugWaiaa cQcacaWGMbGaai4jaaaajuaGdaqadaqaaKqzGeGaamiEaSWaa0baaK qbGeaalmaabmaajuaibaqcLbmacaWGbbaajuaicaGLOaGaayzkaaaa baqcLbmacaGGQaGaai4jaaaajugibiaadIhalmaaDaaajuaGbaWcda qadaqcfayaaKqzadGaamyqaaqcfaOaayjkaiaawMcaaaqaaKqzadGa aiOkaaaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaajugWaiabgk HiTiaaigdaaaqcLbsacaWG4bWcdaqhaaqcfasaaSWaaeWaaKqbGeaa jugWaiaadgeaaKqbGiaawIcacaGLPaaaaeaajugWaiaacQcacaWGMb aaaaqcfaOaayjkaiaawMcaamaabmaabaqcLbsacaWGUbGaeyOeI0Ia am4AaiabgUcaRiaadkhacqGHRaWkcaWGZbaajuaGcaGLOaGaayzkaa qcLbsacaGGVaqcfa4aaeWaaeaajugibiaad6gacqGHsislcaWGRbGa ey4kaSIaamOCaiabgUcaRiaadohacqGHsislcaaIYaaajuaGcaGLOa GaayzkaaaakeaajugibiabgUcaRiaadohalmaaDaaajuaibaWcdaqa daqcfasaaKqzadGaamOqaaqcfaIaayjkaiaawMcaaaqaaKqzadGaaG OmaaaajuaGdaqadaqaaKqzGeGaaGymaiabgUcaRiaadIhalmaaDaaa juaibaWcdaqadaqcfasaaKqzadGaamOqaaqcfaIaayjkaiaawMcaaa qaaKqzadGaamOzaiaacEcaaaqcfa4aaeWaaeaajugibiaadIhalmaa DaaajuaibaWcdaqadaqcfasaaKqzadGaamOqaaqcfaIaayjkaiaawM caaaqaaKqzadGaai4jaaaajugibiaadIhajuaGdaWgaaqcfasaaSWa aeWaaKqbGeaajugWaiaadkeaaKqbGiaawIcacaGLPaaaaeqaaaqcfa OaayjkaiaawMcaaSWaaWbaaKqbagqajuaibaqcLbmacqGHsislcaaI XaaaaKqzGeGaamiEaSWaa0baaKqbGeaalmaabmaajuaibaqcLbmaca WGcbaajuaicaGLOaGaayzkaaaabaqcLbmacaWGMbaaaaqcfaOaayjk aiaawMcaamaabmaabaqcLbsacaWGUbGaeyOeI0IaamyCaaqcfaOaay jkaiaawMcaaKqzGeGaai4laKqbaoaabmaabaqcLbsacaWGUbGaeyOe I0IaamyCaiabgkHiTiaaikdaaKqbakaawIcacaGLPaaaaaaa@C7F2@

To access the influence of the deleted variables we employ the Kullback-Leibler9 directed measure of divergence D KL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGeb qcfa4aaSbaaSqaaKqzadGaam4saiaadYeaaSqabaaaaa@3AE0@ between the predictive densities of a ' w f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaCaaabeqaaiaacEcaaaGaam4DamaaCaaabeqcfasaaiaadAgaaaaa aa@3A6E@ for full model (iv) and reduced model (v). The form of K-L measure used here is given by

D KL = f ( r+s ) ( a' ω f |. )log( f ( r+s ) ( a' w f |. ) f( a' w f |. ) )d a ' ω f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiram aaBaaajuaibaGaae4saiaabYeaaKqbagqaaiabg2da9maapeaabaGa amOzamaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam 4CaaGaayjkaiaawMcaaaqabaaajuaGbeqabiabgUIiYdWaaeWaaeaa caWGHbGaai4jaiabeM8a3naaCaaabeqcfasaaiaadAgaaaqcfaOaai iFaiaac6caaiaawIcacaGLPaaaciGGSbGaai4BaiaacEgadaqadaqa amaalaaabaGaamOzamaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGYb Gaey4kaSIaam4CaaGaayjkaiaawMcaaaqabaqcfa4aaeWaaeaacaWG HbGaai4jaiaadEhadaahaaqabKqbGeaacaWGMbaaaKqbakaacYhaca GGUaaacaGLOaGaayzkaaaabaGaamOzamaabmaabaGaamyyaiaacEca caWG3bWaaWbaaeqajuaibaGaamOzaaaajuaGcaGG8bGaaiOlaaGaay jkaiaawMcaaaaaaiaawIcacaGLPaaacaWGKbGaamyyamaaCaaabeqa aiaacEcaaaGaeqyYdC3aaWbaaeqajuaibaGaamOzaaaaaaa@6CE6@

The discrepancy measure D KL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGeb qcfa4aaSbaaSqaaKqzadGaam4saiaadYeaaSqabaaaaa@3AE0@ between the predictive densities (iv) and (v) reduces to

D KL = ( θθ* ) 2 2 δ 2 + 1 2 ( δ *2 δ 2 log( δ *2 δ 2 )1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaGaam4saiaadYeaaKqbagqaaiabg2da9maalaaabaWa aeWaaeaacqaH4oqCcqGHsislcqaH4oqCcaGGQaaacaGLOaGaayzkaa WaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaaIYaGaeqiTdq2aaWba aeqajuaibaGaaGOmaaaaaaqcfaOaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaaaadaqadaqaamaalaaabaGaeqiTdq2aaWbaaeqajuaibaGa aiOkaiaaikdaaaaajuaGbaGaeqiTdq2aaWbaaeqajuaibaGaaGOmaa aaaaqcfaOaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaaeaadaWcaaqa aiabes7aKnaaCaaabeqcfasaaiaacQcacaaIYaaaaaqcfayaaiabes 7aKnaaCaaabeqcfasaaiaaikdaaaaaaaqcfaOaayjkaiaawMcaaiab gkHiTiaaigdaaiaawIcacaGLPaaaaaa@605E@

Here L= ( θ θ * ) 2 2 δ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitai abg2da9maalaaabaWaaeWaaeaacqaH4oqCcqGHsislcqaH4oqCdaah aaqabeaacaGGQaaaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaik daaaaajuaGbaGaaGOmaiabes7aKnaaCaaabeqcfasaaiaaikdaaaaa aaaa@4424@ is due to difference of location parameters and S= 1 2 ( δ *2 δ 2 log( δ *2 δ 2 )1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai abg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqa aiabes7aKnaaCaaabeqcfasaaiaacQcacaaIYaaaaaqcfayaaiabes 7aKnaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgkHiTiGacYgacaGG VbGaai4zamaabmaabaWaaSaaaeaacqaH0oazdaahaaqabKqbGeaaca GGQaGaaGOmaaaaaKqbagaacqaH0oazdaahaaqabKqbGeaacaaIYaaa aaaaaKqbakaawIcacaGLPaaacqGHsislcaaIXaaacaGLOaGaayzkaa aaaa@50D8@ due to difference of scale parameters of the two predictive densities (iv) and (v).

Example 1: Here we have considered a flu shot Data Pregibon.3 A local health clinic sent fliers to its clients to encourage everyone, but especially older persons at high risk of complications, to get a flu shot for protection against an expected flu epidemic. In a pilot follow-up study, 159 clients were randomly selected and asked whether they actually received a flu shot. A client who received a flu shot was coded Y=1; and a client who did not receive a flu shot was coded Y=0. In addition, data were collected on their age ( x 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWG4bWaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaa aaa@3AA2@ and their health awareness ( x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWG4bWaaSbaaKqbGeaacaaIYaaabeaaaKqbakaawIcacaGLPaaa aaa@3AA3@ . Also included in the data were client gender ( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWG4bWaaSbaaKqbGeaacaaIZaaabeaaaKqbakaawIcacaGLPaaa aaa@3AA4@ , with males coded x 3 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaBaaajuaibaGaaG4maaqcfayabaGaeyypa0JaaGymaaaa@3ADC@ and females coded x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaBaaajuaibaGaaG4maaqcfayabaGaeyypa0JaaGimaaaa@3ADB@ . Here we have divided whole data set into two groups A and B on the basis of gender that is group A corresponds to the male and group B corresponds to the female. We have computed D KL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaGaam4saiaadYeaaKqbagqaaaaa@39CB@ to measure the influence of the deleted variable x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaBaaajuaibaGaaGymaaqcfayabaaaaa@3919@  in group A and B separately and the discrepancies are drawn in Figure 1.

  1. Similar figure can be obtained by deleting x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@391A@ . From this figure the discrepancy is less around the mean of the deleted variable.

Example 2: This is a simulation exercise. Here we have drawn sample of size 159 from bivariate normal distribution and we have used means, variances and correlation coefficient of x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaBaaajuaibaGaaGymaaqcfayabaaaaa@3919@ and x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@391A@ of the above flu shot data of size 159 for generating the sample. Now using these x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaBaaajuaibaGaaGymaaqcfayabaaaaa@3919@ and x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@391A@ , we got response that is Y values and thereafter using this whole generated data set we have computed D KL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaGaam4saiaadYeaaKqbagqaaaaa@39CB@ . Now we have repeated whole process 1000 times and computed means of D KL s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaGaam4saiaadYeaaKqbagqaaiaadohaaaa@3AC3@ . The mean discrepancies are shown in Figure 2. Here we get the same conclusion as in the data example.

Influence of missing future explanatory variables in log-odds ratio

Here the aim is to detect the predictive influence of a set of missing future explanatory variables in log-odds ratio of logistic model (i). Our interest is to detect the influence of missing future explanatory variables in the six cases pointed out in Section 2. Let in treatment A, r future variables missing from x A f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamyqaaqaaiaadAgaaaaaaa@3982@ and s future variables missing from x AB f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamyqaiaadkeaaeaacaWGMbaaaaaa@3A49@ be denoted by x ( A ) ( r+s )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGaayjkaiaawM caaiaadAgaaaaaaa@40DD@ . Similarly in treatment B, r future missing variables from x B f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamOqaaqaaiaadAgaaaaaaa@3983@ and s future variables missing from x AB f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamyqaiaadkeaaeaacaWGMbaaaaaa@3A49@ be denoted by x ( B ) ( r+s )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGcbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGaayjkaiaawM caaiaadAgaaaaaaa@40DE@ . We assume that the errors of models (ii) and (iii) are normally distributed with zero means and variances τ ( A ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa aeaacqGHsislcaaIXaaaaaaa@3D4C@ and τ ( B ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadkeaaiaawIcacaGLPaaa aeaacqGHsislcaaIXaaaaaaa@3D4D@ , respectively. We also assume that the conditional density of x * (r) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqcfayabeaajugWaiaacQcaaaWcdaqhaaqaaKqzadGaaiik aiaackhacaGGPaaaleaajugWaiaadAgaaaaaaa@3FE7@ given x * f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaWbaaeqabaqcLbmacaGGQaaaaKqbaoaaCaaabeqaaKqzadGa amOzaaaaaaa@3CD7@ is independent of β ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi 2aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa aKqbagqaaaaa@3C0D@ and τ ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa aKqbagqaaaaa@3C31@ and x ( B ) ( r+|s )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGcbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaaiiFaiaadohaaiaawI cacaGLPaaacaWGMbaaaaaa@41DE@  given x ( B ) *f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGcbaacaGLOaGaayzkaaaa baGaaiOkaiaadAgaaaaaaa@3C76@ is independent of β ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi 2aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadkeaaiaawIcacaGLPaaa aKqbagqaaaaa@3C0E@ and τ ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadkeaaiaawIcacaGLPaaa aKqbagqaaaaa@3C32@ , i.e.,

f( x ( . ) ( r+s )f | x ( . ) *f , β ( . ) , τ ( . ) )=f( x ( . ) ( r+s )f | x ( . ) *f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamiEamaaDaaajuaibaqcfa4aaeWaaKqbGeaacaGGUaaa caGLOaGaayzkaaaabaqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam 4CaaGaayjkaiaawMcaaiaadAgaaaqcfaOaaiiFaiaadIhadaqhaaqc fasaaKqbaoaabmaajuaibaGaaiOlaaGaayjkaiaawMcaaaqaaiaacQ cacaWGMbaaaKqbakaacYcacqaHYoGydaWgaaqcfasaaKqbaoaabmaa juaibaGaaiOlaaGaayjkaiaawMcaaaqcfayabaGaaiilaiabes8a0n aaBaaajuaibaqcfa4aaeWaaKqbGeaacaGGUaaacaGLOaGaayzkaaaa juaGbeaaaiaawIcacaGLPaaacqGH9aqpcaWGMbWaaeWaaeaacaWG4b Waa0baaKqbGeaajuaGdaqadaqcfasaaiaac6caaiaawIcacaGLPaaa aeaajuaGdaqadaqcfasaaiaadkhacqGHRaWkcaWGZbaacaGLOaGaay zkaaGaamOzaaaajuaGcaGG8bGaamiEamaaDaaajuaibaqcfa4aaeWa aKqbGeaacaGGUaaacaGLOaGaayzkaaaabaGaaiOkaiaadAgaaaaaju aGcaGLOaGaayzkaaaaaa@6D5C@

where x ( . ) *f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaGGUaaacaGLOaGaayzkaaaa baGaaiOkaiaadAgaaaaaaa@3C61@ denotes the future explanatory variables x ( . ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaGGUaaacaGLOaGaayzkaaaa baGaamOzaaaaaaa@3BB3@ without x ( . ) ( r+s )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaGGUaaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGaayjkaiaawM caaiaadAgaaaaaaa@40C9@ .

Explanatory variables are continuous

We assume that x i f, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamyAaaqaaiaadAgacaGGSaaaaaaa@3A5A@ s are dependent and the distribution of x ( A ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baGaamOzaaaaaaa@3BC7@ is ( k1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGRbGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3AA5@ -dimensional multivariate normal, i.e. f( x ( A ) f ) N k1 ( η,  ψ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamiEamaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaa caGLOaGaayzkaaaabaGaamOzaaaaaKqbakaawIcacaGLPaaacqGHHj IUcaWGobWaaSbaaKqbGeaacaWGRbGaeyOeI0IaaGymaaqcfayabaWa aeWaaeaacqaH3oaAcaGGSaaeaaaaaaaaa8qacaGGGcGaaiiOa8aacq aHipqEaiaawIcacaGLPaaaaaa@4D04@ .

The conditional density of x ( A ) ( r+s )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGaayjkaiaawM caaiaadAgaaaaaaa@40DD@  given x ( A ) *f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baGaaiOkaiaadAgaaaaaaa@3C75@ is given by

f( x ( A ) ( r+s )f | x ( A ) *f ) N r+s ( η ( r+s ) * , ψ ( r+s ) * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamiEamaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaa caGLOaGaayzkaaaabaqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam 4CaaGaayjkaiaawMcaaiaadAgaaaqcfaOaaiiFaiaadIhadaqhaaqc fasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqaaiaacQ cacaWGMbaaaaqcfaOaayjkaiaawMcaaiabggMi6kaad6eadaWgaaqc fasaaiaadkhacqGHRaWkcaWGZbaajuaGbeaadaqadaqaaiabeE7aOn aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGa ayjkaiaawMcaaaqcfayaaiaacQcaaaGaaiilaiabeI8a5naaDaaaju aibaqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGaayjkaiaa wMcaaaqcfayaaiaacQcaaaaacaGLOaGaayzkaaaaaa@649F@ ,

Where

η=( η * ,   η r+s ), x ( A ) f =( x ( A ) *f ,   x ( A ) ( r+s )f ),  ψ=( ψ 11      ψ 12 ψ 21      ψ 22 ),   η r+s * = η r+s + ψ 21 ψ 11 1 ( x ( A ) *f η * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG Maeyypa0ZaaeWaaeaacqaH3oaAdaahaaqabeaacaGGQaaaaiaacYca qaaaaaaaaaWdbiaacckacaGGGcWdaiabeE7aOnaaBaaajuaibaGaam OCaiabgUcaRiaadohaaKqbagqaaaGaayjkaiaawMcaaiaacYcacaWG 4bWaa0baaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPa aaaeaacaWGMbaaaKqbakabg2da9maabmaabaGaamiEamaaDaaajuai baqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabaGaaiOkai aadAgaaaqcfaOaaiila8qacaGGGcGaaiiOa8aacaWG4bWaa0baaKqb GeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaeaajuaGda qadaqcfasaaiaadkhacqGHRaWkcaWGZbaacaGLOaGaayzkaaGaamOz aaaaaKqbakaawIcacaGLPaaacaGGSaGcpeGaaiiOaiaacckajuaGpa GaeqiYdKNaeyypa0ZaaeWaaqaabeqaaiabeI8a5naaBaaajuaibaGa aGymaiaaigdaaKqbagqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaeq iYdK3aaSbaaKqbGeaacaaIXaGaaGOmaaqcfayabaaabaGaeqiYdK3a aSbaaKqbGeaacaaIYaGaaGymaaqcfayabaGaaiiOaiaacckacaGGGc GaaiiOaiabeI8a5naaBaaajuaibaGaaGOmaiaaikdaaKqbagqaaaaa paGaayjkaiaawMcaaiaacYcapeGaaiiOaiaacckacqaH3oaAdaqhaa qcfasaaiaadkhacqGHRaWkcaWGZbaajuaGbaGaaiOkaaaacqGH9aqp cqaH3oaAdaWgaaqcfasaaiaadkhacqGHRaWkcaWGZbaajuaGbeaacq GHRaWkcqaHipqEdaWgaaqcfasaaiaaikdacaaIXaaajuaGbeaacqaH ipqEdaqhaaqcfasaaiaaigdacaaIXaaabaGaeyOeI0IaaGymaaaaju aGdaqadaqaaiaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyq aaGaayjkaiaawMcaaaqaaiaacQcacaWGMbaaaKqbakabgkHiTiabeE 7aOnaaCaaabeqaaiaacQcaaaaacaGLOaGaayzkaaaaaa@AAD3@  

and  ψ ( r+s ) * = ψ 22 ψ 21 ψ 11 1 ψ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK 3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadkhacqGHRaWkcaWGZbaa caGLOaGaayzkaaaajuaGbaGaaiOkaaaacqGH9aqpcqaHipqEdaWgaa qcfasaaiaaikdacaaIYaaajuaGbeaacqGHsislcqaHipqEdaWgaaqc fasaaiaaikdacaaIXaaajuaGbeaacqaHipqEdaqhaaqcfasaaiaaig dacaaIXaaabaGaeyOeI0IaaGymaaaajuaGcqaHipqEdaWgaaqcfasa aiaaigdacaaIYaaajuaGbeaaaaa@5318@ .

As earlier it is enough to consider Case 5 to see the joint influence of r missing future explanatory variables x A rf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamyqaaqaaiaadkhacaWGMbaaaaaa@3A79@ of x A f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamyqaaqaaiaadAgaaaaaaa@3982@ and s missing future explanatory variables x AB sf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamyqaiaadkeaaeaacaWGZbGaamOzaaaaaaa@3B41@ of x AB f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaGaamyqaiaadkeaaeaacaWGMbaaaaaa@3A49@  in treatment A. The density of u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqcfasaaiaadAgaaaaaaa@38B9@ when x ( A ) ( r+s )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGaayjkaiaawM caaiaadAgaaaaaaa@40DD@ is missing is given by

f( u f | x ( A ) *f ,β | ( A ) , τ ( A ) )= f( u f | x ( A ) f , β ( A ) , τ ( A ) ) f( x ( A ) ( r+s )f | x ( A ) *f )d x ( A ) ( r+s )f N( i=0 krs1 x ( A )i f β ^ ( A )i + i=krs k1 η i * β ^ ( A )i , i=krs k1 β ^ ( A )i β ^ ( A )j ψ ij * + τ ( A ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamyDamaaCaaajuaibeqaaiaadAgaaaqcfaOaaiiFaiaa dIhadaqhaaqaamaabmaabaGaamyqaaGaayjkaiaawMcaaaqaaiaacQ cacaWGMbaaaiaacYcacqaHYoGycaGG8bWaaSbaaeaadaqadaqaaiaa dgeaaiaawIcacaGLPaaaaeqaaiaacYcacqaHepaDdaWgaaqaamaabm aabaGaamyqaaGaayjkaiaawMcaaaqabaaacaGLOaGaayzkaaGaeyyp a0Zaa8qaaeaacaWGMbWaaeWaaeaacaWG1bWaaWbaaeqajuaibaGaam OzaaaajuaGcaGG8bGaamiEamaaDaaabaWaaeWaaeaacaWGbbaacaGL OaGaayzkaaaabaGaamOzaaaacaGGSaGaeqOSdi2aaSbaaeaadaqada qaaiaadgeaaiaawIcacaGLPaaaaeqaaiaacYcacqaHepaDdaWgaaqa amaabmaabaGaamyqaaGaayjkaiaawMcaaaqabaaacaGLOaGaayzkaa aabeqabiabgUIiYdGaamOzamaabmaabaGaamiEamaaDaaabaWaaeWa aeaacaWGbbaacaGLOaGaayzkaaaabaWaaeWaaeaacaWGYbGaey4kaS Iaam4CaaGaayjkaiaawMcaaiaadAgaaaGaaiiFaiaadIhadaqhaaqa amaabmaabaGaamyqaaGaayjkaiaawMcaaaqaaiaacQcacaWGMbaaaa GaayjkaiaawMcaaiaadsgacaWG4bWaa0baaeaadaqadaqaaiaadgea aiaawIcacaGLPaaaaeaadaqadaqaaiaadkhacqGHRaWkcaWGZbaaca GLOaGaayzkaaGaamOzaaaacqGHHjIUcaWGobWaaeWaaeaadaaeWbqa aiaadIhadaqhaaqaamaabmaabaGaamyqaaGaayjkaiaawMcaaiaadM gaaeaacaWGMbaaaiqbek7aIzaajaWaaSbaaeaadaqadaqaaiaadgea aiaawIcacaGLPaaacaWGPbaabeaacqGHRaWkdaaeWbqaaiabeE7aOn aaDaaabaGaamyAaaqaaiaacQcaaaGafqOSdiMbaKaadaWgaaqaamaa bmaabaGaamyqaaGaayjkaiaawMcaaiaadMgaaeqaaiaacYcadaaeWb qaaiqbek7aIzaajaWaaSbaaeaadaqadaqaaiaadgeaaiaawIcacaGL PaaacaWGPbaabeaaaKqbGeaacaWGPbGaeyypa0Jaam4AaiabgkHiTi aadkhacqGHsislcaWGZbaabaGaam4AaiabgkHiTiaaigdaaKqbakab ggHiLdGafqOSdiMbaKaadaWgaaqaamaabmaabaGaamyqaaGaayjkai aawMcaaiaadQgaaeqaaiabeI8a5naaDaaabaGaamyAaiaadQgaaeaa caGGQaaaaiabgUcaRiabes8a0naaDaaabaWaaeWaaeaacaWGbbaaca GLOaGaayzkaaaabaGaeyOeI0IaaGymaaaaaKqbGeaacaWGPbGaeyyp a0Jaam4AaiabgkHiTiaadkhacqGHsislcaWGZbaabaGaam4Aaiabgk HiTiaaigdaaKqbakabggHiLdaajuaibaGaamyAaiabg2da9iaaicda aeaacaWGRbGaeyOeI0IaamOCaiabgkHiTiaadohacqGHsislcaaIXa aajuaGcqGHris5aaGaayjkaiaawMcaaaaa@D07C@

Where η i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aa0baaKqbGeaacaWGPbaabaGaaiOkaaaaaaa@3A1C@ is the i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgaaaa@3793@ th component of η ( r+s ) * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aa0baaKqbGeaajuaGdaqadaqcfasaaiaadkhacqGHRaWkcaWGZbaa caGLOaGaayzkaaaajuaGbaGaaiOkaaaaaaa@3ED2@ and ψ ij * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK 3aa0baaKqbGeaacaWGPbGaamOAaaqcfayaaiaacQcaaaaaaa@3BBB@  is the ( i.j ) th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba qcLbsacaWGPbGaaiOlaiaadQgaaKqbakaawIcacaGLPaaadaahaaqa beaajugWaiaadshacaWGObaaaaaa@3EE4@ component of ψ ( r+s ) * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK 3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadkhacqGHRaWkcaWGZbaa caGLOaGaayzkaaaajuaGbaGaaiOkaaaaaaa@3EF4@ .

See Bhattacharjee et al11 in this context. Using Taylor's expansion and improper prior density for both β ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi 2aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa aeqaaaaa@3B7F@  and τ ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa aeqaaaaa@3BA3@ , the approximate predictive density of u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqcfasaaiaadAgaaaaaaa@38B9@ when x ( A ) ( r+s )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGaayjkaiaawM caaiaadAgaaaaaaa@40DD@ is missing is given by

f ( r+s ) ( u f | x ( A ) *f ,  data )N( i=0 krs1 x ( A )i f β ^ ( A )i + i=krs k1 η i * β ^ ( A )i , i,j=krs k1 β ^ ( A )i β ^ ( A )j ψ ij * + s ( A ) 2 γ * ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGa ayjkaiaawMcaaaqcfayabaWaaeWaaeaacaWG1bWaaWbaaeqajuaiba GaamOzaaaajuaGcaGG8bGaamiEamaaDaaajuaibaqcfa4aaeWaaKqb GeaacaWGbbaacaGLOaGaayzkaaaabaGaaiOkaiaadAgaaaqcfaOaai ilaabaaaaaaaaapeGaaiiOaiaacckapaGaamizaiaadggacaWG0bGa amyyaaGaayjkaiaawMcaaiabggMi6kaad6eadaqadaqaamaaqahaba GaamiEamaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGa ayzkaaGaamyAaaqaaiaadAgaaaqcfaOafqOSdiMbaKaadaWgaaqcfa saaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaiaadMgaaKqb agqaaiabgUcaRmaaqahabaGaeq4TdG2aa0baaKqbGeaacaWGPbaaju aGbaGaaiOkaaaacuaHYoGygaqcamaaBaaajuaibaqcfa4aaeWaaKqb GeaacaWGbbaacaGLOaGaayzkaaGaamyAaaqabaqcfaOaaiilamaaqa habaGafqOSdiMbaKaadaWgaaqcfasaaKqbaoaabmaajuaibaGaamyq aaGaayjkaiaawMcaaiaadMgaaeqaaKqbakqbek7aIzaajaWaaSbaaK qbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWGQbaa juaGbeaaaKqbGeaacaWGPbGaaiilaiaadQgacqGH9aqpcaWGRbGaey OeI0IaamOCaiabgkHiTiaadohaaeaacaWGRbGaeyOeI0IaaGymaaqc faOaeyyeIuoacqaHipqEdaqhaaqcfasaaiaadMgacaWGQbaajuaGba GaaiOkaaaacqGHRaWkcaWGZbWaa0baaKqbGeaajuaGdaqadaqcfasa aiaadgeaaiaawIcacaGLPaaaaeaacaaIYaaaaKqbakabeo7aNnaaCa aabeqaaiaacQcaaaaajuaibaGaamyAaiabg2da9iaadUgacqGHsisl caWGYbGaeyOeI0Iaam4CaaqaaiaadUgacqGHsislcaaIXaaajuaGcq GHris5aaqcfasaaiaadMgacqGH9aqpcaaIWaaabaGaam4AaiabgkHi TiaadkhacqGHsislcaWGZbGaeyOeI0IaaGymaaqcfaOaeyyeIuoaai aawIcacaGLPaaacaGGSaaaaa@AF82@

evaluated at  β ^ ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOSdi MbaKaadaWgaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaa wMcaaaqcfayabaaaaa@3C1D@ and s ( A ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baGaaGOmaaaaaaa@3B93@ where

γ * =( 1+ 1 2 0 k1 Q ij * ( β ( A ) ,   τ ( A ) )Cov( β ( A )i , β ( A )j )+ 1 2 Q τ ( A ) 2 ( β ( A ) , τ ( A ) )Var( τ ( A ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaWbaaeqabaGaaiOkaaaacqGH9aqpdaqadaqaaiaaigdacqGHRaWk daWcaaqaaiaaigdaaeaacaaIYaaaamaaqahabaGaamyuamaaDaaaju aibaGaamyAaiaadQgaaKqbagaacaGGQaaaamaabmaabaGaeqOSdi2a aSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaK qbagqaaiaacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiabes8a0naa Baaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaaju aGbeaaaiaawIcacaGLPaaacaWGdbGaam4BaiaadAhadaqadaqaaiab ek7aInaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaay zkaaGaamyAaaqcfayabaGaaiilaiabek7aInaaBaaajuaibaqcfa4a aeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaGaamOAaaqcfayabaaaca GLOaGaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaaKqb GeaacaaIWaaabaGaam4AaiabgkHiTiaaigdaaKqbakabggHiLdGaam yuamaaDaaajuaibaGaeqiXdqxcfa4aaSbaaKqbGeaajuaGdaqadaqc fasaaiaadgeaaiaawIcacaGLPaaaaeqaaaqaaiaaikdaaaqcfa4aae WaaeaacqaHYoGydaWgaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGa ayjkaiaawMcaaaqabaqcfaOaaiilaiabes8a0naaBaaajuaibaqcfa 4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaajuaGbeaaaiaawIca caGLPaaacaWGwbGaamyyaiaadkhadaqadaqaaiabes8a0naaBaaaju aibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabeaaaKqb akaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@8CCD@

is the multiplicative factor for the second order Taylor's approximation. If x ( A ) f 's MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaDa aaleaadaqadaqaaiaadgeaaiaawIcacaGLPaaaaeaacaWGMbaaaOGa ai4jaiaadohaaaa@3C07@ ’s are independent the corresponding approximate predictive density of u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqcfasaaiaadAgaaaaaaa@38B9@ is

f ( r+s ) ( u f | x ( A ) *f ,  data )N( i=0 krs1 x ( A )i f β ^ ( A )i + i=krs k1 η i β ^ ( A )i , i,j=krs k1 β ^ ( A )i 2 ψ i 2 + s ( A ) 2 γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb WcdaWgaaqcfasaaSWaaeWaaKqbGeaajugWaiaadkhacqGHRaWkcaWG ZbaajuaicaGLOaGaayzkaaaajuaGbeaadaqadaqaaKqzGeGaamyDaS WaaWbaaKqbagqajuaibaqcLbmacaWGMbaaaKqzGeGaaiiFaiaadIha lmaaDaaajuaibaWcdaqadaqcfasaaKqzadGaamyqaaqcfaIaayjkai aawMcaaaqaaKqzadGaaiOkaiaadAgaaaqcLbsacaGGSaaeaaaaaaaa a8qacaGGGcGaaiiOa8aacaWGKbGaamyyaiaadshacaWGHbaajuaGca GLOaGaayzkaaqcLbsacqGHHjIUcaWGobqcfa4aaeWaaeaadaaeWbqa aKqzGeGaamiEaSWaa0baaKqbGeaalmaabmaajuaibaqcLbmacaWGbb aajuaicaGLOaGaayzkaaqcLbmacaWGPbaajuaibaqcLbmacaWGMbaa aKqzGeGafqOSdiMbaKaajuaGdaWgaaqcfasaaSWaaeWaaKqbGeaaju gWaiaadgeaaKqbGiaawIcacaGLPaaajugWaiaadMgaaKqbagqaaKqz GeGaey4kaSscfa4aaabCaeaajugibiabeE7aOLqbaoaaBaaabaqcLb macaWGPbaajuaGbeaajugibiqbek7aIzaajaqcfa4aaSbaaKqbGeaa lmaabmaajuaibaqcLbmacaWGbbaajuaicaGLOaGaayzkaaqcLbmaca WGPbaajuaibeaajugibiaacYcajuaGdaaeWbqaaKqzGeGafqOSdiMb aKaalmaaDaaajuaGbaWcdaqadaqcfayaaKqzadGaamyqaaqcfaOaay jkaiaawMcaaKqzadGaamyAaaqcfayaaKqzadGaaGOmaaaaaKqbGeaa jugWaiaadMgacaGGSaGaamOAaiabg2da9iaadUgacqGHsislcaWGYb GaeyOeI0Iaam4CaaqcfasaaKqzadGaam4AaiabgkHiTiaaigdaaKqz GeGaeyyeIuoacqaHipqElmaaDaaajuaibaqcLbmacaWGPbaajuaGba qcLbmacaaIYaaaaKqzGeGaey4kaSIaam4CaSWaa0baaKqbGeaalmaa bmaajuaibaqcLbmacaWGbbaajuaicaGLOaGaayzkaaaabaqcLbmaca aIYaaaaKqzGeGaeq4SdCgajuaibaqcLbmacaWGPbGaeyypa0Jaam4A aiabgkHiTiaadkhacqGHsislcaWGZbaajuaibaqcLbmacaWGRbGaey OeI0IaaGymaaqcLbsacqGHris5aaqcfasaaKqzadGaamyAaiabg2da 9iaaicdaaKqbGeaajugWaiaadUgacqGHsislcaWGYbGaeyOeI0Iaam 4CaiabgkHiTiaaigdaaKqzGeGaeyyeIuoaaKqbakaawIcacaGLPaaa aaa@CD76@

evaluated at β ^ ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOSdi MbaKaadaWgaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaa wMcaaaqcfayabaaaaa@3C1D@ and s ( A ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baGaaGOmaaaaaaa@3B93@ , where η i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@39FB@ and ψ i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK 3aa0baaKqbGeaacaWGPbaabaGaaGOmaaaaaaa@3A4C@  are mean and variance of the ith missing variable and γ=( 1+ 1 2 0 k1 Q ij ( β ( A ) , τ ( A ) )Cov( β ( A )i , β ( A )j )+ 1 2 Q τ ( A ) 2 ( β ( A ) ,   τ ( A ) )Var( τ ( A ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0ZaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGa aGOmaaaadaaeWbqaaiaadgfadaWgaaqcfasaaiaadMgacaWGQbaaju aGbeaadaqadaqaaiabek7aInaaBaaajuaibaqcfa4aaeWaaKqbGeaa caWGbbaacaGLOaGaayzkaaaajuaGbeaacaGGSaGaeqiXdq3aaSbaaK qbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaKqbagqa aaGaayjkaiaawMcaaiaadoeacaWGVbGaamODamaabmaabaGaeqOSdi 2aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa caWGPbaajuaGbeaacaGGSaGaeqOSdi2aaSbaaKqbGeaajuaGdaqada qcfasaaiaadgeaaiaawIcacaGLPaaacaWGQbaajuaGbeaaaiaawIca caGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaaqcfasaai aaicdaaeaacaWGRbGaeyOeI0IaaGymaaqcfaOaeyyeIuoacaWGrbWa a0baaKqbGeaacqaHepaDjuaGdaWgaaqcfasaaKqbaoaabmaajuaiba GaamyqaaGaayjkaiaawMcaaaqabaaabaGaaGOmaaaajuaGdaqadaqa aiabek7aInaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOa GaayzkaaaajuaGbeaacaGGSaaeaaaaaaaaa8qacaGGGcGaaiiOa8aa cqaHepaDdaWgaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkai aawMcaaaqcfayabaaacaGLOaGaayzkaaGaamOvaiaadggacaWGYbWa aeWaaeaacqaHepaDdaWgaaqcfasaaKqbaoaabmaajuaibaGaamyqaa GaayjkaiaawMcaaaqabaaajuaGcaGLOaGaayzkaaaacaGLOaGaayzk aaaaaa@8B4E@ . Since no future variable is missing in υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyXdu haaa@384B@ , the approximate predictive density of υ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyXdu 3aaWbaaeqajuaibaGaamOzaaaaaaa@3986@ is same as obtained in Section 2. Thus when x ( A ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baGaamOzaaaaaaa@3BC7@ ’s are dependent the approximate predictive density of log-odds ratio a ' w f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaCaaabeqaaiaacEcaaaGaam4DamaaCaaabeqcfasaaiaadAgaaaaa aa@3A6E@ for x ( A ) ( r+s )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGaayjkaiaawM caaiaadAgaaaaaaa@40DD@ missing is given by

f ( r+s ) ( a ' w f | x ( A ) *f , x ( B ) f ;  data ) γ * N( ξ, ω 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbGaey4kaSIaam4CaaGa ayjkaiaawMcaaaqabaqcfa4aaeWaaeaacaWGHbWaaWbaaeqabaGaai 4jaaaacaWG3bWaaWbaaeqajuaibaGaamOzaaaajuaGcaGG8bGaamiE amaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaa aabaGaaiOkaiaadAgaaaqcfaOaaiilaiaadIhadaqhaaqcfasaaKqb aoaabmaajuaibaGaamOqaaGaayjkaiaawMcaaaqaaiaadAgaaaqcfa Oaai4oaabaaaaaaaaapeGaaiiOaiaacckapaGaamizaiaadggacaWG 0bGaamyyaaGaayjkaiaawMcaaiabggMi6kabeo7aNnaaCaaabeqaai aacQcaaaGaamOtamaabmaabaGaeqOVdGNaaiilaiabeM8a3naaCaaa beqcfasaaiaaikdaaaaajuaGcaGLOaGaayzkaaaaaa@64BE@   (vi)

Where

ξ= i=0 krs1 x ( A )i f β ^ ( A )i + i=krs k1 η i * β ^ ( A )i x ( B ) f β ^ ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0ZaaabCaeaacaWG4bWaa0baaKqbGeaajuaGdaqadaqcfasa aiaadgeaaiaawIcacaGLPaaacaWGPbaabaGaamOzaaaaaeaacaWGPb Gaeyypa0JaaGimaaqaaiaadUgacqGHsislcaWGYbGaeyOeI0Iaam4C aiabgkHiTiaaigdaaKqbakabggHiLdGafqOSdiMbaKaadaWgaaqcfa saaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaiaadMgaaKqb agqaaiabgUcaRmaaqahabaGaeq4TdG2aa0baaKqbGeaacaWGPbaaju aGbaGaaiOkaaaaaKqbGeaacaWGPbGaeyypa0Jaam4AaiabgkHiTiaa dkhacqGHsislcaWGZbaabaGaam4AaiabgkHiTiaaigdaaKqbakabgg HiLdGafqOSdiMbaKaadaWgaaqcfasaaKqbaoaabmaajuaibaGaamyq aaGaayjkaiaawMcaaiaadMgaaKqbagqaaiabgkHiTiaadIhadaqhaa qcfasaaKqbaoaabmaajuaibaGaamOqaaGaayjkaiaawMcaaaqaaiaa dAgaaaqcfaOafqOSdiMbaKaadaWgaaqcfasaaKqbaoaabmaajuaiba GaamOqaaGaayjkaiaawMcaaaqabaaaaa@7551@

and

ω 2 =( i,j=krs k1 β ^ ( A )i β ^ ( A )j ψ ij * + s ( A ) 2 )+ s ( B ) 2 ( 1+ x ( B ) f ( X ( B ) ' X ( B ) ) 1 x ( B ) f' ) nq nq+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaWbaaeqajuaibaGaaGOmaaaajuaGcqGH9aqpdaqadaqaamaaqaha baGafqOSdiMbaKaadaWgaaqcfasaaKqbaoaabmaajuaibaGaamyqaa GaayjkaiaawMcaaiaadMgaaKqbagqaaaqcfasaaiaadMgacaGGSaGa amOAaiabg2da9iaadUgacqGHsislcaWGYbGaeyOeI0Iaam4Caaqaai aadUgacqGHsislcaaIXaaajuaGcqGHris5aiqbek7aIzaajaWaaSba aKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWGQb aabeaajuaGcqaHipqEdaqhaaqcfasaaiaadMgacaWGQbaajuaGbaGa aiOkaaaacqGHRaWkcaWGZbWaa0baaKqbGeaajuaGdaqadaqcfasaai aadgeaaiaawIcacaGLPaaaaeaacaaIYaaaaaqcfaOaayjkaiaawMca aiabgUcaRiaadohadaqhaaqcfasaaKqbaoaabmaajuaibaGaamOqaa GaayjkaiaawMcaaaqaaiaaikdaaaqcfa4aaeWaaeaacaaIXaGaey4k aSIaamiEamaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGcbaacaGLOa GaayzkaaaabaGaamOzaaaajuaGdaqadaqaaiaadIfadaqhaaqcfasa aKqbaoaabmaajuaibaGaamOqaaGaayjkaiaawMcaaaqcfayaaiaacE caaaGaamiwamaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGcbaacaGL OaGaayzkaaaajuaGbeaaaiaawIcacaGLPaaadaahaaqabKqbGeaacq GHsislcaaIXaaaaKqbakaadIhadaqhaaqcfasaaKqbaoaabmaajuai baGaamOqaaGaayjkaiaawMcaaaqaaiaadAgacaGGNaaaaaqcfaOaay jkaiaawMcaamaalaaabaGaamOBaiabgkHiTiaadghaaeaacaWGUbGa eyOeI0IaamyCaiabgUcaRiaaikdaaaaaaa@8E9F@

The Kullback-Leibler9 directed measure of divergence between the predictive densities (iv) when no variable is missing and the predictive density (vi) when D KL = f( a ' w f | x ( A ) f , x ( B ) f ,  data ) log( f( a ' w f | x ( A ) f , x ( B ) f ,  data ) f ( r+s ) ( a ' w f | x ( A ) *f , x ( B ) f ,  data ) )d a ' w f = 1 2 ω 2 ( θξ ) 2 + 1 2 ( δ 2 ω 2 log( δ 2 ω 2 )1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca qGebWaaSbaaKqbGeaacaWGlbGaamitaaqcfayabaGaeyypa0Zaa8qa aeaacaWGMbWaaeWaaeaacaWGHbWaaWbaaeqabaGaai4jaaaacaWG3b WaaWbaaeqajuaibaGaamOzaaaajuaGcaGG8bGaamiEamaaDaaajuai baqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabaGaamOzaa aajuaGcaGGSaGaamiEamaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWG cbaacaGLOaGaayzkaaaabaGaamOzaaaajuaGcaGGSaaeaaaaaaaaa8 qacaGGGcGaaiiOa8aacaWGKbGaamyyaiaadshacaWGHbaacaGLOaGa ayzkaaaabeqabiabgUIiYdGaciiBaiaac+gacaGGNbWaaeWaaeaada WcaaqaaiaadAgadaqadaqaaiaadggadaahaaqabeaacaGGNaaaaiaa dEhadaahaaqabKqbGeaacaWGMbaaaKqbakaacYhacaWG4bWaa0baaK qbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaeaacaWG MbaaaKqbakaacYcacaWG4bWaa0baaKqbGeaajuaGdaqadaqcfasaai aadkeaaiaawIcacaGLPaaaaeaacaWGMbaaaKqbakaacYcapeGaaiiO aiaacckapaGaamizaiaadggacaWG0bGaamyyaaGaayjkaiaawMcaaa qaaiaadAgadaWgaaqcfasaaKqbaoaabmaajuaibaGaamOCaiabgUca RiaadohaaiaawIcacaGLPaaaaKqbagqaamaabmaabaGaamyyamaaCa aabeqaaiaacEcaaaGaam4DamaaCaaabeqcfasaaiaadAgaaaqcfaOa aiiFaiaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaay jkaiaawMcaaaqaaiaacQcacaWGMbaaaKqbakaacYcacaWG4bWaa0ba aKqbGeaajuaGdaqadaqcfasaaiaadkeaaiaawIcacaGLPaaaaeaaca WGMbaaaKqbakaacYcapeGaaiiOaiaacckapaGaamizaiaadggacaWG 0bGaamyyaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaacaWGKbGaam yyamaaCaaabeqaaiaacEcaaaGaam4DamaaCaaabeqcfasaaiaadAga aaaakeaajuaGcqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaGaeqyYdC 3aaWbaaeqajuaibaGaaGOmaaaaaaqcfa4aaeWaaeaacqaH4oqCcqGH sislcqaH+oaEaiaawIcacaGLPaaadaahaaqabKqbGeaacaaIYaaaaK qbakabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWc aaqaaiabes7aKnaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaeqyYdC 3aaWbaaeqajuaibaGaaGOmaaaaaaqcfaOaeyOeI0IaciiBaiaac+ga caGGNbWaaeWaaeaadaWcaaqaaiabes7aKnaaCaaabeqcfasaaiaaik daaaaajuaGbaGaeqyYdC3aaWbaaeqajuaibaGaaGOmaaaaaaaajuaG caGLOaGaayzkaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaaaa@C413@
1 2 i,j=0 k1 E( Q ij * ( β ( A ) ,  τ ( A ) )Cov( τ ( A )i ,  τ ( A )j ) ) 1 2 E( Q τ( A ) 2 ( β ( A ) , τ ( A ) )var( τ ( A ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 YaaSaaaeaacaaIXaaabaGaaGOmaaaadaaeWbqaaiaadweadaqadaqa aiaadgfadaqhaaqcfasaaiaadMgacaWGQbaabaGaaiOkaaaajuaGda qadaqaaiabek7aInaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaa caGLOaGaayzkaaaajuaGbeaacaGGSaaeaaaaaaaaa8qacaGGGcWdai abes8a0naaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGa ayzkaaaajuaGbeaaaiaawIcacaGLPaaacaWGdbGaam4BaiaadAhada qadaqaaiabes8a0naaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaa caGLOaGaayzkaaGaamyAaaqcfayabaGaaiila8qacaGGGcWdaiabes 8a0naaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzk aaGaamOAaaqcfayabaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaaju aibaGaamyAaiaacYcacaWGQbGaeyypa0JaaGimaaqaaiaadUgacqGH sislcaaIXaaajuaGcqGHris5aiabgkHiTmaalaaabaGaaGymaaqaai aaikdaaaGaamyramaabmaabaGaamyuamaaDaaajuaibaGaeqiXdqxc fa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabaGaaGOmaaaaju aGdaqadaqaaiabek7aInaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWG bbaacaGLOaGaayzkaaaabeaajuaGcaGGSaGaeqiXdq3aaSbaaKqbGe aajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaKqbagqaaaGa ayjkaiaawMcaaiGacAhacaGGHbGaaiOCamaabmaabaGaeqiXdq3aaS baaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaKqb agqaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@8F04@ (vii)

If x ( A ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baGaamOzaaaaaaa@3BC7@ ’s are independent the predictive density of a ' w f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaCaaabeqaaiaacEcaaaGaam4DamaaCaaabeqcfasaaiaadAgaaaaa aa@3A6E@  when ( r+s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGYbGaey4kaSIaam4CaaGaayjkaiaawMcaaaaa@3ADE@ future variables are missing is same as (vi) and the corresponding Kullback-Leibler9 measure D KL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaajuaibaGaam4saiaadYeaaKqbagqaaaaa@39CB@ is same as (vii) but replacing η i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aa0baaKqbGeaacaWGPbaabaGaaiOkaaaaaaa@3A1C@  by η i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@39FB@ in ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG haaa@3847@ , β ^ ( A )i β ^ ( A )j ψ ij * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOSdi MbaKaadaWgaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaa wMcaaiaadMgaaKqbagqaaiqbek7aIzaajaWaaSbaaKqbGeaajuaGda qadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWGQbaajuaGbeaacqaH ipqEdaqhaaqcfasaaiaadMgacaWGQbaabaGaaiOkaaaaaaa@483C@  by β ^ ( A )i 2 ψ i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOSdi MbaKaadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaa wMcaaiaadMgaaeaacaaIYaaaaKqbakabeI8a5naaDaaajuaibaGaam yAaaqaaiaaikdaaaaaaa@4190@ in ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaWbaaeqajuaibaGaaGOmaaaaaaa@395D@  and Q ij * ( β ( A ) ,   τ ( A ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyuam aaDaaajuaibaGaamyAaiaadQgaaeaacaGGQaaaaKqbaoaabmaabaGa eqOSdi2aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcaca GLPaaaaKqbagqaaiaacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiab es8a0naaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaay zkaaaajuaGbeaaaiaawIcacaGLPaaaaaa@4AA9@  by  Q ij ( β ( A ) ,   τ ( A ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyuam aaBaaajuaibaGaamyAaiaadQgaaKqbagqaamaabmaabaGaeqOSdi2a aSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaK qbagqaaiaacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiabes8a0naa Baaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabe aaaKqbakaawIcacaGLPaaaaaa@49FA@  in γ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaWbaaeqabaGaaiOkaaaaaaa@38FB@ , where η i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@39FB@ and ψ i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK 3aa0baaKqbGeaacaWGPbaabaGaaGOmaaaaaaa@3A4C@ are mean and variance of the ith missing variable.

Explanatory variables are dichotomous

Here we assume that all the explanatory variables are dichotomous and independent. We assume that the errors of models (ii) and (iii) are normally distributed with means zero and variances τ ( A ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa aeaacqGHsislcaaIXaaaaaaa@3D4C@ and τ ( B ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadkeaaiaawIcacaGLPaaa aeaacqGHsislcaaIXaaaaaaa@3D4D@ respectively. To assess the influence of the missing variables in treatment A, we consider that x ( A )i f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaGa amyAaaqaaiaadAgaaaaaaa@3CB5@ is distributed as

Pr( X ( A )i f = x ( A )i f )= θ ( A )i x ( A )i f ( 1 θ ( A )i ) 1 x ( A )i f , x ( A )i f =0,1,    i=1,2,...,k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiuai aackhadaqadaqaaiaadIfadaqhaaqcfasaaKqbaoaabmaajuaibaGa amyqaaGaayjkaiaawMcaaiaadMgaaeaacaWGMbaaaKqbakabg2da9i aadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaa wMcaaiaadMgaaeaacaWGMbaaaaqcfaOaayjkaiaawMcaaiabg2da9i abeI7aXnaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGa ayzkaaGaamyAaaqaaiaadIhajuaGdaqhaaqcfasaaKqbaoaabmaaju aibaGaamyqaaGaayjkaiaawMcaaiaadMgaaeaacaWGMbaaaaaajuaG daqadaqaaiaaigdacqGHsislcqaH4oqCdaWgaaqcfasaaKqbaoaabm aajuaibaGaamyqaaGaayjkaiaawMcaaiaadMgaaKqbagqaaaGaayjk aiaawMcaamaaCaaabeqaaiaaigdacqGHsislcaWG4bWaa0baaKqbGe aajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWGPbaabaGa amOzaaaaaaqcfaOaaiilaiaadIhadaqhaaqcfasaaKqbaoaabmaaju aibaGaamyqaaGaayjkaiaawMcaaiaadMgaaeaacaWGMbaaaKqbakab g2da9iaaicdacaGGSaGaaGymaiaacYcaqaaaaaaaaaWdbiaacckaca GGGcGaaiiOaiaacckacaWGPbGaeyypa0JaaGymaiaacYcacaaIYaGa aiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGRbGaeyOeI0IaaGymaa aa@82F8@

The density of a future u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqcfasaaiaadAgaaaaaaa@38B9@ is

f( u f | x ( A ) f , β ( A ) ,   τ ( A ) )N( i=0 k1 x ( A )i f β ( A )i ,   τ ( A ) 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamyDamaaCaaabeqcfasaaiaadAgaaaqcfaOaaiiFaiaa dIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawM caaaqaaiaadAgaaaqcfaOaaiilaiabek7aInaaBaaajuaibaqcfa4a aeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabeaajuaGcaGGSaaeaa aaaaaaa8qacaGGGcGaaiiOa8aacqaHepaDdaWgaaqcfasaaKqbaoaa bmaajuaibaGaamyqaaGaayjkaiaawMcaaaqcfayabaaacaGLOaGaay zkaaGaeyyyIORaamOtamaabmaabaWaaabCaeaacaWG4bWaa0baaKqb GeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWGPbaaba GaamOzaaaajuaGcqaHYoGydaWgaaqcfasaaKqbaoaabmaajuaibaGa amyqaaGaayjkaiaawMcaaiaadMgaaKqbagqaaiaacYcapeGaaiiOai aacckapaGaeqiXdq3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadgea aiaawIcacaGLPaaaaeaacqGHsislcaaIXaaaaaqaaiaadMgacqGH9a qpcaaIWaaabaGaam4AaiabgkHiTiaaigdaaKqbakabggHiLdaacaGL OaGaayzkaaGaaiOlaaaa@7583@

If x ( A ) ( r )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbaacaGLOaGaayzkaaGaamOzaaaaaa a@3F03@ future variables are missing in treatment A, then the density of a future u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqcfasaaiaadAgaaaaaaa@38B9@ is given by

f( u f | x ( A ) *f , β ( A ) ,   τ ( A ) 1 )= x ( A )kr f =0 1 ..... Σ x ( A )k1 f =0 1 N( i=0 k1 x ( A )i f β ( A )i ,   τ ( A ) 1 ) i=kr k1 θ ( A )i x ( A )i f ( 1 θ ( A )i ) 1 x ( A )i f . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamyDamaaCaaabeqcfasaaiaadAgaaaqcfaOaaiiFaiaa dIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawM caaaqaaiaacQcacaWGMbaaaKqbakaacYcacqaHYoGydaWgaaqcfasa aKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqcfayabaGaai ilaabaaaaaaaaapeGaaiiOaiaacckapaGaeqiXdq3aa0baaKqbGeaa juaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaeaacqGHsislca aIXaaaaaqcfaOaayjkaiaawMcaaiabg2da9maaqahabaGaaiOlaiaa c6cacaGGUaGaaiOlaiaac6cadaGfWbqabeaacaWG4bWaa0baaKqbGe aajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWGRbGaeyOe I0IaaGymaaqaaiaadAgaaaqcfaOaeyypa0JaaGimaaqaaiaaigdaae aacqqHJoWuaaGaamOtamaabmaabaWaaabCaeaacaWG4bWaa0baaKqb GeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWGPbaaba GaamOzaaaajuaGcqaHYoGydaWgaaqcfasaaKqbaoaabmaajuaibaGa amyqaaGaayjkaiaawMcaaiaadMgaaKqbagqaaiaacYcapeGaaiiOai aacckapaGaeqiXdq3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadgea aiaawIcacaGLPaaaaeaacqGHsislcaaIXaaaaaqaaiaadMgacqGH9a qpcaaIWaaabaGaam4AaiabgkHiTiaaigdaaKqbakabggHiLdaacaGL OaGaayzkaaWaaebCaeaacqaH4oqCdaqhaaqcfasaaKqbaoaabmaaju aibaGaamyqaaGaayjkaiaawMcaaiaadMgaaeaacaWG4bqcfa4aa0ba aKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWGPb aabaGaamOzaaaaaaaabaGaamyAaiabg2da9iaadUgacqGHsislcaWG YbaabaGaam4AaiabgkHiTiaaigdaaKqbakabg+GivdaabaGaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaGa am4AaiabgkHiTiaadkhaaeaacaWGMbaaaKqbakabg2da9iaaicdaae aacaaIXaaacqGHris5amaabmaabaGaaGymaiabgkHiTiabeI7aXnaa Baaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaGaam yAaaqabaaajuaGcaGLOaGaayzkaaWaaWbaaeqabaGaaGymaiabgkHi TiaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkai aawMcaaiaadMgaaeaacaWGMbaaaaaajuaGcaGGUaaaaa@BDDC@

The predictive density of u f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaabeqcfasaaiaadAgaaaaaaa@38B9@ when x ( A ) ( r )f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baqcfa4aaeWaaKqbGeaacaWGYbaacaGLOaGaayzkaaGaamOzaaaaaa a@3F03@ is missing is given by

f( u f | x ( A ) *f ,  data= f( u f | x ( A ) *f ) β ( A ) ,   τ ( A ) 1 )f( β ( A ) |data )d β ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamyDamaaCaaabeqcfasaaiaadAgaaaqcfaOaaiiFaiaa dIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawM caaaqaaiaacQcacaWGMbaaaKqbakaacYcaqaaaaaaaaaWdbiaaccka caGGGcGaamizaiaadggacaWG0bGaamyyaiabg2da9maapeaabaGaam OzaiaacIcacaGG1bWaaWbaaeqabaGaamOzaaaapaGaaiiFaiaadIha daqhaaqaamaabmaabaGaamyqaaGaayjkaiaawMcaaaqaaiaacQcaca WGMbaaa8qacaGGPaaabeqabiabgUIiYdWdaiabek7aInaaBaaajuai baqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaajuaGbeaaca GGSaWdbiaacckacaGGGcWdaiabes8a0naaDaaajuaibaqcfa4aaeWa aKqbGeaacaWGbbaacaGLOaGaayzkaaaabaGaeyOeI0IaaGymaaaaaK qbakaawIcacaGLPaaacaWGMbWaaeWaaeaacqaHYoGydaWgaaqcfasa aKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqabaqcfaOaai iFaiaadsgacaWGHbGaamiDaiaadggaaiaawIcacaGLPaaacaWGKbGa eqOSdi2aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcaca GLPaaaaKqbagqaaaaa@7A7B@    (viii)

which is not mathematically tractable. For vague prior densities for β ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi 2aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa aeqaaaaa@3B7F@ and τ ( A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaa aeqaaaaa@3BA3@  and using Taylor's expansion, the approximate predictive density of (viii) is

f( u f |x * ( A ) f ,  data )= x ( A )kr f =0 1 ... x ( A )k1 f =0 1 N( i=0 k1 x ( A )i f β ^ ( A )i , s ( A ) 2 ) i=kr k1 θ ( A )i x ( A )i f ( 1 θ ( A ) i ) 1 x ( A )i f ( 1+ i,j=0 k1 Q ij ( β ^ , s ( A ) 2 ) cov( β ( A )i , β ( A )j ) 2 + Q τ ( A ) 2 ( β ^ ( A ) , s ( A ) 2 ) var( τ ( A ) ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam OzamaabmaabaGaamyDamaaCaaabeqcfasaaiaadAgaaaqcfaOaaiiF aiaadIhacaGGQaWaa0baaKqbGeaajuaGdaqadaqcfasaaiaadgeaai aawIcacaGLPaaaaeaacaWGMbaaaKqbakaacYcaqaaaaaaaaaWdbiaa cckacaGGGcWdaiaadsgacaWGHbGaamiDaiaadggaaiaawIcacaGLPa aacqGH9aqpdaaeWbqaaiaac6cacaGGUaGaaiOlamaaqahabaGaamOt amaabmaabaWaaabCaeaacaWG4bWaa0baaKqbGeaajuaGdaqadaqcfa saaiaadgeaaiaawIcacaGLPaaacaWGPbaabaGaamOzaaaajuaGcuaH YoGygaqcamaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOa GaayzkaaGaamyAaaqcfayabaaajuaibaGaamyAaiabg2da9iaaicda aeaacaWGRbGaeyOeI0IaaGymaaqcfaOaeyyeIuoacaGGSaGaai4Cam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaa baGaaGOmaaaaaKqbakaawIcacaGLPaaaaKqbGeaacaWG4bqcfa4aa0 baaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaacaWG RbGaeyOeI0IaaGymaaqaaiaadAgaaaGaeyypa0JaaGimaaqaaiaaig daaKqbakabggHiLdaajuaibaGaamiEaKqbaoaaDaaajuaibaqcfa4a aeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaGaam4AaiabgkHiTiaadk haaeaacaWGMbaaaiabg2da9iaaicdaaeaacaaIXaaajuaGcqGHris5 amaarahabaGaeqiUde3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadg eaaiaawIcacaGLPaaacaWGPbaabaGaamiEaKqbaoaaDaaajuaibaqc fa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaGaamyAaaqaaiaadA gaaaaaaaqaaiaadMgacqGH9aqpcaWGRbGaeyOeI0IaamOCaaqaaiaa dUgacqGHsislcaaIXaaajuaGcqGHpis1amaabmaabaGaaGymaiabgk HiTiabeI7aXnaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGL OaGaayzkaaaajuaGbeaajuaicaWGPbaajuaGcaGLOaGaayzkaaWaaW baaeqajuaibaGaaGymaiabgkHiTiaadIhajuaGdaqhaaqcfasaaKqb aoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaiaadMgaaeaacaWGMb aaaaaaaOqaaKqbaoaabmaabaGaaGymaiabgUcaRmaaqahabaGaamyu amaaBaaajuaibaGaamyAaiaadQgaaKqbagqaaaqcfasaaiaadMgaca GGSaGaamOAaiabg2da9iaaicdaaeaacaWGRbGaeyOeI0IaaGymaaqc faOaeyyeIuoadaqadaqaaiqbek7aIzaajaGaaiilaiaadohadaqhaa qcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaaqaaiab gkHiTiaaikdaaaaajuaGcaGLOaGaayzkaaWaaSaaaeaaciGGJbGaai 4BaiaacAhadaqadaqaaiabek7aInaaBaaajuaibaqcfa4aaeWaaKqb GeaacaWGbbaacaGLOaGaayzkaaGaamyAaaqcfayabaGaaiilaiabek 7aInaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzk aaGaamOAaaqcfayabaaacaGLOaGaayzkaaaabaGaaGOmaaaacqGHRa WkcaWGrbWaaSbaaKqbGeaacqaHepaDjuaGdaqhaaqcfasaaKqbaoaa bmaajuaibaGaamyqaaGaayjkaiaawMcaaaqaaiaaikdaaaaajuaGbe aadaqadaqaaiqbek7aIzaajaWaaSbaaKqbGeaajuaGdaqadaqcfasa aiaadgeaaiaawIcacaGLPaaaaKqbagqaaiaacYcacaWGZbWaa0baaK qbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPaaaaeaacqGH sislcaaIYaaaaaqcfaOaayjkaiaawMcaamaalaaabaGaciODaiaacg gacaGGYbWaaeWaaeaacqaHepaDdaWgaaqcfasaaKqbaoaabmaajuai baGaamyqaaGaayjkaiaawMcaaaqcfayabaaacaGLOaGaayzkaaaaba GaaGOmaaaaaiaawIcacaGLPaaaaaaa@0191@

Since there are no missing variables in ν f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 2aaWbaaeqajuaibaGaamOzaaaaaaa@3977@ , the density of ν f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 2aaWbaaeqajuaibaGaamOzaaaaaaa@3977@ is same as that can be obtained in Section 2. Then the predictive density of a ' w f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaCaaabeqaaiaacEcaaaGaam4DamaaCaaabeqcfasaaiaadAgaaaaa aa@3A6E@ is given by

f( a' w f |x * ( A ) f , x ( B ) f ,  data )= x ( A )kr f =0 1 ... x ( A )k1 f =0 1 N ( i=0 k1 ( x ( A )i f β ^ ( A )i x ( B )i f β ^ ( B )i ), S ( A ) 2 + s ( B ) 2 ( 1+ x ( B ) f ( X ' ( B ) X ( B ) ) 1 x ' ( B ) ) ) i=kr k1 θ ( A )i x ( A )i f ( 1 θ ( A ) i ) 1 x ( A )i f ( 1+ i,j=0 k1 Q ij ( β ^ ( A ) , s ( A ) 2 ) cov( β ( A )i , β ( A )j ) 2 + Q T ( A ) 2 ( β ^ ( A ) , s ( A ) 2 ) var( τ ( A ) ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam OzamaabmaabaGaamyyaiaacEcacaWG3bWaaWbaaeqabaGaamOzaaaa caGG8bGaamiEaiaacQcadaqhaaqcfasaaKqbaoaabmaajuaibaGaam yqaaGaayjkaiaawMcaaaqaaiaadAgaaaqcfaOaaiilaiaadIhadaqh aaqcfasaaKqbaoaabmaajuaibaGaamOqaaGaayjkaiaawMcaaaqaai aadAgaaaqcfaOaaiilaabaaaaaaaaapeGaaiiOaiaacckapaGaamiz aiaadggacaWG0bGaamyyaaGaayjkaiaawMcaaiabg2da9maaqahaba GaaiOlaiaac6cacaGGUaWaaabCaeaacaWGobaajuaibaGaamiEaKqb aoaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaa Gaam4AaiabgkHiTiaaigdaaeaacaWGMbaaaiabg2da9iaaicdaaeaa caaIXaaajuaGcqGHris5aaqcfasaaiaadIhajuaGdaqhaaqcfasaaK qbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaiaadUgacqGHsisl caWGYbaabaGaamOzaaaacqGH9aqpcaaIWaaabaGaaGymaaqcfaOaey yeIuoakmaabmaabaWaaabCaeaadaqadaqaaiaadIhadaqhaaWcbaWa aeWaaeaacaWGbbaacaGLOaGaayzkaaGaamyAaaqaaiaadAgaaaGccu aHYoGygaqcamaaBaaaleaadaqadaqaaiaadgeaaiaawIcacaGLPaaa caWGPbaabeaakiabgkHiTiaadIhadaqhaaWcbaWaaeWaaeaacaWGcb aacaGLOaGaayzkaaGaamyAaaqaaiaadAgaaaGccuaHYoGygaqcamaa BaaaleaadaqadaqaaiaadkeaaiaawIcacaGLPaaacaWGPbaabeaaaO GaayjkaiaawMcaaiaacYcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGa am4AaiabgkHiTiaaigdaa0GaeyyeIuoajugibiaadofakmaaDaaale aadaqadaqaaiaadgeaaiaawIcacaGLPaaaaeaacaaIYaaaaOGaey4k aSIaai4CamaaDaaaleaadaqadaqaaiaadkeaaiaawIcacaGLPaaaae aacaaIYaaaaOWaaeWaaeaacaaIXaGaey4kaSIaamiEamaaDaaaleaa daqadaqaaiaadkeaaiaawIcacaGLPaaaaeaacaWGMbaaaOWaaeWaae aacaWGybGaai4jamaaBaaaleaadaqadaqaaiaadkeaaiaawIcacaGL PaaaaeqaaOGaamiwamaaBaaaleaadaqadaqaaiaadkeaaiaawIcaca GLPaaaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaamiEaiaacEcadaWgaaWcbaWaaeWaaeaacaWGcbaacaGLOa GaayzkaaaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaKqb aoaarahabaGaeqiUde3aa0baaKqbGeaajuaGdaqadaqcfasaaiaadg eaaiaawIcacaGLPaaacaWGPbaabaGaamiEaKqbaoaaDaaajuaibaqc fa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaGaamyAaaqaaiaadA gaaaaaaaqaaiaadMgacqGH9aqpcaWGRbGaeyOeI0IaamOCaaqaaiaa dUgacqGHsislcaaIXaaajuaGcqGHpis1amaabmaabaGaaGymaiabgk HiTiabeI7aXnaaBaaajuaibaqcfa4aaeWaaKqbGeaacaWGbbaacaGL OaGaayzkaaaajuaGbeaajuaicaWGPbaajuaGcaGLOaGaayzkaaWaaW baaeqajuaibaGaaGymaiabgkHiTiaadIhajuaGdaqhaaqcfasaaKqb aoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaiaadMgaaeaacaWGMb aaaaaaaOqaaKqbaoaabmaabaGaaGymaiabgUcaRmaaqahabaGaamyu amaaBaaajuaibaGaamyAaiaadQgaaKqbagqaaaqcfasaaiaadMgaca GGSaGaamOAaiabg2da9iaaicdaaeaacaWGRbGaeyOeI0IaaGymaaqc faOaeyyeIuoadaqadaqaaiqbek7aIzaajaWaaSbaaKqbGeaajuaGda qadaqcfasaaiaadgeaaiaawIcacaGLPaaaaKqbagqaaiaacYcacaWG ZbWaa0baaKqbGeaajuaGdaqadaqcfasaaiaadgeaaiaawIcacaGLPa aaaeaacqGHsislcaaIYaaaaaqcfaOaayjkaiaawMcaamaalaaabaGa ci4yaiaac+gacaGG2bWaaeWaaeaacqaHYoGydaWgaaqcfasaaKqbao aabmaajuaibaGaamyqaaGaayjkaiaawMcaaiaadMgaaKqbagqaaiaa cYcacqaHYoGydaWgaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaay jkaiaawMcaaiaadQgaaKqbagqaaaGaayjkaiaawMcaaaqaaiaaikda aaGaey4kaSIaamyuamaaBaaajuaibaGaamivaKqbaoaaDaaajuaiba qcfa4aaeWaaKqbGeaacaWGbbaacaGLOaGaayzkaaaabaGaaGOmaaaa aKqbagqaamaabmaabaGafqOSdiMbaKaadaWgaaqcfasaaKqbaoaabm aajuaibaGaamyqaaGaayjkaiaawMcaaaqcfayabaGaaiilaiaadoha daqhaaqcfasaaKqbaoaabmaajuaibaGaamyqaaGaayjkaiaawMcaaa qaaiabgkHiTiaaikdaaaaajuaGcaGLOaGaayzkaaWaaSaaaeaaciGG 2bGaaiyyaiaackhadaqadaqaaiabes8a0naaBaaajuaibaqcfa4aae WaaKqbGeaacaWGbbaacaGLOaGaayzkaaaajuaGbeaaaiaawIcacaGL PaaaaeaacaaIYaaaaaGaayjkaiaawMcaaaaaaa@30DC@  (ix)

Analytical solution of D KL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGeb qcfa4aaSbaaSqaaKqzadGaam4saiaadYeaaSqabaaaaa@3AE0@ between the predictive densities (iv) and (ix) is very difficult to obtain but numerical solution can be obtained. In Some situations it is seen that among the explanatory variables, some of the variables are dichotomous and some of the variables are continuous. Among the k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb GaeyOeI0IaaGymaaaa@391D@ -explanatory variables, without loss of generality we assume that the first l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYgaaaa@3796@ are dichotomous and the remaining last kl1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb GaeyOeI0IaamiBaiabgkHiTiaaigdaaaa@3AFB@ are continuous variables. We also assume that out of l dichotomous future variables last d variables are missing and out of (kl1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaam4AaiabgkHiTiaadYgacqGHsislcaaIXaGaaiykaaaa@3C54@ continuous future variables last g variables are missing. Then the predictive density of future log-odds ratio a ' w f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaCaaabeqaaiaacEcaaaGaam4DamaaCaaabeqcfasaaiaadAgaaaaa aa@3A6E@ when d dichotomous and g continuous variables are missing is given by

f( a ' w f |x * ( A ) f ,x * ( B ) f ,  data )=( x ( A )ld+1 f =0 1 ... x ( A )l f =0 1 N( i=0 kg1 x ( A )i f β ^ ( A )i + i=kg k1 ηi β ^ ( A )i Σ i=0 k1 x (B)i f β ^ (B)i ,   Σ i=kg k1 β ^ (A)i 2 Ψ i 2 + S (A) 2 + S (B) 2 ( 1+ x (B) f ( X (B) ' X (B) ) 1 x (B) ' ) ).       (x) Π i=ld+1 l θ i x (A)i f ( 1 θ i ) 1 x (A)i f )( 1+ i,j=0 k1 Q ij ( β ^ (A) , s ( A ) 2 ) cov( β ( A )i , β ( A )j ) 2 + Q T ( A ) 2 ( β ^ ( A ) , s ( A ) 2 ) var( T ( A ) ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGMbqcfa4aaeWaaeaajugibiaadggalmaaCaaajuaGbeqaaKqzadGa ai4jaaaajugibiaadEhajuaGdaahaaqabKqbGeaajugWaiaadAgaaa qcLbsacaGG8bGaamiEaKqzadGaaiOkaSWaa0baaKqbGeaalmaabmaa juaibaqcLbmacaWGbbaajuaicaGLOaGaayzkaaaabaqcLbmacaWGMb aaaKqzGeGaaiilaiaadIhajugWaiaacQcalmaaDaaajuaibaWcdaqa daqcfasaaKqzadGaamOqaaqcfaIaayjkaiaawMcaaaqaaKqzadGaam OzaaaajugibiaacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiaadsga caWGHbGaamiDaiaadggaaKqbakaawIcacaGLPaaajugibiabg2da9K qbaoaabeaakeaajuaGdaaeWbqaaKqzGeGaaiOlaiaac6cacaGGUaqc fa4aaabCaeaajugibiaad6eajuaGdaqabaqaamaaqahabaqcLbsaca WG4bWcdaqhaaqcfasaaSWaaeWaaKqbGeaajugWaiaadgeaaKqbGiaa wIcacaGLPaaajugWaiaadMgaaKqbGeaajugWaiaadAgaaaqcLbsacu aHYoGygaqcaKqbaoaaBaaajuaibaWcdaqadaqcfasaaKqzadGaamyq aaqcfaIaayjkaiaawMcaaKqzadGaamyAaaqcfayabaaajuaibaqcLb macaWGPbGaeyypa0JaaGimaaqcfasaaKqzadGaam4AaiabgkHiTiaa dEgacqGHsislcaaIXaaajugibiabggHiLdGaey4kaScajuaGcaGLOa aaaKqbGeaajugWaiaadIhalmaaDaaajuaibaWcdaqadaqcfasaaKqz adGaamyqaaqcfaIaayjkaiaawMcaaKqzadGaamiBaaqcfasaaKqzad GaamOzaaaacqGH9aqpcaaIWaaajuaibaqcLbmacaaIXaaajugibiab ggHiLdaajuaibaqcLbmacaWG4bWcdaqhaaqcfasaaSWaaeWaaKqbGe aajugWaiaadgeaaKqbGiaawIcacaGLPaaajugWaiaadYgacqGHsisl caWGKbGaey4kaSIaaGymaaqcfasaaKqzadGaamOzaaaacqGH9aqpca aIWaaajuaibaqcLbmacaaIXaaajugibiabggHiLdaakiaawIcaaaqa aKqbaoaarahabaqcLbsacqaH3oaAcaWGPbaajuaibaqcLbmacaWGPb Gaeyypa0Jaam4AaiabgkHiTiaadEgaaKqbGeaajugWaiaadUgacqGH sislcaaIXaaajugibiabg+GivdGafqOSdiMbaKaalmaaBaaabaWaae WaaeaajugWaiaadgeaaSGaayjkaiaawMcaaKqzadGaamyAaaWcbeaa jugibiabgkHiTKqbaoaawahakeqaleaajugWaiaadMgacqGH9aqpca aIWaaaleaajugWaiaadUgacqGHsislcaaIXaaaneaajugibiabfo6a tbaacaWG4bWcdaqhaaqaaKqzadGaaiikaiaadkeacaGGPaGaamyAaa WcbaqcLbmacaWGMbaaaKqzGeGafqOSdiMbaKaalmaaBaaabaqcLbma caGGOaGaamOqaiaacMcacaWGPbaaleqaaKqzGeGaaiila8qacaGGGc GaaiiOaKqbaoaawahakeqaleaajugWaiaadMgacqGH9aqpcaWGRbGa eyOeI0Iaam4zaaWcbaqcLbmapaGaam4AaiabgkHiTiaaigdaa0Wdbe aajugibiabfo6atbaapaGafqOSdiMbaKaalmaaDaaabaqcLbmacaGG OaGaamyqaiaacMcacaWGPbaaleaajugWaiaaikdaaaqcLbsacqqHOo qwlmaaDaaabaqcLbmacaWGPbaaleaajugWaiaaikdaaaqcLbsacqGH RaWkcaWGtbWcdaqhaaqaaKqzadGaaiikaiaadgeacaGGPaaaleaaju gWaiaaikdaaaqcLbsacqGHRaWkcaWGtbWcdaqhaaqaaKqzadGaaiik aiaadkeacaGGPaaaleaajugWaiaaikdaaaqcfa4aaeGaaOqaaKqbao aabeaakeaajugibiaaigdacqGHRaWkcaWG4bWcdaqhaaqaaKqzadGa aiikaiaadkeacaGGPaaaleaajugWaiaadAgaaaaakiaawIcaaKqbao aabmaakeaajugibiaadIfalmaaDaaabaqcLbmacaGGOaGaamOqaiaa cMcaaSqaamaaCaaameqabaqcLbmacaGGNaaaaaaajugibiaadIfalm aaBaaabaqcLbmacaGGOaGaamOqaiaacMcaaSqabaaakiaawIcacaGL PaaalmaaCaaabeqaaKqzadGaeyOeI0IaaGymaaaajuaGdaqacaGcba qcLbsacaWG4bWcdaqhaaqaaKqzadGaaiikaiaadkeacaGGPaaaleaa daahaaadbeqaaKqzadGaai4jaaaaaaaakiaawMcaaaGaayzkaaqcLb sacaGGUaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGOaWdaiaadIhapeGaaiykaaGcbaqcfa4aaybCaOqabSqaaK qzadGaamyAaiabg2da9iaadYgacqGHsislcaWGKbGaey4kaSIaaGym aaWcbaqcLbmacaWGSbaaneaajugibiabfc6aqbaacqaH4oqClmaaDa aabaqcLbmacaWGPbaaleaajugWaiaadIhalmaaDaaameaajugWaiaa cIcacaWGbbGaaiykaiaadMgaaWqaaKqzadGaamOzaaaaaaqcfa4aae GaaOqaaKqbaoaabmaakeaajugibiaaigdacqGHsislcqaH4oqCjuaG daWgaaWcbaqcLbmacaWGPbaaleqaaaGccaGLOaGaayzkaaqcfa4aaW baaSqabeaajugWaiaaigdacqGHsislcaWG4bWcdaqhaaadbaqcLbma caGGOaGaamyqaiaacMcacaWGPbaameaajugWaiaadAgaaaaaaaGcca GLPaaajuaGdaqabaGcbaqcLbsapaGaaGymaiabgUcaRKqbaoaaqaha keaajugibiaadgfajuaGdaWgaaWcbaqcLbmacaWGPbGaamOAaaWcbe aaaeaajugWaiaadMgacaGGSaGaamOAaiabg2da9iaaicdaaSqaaKqz GeGaam4AaiabgkHiTiaaigdaaiabggHiLdqcfa4aaeWaaOqaaKqzGe GafqOSdiMbaKaajuaGdaWgaaWcbaqcLbmacaGGOaGaamyqaiaacMca aSqabaqcLbsacaGGSaGaam4CaSWaa0baaeaadaqadaqaaKqzadGaam yqaaWccaGLOaGaayzkaaaabaqcLbmacqGHsislcaaIYaaaaaGccaGL OaGaayzkaaqcfa4aaSaaaOqaaKqzGeGaci4yaiaac+gacaGG2bqcfa 4aaeWaaOqaaKqzGeGaeqOSdiwcfa4aaSbaaSqaamaabmaabaqcLbma caWGbbaaliaawIcacaGLPaaajugWaiaadMgaaSqabaqcLbsacaGGSa GaeqOSdi2cdaWgaaqaamaabmaabaqcLbmacaWGbbaaliaawIcacaGL PaaajugWaiaadQgaaSqabaaakiaawIcacaGLPaaaaeaajugibiaaik daaaaak8qacaGLOaaaaeaajuaGdaqacaGcbaqcLbsapaGaey4kaSIa amyuaKqbaoaaBaaaleaajugWaiaadsfalmaaDaaameaalmaabmaame aajugWaiaadgeaaWGaayjkaiaawMcaaaqaaKqzadGaaGOmaaaaaSqa baqcfa4aaeWaaOqaaKqzGeGafqOSdiMbaKaalmaaBaaabaWaaeWaae aajugWaiaadgeaaSGaayjkaiaawMcaaaqabaqcLbsacaGGSaGaam4C aSWaa0baaeaadaqadaqaaKqzadGaamyqaaWccaGLOaGaayzkaaaaba qcLbmacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaqcfa4aaSaaaOqa aKqzGeGaciODaiaacggacaGGYbqcfa4aaeWaaOqaaKqzGeGaamivaK qbaoaaBaaaleaadaqadaqaaKqzadGaamyqaaWccaGLOaGaayzkaaaa beaaaOGaayjkaiaawMcaaaqaaKqzGeGaaGOmaaaaaOWdbiaawMcaaa aaaa@DB93@  (x)

Again, analytical solution of D KL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGeb qcfa4aaSbaaSqaaKqzadGaam4saiaadYeaaSqabaaaaa@3AE0@ between the predictive densities (iv) and (x) is very difficult but we can obtain its numerical solution. In similar way we can derive the predictive density of future log-odds ratio when some future variables are missing in treatment B.

Example 1 revisited: This example is based on the flu shot data of Example 1. From Figure 3 we have observed same as Examples 1 and 2 that the discrepancies are less around the mean of the missing variables. Moreover we have observed from Figures 1 and 3 that the discrepancies of the missing variables are less as compared to the discrepancies of the deleted variables.

Example 2 revisited: This example is based on the simulation data of Example 2 and here we have also got same conclusion as Example 1 revisited (Figures 2 & 4).

Group A Group B

Figure 1 Three dimensional scatter plots based on real data for DKL

when x1 is deleted.

Group A Group B

Figure 2 Three dimensional scatter plots based on simulated data for DKL

when x1 is deleted.

Group A Group B

Figure 3 Three dimensional scatter plots based on real data for DKL

when xf1 is missing.

Group A Group B

Figure 4 Three dimensional scatter plots based on simulated data for DKL

when xf1 is missing.

Examples 1 and 2 revisited: In this example, we have used D KL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGeb qcfa4aaSbaaSqaaKqzadGaam4saiaadYeaaSqabaaaaa@3AE0@ values for real data for drawing box plots for each cases (deleted and missing). From Figure 5, we have observed that x2 is more in uential than x1. Moreover the discrepancies are much less in missing case than deleted case. We have got same result in simulation study and are illustrated in Figure 6.

Treatment A Treatment B

Figure 5 Box plot for DKL based on real data.

Treatment A Treatment B

Figure 6 Box plot for DKL based on simulated data.

Evaluation of predictive probability of a logistic model

We consider the logistic model as

Pr( y=1|x,β )=exp( xβ )/( 1+exp( xβ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bGaeyypa0JaaGymaiaacYhacaWG4bGaaiil aiabek7aIbGaayjkaiaawMcaaiabg2da9iGacwgacaGG4bGaaiiCam aabmaabaGaamiEaiabek7aIbGaayjkaiaawMcaaiaac+cadaqadaqa aiaaigdacqGHRaWkciGGLbGaaiiEaiaacchadaqadaqaaiaadIhacq aHYoGyaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@53BE@

The probability that a future response yf will be a success is given by

Pr( y f =1| x f ,β )=exp( x f β )/( 1+exp( x f β ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhadaahaaqabKqbGeaacaWGMbaaaKqbak aacYcacqaHYoGyaiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiEaiaa cchadaqadaqaaiaadIhadaahaaqabKqbGeaacaWGMbaaaKqbakabek 7aIbGaayjkaiaawMcaaiaac+cadaqadaqaaiaaigdacqGHRaWkciGG LbGaaiiEaiaacchadaqadaqaaiaadIhadaahaaqabKqbGeaacaWGMb aaaKqbakabek7aIbGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@5AE2@

We assume that the conditional density of xf(r) given xf is independent of, β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi gaaa@381B@ where xf denotes the future explanatory variables without variables xf(r). Then predictive probabilities of yf will be a success for models are given by

Pr( y f =1| x f ,  data )= Pr( y f =1| x f ,β ) f( β|  data )dβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhadaahaaqabKqbGeaacaWGMbaaaKqbak aacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiaadsgacaWGHbGaamiD aiaadggaaiaawIcacaGLPaaacqGH9aqpdaWdbaqaaiGaccfacaGGYb WaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH9aqp caaIXaGaaiiFaiaadIhadaahaaqabKqbGeaacaWGMbaaaKqbakaacY cacqaHYoGyaiaawIcacaGLPaaaaeqabeGaey4kIipacaWGMbWaaeWa aeaacqaHYoGycaGG8bWdbiaacckacaGGGcWdaiaadsgacaWGHbGaam iDaiaadggaaiaawIcacaGLPaaacaWGKbGaeqOSdigaaa@6782@

and

Pr( y f =1| x * f ,  data )= Pr( y f =1| x *f ,β ) f( β|  data )dβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhalmaaCaaameqabaGaaiOkaaaajuaGda ahaaqabKqbGeaacaWGMbaaaKqbakaacYcaqaaaaaaaaaWdbiaaccka caGGGcWdaiaadsgacaWGHbGaamiDaiaadggaaiaawIcacaGLPaaacq GH9aqpdaWdbaqaaiGaccfacaGGYbWaaeWaaeaacaWG5bWaaWbaaeqa juaibaGaamOzaaaajuaGcqGH9aqpcaaIXaGaaiiFaiaadIhadaahaa qabKqbGeaacaGGQaGaamOzaaaajuaGcaGGSaGaeqOSdigacaGLOaGa ayzkaaaabeqabiabgUIiYdGaamOzamaabmaabaGaeqOSdiMaaiiFa8 qacaGGGcGaaiiOa8aacaWGKbGaamyyaiaadshacaWGHbaacaGLOaGa ayzkaaGaamizaiabek7aIbaa@69A5@ respectively. Simple analytically tractable priors are not available here. Numerical integration techniques might be used for some specified priors to approximate Pr( y f =1| x f ,data ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhadaahaaqabKqbGeaacaWGMbaaaKqbak aacYcacaWGKbGaamyyaiaadshacaWGHbaacaGLOaGaayzkaaaaaa@467A@  and Pr( y f =1|x * f ,data ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhacaGGQaWaaWbaaeqajuaibaGaamOzaa aajuaGcaGGSaGaamizaiaadggacaWG0bGaamyyaaGaayjkaiaawMca aaaa@4728@ , respectively.

Normal approximation for the posterior density

Let us suppose that the sample size is large. Lindley12 stated that the posterior density f( β|data ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiabek7aIjaacYhacaWGKbGaamyyaiaadshacaWGHbaacaGL OaGaayzkaaaaaa@3F3C@ may then be well approximated by its asymptotic normal form as

f( β|data ) N p ( β ^ , ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiabek7aIjaacYhacaWGKbGaamyyaiaadshacaWGHbaacaGL OaGaayzkaaGaeyisISRaamOtamaaBaaajuaibaGaamiCaaqcfayaba WaaeWaaeaacuaHYoGygaqcaiaacYcacqGHris5aiaawIcacaGLPaaa aaa@4920@

where β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaeq OSdigaleqabaaeaaaaaaaaa8qacaGGEbaaaaaa@38D7@ is the maximum likelihood estimate of β, ∑ = (-H)-1 and H is the Hessian of log L(β) evaluated at .

For the logistic model (xi), the Hessian H=(hji( β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaeq OSdigaleqabaaeaaaaaaaaa8qacaGGEbaaaaaa@38D7@ )) evaluated at is given by

h jl ( β ^ )= i=1 n x ij x il exp( x i β ^ ) ( 1+exp( x i β ^ ) ) 2 ,j,l=0,1,...,k, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada WgaaqcfasaaiaadQgacaWGSbaajuaGbeaadaqadaqaaiqbek7aIzaa jaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaabCaeaadaWcaaqaai aadIhadaWgaaqcfasaaiaadMgacaWGQbaajuaGbeaacaWG4bWaaSba aKqbGeaacaWGPbGaamiBaaqcfayabaGaciyzaiaacIhacaGGWbWaae WaaeaacaWG4bWaaSbaaKqbGeaacaWGPbaajuaGbeaacuaHYoGygaqc aaGaayjkaiaawMcaaaqaamaabmaabaGaaGymaiabgUcaRiGacwgaca GG4bGaaiiCamaabmaabaGaamiEamaaBaaajuaibaGaamyAaaqcfaya baGafqOSdiMbaKaaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaa qabKqbGeaacaaIYaaaaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaa d6gaaKqbakabggHiLdGaaiilaiaacQgacaGGSaGaaiiBaiabg2da9i aaicdacaGGSaGaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGa ai4AaiaacYcaaaa@6E94@

Where xij is the jth component of x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaO WaaSbaaSqaaKqzadGaamyAaaWcbeaaaaa@39D4@ with x i0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaO WaaSbaaSqaaKqzadGaamyAaiaaicdaaSqabaaaaa@3A8E@ = 1. For given x f , z = x f β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqcfayabeaajugWaiaadAgaaaGcqaaaaaaaaaWdbiaacYca caqGGaGaamOEaiaabccacqGH9aqpjugib8aacaWG4bWcdaahaaqcfa yabeaajugWaiaadAgaaaGcpeGaeqOSdigaaa@44A5@ will have approximately a posteriori a normal distribution with mean b x f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai aadIhalmaaCaaabeqaaKqzadGaamOzaaaaaaa@3AAE@ = x f β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaS WaaWbaaKqbagqabaqcLbmacaWGMbaaaSWaaCbiaeaacqaHYoGyaWqa beaacqGHNis2aaaaaa@3DEF@ and variance d x f 2 = x f Σ x f' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamizaS Waa0baaeaajugWaiaadIhalmaaCaaameqabaqcLbmacaWGMbaaaaWc baqcLbmacaaIYaaaaOGaeyypa0tcLbsacaWG4bWcdaahaaqabeaaju gWaiaadAgaaaqcLbsacqqHJoWucaWG4bWcdaahaaqabeaajugWaiaa dAgacaGGNaaaaaaa@48E5@ , and with probability density function ϕ( z| b x f ,    d x f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqy1dy wcfa4aaeWaaOqaaKqzGeGaamOEaKqbaoaaeeaakeaajugibiaadkga kmaaBaaaleaacaWG4bWaaWbaaWqabeaacaWGMbaaaaWcbeaaaOGaay 5bSdqcLbsacaGGSaaeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGG Kbqcfa4aa0baaeaadaahaaqabeaacaWG4bWaaWbaaeqabaqcLbmaca WGMbaaaaaaaKqbagaajugWaiaaikdaaaaak8aacaGLOaGaayzkaaaa aa@4E42@ . Using the transformation we can approximate f( β| x f ,   data ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaK qbaoaabmaakeaajugibiabek7aILqbaoaaeeaakeaajugibiaadIha juaGdaahaaWcbeqaaKqzadGaamOzaaaaaOGaay5bSdqcLbsacaGGSa aeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaWGKbGaamyyaiaadsha caWGHbaak8aacaGLOaGaayzkaaaaaa@4ADE@ by

Pr( y f =1| x f ,   data ) exp( z ) 1+exp( z ) ϕ( z| b x f , d x f 2 )dz. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhadaahaaqabKqbGeaacaWGMbaaaKqbak aacYcaqaaaaaaaaaWdbiaacckacaGGGcGaaiiOa8aacaWGKbGaamyy aiaadshacaWGHbaacaGLOaGaayzkaaGaeyisIS7aa8qaaeaadaWcaa qaaiGacwgacaGG4bGaaiiCamaabmaabaGaamOEaaGaayjkaiaawMca aaqaaiaaigdacqGHRaWkciGGLbGaaiiEaiaacchadaqadaqaaiaadQ haaiaawIcacaGLPaaaaaaabeqabiabgUIiYdGaeqy1dy2aaeWaaeaa caWG6bGaaiiFaiaadkgadaWgaaqaamaaBaaajuaibaGaamiEaKqbao aaCaaajuaibeqaaiaadAgaaaaajuaGbeaacaGGSaGaamizamaaDaaa juaibaGaamiEaKqbaoaaCaaajuaibeqaaiaadAgaaaaabaGaaGOmaa aaaKqbagqaaaGaayjkaiaawMcaaiaadsgacaWG6bGaaiOlaaaa@6CAA@

Analytical evaluation of (4.1) is very di cult. We can however evaluate then by numerical integration techniques viz Gauss-Hermite Quadrature Abramowitz and Stegun,13 Normal approximation Cox,14 Laplace's approximation de Bruijn.15

If the sample size is small, the posterior normality assumption may not be accurate. Therefore, we consider Flat prior approximation Tierney and Kadane16 as an alternative approach using the Laplace's method for integrals.

Effect of the variables x f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaWbaaSqabeaajugWaiaadAgaaaaaaa@3A56@

Here we assume that the future variables x f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaWbaaSqabeaajugWaiaadAgaaaaaaa@3A56@ are dependent and the density of x f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaWbaaSqabeaajugWaiaadAgaaaaaaa@3A56@ is p-dimensional multivariate normal i.e.

f( x f ) N p ( n,  ψ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadIhadaahaaqabKqbGeaacaWGMbaaaaqcfaOaayjkaiaa wMcaaiabggMi6kaad6eadaWgaaqcfasaaiaadchaaKqbagqaamaabm aabaGaamOBaiaacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiabeI8a 5bGaayjkaiaawMcaaaaa@4792@

The conditional density of x ( r ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbaacaGLOaGaayzkaaaa baGaamOzaaaaaaa@3BF8@  for given x *f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqabeaajugWaiaacQcacaWGMbaaaaaa@3A76@ is  

f( x ( r ) f |x * f ) N r ( n * ( r ) ,  ψ * ( r ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadIhadaqhaaqcfasaaKqbaoaabmaajuaibaGaamOCaaGa ayjkaiaawMcaaaqaaiaadAgaaaqcfaOaaiiFaiaadIhacaGGQaWaaW baaeqajuaibaGaamOzaaaaaKqbakaawIcacaGLPaaacqGHHjIUcaWG obWaaSbaaKqbGeaacaWGYbaajuaGbeaadaqadaqaaiaad6gacaGGQa WaaSbaaKqbGeaajuaGdaqadaqcfasaaiaadkhaaiaawIcacaGLPaaa aKqbagqaaiaacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiabeI8a5j aacQcadaWgaaqcfasaaKqbaoaabmaajuaibaGaamOCaaGaayjkaiaa wMcaaaqcfayabaaacaGLOaGaayzkaaaaaa@58D2@

The probability of y f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG5b WcdaahaaqabeaajugWaiaadAgaaaaaaa@39C9@ as a success when x ( r ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbaacaGLOaGaayzkaaaa baGaamOzaaaaaaa@3BF8@ is missing given by

Pr( y f =1| x *f ,  β )= exp( x f β ) 1+exp( x f β ) f( x (r) f |x *f )d x (r) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaciiuai aackhajuaGdaqadaqaaKqzGeGaamyEaKqbaoaaCaaabeqcfasaaKqz adGaamOzaaaajugibiabg2da9iaaigdacaGG8bGaamiEaKqbaoaaCa aabeqcfasaaKqzadGaaiOkaiaadAgaaaqcLbsacaGGSaaeaaaaaaaa a8qacaGGGcGaaiiOaiabek7aIbqcfa4daiaawIcacaGLPaaajugibi abg2da9KqbaoaapeaabaWaaSaaaeaajugibiGacwgacaGG4bGaaiiC aKqbaoaabmaabaqcLbsacaWG4bqcfa4aaWbaaeqabaqcLbmacaWGMb aaaKqzGeGaeqOSdigajuaGcaGLOaGaayzkaaaabaqcLbsacaaIXaGa ey4kaSIaciyzaiaacIhacaGGWbqcfa4aaeWaaeaajugibiaadIhaju aGdaahaaqabeaajugWaiaadAgaaaqcLbsacqaHYoGyaKqbakaawIca caGLPaaaaaqcLbsacaWGMbqcfa4aaeWaaeaajugibiaadIhalmaaDa aajuaGbaqcLbmacaGGOaGaaiOCaiaacMcaaKqbagaajugWaiaadAga aaqcfa4aaqqaaeaajugibiaadIhaaKqbakaawEa7amaaCaaabeqaaK qzadGaaiOkaiaadAgaaaaajuaGcaGLOaGaayzkaaqcLbsacaWGKbGa amiEaSWaa0baaKqbagaajugWaiaacIcacaGGYbGaaiykaaqcfayaaK qzadGaamOzaaaaaKqbagqabeqcLbsacqGHRiI8aaaa@89B3@

ϕ( ( i=0 kr x i f β i + i=kr+1 k n i * β i )/ ( k 2 + ij=kr+1 k β i β j Ψ ) 1/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgIKi7k abew9aMnaabmaabaWaaeWaaeaadaaeWbqaaiaadIhadaqhaaqcfasa aiaadMgaaeaacaWGMbaaaKqbakabek7aInaaBaaajuaibaGaamyAaa qcfayabaGaey4kaSYaaabCaeaacaWGUbWaa0baaeaacaWGPbaabaGa aiOkaaaacqaHYoGydaWgaaqcfasaaiaadMgaaKqbagqaaaqcfasaai aadMgacqGH9aqpcaWGRbGaeyOeI0IaamOCaiabgUcaRiaaigdaaeaa caWGRbaajuaGcqGHris5aaqcfasaaiaadMgacqGH9aqpcaaIWaaaba Gaam4AaiabgkHiTiaadkhaaKqbakabggHiLdaacaGLOaGaayzkaaGa ai4lamaabmaabaGaam4AamaaCaaabeqcfasaaiaaikdaaaqcfaOaey 4kaSYaaabCaeaacqaHYoGydaWgaaqaaKqzadGaamyAaaqcfayabaGa eqOSdi2aaSbaaeaacaWGQbaabeaacqqHOoqwdaWgaaqaaaqabaaaju aibaGaamyAaiaadQgacqGH9aqpcaWGRbGaeyOeI0IaamOCaiabgUca RiaaigdaaeaacaWGRbaajuaGcqGHris5aaGaayjkaiaawMcaamaaCa aabeqcfasaaiaaigdacaGGVaGaaGOmaaaaaKqbakaawIcacaGLPaaa aaa@7A6D@

=g*(β) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyypa0 Jaam4zaKqzadGaaiOkaKqzGeGaaiikaiabek7aIjaacMcaaaa@3DD1@ (Say)

Then the predictive probability of y f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEam aaCaaabeqaaKqzadGaamOzaaaaaaa@39BD@ as a success when x (r) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaqhaaqaaKqzadGaaiikaiaackhacaGGPaaaleaajugWaiaadAga aaaaaa@3D50@ is missing given by

pr( y f =1| x *f ,  data )= g * ( β ) f( β| data )dβ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiCai aadkhajuaGdaqadaGcbaqcLbsacaWG5bqcfa4aaWbaaeqabaqcLbma caWGMbaaaKqzGeGaeyypa0JaaGymaKqbaoaaeeaakeaajugibiaadI hajuaGdaahaaqabeaajugWaiaacQcacaWGMbaaaKqzGeGaaiilaOae aaaaaaaaa8qacaGGGcGaaiiOaKqzGeWdaiaadsgacaWGHbGaamiDai aadggaaOGaay5bSdaacaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWd baGcbaqcLbsacaWGNbqcfa4aaWbaaeqabaqcLbmacaGGQaaaaKqbao aabmaakeaajugibiabek7aIbGccaGLOaGaayzkaaaaleqabeqcLbsa cqGHRiI8aiaadAgajuaGdaqadaGcbaqcLbsacqaHYoGyjuaGdaabba GcbaqcLbsacaWGKbGaamyyaiaadshacaWGHbaakiaawEa7aaGaayjk aiaawMcaaKqzGeGaamizaiabek7aIjaac6caaaa@6CE9@ (xii)

The integral in (Xii) can be evaluated as the integral in (Xi) using Taylor's and Laplace's approximations.

If, instead, the future variables x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@ ,…, x k f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaadUgaaeaacaWGMbaaaaaa@39A1@ are independently and normally distributed with mean η i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4TdG wcfa4aaSbaaeaajugWaiaadMgaaKqbagqaaaaa@3B7F@ and variance (i = 1, 2, … , k), then the conditional density of x ( r ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbaacaGLOaGaayzkaaaa baGaamOzaaaaaaa@3BF8@ is

f( x ( r ) f | x *f )f( x ( r ) f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamiEamaaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbaa caGLOaGaayzkaaaabaGaamOzaaaajuaGcaGG8bqcLbsacaWG4bWcda ahaaqcfayabeaajugWaiaacQcacaWGMbaaaaqcfaOaayjkaiaawMca aiabggMi6kaadAgadaqadaqaaiaadIhadaqhaaqcfasaaKqbaoaabm aajuaibaGaamOCaaGaayjkaiaawMcaaaqaaiaadAgaaaaajuaGcaGL OaGaayzkaaaaaa@4FD5@ .

Consequently, we get

Pr( y f =1| x *f ,  β )= exp( x f β ) 1+exp( x f β ) f( x (r) f )d x (r) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaciiuai aackhajuaGdaqadaqaaKqzGeGaamyEaKqbaoaaCaaabeqcfasaaKqz adGaamOzaaaajugibiabg2da9iaaigdacaGG8bGaamiEaKqbaoaaCa aabeqcfasaaKqzadGaaiOkaiaadAgaaaqcLbsacaGGSaaeaaaaaaaa a8qacaGGGcGaaiiOaiabek7aIbqcfa4daiaawIcacaGLPaaajugibi abg2da9KqbaoaapeaabaWaaSaaaeaajugibiGacwgacaGG4bGaaiiC aKqbaoaabmaabaqcLbsacaWG4bqcfa4aaWbaaeqabaqcLbmacaWGMb aaaKqzGeGaeqOSdigajuaGcaGLOaGaayzkaaaabaqcLbsacaaIXaGa ey4kaSIaciyzaiaacIhacaGGWbqcfa4aaeWaaeaajugibiaadIhaju aGdaahaaqabeaajugWaiaadAgaaaqcLbsacqaHYoGyaKqbakaawIca caGLPaaaaaqcLbsacaWGMbqcfa4aaeWaaeaajugibiaadIhalmaaDa aajuaGbaqcLbmacaGGOaGaaiOCaiaacMcaaKqbagaajugWaiaadAga aaaajuaGcaGLOaGaayzkaaqcLbsacaWGKbGaamiEaSWaa0baaKqbag aajugWaiaacIcacaGGYbGaaiykaaqcfayaaKqzadGaamOzaaaaaKqb agqabeqcLbsacqGHRiI8aaaa@828E@

ϕ( ( i=0 kr x i f β i + i=kr+1 k n i β i )/ ( k 2 + i=kr+1 k β i 2 Ψ i 2 ) 1/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgIKi7k abew9aMnaabmaabaWaaeWaaeaadaaeWbqaaiaadIhadaqhaaqcfasa aiaadMgaaeaacaWGMbaaaKqbakabek7aInaaBaaajuaibaGaamyAaa qcfayabaGaey4kaSYaaabCaeaacaWGUbWaaSbaaeaacaWGPbaabeaa cqaHYoGydaWgaaqcfasaaiaadMgaaKqbagqaaaqcfasaaiaadMgacq GH9aqpcaWGRbGaeyOeI0IaamOCaiabgUcaRiaaigdaaeaacaWGRbaa juaGcqGHris5aaqcfasaaiaadMgacqGH9aqpcaaIWaaabaGaam4Aai abgkHiTiaadkhaaKqbakabggHiLdaacaGLOaGaayzkaaGaai4lamaa bmaabaGaam4AamaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSYaaa bCaeaacqaHYoGydaqhaaqcfasaaiaadMgaaeaacaaIYaaaaKqbakab fI6aznaaDaaajuaibaGaamyAaaqaaiaaikdaaaaabaGaamyAaiabg2 da9iaadUgacqGHsislcaWGYbGaey4kaSIaaGymaaqaaiaadUgaaKqb akabggHiLdaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGymaiaac+ cacaaIYaaaaaqcfaOaayjkaiaawMcaaaaa@7786@

=g(β) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyypa0 Jaam4zaiaacIcacqaHYoGycaGGPaaaaa@3B66@ (Say)

See Aitchison and Begg17 in this context. Again,

Pr( y f =1| x f ,  data )= g( β )f( β|data ) dβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhadaahaaqabKqbGeaacaWGMbaaaKqbak aacYcaqaaaaaaaaaWdbiaacckacaGGGcWdaiaacsgacaGGHbGaaiiD aiaacggaaiaawIcacaGLPaaacqGH9aqpdaWdbaqaaiaadEgadaqada qaaiabek7aIbGaayjkaiaawMcaaiaadAgadaqadaqaaiabek7aIjaa cYhacaGGKbGaaiyyaiaacshacaGGHbaacaGLOaGaayzkaaaabeqabi abgUIiYdGaamizaiabek7aIbaa@5B35@

Variables x f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaWbaaeqabaqcLbmacaWGMbaaaaaa@3A4B@ are dichotomous

Here we assume that the variables x f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaWbaaeqabaqcLbmacaWGMbaaaaaa@3A4B@ are independent and they can take only two values 0 or 1. We also assume that x i f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaqhaaqaaKqzadGaamyAaaWcbaqcLbmacaWGMbaaaaaa@3BEF@  is distributed as

Pr( x i f = x i f )= θ i x i f ( 1 θ i ) 1 x i f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG4bWaa0baaKqbGeaacaWGPbaabaGaamOzaaaa juaGcqGH9aqpcaWG4bWaa0baaKqbGeaacaWGPbaabaGaamOzaaaaaK qbakaawIcacaGLPaaacqGH9aqpcqaH4oqCdaqhaaqcfasaaiaadMga aeaacaWG4bqcfa4aa0baaKqbGeaacaWGPbaabaGaamOzaaaaaaqcfa 4aaeWaaeaacaaIXaGaeyOeI0IaeqiUde3aaSbaaKqbGeaacaWGPbaa juaGbeaaaiaawIcacaGLPaaadaahaaqabKqbGeaacaaIXaGaeyOeI0 IaamiEaKqbaoaaDaaajuaibaGaamyAaaqaaiaadAgaaaaaaaaa@56D6@

If x ( r ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEam aaDaaajuaibaqcfa4aaeWaaKqbGeaacaWGYbaacaGLOaGaayzkaaaa baGaamOzaaaaaaa@3BF8@ is missing the probability of y f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG5b qcfa4aaWbaaSqabeaajugWaiaadAgaaaaaaa@3A57@ as a success is given by

Pr( y f =1|x * f ,β )= x kr+1 f =0 1 ... x k =0 f 1 exp( x f β ) 1+exp( x f β ) i=kr+1 k θ i x i f ( 1 θ i ) 1 x i f =h( β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhacaGGQaWaaWbaaeqajuaibaGaamOzaa aajuaGcaGGSaGaeqOSdigacaGLOaGaayzkaaGaeyypa0ZaaabCaeaa caGGUaGaaiOlaiaac6caaeaajuaicaWG4bqcfa4aa0baaKqbGeaaca WGRbGaeyOeI0IaamOCaiabgUcaRiaaigdaaeaacaWGMbaaaiabg2da 9iaaicdaaeaacaaIXaaajuaGcqGHris5amaaqahabaWaaSaaaeaaci GGLbGaaiiEaiaacchadaqadaqaaiaadIhadaahaaqabKqbGeaacaWG MbaaaKqbakabek7aIbGaayjkaiaawMcaaaqaaiaaigdacqGHRaWkci GGLbGaaiiEaiaacchadaqadaqaaiaadIhadaahaaqabKqbGeaacaWG MbaaaKqbakabek7aIbGaayjkaiaawMcaaaaaaKqbGeaacaWG4bqcfa 4aa0baaKqbGeaacaWGRbqcfa4aaSbaaeaadaahaaqabeaajugWaiab g2da9iaaicdaaaaajuaGbeaaaKqbGeaacaWGMbaaaaqaaiaaigdaaK qbakabggHiLdWaaebCaeaacqaH4oqCdaqhaaqcfasaaiaadMgaaeaa caWG4bqcfa4aa0baaKqbGeaacaWGPbaabaGaamOzaaaaaaaabaGaam yAaiabg2da9iaadUgacqGHsislcaWGYbGaey4kaSIaaGymaaqaaiaa dUgaaKqbakabg+GivdWaaeWaaeaacaaIXaGaeyOeI0IaeqiUde3aaS baaKqbGeaacaWGPbaajuaGbeaaaiaawIcacaGLPaaadaahaaqabKqb GeaacaaIXaGaeyOeI0IaamiEaKqbaoaaDaaajuaibaGaamyAaaqaai aadAgaaaaaaKqbakabg2da9iaadIgadaqadaqaaiabek7aIbGaayjk aiaawMcaaaaa@9691@ (Say).

The predictive probability of y f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhada ahaaqabKqbGeaacaWGMbaaaaaa@38B2@ as a success when x ( r ) f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaKqbaoaabmaajuaibaGaamOCaaGaayjkaiaawMcaaaqa aiaadAgaaaaaaa@3BED@ is missing is given by

Pr( y f =1|x * f ,  data )= h( β )f( β|data ) dβ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaWG5bWaaWbaaeqajuaibaGaamOzaaaajuaGcqGH 9aqpcaaIXaGaaiiFaiaadIhacaGGQaWaaWbaaeqajuaibaGaamOzaa aajuaGcaGGSaaeaaaaaaaaa8qacaGGGcGaaiiOa8aacaGGKbGaaiyy aiaacshacaGGHbaacaGLOaGaayzkaaGaeyypa0Zaa8qaaeaacaWGOb WaaeWaaeaacqaHYoGyaiaawIcacaGLPaaacaWGMbWaaeWaaeaacqaH YoGycaGG8bGaaiizaiaacggacaGG0bGaaiyyaaGaayjkaiaawMcaaa qabeqacqGHRiI8aiaadsgacqaHYoGycaGGUaaaaa@5C96@ (xiii)

If the sample size is large, assuming the normality assumption for the posterior density we can approximate (xiii) using Taylor's theorem, Laplace's method and normal approximation.

Example: one variable case

Here we consider two different logistic models based on any single variable either x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaigdaaKqbagqaaaaa@390E@  or x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaikdaaKqbagqaaaaa@390F@ . We want to measure the discrepancies between the predictive probability p ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaamyAaaqcfayabaaaaa@3949@ , based on a single variable x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaS WaaSbaaeaajugWaiaadMgaaSqabaaaaa@39CA@ when x i f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaS Waa0baaeaajugWaiaadMgaaSqaaKqzadGaamOzaaaaaaa@3BE4@ is known, and the predictive probability p ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGimaaqcfayabaaaaa@3915@ , based on xi alone when x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@ is missing, to assess the influence of the missing variable x i f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaqhaaqaaKqzadGaamyAaaWcbaqcLbmacaWGMbaaaaaa@3BEF@  , i = 1, 2. The predictive probability p ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaamyAaaqcfayabaaaaa@3949@ is determined using quadrature approximation and the predictive probability p ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGimaaqcfayabaaaaa@3915@ is determined using second order Taylor's approximation.

We assume that the marginal densities of the future variables x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@ and x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@  are normal with means 33.35, 78.24 and variances 65.39, 1827.0 respectively, where means and variances are the estimated sample means and sample variances from the observed data. We employ the absolute difference of probabilities and Kullback-Leibler divergence measure to assess the influence of the missing variable. The discrepancies are drawn in Figure 7. Here we see that the discrepancies due to missing x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@  in the predictive probability based on x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaigdaaKqbagqaaaaa@390E@ are very large compared to the discrepancies due to missing x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@  in the predictive probability based on x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaikdaaKqbagqaaaaa@390F@ . The discrepancies are less around the mean of the missing variable.

x1 fis missing x2f is missing

Kullback-Leibler directed divergence D_{KL}

x1 fis missing x2f is missing

Figure 7 Absolute difference | P i P 0 |,  i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaake aajuaGdaWfGaGcbaqcLbsacaWGqbWcdaWgaaqaaKqzadGaamyAaaWc beaaaeqabaqcLbsacqGHNis2aaGaeyOeI0scfa4aaCbiaOqaaKqzGe GaamiuaKqbaoaaBaaaleaajugWaiaaicdaaSqabaaabeqaaKqzGeGa ey4jIKnaaaGccaGLhWUaayjcSdqcLbsacaGGSaaeaaaaaaaaa8qaca GGGcGaaiiOa8aacaWGPbGaeyypa0JaaGymaiaacYcacaaIYaaaaa@505B@

Example: two-variable case

Now we consider that the predictive probability based on two variables x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@  and x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@  when both x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@  and x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@  are known is denoted by p ^ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGymaiaaikdaaKqbagqaaaaa@39D2@ and the predictive probability p ^ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaamyAaiaadQgaaKqbagqaaaaa@3A38@ , i=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIWaGaaiilaiaaigdaaaa@3A92@ , j=0,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpcaaIWaGaaiilaiaaikdaaaa@3A94@ and ( i,j )( 1,2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamyAaiaacYcacaWGQbaacaGLOaGaayzkaaGaeyiyIK7aaeWaaeaa caaIXaGaaiilaiaaikdaaiaawIcacaGLPaaaaaa@4006@  based on x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaigdaaKqbagqaaaaa@390E@  and x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaikdaaKqbagqaaaaa@390F@  when any future variable is missing. "0" indicates missing variable. Here also the predictive probability p ^ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGymaiaaikdaaKqbagqaaaaa@39D2@ is determined using quadrature approximation and predictive probabilities p ^ 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGymaiaaicdaaKqbagqaaaaa@39D0@ , p ^ 02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGimaiaaikdaaKqbagqaaaaa@39D1@ and p ^ 00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGimaiaaicdaaKqbagqaaaaa@39CF@ are determined using second order Taylor's approximation. Here we assume that the joint density of x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@  and x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@ is bivariate normal with correlation coefficient 0.33 which is the estimated sample correlation coefficient from the observed data. The absolute differences of the two predictive probabilities p ^ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGymaiaaikdaaKqbagqaaaaa@39D2@ and p ^ 02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGimaiaaikdaaKqbagqaaaaa@39D1@ when x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@ is missing and the absolute differences of the two predictive probabilities p ^ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGymaiaaikdaaKqbagqaaaaa@39D2@ and p ^ 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaaGymaiaaicdaaKqbagqaaaaa@39D0@ when x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@  is missing are drawn in Figure 8. Kullback-Leibler directed divergence DKL are drawn in Figure 9. The discrepancies when x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@  is missing and for different given values of the other variable for both the cases are close together since the correlation between x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@ and x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@  are very small. The discrepancies due to missing x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@  are very large compared to missing x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@  except near the mean of the missing variable. If both x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@  and x 2 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaikdaaeaacaWGMbaaaaaa@396D@  are missing the discrepancies are drawn in Figure 10. These discrepancies are very similar to the discrepancies due to missing x 1 f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada qhaaqcfasaaiaaigdaaeaacaWGMbaaaaaa@396C@  alone in the predictive probability based on x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaigdaaKqbagqaaaaa@390E@  and x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaikdaaKqbagqaaaaa@390F@  since the contribution of x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqcfasaaiaaikdaaKqbagqaaaaa@390F@ is negligible.

x1f is missing

xf2 is missing

Figure 8 Absolute difference | p ^ 12 p ^ 10 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaake aajuaGdaWfGaGcbaqcLbsacaWGWbaaleqabaqcLbsaqaaaaaaaaaWd biaac6faaaqcfa4damaaBaaaleaajugWaiaaigdacaaIYaaaleqaaK qzGeGaeyOeI0scfa4aaCbiaOqaaKqzGeGaamiCaaWcbeqaaKqzGeWd biaac6faaaWcpaWaaSbaaeaajugWaiaaigdacaaIWaaaleqaaaGcca GLhWUaayjcSdaaaa@4969@

xf1 is missing

Kullback-Leibler directed divergence DKL

xf2 is missing

Figure 9 Kullback-Leibler directed divergence DKL

Absolute difference | P 12 P 00 |,  i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaake aajuaGdaWfGaGcbaqcLbsacaWGqbWcdaWgaaqaaiaaigdacaaIYaaa beaaaeqabaqcLbsacqGHNis2aaGaeyOeI0scfa4aaCbiaOqaaKqzGe GaamiuaKqbaoaaBaaaleaajugWaiaaicdacaaIWaaaleqaaaqabeaa jugibiabgEIizdaaaOGaay5bSlaawIa7aKqzGeGaaiilaabaaaaaaa aapeGaaiiOaiaacckapaGaamyAaiabg2da9iaaigdacaGGSaGaaGOm aaaa@5065@ .

Kullback-Leibler directed divergence DKL

Figure 10 X1f and X2ffare both missing.

Concluding remarks

In our present study we have observed that the discrepancies are minimum around the mean of the deleted variables as well as the mean of the missing future variables in both the logistic model and the log-odds ratio; the discrepancies are larger if the deleted or missing variables are more influential; the discrepancies in the deleted case are higher than the missing case.

In this present paper we studied the important problem of predictive influence of variables on the log odds ratio under a Bayesian set up. The treatment difference

Pr( Y i =1| Z i =1, x i )Pr( Y i =1| Z i =0, x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaGGzbWaaSbaaKqbGeaacaWGPbaajuaGbeaacqGH 9aqpcaaIXaGaaiiFaiaadQfadaWgaaqcfasaaiaadMgaaKqbagqaai abg2da9iaaigdacaGGSaGaaiiEamaaBaaajuaibaGaamyAaaqcfaya baaacaGLOaGaayzkaaGaeyOeI0IaciiuaiaackhadaqadaqaaiaacM fadaWgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaaigdacaGG8bGa amOwamaaBaaajuaibaGaamyAaaqcfayabaGaeyypa0JaaGimaiaacY cacaGG4bWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaawIcacaGLPaaa aaa@58A5@

Or the risk of ratio

Pr( Y i =1| Z i =1, x i )/Pr( Y i =1| Z i =1, x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGaccfaca GGYbWaaeWaaeaacaGGzbWaaSbaaKqbGeaacaWGPbaajuaGbeaacqGH 9aqpcaaIXaGaaiiFaiaadQfadaWgaaqcfasaaiaadMgaaKqbagqaai abg2da9iaaigdacaGGSaGaaiiEamaaBaaajuaibaGaamyAaaqcfaya baaacaGLOaGaayzkaaGaai4laiGaccfacaGGYbWaaeWaaeaacaGGzb WaaSbaaKqbGeaacaWGPbaajuaGbeaacqGH9aqpcaaIXaGaaiiFaiaa dQfadaWgaaqcfasaaiaadMgaaKqbagqaaiabg2da9iaaigdacaGGSa GaaiiEamaaBaaajuaibaGaamyAaaqcfayabaaacaGLOaGaayzkaaaa aa@586C@

can also be studied along the same lines.

We have also considered the influence of missing future explanatory variables in a logistic model. Influence of missing future explanatory variables in a Probit and complementary log-log models can also be studied in similar fashion.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Breslow N. Odds ratio estimators when the data are sparse. Biometrika. 1981;68:73–84.
  2. Bohning D, Kuhnert, Rattanasiri S, et al.  Meta–analysis of binary data using pro le likelihood. 1st ed. A Chapman and Hall CRC Interdisciplinary Statistic. 2008.
  3. Pregibon D. Logistic regression diagnostics. Annals of Statistics. 1981;9:705–724.
  4. Cook, R Dennis, Weisberg, et al. Residuals and Influence in Regression. USA: New York: Chapman and Hall. 1982.
  5. Johnson W. Influence measures for logistic regression: Another point of view. Biometrika. 1985;72(1):59–65.
  6. Bhattacharjee SK, Dunsmore IR. The influence of variables in a logistic model. Biometrika. 1991;78(4):851–856.
  7. Mercier C, Shelley MC, Rimkus J, et al.  Age and Gender as Predictors of Injury Severity in Head–on Highway Vehicular Collisions. The 76th Annual Meeting , Transportation Research Board, Washington, USA. 1997.
  8. Zellner D, Keller F, Zellner GE. Variable selection in logistic regression models. Communications in Statistics. 2004;33(3):787–805.
  9. Kullback S, Leibler R A. On information and sufficiency. Ann Math Statist. 1951;22:79–86.
  10. S Rao Jammalamadaka, Tiwari RC, Chib Siddhartha. Bayes prediction in the linear model with spherically symmetric errors. Economics Letters. 1987;24:39–44.
  11. Bhattacharjee SK, Shamiri A, Sabiruzzaman Md, et al. Predictive Influence of Unavailable Values of Future Explanatory Variables in a Linear Model. Communications in Statistics – Theory and Methods. 2011;40:4458–4466.
  12. Lindley D V. The use of prior probability distributions in statistical inference and decisions. Proc. 4th Berkeley Symp. 1961;1:453–468.
  13. Abramowitz M, Stegun I A . Handbook of Mathematical Functions. USA: National Bureau of Standards. 1966.
  14. Cox DR. Binary regression. UK: London: Chapman and Hall. 1970.
  15. De Bruijn N C. Asymptotic Methods in Analysis. Amsterdam, North–Holland. 1961.
  16. Tierney L, Kadane, Joseph B, et al. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association. 1986;81(393):82–86.
  17. Aitchison J, Bagg CB (1976) Statistical diagnosis when basic cases are not classified with certainty. Biometrika 63: 1-12.
  18. Logistic Regression Example with Grouped Data. Regression FluShots, University of North Florida.
  19. Bhattacharjee SK, Dunsmore IR. The predictive influence of variables in a normal regression model. J Inform Optimiz Sci. 1995;16(2):327–334.
Creative Commons Attribution License

©2017 Bhattacharjee, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.