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Introduction
Odds ratio (OR) is perhaps the most popular measure of treatment 

difference for binary outcomes and is extensively used in dealing with 
2×2 tables in biomedical studies and clinical trials. The distribution of 
the log of sample OR is often approximated by a normal distribution 
with true log OR as the mean and with variance estimated by the 
sum of the reciprocal of the four cell frequencies in the 2×2 table 
Breslow.1 Böhning et al.,2 provide detailed book-length discussion on 
the OR. For logistic regression, ORs enable one to examine the effect 
of explanatory variables in that relationship.

Logistic link is perhaps the most popular way to model the success 
probabilities of a binary variable. Pregibon,3 Cook and Weisberg4 and 
Johnson5 have considered the problem of the influence of observations 
for logistic regression models. Several measures have been suggested 
to identify observations in the data set which are influential relative to 
the estimation of the vector of regression coefficients, the deviance, 
the determination of predictive probabilities and the classification of 
future observations.

Bhattacharjee & Dunsmore6 considered the effect on the predictive 
probability of a future observation of the omission of subsets of 
the explanatory variables. Mercier et al.,7 used logistic regression 
to determine whether age and/or gender were a factor influencing 
severity of injuries suffered in head-on automobile collisions on rural 
highways. Zellner et al.,8 considered the problem of variable selection 
in logistic regression to compare the performance of stepwise selection 
procedures with a bagging method.

In the present paper, our aim is to measure the predictive influence 
of a subset of explanatory variables in log-odds ratio of a logistic 
model using a Bayesian approach. We are also interested in studying 
the effect of missing future explanatory variables on Bayes prediction, 
on a logistic model as well as on the log-odds ratio.

In Section 2, we derive the predictive densities of a future log-
odds ratio for both the full model and a subset deleted model. We 
derive the predictive density of log-odds ratio in Section 3, when 

a subset of future explanatory variables is missing. To derive the 
predictive densities we assume that the future explanatory variables 

fx  are distributed as multivariate normal, both when these xf’s are 
independent or dependent. In Section 4, we discuss the influence of 
future missing explanatory variables by considering the predictive 
probability of a future response in a logistic model. This is done by 
assuming that the future explanatory variables fx  are multivariate 
normal for the continuous case. Also considered is the dichotomous 
case. Since the predictive probabilities are not mathematically 
tractable for the logistic model, we use several approximations.

In Section 2 and 3 we employ Kullback-Leibler9 directed measure 
of divergence DKL to assess the influence of variables and also the 
influence of future missing variables on the log-odds ratio. The form 
of the Kullback-Leibler9 measure used here is given by

To assess the influence of missing future variables or to measure 
the predictive probability in a logistic model we use the absolute 
difference of the two predictive probabilities.

Influence of variables in log-odds ratio
Consider a phase III clinical trial with two competing treatments, 

say A and B, having binary responses. Suppose n  patients are 
randomly allocated with A

n
 
and B

n  patients to treatments A and 
B respectively. The patient responses are influenced by a covariate 
vector 1px × where one component of x may be 1 (which covers the 
constant term). Let (

i
Y ;

i
Z ;

i
x ) be the data corresponding to its 

patient, where Yi is the indicator of response (
i

Y =1 or 0 for a success 
or failure), iz  is the indicator of the treatment assignment ( 1iz = )

or 0 according as treatment A or B is applied to the its patient), and 
x is the covariate vector. We assume a logit model for the responses:
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Then the odds for treatments A and B with covariate vector xi are 
respectively

        

( )
( ) ( )Pr 1| 1,

exp
Pr 0| 1,

i i i
iA i i i

Y Z x
O x

Y Z x
β

= =
= = ∆+
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and hence the log-odds ratio is

               

log
log

log
A

B

O
OR

O
= = ∆

Let us partition

        A A B B AB AB
x x x xβ β β β= + +

Where Ax  indicates the variables used in treatment A only, Bx  is 
for treatment B only, and ABx is for both treatments A and B. Then the 
model can be partitioned for treatments A and B as:

   ( ) ( )log
A A A AB AB A A

O u x x xβ β β= = ∆ + + =                 (ii)

   ( ) ( )log
B A B AB AB B B

O v x x xβ β β= = + =                        (iii)

The predictive density of future log-odds for A, fu  , for non-
informative prior (vague prior) with normal or any spherical symmetric 
errors is of Student form Jammalamadaka et al. [10] and is given by

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1
2 'ˆ, , , 1 'f f f f f

AA A A A A A Af u x data St n k x s x x x xβ
−

≡ − +
      

where ( )
ˆ

A
β is the MLE of ( )A

β , ( )
2

A
s  is the MLE of 

2

A
σ  and k 

is the number of parameters in the model (ii). See Bhattacharjee et 
al. [11] in this context. If the sample size is large then this predictive 
density can be well approximated by its asymptotic normal form

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1

2 ' 'ˆ , / 2  1 .f f f
A AA A A A

N x A s x x x x n k n kβ
−  

 + − − −     

Similarly one can find the same for treatment B, fv .

Let us define ( )',f f fw u v= and ( )'1, 1a = − . Then the predictive 

density of future log odds ratio ' fa w  is given by

      ( ) ( ) ( )2' | , , ,f f f
A B

f a w x x data N θ δ  ≈ 
                                (iv)

Where

      
( ) ( ) ( ) ( )

ˆ ˆf f

A A B B
x xθ β β= −

   
and

Our interest is to measure the influence of explanatory variables in 
the predictive density (iv) for the following cases:

Case 1: Influence of r  explanatory variables r
Ax  of Ax  in treatment 

A.

Case 2: Influence of r  explanatory variables r
Bx  of Bx  in treatment 

B.

Case 3: Influence of s  explanatory variables s

AB
x  of ABx  in 

treatment A.

Case 4: Influence of s  explanatory variables s

AB
x

 
of ABx  in 

treatment B.

Case 5: Joint influence of r  explanatory variables r
Ax of Ax  and s 

explanatory variables s

AB
x of ABx in treatment A.

Case 6: Joint influence of r explanatory variables r
Bx  of Bx  and s 

explanatory variables s

AB
x

 
of ABx  in treatment B.

To see the influence of explanatory variables in log-odds ratio, we 
construct a reduced log-odds model deleting a subset of explanatory 
variables. Then we derive the predictive density of future log-odds 
ratio for reduced model and compare it with the predictive density 
(iv) for full model. It is enough to consider Case 5 for illustration. We 
construct the reduced model by deleting variables r

Ax  of Ax  and s

AB
x  

of ABx in (ii) as

                    ( ) ( )
* * * * * *

A A AB AB A A
u x x xβ β β= ∆ + + =

Then the predictive density of fu is given by

The normal approximation of the predictive density is

Since no variable is missing in log
B

Oυ = , the predictive density 
of fυ is unaltered along with its normal approximation. Hence the 
predictive density of log-odds ratio ' fa w  under Case 5 is given by

          ( ) ( ) ( ) ( )* *2' *| , , ,f f f
r s A B

f a w x x data N θ δ
+

  ≈ 
                      (v)

Where

	             ( ) ( )
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( ) ( )
ˆ ˆ*f f

A A B B
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1
*2 *2 * ' * ' * *

12 ' '

1 / 2

1 / 2

f f
AA A AA

f f
B BB B B

s x x x x n k r s n k r s

s x x x x n q n q

δ
−

−

   = + − + + − + + −    

 
+ + − − −  

 

To access the influence of the deleted variables we employ the 

Kullback-Leibler9 directed measure of divergence DKL  between the 

predictive densities of ' fa w for full model (iv) and reduced model 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
* * * *2 * ' * ' * *

,    
1ˆ| , , 1f f f f f

A A AA A A A A
f u x data St n k r s x S x x x xβ

 −    = − + + +         

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1* * ' ** *2 *' *ˆ , 1 / 2f f fN x s x x x x n k r s n k r sA A AA A A Aβ

  −   + − + + − + + −   
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(v). The form of K-L measure used here is given by

       
( ) ( ) ( )( )

( )KL

' |. 'D ' |. log
' |.

f
r s ff

r s f

f a w
f a da

f a w
ω ω

+

+

 
 

= ∫  
 
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The discrepancy measure DKL between the predictive densities (iv) 
and (v) reduces to

         

( )2 *2 *2

2 2 2

* 1
log 1

22KL
D

θ θ δ δ
δ δ δ

  −   = + − −  
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Here 
( )2

2

*

2
L

θ θ

δ

−
= is due to difference of location parameters and 

*2 *2

2 2

1
log 1

2
S δ δ

δ δ

  
  = − −  

  
due to difference of scale parameters of 

the two predictive densities (iv) and (v).

Example 1: Here we have considered a flu shot Data Pregibon.3 A 
local health clinic sent fliers to its clients to encourage everyone, but 
especially older persons at high risk of complications, to get a flu shot 
for protection against an expected flu epidemic. In a pilot follow-up 
study, 159 clients were randomly selected and asked whether they 
actually received a flu shot. A client who received a flu shot was coded 
Y=1; and a client who did not receive a flu shot was coded Y=0. In 
addition, data were collected on their age ( )1x and their health 
awareness ( )2x . Also included in the data were client gender ( )3x , 
with males coded 

3
1x = and females coded 

3
0x = . Here we have 

divided whole data set into two groups A and B on the basis of gender 
that is group A corresponds to the male and group B corresponds to 
the female. We have computed 

KL
D to measure the influence of the 

deleted variable 
1

x  in group A and B separately and the discrepancies 
are drawn in Figure 1.

Similar figure can be obtained by deleting
2

x . From this figure the 
discrepancy is less around the mean of the deleted variable.

Example 2: This is a simulation exercise. Here we have drawn 
sample of size 159 from bivariate normal distribution and we have 
used means, variances and correlation coefficient of 

1
x and 

2
x of the 

above flu shot data of size 159 for generating the sample. Now using 
these 

1
x and 

2
x , we got response that is Y values and thereafter using 

this whole generated data set we have computed 
KL

D . Now we have 
repeated whole process 1000 times and computed means of 

KL
D s . 

The mean discrepancies are shown in Figure 2. Here we get the same 
conclusion as in the data example.

Influence of missing future explanatory 
variables in log-odds ratio

Here the aim is to detect the predictive influence of a set of missing 

future explanatory variables in log-odds ratio of logistic model (i). 

Our interest is to detect the influence of missing future explanatory 

variables in the six cases pointed out in Section 2. Let in treatment A, 

r future variables missing from f

A
x and s future variables missing from 

f

AB
x be denoted by ( )

( )r s f

A
x + . Similarly in treatment B, r future missing 

variables from f

B
x and s future variables missing from f

AB
x be denoted 

by ( )
( )r s f

B
x + . We assume that the errors of models (ii) and (iii) are 

normally distributed with zero means and variances ( )
1

A
τ − and ( )

1

B
τ − , 

respectively. We also assume that the conditional density of ( )
( )r s f

A
x +

 
given ( )

* f

A
x is independent of ( )A

β and ( )A
τ and ( )

( )|r s f

B
x +  given ( )

* f

B
x

is independent of ( )B
β and ( )B

τ , i.e.,

         ( )
( )

( ) ( ) ( ) ( )
( )

( )
* *

. .. . . .
| , , |r s f r s ff ff x x f x xβ τ+ +   =   

   

where ( )
*

.

fx denotes the future explanatory variables ( ).
fx without 

( )
( )
.

r s fx + .

Explanatory variables are continuous

We assume that ,f

i
x s are dependent and the distribution of ( )

f

A
x is 

( )1k− -dimensional multivariate normal, i.e. ( ) ( )
1

  ,f
kA

f x N η ψ
−

  ≡ 
 .

The conditional density of ( )
( )r s f

A
x +  given ( )

* f

A
x is given by

          ( )
( )

( ) ( ) ( )( )* * *| ,r s f f
r s r sr sA A

f x x N η ψ+
+ ++

  ≡ 
   ,  

Where

  

         

( ) ( ) ( ) ( )
( )

( )
112 *

21 11
21 22

*

11     * *  
   

*, ,

 

, ,

,

f r s ff
r s A A A

f
r s r s A

x x x

x
ψ

η η ψ ψ

η η η

ψ
η

ψ ψ
ψ −

+ +

+
+

 = =  
 

 
=   

 = + − 
 

and  ( )
1

22 21 11 12

*
r s

ψ ψ ψ ψ ψ−
+

= − .

As earlier it is enough to consider Case 5 to see the joint influence 

of r missing future explanatory variables rf

A
x of f

A
x

 
and s missing 

future explanatory variables sf

AB
x of f

AB
x  in treatment A. The density 

of fu when ( )
( )r s f

A
x + is missing is given by
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

0

* * * * 1ˆ ˆ ˆ ˆ| , | , | , , | ,
k r s k k

f f

i i k r s i k r s

r s fr s ff f f ff u x f u x f x x dx N xA A A A A i i A i A i A j ijAA A A A A i Aβ τ β τ β η β β β ψ τ
− − − − −

= = − − = − −

     ++  − = ≡ + +∑ ∑ ∑∫             

Where *

i
η is the i th component of ( )

*
r s

η
+

and *
ij

ψ  is the ( ). thi j  

component of ( )
*

r s
ψ

+
. 

See
 
Bhattacharjee et al.,11 in this context. Using Taylor’s expansion 

and improper prior density for both ( )A
β  and ( )A

τ , the approximate 

predictive density of fu  when ( )
( )r s f

A
x + is missing is given by

evaluated at  ( )
ˆ

A
β and ( )

2

A
s where

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

1
2

0

1 1* *1   , , ,
2 2

k

ij A A A i A j A A A
A

Q Cov Q Var
τ

γ β τ β β β τ τ
− 

 = + +∑ 
 

is the multiplicative factor for the second order Taylor’s 

approximation. If ( ) 'f
Ax s  are independent the corresponding 

approximate predictive density of fu is

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1
* 2 2 2

0 ,

ˆ ˆ ˆ,  | ,
k r s k k

f f f
A i i A i ir s A A i AA i

i i k r s i j k r s

f u x data N x sβ η β β ψ γ
− − − − −

+
= = − − = − −

    ≡ + +∑ ∑ ∑      

evaluated at ( )
ˆ

A
β and ( )

2

A
s , where 

i
η and 2

i
ψ  

are mean and variance of the ith missing variable and 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

1
2

0

1 11 , , ,
2 2

  
k

ij A A A i A j A A A
A

Q Cov Q Var
τ

γ β τ β β β τ τ
− 

 = + +∑ 
 

. Since no future variable is missing in υ , the approximate predictive 

density of fυ is same as obtained in Section 2. Thus when ( )
f

A
x ’s are 

dependent the approximate predictive density of log-odds ratio ' fa w

for ( )
( )r s f

A
x + missing is given by

             ( ) ( ) ( ) ( )* 2  *' | , ; ,f f f
r s A B

f a w x x data Nγ ξ ω
+

  ≡ 
  ,                      (vi)

Where

        
( ) ( ) ( ) ( ) ( )

1 1

0

*ˆ ˆ ˆ
k r s k ff

iA i A i B BA i
i i k r s

x xξ β η β β
− − − −

= = − −

∑ ∑= + −

and

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

112 22 '

,

* 'ˆ ˆ 1
2

k
f f

A i A j ij B BBA B B
i j k r s

n q
s s x X X x

n q
ω β β ψ

−−

= − −

    − = + + + ∑    − +  

The Kullback-Leibler [9] directed measure of divergence between 
the predictive densities (iv) when no variable is missing and the 
predictive density (vi) when r s+ future variables are missing is 
given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1
* 2

0 ,

* * *ˆ ˆ ˆ, ,  ˆ| ,
k r s k k

f f f
A i i A i A i A j ijr s A A i A

i i k r s i j k r s

f u x data N x sβ η β β β ψ γ
− − − − −

+
= = − − = − −

    ≡ + +∑ ∑ ∑      

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

( )
2 2

2

2 2 2*

' | , , 1 1''D | , , log log 1
' 22| ,  ,

  
  

f f f
fA Bf f f

KL A B f f f
r s A B

f a w x x data
f a w x x data da w

f a w x x data

δ δθ ξ
ω ω ω+

        = = − + − −∫          

            ( ) ( )( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( )( )
1

* 2

, 0

1 1
, , , var

2 2
  

k

ij A A A i A j A A AA
i j

E Q Cov E Q
τ

β τ τ τ β τ τ
−

=

 ∑− −  
                     (vii)

If ( )
f

A
x ’s are independent the predictive density of ' fa w  

when ( )r s+  future variables are missing is same as (vi) and the 

corresponding Kullback-Leibler [9] measure 
KL

D is same as (vii) 

but replacing *

i
η  by 

i
η in ξ , ( ) ( )

*ˆ ˆ
A i A j ij

β β ψ  by ( )
2 2ˆ
A i i

β ψ in 2ω  and 

( ) ( )( )* ,  A Aij
Q β τ  by  ( ) ( )( ),  A Aij

Q β τ  in 
*γ , where 

i
η and 2

i
ψ are 

mean and variance of the ith missing variable.

Explanatory variables are dichotomous

Here we assume that all the explanatory variables are dichotomous 
and independent. We assume that the errors of models (ii) and (iii) 

are normally distributed with means zero and variances ( )
1

A
τ − and 

( )
1

B
τ − respectively. To assess the influence of the missing variables in 

treatment A, we consider that ( )
f

A i
x is distributed as

( ) ( ) ( )
( )

( )( ) ( )
( )

1
Pr 1     1, 2,, 0, .. , 11, .

f fx
fA if f A i

A iA i A iA i A i

x
iX x x kθ θ

− = = − = =
 

−
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The density of a future fu is

( ) ( ) ( ) ( ) ( ) ( )

1
1

0

| , ,  , .  
k

f f f
A A A iA A i A

i

f u x N xβ τ β τ
−

−

=

    ≡ ∑      

If ( )
( )r f

A
x future variables are missing in treatment A, then the 

density of a future fu is given by

     				    		

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )

( )( ) ( )
11

* 1 1

0
1

1 1 1
| , , ..... , 1 .

0
    

0

f fxkk
A if f f A i

A A i A iA A A i A A if f i i k r
A k r A k

x
f u x N x

x x
β τ β τ θ θ

−−
− −

= = −
− −

  −  ∑= − ∑ ∏  Σ     = =

The predictive density of fu when ( )
( )r f

A
x is missing is given by

			                                                                                      			      	                 (viii)

which is not mathematically tractable. For vague prior densities for ( )A
β and ( )A

τ  and using Taylor’s expansion, the approximate predictive 

density of (viii) is

                  
                     

( ) ( ) ( ) ( )

( )( )
( )
( )

( )( ) ( )

( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

11 1 1 12

00 0
1

1
2 22

, 0

ˆ| * , ... ,s 1

cov , varˆ ˆ1 , ,
2

  

2

f fxkk xA if f f A iiA i AA A i A A if f i k rix x
A k r A k

k A i A j A
ij AA AAi j

f u x data N x

Q s Q sτ

β θ θ

β β τ
β β

−− −

= −== =
− −

−
− −

=

   ∑ ∏= − ∑ ∑      

 
 + +∑
 
 

 
    

Since there are no missing variables in fν , the density of fν is same as that can be obtained in Section 2. Then the predictive density of 
' fa w is given by

                                                           										          (ix)

		
			    

( ) ( ) ( ) ( ) ( )( ) ( )
* 1*  (u )| , | , |  f f

A A AA A
ffdatf u x x f data dAa f β τ β β−=∫

 
 
 

( ) ( )

( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )
( )

( )( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

1 1

0 0
1

1 1

1
2 22

, 0

1 1
2 2

0
' | * , , ...

1

cov , varˆ ˆ1 ,

 

2

 

,
2

ˆ ˆ , s 1 ' 'f f
A B f fx x

A k r A k

f fxk xA i A iiAA i
i k r

k A i A j A
ij A T AA AAi j

k
f f f
A i A i B i B i A B B B B B

i

ff a w x x data N S

Q s Q s

x x x X X x

θ θ

β β τ
β β

β β
= =

− −

− −

= −

−
− −

=

− −

=

  ∑= ∑ 
 

∏ −

 
 + +∑
 
 

  − + +    
∑

( ) ( ) ( ) ( )

( )( )

( ) ( ( ) )

( )1( ) (

1

1 1 1
'

* *

00 0
1

1 1 11 ' '2 2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

ˆ| , , ...

ˆ

  

  

1

ˆ ˆ, 1
i k g

l fx xA i
i i

i l

k g
f f f f

A iA B A if f ix x
A l d A l

k kk f f
i B i B i A i i A B B B B BA i

i k g i

d

f a w x x data N x

x S S x X X x

θ θ

β

η β β β

− −

== =
− +

− − −

= −

−

= −

−

+

= − =

  ∑= +∑ ∑    
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
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





) ( )( ) ( ) ( )( )
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2)
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, 0

2
2
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ˆ1 ,

2

var
ˆ ,

2

A i A j

ij A A
i j

A

A AT A

f
A i

k
Q s

T
Q s

β β
β

β

−

=

−

−
∑+
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





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

 Analytical solution of DKL between the predictive densities 
(iv) and (ix) is very difficult to obtain but numerical solution can be 
obtained. In Some situations it is seen that among the explanatory 
variables, some of the variables are dichotomous and some of the 
variables are continuous. Among the 1k − -explanatory variables, 
without loss of generality we assume that the first l  are dichotomous 

and the remaining last 1k l− − are continuous variables. We also 
assume that out of l dichotomous future variables last d variables 
are missing and out of ( 1)k l− − continuous future variables last 
g variables are missing. Then the predictive density of future log-

odds ratio ' fa w when d dichotomous and g continuous variables are 
missing is given by

                 												            (x)
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Again, analytical solution of DKL between the predictive densities 
(iv) and (x) is very difficult but we can obtain its numerical solution. 
In similar way we can derive the predictive density of future log-odds 
ratio when some future variables are missing in treatment B.

Example 1 revisited: This example is based on the flu shot data of 
Example 1. From Figure 3 we have observed same as Examples 1 
and 2 that the discrepancies are less around the mean of the missing 
variables. Moreover we have observed from Figures 1 and 3 that the 
discrepancies of the missing variables are less as compared to the 
discrepancies of the deleted variables. Example 2 revisited: This 
example is based on the simulation data of Example 2 and here we 
have also got same conclusion as Example 1 revisited (Figures 2 & 4).

Examples 1 and 2 revisited: In this example, we have used DKL  
values for real data for drawing box plots for each cases (deleted and 
missing). From Figure 5, we have observed that x2 is more in uential 
than x1. Moreover the discrepancies are much less in missing case 
than deleted case. We have got same result in simulation study and are 
illustrated in Figure 6.

Evaluation of predictive probability of a 
logistic model

We consider the logistic model as

( ) ( ) ( )( )Pr 1| , exp / 1 expy x x xβ β β= = +

The probability that a future response yf will be a success is given 
by

( ) ( ) ( )Pr 1| , exp / 1 expf f f fy x x xβ β β = = + 
 

We assume that the conditional density of *
(r)
fx  given * fx  

is independent of β  where * fx  denotes the future explanatory 

variables without variables (r)
fx . Then predictive probabilities of fy  

will be a success for models are given by

( ) ( ) ( )Pr 1| , P  r  | 1| ,f f f fy x data y x f data dβ β β= = =∫

and

    
( ) ( ) ( )* *Pr 1| , Pr 1| , |   f f f fy x data y x f data dβ β β= = =∫

respectively. Simple analytically tractable priors are not 
available here. Numerical integration techniques might be used 

for some specified priors to approximate ( )Pr 1| ,f fy x data=  and 

( )Pr 1| * ,f fy x data= , respectively.

Normal approximation for the posterior density

Let us suppose that the sample size is large. Lindley12 stated that 

the posterior density ( )|f dataβ may then be well approximated by 
its asymptotic normal form as

( ) ( )ˆ| ,
p

f data Nβ β≈ ∑

where 
^
β is the maximum likelihood estimate of β, ∑  = (-H)-1 and 

H is the Hessian of log L(β) evaluated at 
^
β .

For the logistic model (xi), the Hessian H=(hji(
^
β )) evaluated at 

^
β  is given by 

( ) ( )
( )( )2

1

ˆexpˆ , j, l 0,1, ..., k,
ˆ1 exp

n ij il i

jl
i

i

x x x
h

x

β
β

β=

∑= − =
+

Where xij is the jth component of ix  with 0ix  = 1. For given 

,   f fx xz β=  will have approximately a posteriori a normal 

distribution with mean fx β
∧

= fx β
∧

 and variance 2 'f f
fx

d x xΣ= , 

and with probability density function 2   d,f fx
z

x
bφ

 
 
 

. Using the 

transformation we can approximate ( )   ,ff x dataβ  by

( ) ( )
( )

2
exp

Pr 1| , | .,1 ex
   

p
f f

f
x f

x

z
y x data z b dzdz

φ
 
 = ≈ ∫  +  

Analytical evaluation of (xi) is very difficult. We can however 
evaluate then by numerical integration techniques viz Gauss-Hermite 
Quadrature (Abramowitz and Stegun13), Normal approximation 
(Cox14), Laplace’s approximation (de Bruijn15).

If the sample size is small, the posterior normality assumption 
may not be accurate. Therefore, we consider Flat prior approximation 
(Tierney and Kadane16) as an alternative approach using the Laplace’s 
method for integrals.

Effect of the variables fx

Here we assume that the future variables fx are dependent and the 

density of fx is p-dimensional multivariate normal i.e.

         

The conditional density of ( )
f

r
x  for given * fx is  

                  ( ) ( ) ( )( )  | * * , *f f
r rrr

f x x N n ψ  ≡ 
 

The probability of fy as a success when 
( )
f

r
x is missing given by

           

( ) ( ),  f
p

f x N n ψ≡
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1/2

2

0 1 1

* /
k r k k

f
i i i i

i i k r ij k r

x n ki jφ β β β β
−

= = − + = − +

     ≈ + + Ψ ∑ ∑ ∑         

* ( )g β=  (Say)

Then the predictive probability of fy as a success when (r)
fx is 

missing given by

      
( ) ( ) ( )* *1 , .  f fpr y x data g f data dβ β β= = ∫          (xii)

The integral in (xii) can be evaluated as the integral in (xi) using 
Taylor’s and Laplace’s approximations.

If, instead, the future variables 
1

fx ,…, f

k
x are independently and 

normally distributed with mean 
i

η  and variance 2

i
ψ  (i = 1, 2, … , k), 

then the conditional density of ( )
f

r
x is

                   ( ) ( )
*|f f f

r r
f x x f x   ≡   
    .

Consequently, we get

      

( ) ( )
( ) ( )*

(r) (r)

exp
Pr 1| ,

1 e
 

x
 

p

f

f f f f

f

x
y x f x dx

x

β

β
β= = ∫

+

     

1/2
2 2 2

0 1 1

/
k r k k

f
i i i i i

i i k r i k r

x n kiφ β β β
−

= = − + = − +

     ≈ + + Ψ   ∑ ∑ ∑         

( )g β= (Say)

See Aitchison and Begg [17] in this context. Again,

 
( ) ( ) ( )Pr 1| , data |data  f fy x g f dβ β β= = ∫

Variables fx  are dichotomous

Here we assume that the variables fx are independent and they 

can take only two values 0 or 1. We also assume that f
ix  is distributed 

as

If ( )
f

r
x is missing the probability of fy as a success is given by

 ( ) ( )
( ) ( ) ( )

1 1 1

101 0

exp
Pr 1| * , ... 1

1 exp

f
fk f xxf f ii

i iff f i k rx xk r
k

x
y x h

x

β
β θ θ β

β

−

= − +=− + =

∑ ∑ ∏= = − =
+

(Say).

The predictive probability of fy as a success when ( )
f

r
x

 
is missing 

is given by

        
( ) ( ) ( )Pr 1| * , data |data . f fy x h f dβ β β= = ∫         (xiii)

If the sample size is large, assuming the normality assumption 
for the posterior density we can approximate (xiii) using Taylor’s 
theorem, Laplace’s method and normal approximation.

Example: one variable case

Here we consider two different logistic models based on any 
single variable either 

1
x  or 

2
x . We want to measure the discrepancies 

between the predictive probability ˆ
i

p , based on a single variable 

ix when f
ix is known, and the predictive probability

0
p̂ , based on 

xi alone when 
2

fx is missing, to assess the influence of the missing 

variable f
ix  , i = 1, 2. The predictive probability ˆ

i
p is determined 

using quadrature approximation and the predictive probability 
0

p̂ is 
determined using second order Taylor’s approximation.

We assume that the marginal densities of the future variables 
1

fx  
and 

2

fx  are normal with means 33.35, 78.24 and variances 65.39, 
1827.0 respectively, where means and variances are the estimated 
sample means and sample variances from the observed data. We 
employ the absolute difference of probabilities and Kullback-Leibler 
divergence measure to assess the influence of the missing variable. 
The discrepancies are drawn in Figure 7. Here we see that the 
discrepancies due to missing 

1

fx  in the predictive probability based 
on 

1
x  are very large compared to the discrepancies due to missing 

2

fx  
in the predictive probability based on 

2
x . The discrepancies are less 

around the mean of the missing variable.

Example: two-variable case

Now we consider that the predictive probability based on two 
variables 

1

fx  and 
2

fx  when both 
1

fx  and 
2

fx  are known is denoted 
by 

12
p̂

 
and the predictive probability ˆ

ij
p , 0,1i = , 0, 2j = and 

( ) ( ), 1,2i j ≠  based on 
1

x  and 
2

x  when any future variable is missing. 
“0” indicates missing variable. Here also the predictive probability 

12
p̂ is determined using quadrature approximation and predictive 

probabilities 
10

p̂ , 
02

p̂ and 
00

p̂  are determined using second order 

Taylor’s approximation. Here we assume that the joint density of 
1

fx     

and
2

fx is bivariate normal with correlation coefficient -0.33 which is 
the estimated sample correlation coefficient from the observed data. 
The absolute differences of the two predictive probabilities 

12
p̂ and 

02
p̂ when 

1

fx is missing and the absolute differences of the two 

( ) ( )
( ) ( )**

(r) (r)

exp
Pr 1| ,

1 exp
  

f
ff f f f

f

x
y x f x x dx

x

β

β
β= = ∫

+

( ) ( )1Pr 1
f f

x xf f i i
i i ii

x x θ θ
−

= = −
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predictive probabilities 
12

p̂ and 
10

p̂ when 
2

fx  is missing are drawn 
in Figure 8. Kullback-Leibler directed divergence DKL are drawn in 
Figure 9. The discrepancies when 

1

fx  is missing and for different 
given values of the other variable for both the cases are close together 
since the correlation between 

1

fx and 
2

fx  are very small. The 

discrepancies due to missing 
1

fx  are very large compared to missing 

2

fx  except near the mean of the missing variable. If both 
1

fx  and 

2

fx  are missing the discrepancies are drawn in Figure 10. These 
discrepancies are very similar to the discrepancies due to missing 

1

fx  alone in the predictive probability based on 
1

x  and 
2

x  since the 

contribution of 
2

x  is negligible.

Group A                                                                    Group B
Figure 1 Three dimensional scatter plots based on real data for DKL when x1 is deleted. 

                    Group A                                                                   Group B

Figure 2 Three dimensional scatter plots based on simulated data for DKL when x1 is deleted.
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                    Group A                                                                   Group B

Figure 3 Three dimensional scatter plots based on real data for DKL when x
f
1 is missing.

Group A                                                                Group B

Figure 4 Three dimensional scatter plots based on simulated data for DKL when x1 is missing
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                                                   Treatment A	    					        Treatment B

Figure 5 Box plot for DKL based on real data.

                                                         

                                                    Treatment A	    					     Treatment B

Figure 6 Box plot for DKL based on simulated data.
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f

ix  is missing			         2x f
 is missing

			   Kullback-Leibler directed divergence DKL

                                                                                               
f

ix  is missing			   2x f
 is missing

Figure 7 Absolute difference 0 ,  1, 2iP P i
∧ ∧
− =

.

Figure 8 Absolute difference 
12 10

^ ^
p p−

.
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			                  xf
1 is missing

			              xf
2 is missing

Figure 9 Kullback-Leibler directed divergence DKL

                                                              Absolute difference 
0012  , 2 , 1P P i

∧ ∧
− =

 			                 Kullback-Leibler directed divergence DKL

 Figure 10 1x f
 and 2x f

 are both missing.

https://doi.org/10.15406/bbij.2017.05.00125


Predictive influence of variables on the odds ratio and in the logistic model 37
Copyright:

©2017 Bhattacharjee et al.

Citation: Bhattacharjee SK, Biswas A, Dutta G, et al. Predictive influence of variables on the odds ratio and in the logistic model. Biom Biostat Int J. 
2017;5(1):25‒37. DOI: 10.15406/bbij.2017.05.00125

Concluding remarks
In our present study we have observed that the discrepancies are 

minimum around the mean of the deleted variables as well as the 
mean of the missing future variables in both the logistic model and the 
log-odds ratio; the discrepancies are larger if the deleted or missing 
variables are more influential; the discrepancies in the deleted case are 
higher than the missing case.

In this present paper we studied the important problem of predictive 
influence of variables on the log odds ratio under a Bayesian set up. 
The treatment difference

             ( ) ( )Pr Y 1| 1,x Pr Y 1| 0,xi i i i i iZ Z= = − = =

Or the risk of ratio

            ( ) ( )Pr Y 1| 1,x / Pr Y 1| 1,xi i i i i iZ Z= = = =

can also be studied along the same lines.

We have also considered the influence of missing future 
explanatory variables in a logistic model. Influence of missing future 
explanatory variables in a Probit and complementary log-log models 
can also be studied in similar fashion.
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