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and in the logistic model

Abstract

We study the influence of explanatory variables in prediction by looking at the
distribution of the log-odds ratio. We also consider the predictive influence of a
subset of unobserved future variables on the distribution of log-odds ratio as well as
in a logistic model, via the Bayesian predictive density of a future observation. This
problem is considered for dichotomous, as well as continuous explanatory variables.
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Introduction

Odds ratio (OR) is perhaps the most popular measure of treatment
difference for binary outcomes and is extensively used in dealing with
2x2 tables in biomedical studies and clinical trials. The distribution of
the log of sample OR is often approximated by a normal distribution
with true log OR as the mean and with variance estimated by the
sum of the reciprocal of the four cell frequencies in the 2x2 table
Breslow.! Bohning et al.,> provide detailed book-length discussion on
the OR. For logistic regression, ORs enable one to examine the effect
of explanatory variables in that relationship.

Logistic link is perhaps the most popular way to model the success
probabilities of a binary variable. Pregibon,> Cook and Weisberg* and
Johnson® have considered the problem of the influence of observations
for logistic regression models. Several measures have been suggested
to identify observations in the data set which are influential relative to
the estimation of the vector of regression coefficients, the deviance,
the determination of predictive probabilities and the classification of
future observations.

Bhattacharjee & Dunsmore® considered the effect on the predictive
probability of a future observation of the omission of subsets of
the explanatory variables. Mercier et al.,’” used logistic regression
to determine whether age and/or gender were a factor influencing
severity of injuries suffered in head-on automobile collisions on rural
highways. Zellner et al.,® considered the problem of variable selection
in logistic regression to compare the performance of stepwise selection
procedures with a bagging method.

In the present paper, our aim is to measure the predictive influence
of a subset of explanatory variables in log-odds ratio of a logistic
model using a Bayesian approach. We are also interested in studying
the effect of missing future explanatory variables on Bayes prediction,
on a logistic model as well as on the log-odds ratio.

In Section 2, we derive the predictive densities of a future log-
odds ratio for both the full model and a subset deleted model. We
derive the predictive density of log-odds ratio in Section 3, when

a subset of future explanatory variables is missing. To derive the
predictive densities we assume that the future explanatory variables

x” are distributed as multivariate normal, both when these x5 are
independent or dependent. In Section 4, we discuss the influence of
future missing explanatory variables by considering the predictive
probability of a future response in a logistic model. This is done by

/" are multivariate

assuming that the future explanatory variables x
normal for the continuous case. Also considered is the dichotomous
case. Since the predictive probabilities are not mathematically

tractable for the logistic model, we use several approximations.

In Section 2 and 3 we employ Kullback-Leibler® directed measure
of divergence D,, to assess the influence of variables and also the
influence of future missing variables on the log-odds ratio. The form
of the Kullback-Leibler’ measure used here is given by

f(a'Wf |.)

7f(r+s)(a'Wf|_) d(a'Wf).

DKL = If(a'Wf|.)log

To assess the influence of missing future variables or to measure
the predictive probability in a logistic model we use the absolute
difference of the two predictive probabilities.

Influence of variables in log-odds ratio

Consider a phase III clinical trial with two competing treatments,
say 4 and B, having binary responses. Suppose n patients are
randomly allocated with 7 —and 7, patients to treatments 4 and
B respectively. The patient responses are influenced by a covariate
vector x”' where one component of x may be 1 (which covers the
constant term). Let (Y ;Z ;x ) be the data corresponding to its

patient, where Y, is the indicator of response (¥ =1 or O for a success
1
or failure), z, is the indicator of the treatment assignment ( z, = 1)

or 0 according as treatment 4 or B is applied to the its patient), and
x is the covariate vector. We assume a logit model for the responses:
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exp(AZi+xiﬂ)
—_—
1+exp(AZi+x,ﬂ)
Then the odds for treatments 4 and B with covariate vector x, are
respectively

Pr(Y=1Z,,x,) = =1,2,..,n. @)

o L PIAZAL)
i = Pr(y=0z,l) O \ATEA
_ Pr(%=1Z,=0,x)
O = Pe(1=0Z,=0.1,) exp (/)

and hence the log-odds ratio is

logO,
log OR = =
0g O log O,

Let us partition
Xp = xA'BA +x3ﬂ3 +xABﬁAB

Where x, indicates the variables used in treatment 4 only, x; is
for treatment B only, and x 45 is for both treatments 4 and B. Then the
model can be partitioned for treatments 4 and B as:

logO —u—A+xﬂ +x, ,B

RO (i)
log O, =v= xAﬂB * xAB’BAB - x(B)ﬂ(B) (iii)
The predictive density of future log-odds for A4, u’ , for non-

informative prior (vague prior) with normal or any spherical symmetric
errors is of Student form Jammalamadaka et al. [10] and is given by

-1
f(uf x(f;i),data)ESt(n—k X ﬁ (1+x(/A) (x'(A) xA) x{;))j

5 2
where ﬂ(A) is the MLE of ﬁ(A) , S(4) is the MLE of O'j and k
is the number of parameters in the model (ii). See Bhattacharjee et
al. [11] in this context. If the sample size is large then this predictive
density can be well approximated by its asymptotic normal form

P ' ' -1
N[x(fA)ﬂ(A)y S(ZA)[1+x~(fA)(x(A)x(A)) x(fA)J(nk)/(nkZ)}.

Similarly one can find the same for treatment B, v
Let us define w' = (uf,vf ) and @ = (1,-1) . Then the predictive

density of future log odds ratio a w

f(a'wf\x( (s ),data) (9,52)

Where

is given by

(iv)

o5 o5
0=X B ~¥s)P(s) and

Our interest is to measure the influence of explanatory variables in
the predictive density (iv) for the following cases:
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Case 1: Influence of » explanatory variables x/; of x, in treatment
A.

Case 2: Influence of » explanatory variables xj of x; in treatment
B.

Case 3: Influence of s explanatory variables x;B
treatment A4.

of X 4B in

Case 4: Influence of s explanatory variables x;B of xyp in

treatment B.

Case 5: Joint influence of r explanatory variables x’jof x, and s
explanatory variables x;B of x4z in treatment 4.

Case 6: Joint influence of r explanatory variables xj of x; and s
explanatory variables x;B of x,p in treatment B.

To see the influence of explanatory variables in log-odds ratio, we
construct a reduced log-odds model deleting a subset of explanatory
variables. Then we derive the predictive density of future log-odds
ratio for reduced model and compare it with the predictive density
(iv) for full model. It is enough to consider Case 5 for illustration. We
construct the reduced model by deleting variables x’; of x, and x
of x5 in (ii) as

u—A+xﬂ +x ﬁ = (A),B(A)

Then the predictive density of u’ is given by
*/‘ Ak *) * f' * 1 * _1 */'
flul)x ( ) data | = St n—k+r+s,x(A)/3(A), S(A) 1+x('A)(x(A)x(A)) x(A)
The normal approximation of the predictive density is
-1
*f Ak *2 skt * *f _ _ _
N[x(A)ﬂ(A),s(A)[Hx( )(x(A)x(A)) x(A)](n k+r+s)/(n k+r+s 2)]

Smce no variable is missing in v = log 0 , the predictive density

of v’ is unaltered along with its normal approx1mat10n Hence the
predictive density of log-odds ratio alwf under Case 5 is given by

* %)
f(H )(aw |x( ) ( ),data) (0 0 )
Where

™)

* *fA

_ VA
=P P

and
*2 71 .
o ( ) 1+x [xz;i)xEA)j xzi) (n—k+r+s) ! (n—k+r+s=2)

. 1
*5) [”’C{B)(X(B)X(B)) (B)]( q)/(n-q-2)

To access the influence of the deleted variables we employ the

Kullback-Leibler’ directed measure of divergence D, between the

predictive densities of alwf for full model (iv) and reduced model
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(v). The form of K-L measure used here is given by

f(yﬂ)(a'wf.

Dy = frun (a'e L) o]

The discrepancy measure D, between the predictive densities (iv)
and (v) reduces to

( o- 9*)2 1 5*2 5*2
=—"—+—| ——log| — |-
KL 2 52 2 S 52
%\2
(6—9
Here L = - is due to difference of location parameters and
26
15" 5” :
§ = —| ——log| — |-1 | due to difference of scale parameters of
2 52 52

the two predictive densities (iv) and (v).

Example 1: Here we have considered a flu shot Data Pregibon.’ A
local health clinic sent fliers to its clients to encourage everyone, but
especially older persons at high risk of complications, to get a flu shot
for protection against an expected flu epidemic. In a pilot follow-up
study, 159 clients were randomly selected and asked whether they
actually received a flu shot. A client who received a flu shot was coded
Y=1; and a client who did not receive a flu shot was coded Y=0. In
addition, data were collected on their age (xl) and their health
awareness (xz) . Also included in the data were client gender (x3) ,
with males coded X, = 1 and females coded X, = 0. Here we have
divided whole data set into two groups A and B on the basis of gender
that is group 4 corresponds to the male and group B corresponds to
the female. We have computed D , to measure the influence of the
deleted variable x, in group 4 and B separately and the discrepancies
are drawn in Figure 1.

Similar figure can be obtained by deleting x_ . From this figure the
discrepancy is less around the mean of the deleted variable.

Example 2: This is a simulation exercise. Here we have drawn
sample of size 159 from bivariate normal distribution and we have
used means, variances and correlation coefficient of x, and X of the
above flu shot data of size 159 for generating the sample. Now using
these x, and X, , we got response that is Y values and thereafter using
this whole generated data set we have computed DKL . Now we have
repeated whole process 1000 times and computed means of DKLS .
The mean discrepancies are shown in Figure 2. Here we get the same

conclusion as in the data example.

Influence of missing future explanatory
variables in log-odds ratio

Here the aim is to detect the predictive influence of a set of missing

Copyright:
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future explanatory variables in log-odds ratio of logistic model (i).
Our interest is to detect the influence of missing future explanatory
variables in the six cases pointed out in Section 2. Let in treatment 4,

r future variables missing from x, and s future variables missing from

f be denoted by x((H)s)f

variables from X /"and s future variables missing from x

. Similarly in treatment B, r future missing

be denoted

by gﬁ)s)f We assume that the errors of models (ii) and (iii) are

normally distributed with zero means and variances z'( )and T,

()’

respectively. We also assume that the conditional density of x(:”)f

. T (rels)sr s *f
given x " is independent of ,B(A) and () and Xpy ~ given Xy

is independent of ,B(B) and T(B) ,le.,

f( (’”)f\x(),ﬂ() ‘[()) f(x((r)+s)/|xz/;)

where x( ) ! denotes the future explanatory variables x(f) without
(r+v)f
O

Explanatory variables are continuous

We assume that x’_/ ’s are dependent and the distribution of x(f ;1) is
1

(k-1) -dimensional multivariate normal, i.e. f( X )j o (7, w)
The conditional density of X ;‘Y) given x( )1s given by

f( ((;;S)f x Q)) =N (n(,+s),V/(r+s))

Where
_ * f _ (r+s)f
7= )l *( () )
_ Vi Y 77* — 1//_1 (x*/ _77*)
‘//21 (//22 > Mts r+s 217 11 (A)
* _
and V(. )=V Vo V0V

As earlier it is enough to consider Case 5 to see the joint influence

of r missing future explanatory variables x:/ of xi and s missing

future explanatory variables xA in treatment 4. The density

f (res)s .
(4)

of x”
AB

of u” when x is missing is given by

Citation: Bhattacharjee SK, Biswas A, Dutta G, et al. Predictive influence of variables on the odds ratio and in the logistic model. Biom Biostat Int J.

2017;5(1):25-37. DOI: 10.15406/bbij.2017.05.00125


https://doi.org/10.15406/bbij.2017.05.00125

Copyright:
Predictive influence of variables on the odds ratio and in the logistic model ©2017 Bhattacharjee et al. 8

[flx(f) B )74 )j [flx By M( ))f\x(f)] x((if)s)f zN[k";i:x(f;)iﬁ(A)ﬁ S nha T /?(A)i/?(A)ij-H(‘j)]

i= i=k—r-s i=k—r-s

Where 77,* is the ith component of 77: )and (//T‘,< is the (i.j)th = 1,
! o v 7= 1+52 Qij(ﬂ(A)’T(A))Cov(ﬂ(A)i:ﬁ(A)j)+EQT(A)(ﬁ(A)’ f(A))V‘”’(T(A))
£ 0

component of . . . s . _
(r+5) . Since no future variable is missing in v , the approximate predictive

See Bhattacharjee et al.,'" in this context. Using Taylor’s expansion

: s . . .
density of v’ is same as obtained in Section 2. Thus when x” . ’s are
and improper prior density for both ﬂ(A) and (1) the approximate Y (1)
dependent the approximate predictive density of log-odds ratio a w/

predictive density of u’ when xg:i;‘v)‘f is missing is given by
] for xE;;S)f missing is given by

. —r-s-1
J?,N)(ufmﬁ), dd’“j { LBt S Tk T A /”Wv” *
. i=k-r-s i,j=k-r-s ftH.)(aW | ( )’ ( )adata) e N(g’a)z), (Vl)

evaluated at ﬂ( 4) and S(2 2 where

1k % 1, Where
= 1+52Qi,(ﬂ(/4),T(A))COV(ﬂ(A)i,ﬂ(A)j)+2@T(A)(ﬂ(A),r(A))Var(T(A)) A A ,
0 _ /B A _ 3
S O PR L O R OO
is the multiplicative factor for the second order Taylor’s
and
approximation. If x(/;) 's are independent the corresponding ) . o _
/ O R O OV ”(s)[”"( o) x{s)Jn—m
approximate predictive density of u~ is i,j=k-r-s

kerese] " The Kullback-Leibler [9] directed measure of divergence between
f(m)( \x( y data) =N| Y x(A) /5’( Ot Z r],ﬂ( A)is Z ﬂ( ) S(ZA)}/ the predictive densities (iv) when no variable is missing and the

i=0 predictive density (vi) when r+ s future variables are missing is
given by

i=k-r-s i,j=k-r-s

5 2
evaluated at ﬂ( 4) and S( 4) > where n, and 1//2
are mean and variance of the ith missing variable and

[ . f aw |x ’ 5 dala [ 1 1 52 52
D,, = f{aw/ i/ ), data)log [y ) daw' =—(0-¢) +| *—log * 11

f(m)(a w |x(‘A),x(B), data)

1 k-t . 1 5 ..
2% E(Q,-,-(ﬂ(A),r(A))COV(T(A),-,T(A),- )) -5 E (QT(A)(/?(A),T(A))Var(f(A) )) (vii)
Explanatory variables are dichotomous
If x(f ) s are independent the predictive density of a w' Here we assume that all the explanatory variables are dichotomous
and independent. We assume that the errors of models (ii) and (iii)

when (r+s) future variables are missing is same as (vi) and the
are normally distributed with means zero and variances r( )

corresponding Kullback-Leibler [9] measure D 1s same as (Vvii) 1
r, . respectively. To assess the influence of the missing variables in
but replacing 5° by 7 in £, 3, 3, w' by B2 ylin @ and

placing 7, by n,in &, B\ By v, Y B v, ,
treatment 4, we consider that x(A). is distributed as

* *
Ql_j (ﬂ(A), T(A)) by Qij (,B(A), T(A)) in y, where 7 and x//i2 are

. . . /
mean and variance of the ith missing variable. 7 r (A)l l=xi s .
Pr(X(A)’: " (1-60) @ =0 =12k -1

(A) 54y
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The density of a future u’is Q)
If XC)

density of a future u’is given by

future variables are missing in treatment A4, then the

k=1,
f(”f|x(fA)’ﬂ(A)’ 2-(A)) = N[ix(f/i)iﬂ(")” T(/li)]'

FI -1 | ! ( )i l_x{A)i
AN A S e > ZxA),b’(A)l, (A) n 9() (1-604):) :
x/ =0 x/ =0 \i=0
(A)k—r (4)k-1
The predictive density of u’ when E )) is missing is given by
*® —
f( !y data=] 1T o f B, r(;)]f(ﬂu)ldata)dﬂu) (v

which is not mathematically tractable. For vague prior densities for ﬂ(A) and ’[(A) and using Taylor’s expansion, the approximate predictive
density of (viii) is
f( Thes! dataj - r % N[Zx( oS J Mo *‘( )i (I,Q(A)i)l—»*{A)i
. P08y | Iy
(A)k—r ( A)k .

BayisP
" Z QIJ(IB (i))COV( (A; (A)/)LQZ (:B(A) (A))\mr(;“))

Since there are no missing variables in v/ , the density of v” is same as that can be obtained in Section 2. Then the predictive density of

1

S
aw’ is given by

k—1 -1

f B 1 oY S 5 2 2 f [ '

7wl sl date) - S (Zol(xmﬂw Ky Bioy ) St + S (1+x(3) (X ) X)) x(BJj
(O

v .
H H(A)l (I—H(A)i) ()i
i=k-r

5 cov(ﬂ(A),,ﬂ(A)j) R 5 var(r(A)) (ix)

15 ol AR A g (1 )

and the remaining last k£ —/—1are continuous variables. We also

Analytical solution of D, between the predictive densities assume that out of 1 dichotomous future variables last d variables

(iv) and (ix) is very difficult to obtaln but numerical solution can be
obtained. In Some situations it is seen that among the explanatory
variables, some of the variables are dichotomous and some of the

are missing and out of (k —/—1)continuous future variables last
g variables are missing. Then the predictive density of future log-

. . . '
variables are continuous. Among the k —1-explanatory variables, odds ratio @ w’ when d dichotomous and g continuous variables are

without loss of generality we assume that the first / are dichotomous  missing is given by

1 g,
f(aw e/ data) Z Z N[ ﬁ(A),
0™ LT z o
(A)I—(IH (A)I
k-1 k-1 1o
VAR A2 2 2

Z ﬂ'ﬂ(/l)r s¥ iz B + S0+ S(B) (“’X(B) (Xw)X(B)) x(B)))
i=k-g i=0 i=k-g

°°V(ﬂ<A)wﬁ(A>f) ®

o\ o (5
o 6" (1-6) l+iEOQ[/.<ﬂ(A),S(A)) )

=l-d+1
O, ( A(A>~‘<f>)var(2%)
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Again, analytical solution of D, between the predictive densities
(iv) and (x) is very difficult but we can obtain its numerical solution.
In similar way we can derive the predictive density of future log-odds
ratio when some future variables are missing in treatment B.

Example 1 revisited: This example is based on the flu shot data of
Example 1. From Figure 3 we have observed same as Examples 1
and 2 that the discrepancies are less around the mean of the missing
variables. Moreover we have observed from Figures 1 and 3 that the
discrepancies of the missing variables are less as compared to the
discrepancies of the deleted variables. Example 2 revisited: This
example is based on the simulation data of Example 2 and here we
have also got same conclusion as Example 1 revisited (Figures 2 & 4).

Examples 1 and 2 revisited: In this example, we have used Dy,
values for real data for drawing box plots for each cases (deleted and

missing). From Figure 5, we have observed that x, is more in uential
than x,. Moreover the discrepancies are much less in missing case
than deleted case. We have got same result in simulation study and are
illustrated in Figure 6.

Evaluation of predictive probability of a
logistic model

We consider the logistic model as

Pr(y=1x,8) = exp () / (1+exp(x8))
The probability that a future response y" will be a success is given
by

o (y/.:fo ,’3) = exp (xfﬁ) / (Hexp(x/ﬂ))

* * £
We assume that the conditional density of x [; ) given x /

is independent of S where x "/ denotes the future explanatory

variables without variables x(fr) . Then predictive probabilities of yf
will be a success for models are given by

Pr (yf=1|xf, data) = fPr(yle\xf,ﬂ)f (ﬂ| data) dp

and

Pr (yf =lx’/, data) = JPr(yf =l|x*f,,8)/ (ﬂ| data) dp

respectively. Simple analytically tractable priors are not
available here. Numerical integration techniques might be used

for some specified priors to approximate Pr ( ' =l ,data) and

Pr ( y =1+ ,data) , respectively.
Normal approximation for the posterior density

Let us suppose that the sample size is large. Lindley'? stated that

Copyright:
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the posterior density f ( ,B|data) may then be well approximated by
its asymptotic normal form as

f (Bdata) =N (B.5)

where &is the maximum likelihood estimate of 5, Y. = (-H)"' and

H is the Hessian of log L(P) evaluated at é

For the logistic model (xi), the Hessian H=(hji( 2;)) evaluated at

Ib is given by

i XiiXit eXp(xi/} )

i 1=0,1,...k,
=l (1+exp(x,-[3))2

h (B)=-

Where x, is the jth component of x, with x,, = 1. For given
ij i i

X , Z =y ,B will have approximately a posteriori a normal

A

. . " : . 2 '
distribution with mean x’ p= X’ # and variance d ="z ,
X

and with probability density function ¢| z bxf R d’ L Using the
.

transformation we can approximate f° ( p X , data) by

Pr(yf =1/, data)z [ mq) b s g2 |de
1+exp(z) G

Analytical evaluation of (xi) is very difficult. We can however
evaluate then by numerical integration techniques viz Gauss-Hermite
Quadrature (Abramowitz and Stegun'’), Normal approximation
(Cox'), Laplace’s approximation (de Bruijn's).

If the sample size is small, the posterior normality assumption
may not be accurate. Therefore, we consider Flat prior approximation
(Tierney and Kadane!'®) as an alternative approach using the Laplace’s
method for integrals.

Effect of the variables x’
Here we assume that the future variables ,/ are dependent and the

density of xis p-dimensional multivariate normal i.e.

f(x/) = Np (n.v)
The conditional density of x(j;‘) for given "/ is

P e )=, )

The probability of yf as a success when x(f ' ) is missing given by
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Pr(ylelx*f, /3) =] exp(Xfﬁ))f(x({W*f )d"(()

1+exp(x/ﬂ

1/2
~ ¢ (kfx,fﬂi+ ﬁ nfﬁij/[k% ﬁ ﬁlﬂj\PJ

i=0 i=k-r+l ij=k—r+l

=g*(p) (Say)

Then the predictive probability of yf as a success when x/, is

@)
missing given by

. (xii)

Pr(y X, data) =" (8)r (p|data)ap.

The integral in (xii) can be evaluated as the integral in (xi) using
Taylor’s and Laplace’s approximations.

S

If, instead, the future variables X e x: are independently and

normally distributed with mean . and variance y/_2 (i=12,...,k),

then the conditional density of X s
r

(r)

/ (x(fr)'x*f) =/ (x(fr)) .

Consequently, we get

eXP(xfﬂ))f (x(fQ) )dx(fn

pe(y/ 17 ) - | 1+exp(xfp

1/2
~ [erxifﬁﬁ s n,-ﬂi]/[k% s /3,-2\11?]

i=0 i=k-r+l1 i=k-r+l1

= g(p) (Say)

See Aitchison and Begg [17] in this context. Again,

Pr (yf:1|x/, data) =[g(B)/f(Bldata)d B
Variables x’ are dichotomous

Here we assume that the variables x” are independent and they

can take only two values 0 or 1. We also assume that xl‘./ is distributed
as

S S
Pr(xf:xf) =0" (1-6,)7

v
If x(r)

is missing the probability of yf as a success is given by
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R I . oL R S

P
o =0 'ka:o I+exp| x ﬁ)::kfm

(Say).

The predictive probability of yf as a success when x‘(f ) is missing
is given by

Pr( ' =1x*/ data) =[h(B)f(Bldata)d . (xiii)
If the sample size is large, assuming the normality assumption
for the posterior density we can approximate (xiii) using Taylor’s

theorem, Laplace’s method and normal approximation.
Example: one variable case

Here we consider two different logistic models based on any
single variable either X or x . We want to measure the discrepancies
between the predictive probability f)i , based on a single variable
x, when xl.f is known, and the predictive probability f?o, based on

x, alone when xzf is missing, to assess the influence of the missing

variable xl.f ‘ , 1 =1, 2. The predictive probability 131_ is determined
using quadrature approximation and the predictive probability [70 is

determined using second order Taylor’s approximation.

We assume that the marginal densities of the future variables xif
and xzf are normal with means 33.35, 78.24 and variances 65.39,

1827.0 respectively, where means and variances are the estimated
sample means and sample variances from the observed data. We
employ the absolute difference of probabilities and Kullback-Leibler
divergence measure to assess the influence of the missing variable.
The discrepancies are drawn in Figure 7. Here we see that the

discrepancies due to missing xlf in the predictive probability based
on x arevery large compared to the discrepancies due to missing xzf
in the predictive probability based on X, . The discrepancies are less

around the mean of the missing variable.

Example: two-variable case

Now we consider that the predictive probability based on two
variables xif and x'zf when both xi/ and x'zf are known is denoted
by ﬁlz and the predictive probability f)ij,i =0,1, j=0,2and
(i, j) * (1,2) based on x and x, when any future variable is missing.
“0” indicates missing variable. Here also the predictive probability
1312 is determined using quadrature approximation and predictive
probabilities 1310 , 1302 and f)OO are determined using second order
Taylor’s approximation. Here we assume that the joint density of xif
and xzf is bivariate normal with correlation coefficient -0.33 which is
the estimated sample correlation coefficient from the observed data.
The absolute differences of the two predictive probabilities 1312 and

ﬁoz when xi/ is missing and the absolute differences of the two
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predictive probabilities f)lz and 1310 when xzf is missing are drawn
in Figure 8. Kullback-Leibler directed divergence D, are drawn in
Figure 9. The discrepancies when x1f is missing and for different
given values of the other variable for both the cases are close together

since the correlation between xlf and xi are very small. The

discrepancies due to missing ¥ are very large compared to missing
1
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except near the mean of the missing variable. If both xlf and

are missing the discrepancies are drawn in Figure 10. These

discrepancies are very similar to the discrepancies due to missing

xlf alone in the predictive probability based on x and x, since the

contribution of X, is negligible.
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Figure | Three dimensional scatter plots based on real data for D, when x| is deleted.
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Figure 2 Three dimensional scatter plots based on simulated data for D,, when x is deleted.
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Concluding remarks

In our present study we have observed that the discrepancies are
minimum around the mean of the deleted variables as well as the
mean of the missing future variables in both the logistic model and the
log-odds ratio; the discrepancies are larger if the deleted or missing
variables are more influential; the discrepancies in the deleted case are
higher than the missing case.

In this present paper we studied the important problem of predictive
influence of variables on the log odds ratio under a Bayesian set up.
The treatment difference

Pr(Y,=1Z,=Lx,) - Pr(Y,=1Z,=0,x,)

Or the risk of ratio
Pr(Y,=1Z,=1,x,) / Pr(Y,=1|Z,=1,x,)
can also be studied along the same lines.

We have also considered the influence of missing future
explanatory variables in a logistic model. Influence of missing future
explanatory variables in a Probit and complementary log-log models
can also be studied in similar fashion.
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