Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 3

On statistical properties and applications of PoissonPranav distribution

Kamlesh Kumar Shukla,1 Rama Shanker2

1Department of Mathematics, Noida International University, Gautam Budh Nagar, India
2Department of Statistics, Assam University, Silchar, India

Correspondence: Kamlesh Kumar Shukla, Department of Mathematics, Noida International University, India

Received: May 31, 2022 | Published: August 9, 2022

Citation: Shukla KK, Shanker R. On statistical properties and applications of Poisson-Pranav distribution. Biom Biostat Int J. 2022;11(3):93-98. DOI: 10.15406/bbij.2022.11.00360

Download PDF

Abstract

In this paper, Poisson-Pranav distribution, a Poisson mixture of Pranav distribution, has been proposed. Its moments and moments-based measures including coefficients of variation, skewness, kurtosis, index of dispersion have been obtained and their behavior illustrated graphically. The estimation of parameter of the proposed distribution has been discussed using both the method of moment and the method of maximum likelihood. The simulation study has also been presented in order to illustrate the performance of maximum likelihood estimator. The goodness of fit of the proposed distribution has been explained with two count datasets and its fit was found quite satisfactory over Poisson distribution, Poisson-Lindley distribution, Poisson-Akash distribution and Poisson-Ishita distribution.

Keywords: Pranav distribution, moments-based measures, properties, estimation of parameter, simulation, goodness of fit

Introduction

The Pranav distribution is defined by its probability density function (pdf) and the Cumulative density function (cdf)

f 1 (x,θ)= θ 4 θ 4 +6 ( θ+ x 3 ) e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaaqabaGccaGGOaGaamiEaiaacYcacqaH4oqCcaGGPaGa eyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaaakeaacq aH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI2aaaaiaaykW7 daqadaqaaiabeI7aXjabgUcaRiaadIhadaahaaWcbeqaaiaaiodaaa aakiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqC caWG4baaaOGaaGPaVlaacUdacaWG4bGaeyOpa4JaaGimaiaacYcacq aH4oqCcqGH+aGpcaaIWaaaaa@5B43@   (1.1)

F 1 (x,θ)=1[ 1+ θx( θ 2 x 2 +3θx+6 ) ( θ 4 +6 ) ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGymaaqabaGccaGGOaGaamiEaiaacYcacqaH4oqCcaGGPaGa eyypa0JaaGymaiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaaba GaeqiUdeNaamiEamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacqaH4o qCcaWG4bGaey4kaSIaaGOnaaGaayjkaiaawMcaaaqaamaabmaabaGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOnaaGaayjkai aawMcaaaaaaiaawUfacaGLDbaacaaMc8UaamyzamaaCaaaleqabaGa eyOeI0IaeqiUdeNaamiEaaaakiaaykW7caGG7aGaamiEaiabg6da+i aaicdacaGGSaGaeqiUdeNaeyOpa4JaaGimaaaa@67EF@   ( 1.2)

It should be noted that the Pranav distribution, a convex combination of exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@ and gamma ( 4,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG inaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BBB@ distributions, has been proposed by Shukla1 for modeling lifetime data. Important statistical properties of Pranav distribution including its shapes, moments, skewness, kurtosis, hazard rate function, mean residual life function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves, Renyi entropy measure and stress-strength reliability are available in Shukla.1 The Pranav distribution has been found to provide a better fit for survival time data over exponential distribution, Lindley distribution introduced by Lindley,2 Akash distribution proposed by Shanker3 and Ishita distribution suggested by Shanker and Shukla.4 The pdf of Lindley, Akash, and Ishita distributions has been presented in Table 1.

Lifetime distributions                         Pdf

Mixtures of distributions

Introducer (year)

Lindley                                  

f( x )= θ 2 θ+1 ( 1+x ) e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaGOmaaaaaOqaaiabeI7aXjabgUcaRiaaigdaaaWaae WaaeaacaaIXaGaey4kaSIaamiEaaGaayjkaiaawMcaaiaadwgadaah aaWcbeqaaiabgkHiTiabeI7aXjaaykW7caWG4baaaOGaai4oaiaadI hacqGH+aGpcaaIWaGaaiilaiabeI7aXjabg6da+iaaicdaaaa@53A6@  

exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@  and gamma ( 3,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG 4maiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BBA@ distributions

Lindley2

Akash                                  

f( x )= θ 3 θ 2 +2 ( 1+ x 2 ) e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaG4maaaaaOqaaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdaaaWaaeWaaeaacaaIXaGaey4kaSIaamiEamaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaaykW7caWG4baaaOGaai4oaiaadIhacqGH +aGpcaaIWaGaaiilaiabeI7aXjabg6da+iaaicdaaaa@558E@  

exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@ and gamma ( 3,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG 4maiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BBA@ distributions

Shanker3

Ishita                                  

f( x;θ )= θ 3 θ 3 +2 ( θ+ x 2 ) e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaiodaaaGccqGHRaWkcaaIYaaaamaabmaabaGaeqiUdeNa ey4kaSIaamiEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaai aadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaGccaaMc8Ua aGPaVlaaykW7caaMc8Uaai4oaiaadIhacqGH+aGpcaaIWaGaaiilai aaykW7caaMc8UaeqiUdeNaeyOpa4JaaGimaaaa@60B6@  

Exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@  and gamma ( 3,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG 4maiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BBA@  distributions

Shanker & Shukla4

Table 1 The pdf of Lindley, Akash and Ishita distributions

Ghitany, et al5 have studied in detail on Lindley distribution. Shanker et al.6 have detailed comparative study on modeling of various lifetime data using exponential and Lindley distributions. Further, Shanker et al.7 have detailed comparative study on modeling of real lifetime data using Akash, Lindley and exponential distributions.

During recent decades several one parameter lifetime distributions have been introduced in statistics literature and the Poisson mixture of these distributions, namely Poisson-Lindley distribution (PLD) proposed by Sankaran,8 Poisson-Akash distribution (PAD) introduced by Shanker9 and Poisson-Ishita distribution (PID) suggested by Shukla & Shanker,10 are some among others.

The probability mass function (pmf) of PLD, PAD and PID has been presented in Table 2.

Distributions

                     Pmf

Mixtures of distributions

Introducer (year)

PLD

P( x,θ )= θ 2 ( x+θ+2 ) ( θ+1 ) x+3 ;x=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadIhacq GHRaWkcqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaabaWaaeWa aeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabe aacaWG4bGaey4kaSIaaG4maaaaaaGccaaMc8UaaGPaVlaacUdacaWG 4bGaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaaikdacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiabeI7aXjabg6da+iaaicdaaaa@5F50@  

Poisson mixture of Lindley

Sankaran8

PAD

P( x,θ )= θ 3 θ 2 +2 x 2 +3x+( θ 2 +2θ+3 ) ( θ+1 ) x+3 ;x=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiuam aabmaabaGaamiEaiaacYcacaaMc8UaeqiUdehacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacq aH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaaaiabgwSi xpaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaio dacaWG4bGaey4kaSYaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIYaGaeqiUdeNaey4kaSIaaG4maaGaayjkaiaawM caaaqaamaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMca amaaCaaaleqabaGaamiEaiabgUcaRiaaiodaaaaaaaGcbaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caGG7aGaamiEaiabg2da9iaaicdacaGGSaGa aGymaiaacYcacaaIYaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacq aH4oqCcqGH+aGpcaaIWaaaaaa@8B21@  

Poisson mixture of Akash

Shanker9

PID

P(x,θ)= θ 3 ( θ 3 +2 ) . x 2 +3x+( θ 3 +2 θ 2 +θ+2 ) ( θ+1 ) x+3 ;x=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiuai aacIcacaWG4bGaaiilaiabeI7aXjaacMcacqGH9aqpdaWcaaqaaiab eI7aXnaaCaaaleqabaGaaG4maaaaaOqaamaabmaabaGaeqiUde3aaW baaSqabeaacaaIZaaaaOGaey4kaSIaaGOmaaGaayjkaiaawMcaaaaa caGGUaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaG4maiaadIhacqGHRaWkdaqadaqaaiabeI7aXnaaCaaaleqabaGa aG4maaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaa GccqGHRaWkcqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaabaWa aeWaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaS qabeaacaWG4bGaey4kaSIaaG4maaaaaaGccaaMc8oabaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaacUdacaWG4bGaeyyp a0JaaGimaiaacYcacaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6 cacaGGUaGaaiilaiabeI7aXjabg6da+iaaicdaaaaa@9F67@  

Poisson mixture of Ishita

Shukla & Shanker10

Table 2 Pmfs of PLD, PAD and PID

Detailed study of PLD, PAD and PID are available in Ghitany & A1 Mutairi,11 Shanker,9 & Shukla & Shanker,10 respectively. Shanker and Hagos12 has detailed study on applications of PLD in various fields of knowledge.

The main reasons and motivation of introducing Poisson-Pranav distribution (PPD) are (i) it has been observed that Pranav distribution gives a better fit than exponential, Lindley, Akash and Ishita distributions and (ii) it is expected that PPD would prove to be a better model for over PLD, PAD and PID.

This paper has been divided into eight sections. The second section deals with the derivation of the pmf of PPD and its behaviour for varying values of parameter. The third section deals with raw moments and central moments of PPD and behaviour of mean and variance, coefficients of variation, skewness, kurtosis and index of dispersion for varying values of parameter. Increasing hazard rate and unimodality property of the PPD has been discussed in section four. The sections five and six deals with estimation of parameter using both the method of moment and maximum likelihood, and simulation study, respectively. Finally, the goodness of fit of the distribution and its comparative study along with conclusions have been presented in sections seven and eight respectively.

Poisson-Pranav distribution

Assuming that the parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38E4@ of the Poisson distribution follows Pranav distribution, the Poisson mixture of Pranav distribution can be obtained as

P( X=x )= 0 e λ λ x x! θ 4 θ 4 +6 ( θ+ λ 3 ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0Zaa8qC aeaadaWcaaqaaiaadwgadaahaaWcbeqaaiabgkHiTiabeU7aSbaaki abeU7aSnaaCaaaleqabaGaamiEaaaaaOqaaiaadIhacaGGHaaaaaWc baGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOWaaSaaaeaacqaH4oqCda ahaaWcbeqaaiaaisdaaaaakeaacqaH4oqCdaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaI2aaaamaabmaabaGaeqiUdeNaey4kaSIaeq4UdW 2aaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGaamyzamaaCaaa leqabaGaeyOeI0IaeqiUdeNaaGPaVlabeU7aSbaakiaadsgacqaH7o aBaaa@61BD@   (2.1)

= θ 4 ( θ 4 +6 )x! 0 e ( θ+1 )λ ( θ λ x + λ x+3 )dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaaGcbaWaaeWaaeaacqaH 4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI2aaacaGLOaGaay zkaaGaamiEaiaacgcaaaWaa8qCaeaacaWGLbWaaWbaaSqabeaacqGH sisldaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaacq aH7oaBaaaabaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOWaaeWaaeaa cqaH4oqCcaaMc8Uaeq4UdW2aaWbaaSqabeaacaWG4baaaOGaey4kaS Iaeq4UdW2aaWbaaSqabeaacaWG4bGaey4kaSIaaG4maaaaaOGaayjk aiaawMcaaiaadsgacqaH7oaBaaa@5F26@

= θ 4 ( θ 4 +6 ) x 3 +6 x 2 +11x+θ ( θ+1 ) 3 +6 ( θ+1 ) x+4 ;x=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaibGaeyypa0 ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaaakeaadaqadaqa aiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiAdaaiaawI cacaGLPaaaaaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaOGa ey4kaSIaaGOnaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIXaGaaGymaiaadIhacqGHRaWkcqaH4oqCdaqadaqaaiabeI7aXjab gUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccq GHRaWkcaaI2aaabaWaaeWaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGL OaGaayzkaaWaaWbaaSqabeaacaWG4bGaey4kaSIaaGinaaaaaaGcca aMc8UaaGPaVlaacUdacaWG4bGaeyypa0JaaGimaiaacYcacaaIXaGa aiilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiabeI7aXj abg6da+iaaicdaaaa@6BE9@   (2.2)

This is named as Poisson-Pranav distribution (PPD)”. The pmf of PPD presented in Figure 1.

Figure 1 Behavior of the PPD for varying values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AC@

Moments

The r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3827@ th factorial moment about origin of PPD (2.2) can be obtained as

μ ( r ) =E[ E( X ( r ) |λ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0JaamyramaadmaabaGaamyramaabm aabaGaamiwamaaCaaaleqabaWaaeWaaeaacaWGYbaacaGLOaGaayzk aaaaaOGaaiiFaiabeU7aSbGaayjkaiaawMcaaaGaay5waiaaw2faaa aa@4AF6@     ,     where X ( r ) =X( X1 )( X2 )...( Xr+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaahaa WcbeqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaakiabg2da9iaa dIfadaqadaqaaiaadIfacqGHsislcaaIXaaacaGLOaGaayzkaaWaae WaaeaacaWGybGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiaac6cacaGG UaGaaiOlamaabmaabaGaamiwaiabgkHiTiaadkhacqGHRaWkcaaIXa aacaGLOaGaayzkaaaaaa@4C9F@       

 Using (2.1), the r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3827@ th factorial moment about origin of PPD (2.2) can be obtained as

μ ( r ) =E[ E( X ( r ) |λ ) ]= θ 4 θ 4 +6 0 [ x=0 x ( r ) e λ λ x x! ] ( θ+ λ 3 ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0JaamyramaadmaabaGaamyramaabm aabaGaamiwamaaCaaaleqabaWaaeWaaeaacaWGYbaacaGLOaGaayzk aaaaaOGaaiiFaiabeU7aSbGaayjkaiaawMcaaaGaay5waiaaw2faai abg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaaGcbaGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOnaaaadaWdXb qaamaadmaabaWaaabCaeaacaWG4bWaaWbaaSqabeaadaqadaqaaiaa dkhaaiaawIcacaGLPaaaaaGcdaWcaaqaaiaadwgadaahaaWcbeqaai abgkHiTiabeU7aSbaakiabeU7aSnaaCaaaleqabaGaamiEaaaaaOqa aiaadIhacaGGHaaaaaWcbaGaamiEaiabg2da9iaaicdaaeaacqGHEi sPa0GaeyyeIuoaaOGaay5waiaaw2faaaWcbaGaaGimaaqaaiabg6Hi LcqdcqGHRiI8aOWaaeWaaeaacqaH4oqCcqGHRaWkcqaH7oaBdaahaa WcbeqaaiaaiodaaaaakiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaa cqGHsislcqaH4oqCcaaMc8Uaeq4UdWgaaOGaamizaiabeU7aSbaa@7CA9@   

= θ 4 ( θ 4 +6) 0 λ r [ x=r e λ λ xr ( xr )! ] ( θ+ λ 3 ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaaGcbaGaaiikaiabeI7a XnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiAdacaGGPaaaamaape habaGaeq4UdW2aaWbaaSqabeaacaWGYbaaaOWaamWaaeaadaaeWbqa amaalaaabaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4UdWgaaOGaeq 4UdW2aaWbaaSqabeaacaWG4bGaeyOeI0IaamOCaaaaaOqaamaabmaa baGaamiEaiabgkHiTiaadkhaaiaawIcacaGLPaaacaGGHaaaaaWcba GaamiEaiabg2da9iaaykW7caWGYbaabaGaeyOhIukaniabggHiLdaa kiaawUfacaGLDbaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakm aabmaabaGaeqiUdeNaey4kaSIaeq4UdW2aaWbaaSqabeaacaaIZaaa aaGccaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUde NaaGPaVlabeU7aSbaakiaadsgacqaH7oaBaaa@703F@   

Taking x+r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGHRa WkcaWGYbaaaa@39E4@ in place of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ within the bracket, we get

μ ( r ) = θ 4 θ 4 +6 0 λ r [ x=0 e λ λ x x! ] ( θ+ λ 3 ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbe qaaiaaisdaaaaakeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGH RaWkcaaI2aaaamaapehabaGaeq4UdW2aaWbaaSqabeaacaWGYbaaaO WaamWaaeaadaaeWbqaamaalaaabaGaamyzamaaCaaaleqabaGaeyOe I0Iaeq4UdWgaaOGaeq4UdW2aaWbaaSqabeaacaWG4baaaaGcbaGaam iEaiaacgcaaaaaleaacaWG4bGaeyypa0JaaGimaaqaaiabg6HiLcqd cqGHris5aaGccaGLBbGaayzxaaaaleaacaaIWaaabaGaeyOhIukani abgUIiYdGcdaqadaqaaiabeI7aXjabgUcaRiabeU7aSnaaCaaaleqa baGaaG4maaaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgk HiTiabeI7aXjaaykW7cqaH7oaBaaGccaWGKbGaeq4UdWgaaa@6F58@   

= θ 4 θ 4 +6 0 λ r ( θ+ λ 3 ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaaGcbaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOnaaaadaWdXbqaaiabeU7aSn aaCaaaleqabaGaamOCaaaaaeaacaaIWaaabaGaeyOhIukaniabgUIi YdGcdaqadaqaaiabeI7aXjabgUcaRiabeU7aSnaaCaaaleqabaGaaG 4maaaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiab eI7aXjaaykW7cqaH7oaBaaGccaWGKbGaeq4UdWgaaa@56F0@   

After simplification, the r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3827@ th factorial moment about origin of PPD can be expressed as

μ ( r ) = r![ θ 4 +( r+1 )( r+2 )(r+3) ] θ r ( θ 4 +6 ) ;r=1,2,3,.... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0ZaaSaaaeaacaWGYbGaaiyiamaadm aabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSYaaeWaaeaa caWGYbGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaamOCai abgUcaRiaaikdaaiaawIcacaGLPaaacaGGOaGaamOCaiabgUcaRiaa iodacaGGPaaacaGLBbGaayzxaaaabaGaeqiUde3aaWbaaSqabeaaca WGYbaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGH RaWkcaaI2aaacaGLOaGaayzkaaaaaiaaykW7caaMc8Uaai4oaiaadk hacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaGG UaGaaiOlaiaac6cacaGGUaaaaa@69A9@   (3.1)

Substituting r=1,2,3,and4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaMc8Uaaeyy aiaab6gacaqGKbGaaGPaVlaaykW7caaI0aaaaa@458C@ in (3.1), the first four factorial moments about origin can be obtained and using the relationship between factorial moments about origin and moments about origin, the first four moment about origin of PPD are obtained as

μ 1 = θ 4 +24 θ( θ 4 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG OmaiaaisdaaeaacqaH4oqCdaqadaqaaiabeI7aXnaaCaaaleqabaGa aGinaaaakiabgUcaRiaaiAdaaiaawIcacaGLPaaaaaaaaa@4A7D@   

μ 2 = θ 5 +2 θ 4 +24θ+120 θ 2 ( θ 4 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaG OmaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacaaI 0aGaeqiUdeNaey4kaSIaaGymaiaaikdacaaIWaaabaGaeqiUde3aaW baaSqabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaa isdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaaaaaaaa@5484@   

μ 3 = θ 6 +6 θ 6 +6 θ 4 +24 θ 2 +360θ+720 θ 3 ( θ 4 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaG OnaiabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaiAdacqaH 4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaGinaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaaI2aGaaGim aiabeI7aXjabgUcaRiaaiEdacaaIYaGaaGimaaqaaiabeI7aXnaaCa aaleqabaGaaG4maaaakmaabmaabaGaeqiUde3aaWbaaSqabeaacaaI 0aaaaOGaey4kaSIaaGOnaaGaayjkaiaawMcaaaaaaaa@5EA2@   

μ 4 = θ 7 +14 θ 6 +36 θ 5 +24 θ 4 +24 θ 3 +840 θ 2 +4320θ+5040 θ 4 ( θ 4 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIaaG ymaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI ZaGaaGOnaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaik dacaaI0aGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOm aiaaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI4a GaaGinaiaaicdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWk caaI0aGaaG4maiaaikdacaaIWaGaeqiUdeNaey4kaSIaaGynaiaaic dacaaI0aGaaGimaaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakmaa bmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOnaa GaayjkaiaawMcaaaaaaaa@6C5D@   

The relationship between moments about mean and the moments about origin of PPD gives the moments about mean as

μ 2 = σ 2 = θ 9 + θ 8 +30 θ 5 +84 θ 4 +144θ+144 θ 2 ( θ 4 +6 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9iabeo8aZnaaCaaaleqabaGaaGOm aaaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI5aaaaO Gaey4kaSIaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIaaG4m aiaaicdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI4a GaaGinaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaigda caaI0aGaaGinaiabeI7aXjabgUcaRiaaigdacaaI0aGaaGinaaqaai abeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOnaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaaaaaaaa@602B@   

μ 3 = ( θ 14 +3 θ 13 +2 θ 12 +36 θ 10 +270 θ 9 +396 θ 8 +324 θ 6 +1944 θ 5 +648 θ 4 +864 θ 2 +2592θ+1728 ) θ 3 ( θ 4 +6 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaWaaeWaaqaabeqaaiab eI7aXnaaCaaaleqabaGaaGymaiaaisdaaaGccqGHRaWkcaaIZaGaeq iUde3aaWbaaSqabeaacaaIXaGaaG4maaaakiabgUcaRiaaikdacqaH 4oqCdaahaaWcbeqaaiaaigdacaaIYaaaaOGaey4kaSIaaG4maiaaiA dacqaH4oqCdaahaaWcbeqaaiaaigdacaaIWaaaaOGaey4kaSIaaGOm aiaaiEdacaaIWaGaeqiUde3aaWbaaSqabeaacaaI5aaaaOGaey4kaS IaaG4maiaaiMdacaaI2aGaeqiUde3aaWbaaSqabeaacaaI4aaaaOGa ey4kaSIaaG4maiaaikdacaaI0aGaeqiUde3aaWbaaSqabeaacaaI2a aaaOGaey4kaSIaaGymaiaaiMdacaaI0aGaaGinaiabeI7aXnaaCaaa leqabaGaaGynaaaaaOqaaiabgUcaRiaaiAdacaaI0aGaaGioaiabeI 7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiIdacaaI2aGaaGin aiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaaI1a GaaGyoaiaaikdacqaH4oqCcqGHRaWkcaaIXaGaaG4naiaaikdacaaI 4aaaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaa GcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa iAdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaaa@85E2@   

μ 4 = ( θ 19 +10 θ 18 +18 θ 17 +9 θ 16 +42 θ 15 +852 θ 14 +3132 θ 13 +2808 θ 12 +540 θ 11 +11880 θ 10 +34992 θ 9 +20736 θ 8 +2808 θ 7 +59184 θ 6 +132192 θ 5 +93312 θ 4 +5184 θ 3 +98496 θ 2 +186624θ+93312 ) θ 4 ( θ 4 +6 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaWaaeWaaqaabeqaaiab eI7aXnaaCaaaleqabaGaaGymaiaaiMdaaaGccqGHRaWkcaaIXaGaaG imaiabeI7aXnaaCaaaleqabaGaaGymaiaaiIdaaaGccqGHRaWkcaaI XaGaaGioaiabeI7aXnaaCaaaleqabaGaaGymaiaaiEdaaaGccqGHRa WkcaaI5aGaeqiUde3aaWbaaSqabeaacaaIXaGaaGOnaaaakiabgUca RiaaisdacaaIYaGaeqiUde3aaWbaaSqabeaacaaIXaGaaGynaaaaki abgUcaRiaaiIdacaaI1aGaaGOmaiabeI7aXnaaCaaaleqabaGaaGym aiaaisdaaaGccqGHRaWkcaaIZaGaaGymaiaaiodacaaIYaGaeqiUde 3aaWbaaSqabeaacaaIXaGaaG4maaaakiabgUcaRiaaikdacaaI4aGa aGimaiaaiIdacqaH4oqCdaahaaWcbeqaaiaaigdacaaIYaaaaaGcba Gaey4kaSIaaGynaiaaisdacaaIWaGaeqiUde3aaWbaaSqabeaacaaI XaGaaGymaaaakiabgUcaRiaaigdacaaIXaGaaGioaiaaiIdacaaIWa GaeqiUde3aaWbaaSqabeaacaaIXaGaaGimaaaakiabgUcaRiaaioda caaI0aGaaGyoaiaaiMdacaaIYaGaeqiUde3aaWbaaSqabeaacaaI5a aaaOGaey4kaSIaaGOmaiaaicdacaaI3aGaaG4maiaaiAdacqaH4oqC daahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaIYaGaaGioaiaaicdaca aI4aGaeqiUde3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIaaGynaiaa iMdacaaIXaGaaGioaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiAdaaa aakeaacqGHRaWkcaaIXaGaaG4maiaaikdacaaIXaGaaGyoaiaaikda cqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI5aGaaG4mai aaiodacaaIXaGaaGOmaiabeI7aXnaaCaaaleqabaGaaGinaaaakiab gUcaRiaaiwdacaaIXaGaaGioaiaaisdacqaH4oqCdaahaaWcbeqaai aaiodaaaGccqGHRaWkcaaI5aGaaGioaiaaisdacaaI5aGaaGOnaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaI4aGaaG OnaiaaiAdacaaIYaGaaGinaiabeI7aXjabgUcaRiaaiMdacaaIZaGa aG4maiaaigdacaaIYaaaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaa WcbeqaaiaaisdaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGin aaaakiabgUcaRiaaiAdaaiaawIcacaGLPaaadaahaaWcbeqaaiaais daaaaaaaaa@C823@   

The coefficient of variation ( C.V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam 4qaiaac6cacaWGwbaacaGLOaGaayzkaaaaaa@3B0E@ , coefficient of Skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaO aaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaabeaaaOGaayjkaiaa wMcaaaaa@3B39@ , coefficient of Kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3B2A@ , and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@3A60@  of the PPD can be obtained using following formula:

C.V= σ μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGUa GaamOvaiabg2da9maalaaabaGaeq4WdmhabaGafqiVd0MbauaadaWg aaWcbaGaaGymaaqabaaaaaaa@3EE5@  , β 1 = μ 3 μ 2 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaaca aIYaaabeaakmaaCaaaleqabaWaaSGbaeaacaaIZaaabaGaaGOmaaaa aaaaaaaa@41D3@  

β 2 = μ 4 μ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaaisdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaaaaaaa@40F2@    γ= σ 2 μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGcbaGafqiV d0MbauaadaWgaaWcbaGaaGymaaqabaaaaaaa@3F2A@ .

The behavior of the mean and the variance of PPD have been shown in Figure 2. Clearly PPD is always over-dispersed (variance greater than the mean).

Figure 2 Plots of mean and variance for varying values of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AC@

The behavior of C.V, β 1 , β 2 andγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaboeacaqGUa GaaeOvaiaacYcacaaMc8UaaGPaVpaakaaabaGaeqOSdi2aaSbaaSqa aiaaigdaaeqaaaqabaGccaGGSaGaaGPaVlaaykW7cqaHYoGydaWgaa WcbaGaaGOmaaqabaGccaaMc8UaaGPaVlaabggacaqGUbGaaeizaiaa ykW7caaMc8Uaeq4SdCgaaa@50AE@  of the PPD has been shown graphically for different values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  in Figure 3.

Figure 3 Behavior of coefficient of variation, coefficient of skewness, coefficient of kurtosis and Index of dispersion of PPD for different values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AC@

Increasing hazard rate and unimodality

The PPD (2.2) has an increasing hazard rate (IHR) and thus unimodal. Clearly

P( x+1;θ ) P( x;θ ) = 1 θ+1 [ 1+ 2 x 2 +13x+17 x 3 +6 x 2 +11x+θ ( θ+1 ) 3 +6 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iuamaabmaabaGaamiEaiabgUcaRiaaigdacaGG7aGaeqiUdehacaGL OaGaayzkaaaabaGaamiuamaabmaabaGaamiEaiaacUdacqaH4oqCai aawIcacaGLPaaaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaeqiUdeNa ey4kaSIaaGymaaaadaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaaik dacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaioda caWG4bGaey4kaSIaaGymaiaaiEdaaeaacaWG4bWaaWbaaSqabeaaca aIZaaaaOGaey4kaSIaaGOnaiaadIhadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIXaGaaGymaiaadIhacqGHRaWkcqaH4oqCdaqadaqaai abeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaa iodaaaGccqGHRaWkcaaI2aaaaaGaay5waiaaw2faaaaa@6861@  

 is a decreasing function in x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ . Thus P( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CDE@ is log-concave which means that the PPD has an increasing hazard rate (IHR) and unimodal. A detailed discussion about interrelationship between log-concavity, unimodality and IHR for discrete distributions are available in Grandell.13

Estimation of parameter

Method of moment estimate (MOME)

Equating the population mean to the sample mean based on random sample ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bWaaS baaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@42C0@ the MOME θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaia aaaa@38D3@ of the parameter θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaia aaaa@38D3@ of PPD is the solution of the following fifth degree polynomial equation

x ¯ θ 5 θ 4 +6 x ¯ θ24=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeai aaykW7cqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHsislcqaH4oqC daahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI2aGabmiEayaaraGaaG PaVlabeI7aXjabgkHiTiaaikdacaaI0aGaeyypa0JaaGimaaaa@4A11@ ,

where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeaa aa@3823@ is the sample mean.

Maximum Likelihood Estimate (MLE)

Let ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bWaaS baaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@42C0@ be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@3801@ from the PPD and let f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamiEaaqabaaaaa@3922@ be the corresponding observed frequency The likelihood function L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@37DF@  and the log-likelihood function of the PPD is given by

L= ( θ 4 θ 4 +6 ) n 1 ( θ+1 ) x=1 k ( x+4 ) f x x=1 k [ x 3 +6 x 2 +11x+θ ( θ+1 ) 3 +6 ] f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGH9a qpdaqadaqaamaalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaaGc baGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOnaaaaai aawIcacaGLPaaadaahaaWcbeqaaiaad6gaaaGcdaWcaaqaaiaaigda aeaadaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaada ahaaWcbeqaamaaqahabaWaaeWaaeaacaWG4bGaey4kaSIaaGinaaGa ayjkaiaawMcaaiaadAgadaWgaaadbaGaamiEaaqabaaabaGaamiEai abg2da9iaaigdaaeaacaWGRbaaoiabggHiLdaaaaaakmaarahabaWa amWaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOnai aadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGymaiaa dIhacqGHRaWkcqaH4oqCdaqadaqaaiabeI7aXjabgUcaRiaaigdaai aawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI2aaa caGLBbGaayzxaaWaaWbaaSqabeaacaWGMbWaaSbaaWqaaiaadIhaae qaaaaaaSqaaiaadIhacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHpis1 aaaa@7194@  .

logL=nlog( θ 4 θ 4 +6 ) x=1 k ( x+4 ) f x log( θ+1 )+ x=1 k f x log[ x 3 +6 x 2 +11x+θ ( θ+1 ) 3 +6 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacqGH9aqpcaWGUbGaciiBaiaac+gacaGGNbWaaeWa aeaadaWcaaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaaaOqaaiabeI 7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiAdaaaaacaGLOaGa ayzkaaGaeyOeI0YaaabCaeaadaqadaqaaiaadIhacqGHRaWkcaaI0a aacaGLOaGaayzkaaaaleaacaWG4bGaeyypa0JaaGymaaqaaiaadUga a0GaeyyeIuoakiaadAgadaWgaaWcbaGaamiEaaqabaGcciGGSbGaai 4BaiaacEgadaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGL PaaacqGHRaWkdaaeWbqaaiaadAgadaWgaaWcbaGaamiEaaqabaGcci GGSbGaai4BaiaacEgadaWadaqaaiaadIhadaahaaWcbeqaaiaaioda aaGccqGHRaWkcaaI2aGaamiEamaaCaaaleqabaGaaGOmaaaakiabgU caRiaaigdacaaIXaGaamiEaiabgUcaRiabeI7aXnaabmaabaGaeqiU deNaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maa aakiabgUcaRiaaiAdaaiaawUfacaGLDbaaaSqaaiaadIhacqGH9aqp caaIXaaabaGaam4AaaqdcqGHris5aaaa@7D74@ .

The first derivative of the log likelihood function is given by

dlogL dθ = 12n θ( θ 4 +6 ) n( x ¯ +4 ) θ+1 + x=1 k ( 4 θ 3 +9 θ 2 +6θ+1 ) f x [ x 3 +6 x 2 +11x+θ ( θ+1 ) 3 +6 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGVbGaai4zaiaadYeaaeaacaWGKbGaeqiUdehaaiab g2da9maalaaabaGaaGymaiaaikdacaWGUbaabaGaeqiUde3aaeWaae aacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI2aaacaGL OaGaayzkaaaaaiabgkHiTmaalaaabaGaamOBamaabmaabaGabmiEay aaraGaey4kaSIaaGinaaGaayjkaiaawMcaaaqaaiabeI7aXjabgUca RiaaigdaaaGaey4kaSYaaabCaeaadaWcaaqaamaabmaabaGaaGinai abeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiMdacqaH4oqC daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaeqiUdeNaey4kaS IaaGymaaGaayjkaiaawMcaaiaadAgadaWgaaWcbaGaamiEaaqabaaa keaadaWadaqaaiaadIhadaahaaWcbeqaaiaaiodaaaGccqGHRaWkca aI2aGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaI XaGaamiEaiabgUcaRiabeI7aXnaabmaabaGaeqiUdeNaey4kaSIaaG ymaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiabgUcaRiaa iAdaaiaawUfacaGLDbaaaaaaleaacaWG4bGaeyypa0JaaGymaaqaai aadUgaa0GaeyyeIuoaaaa@7EDC@ .

The maximum likelihood estimate (MLE), θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aaaaa@37BC@  of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  of PPD is the solution of the following log likelihood equation

dlogL dθ = 12n θ( θ 4 +6 ) n( x ¯ +4 ) θ+1 + x=1 k ( 4 θ 3 +9 θ 2 +6θ+1 ) f x [ x 3 +6 x 2 +11x+θ ( θ+1 ) 3 +6 ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGVbGaai4zaiaadYeaaeaacaWGKbGaeqiUdehaaiab g2da9maalaaabaGaaGymaiaaikdacaWGUbaabaGaeqiUde3aaeWaae aacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI2aaacaGL OaGaayzkaaaaaiabgkHiTmaalaaabaGaamOBamaabmaabaGabmiEay aaraGaey4kaSIaaGinaaGaayjkaiaawMcaaaqaaiabeI7aXjabgUca RiaaigdaaaGaey4kaSYaaabCaeaadaWcaaqaamaabmaabaGaaGinai abeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiMdacqaH4oqC daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaeqiUdeNaey4kaS IaaGymaaGaayjkaiaawMcaaiaadAgadaWgaaWcbaGaamiEaaqabaaa keaadaWadaqaaiaadIhadaahaaWcbeqaaiaaiodaaaGccqGHRaWkca aI2aGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaI XaGaamiEaiabgUcaRiabeI7aXnaabmaabaGaeqiUdeNaey4kaSIaaG ymaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaakiabgUcaRiaa iAdaaiaawUfacaGLDbaaaaaaleaacaWG4bGaeyypa0JaaGymaaqaai aadUgaa0GaeyyeIuoakiabg2da9iaaicdaaaa@80A6@  

This non-linear equation can be expressed in closed form and hence can be solved iteratively using Newton- Raphson method available in R-software. The MOME can be taken as the initial value of the parameter for Newton-Raphson method.

Simulation study

For a simulation study, we generate N=10,000 pseudo-random sample of sizes n=50, 100, 150, and 200 of a variable X having PPD). Then using Monte Carlo simulation we estimate the average bias and the mean squared error (MSE) of the MLEs of the parameter for θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  =1.5, 2, 2.5 and 3.0. The formulas for finding bias and MSE of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38E4@  are

B( θ )= 1 N j=1 N ( θ j θ),MSE( θ )= 1 N j=1 N ( θ j θ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacaGGOa GafqiUdeNbambacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOt aaaadaaeWbqaaiaacIcacuaH4oqCgaWeamaaBaaaleaacaWGQbaabe aaaeaacaWGQbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiab gkHiTiabeI7aXjaacMcacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaac2eacaGGtbGaaiyraiaacIcacu aH4oqCgaWeaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGobaa amaaqahabaGaaiikaiqbeI7aXzaataWaaSbaaSqaaiaadQgaaeqaaa qaaiaadQgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGaeyOe I0IaeqiUdeNaaiykamaaCaaaleqabaGaaGOmaaaaaaa@797F@ ).

Using following algorithm, we generate a pseudo-random sample from PPD

Algorithm

Generate,uU(0,1) x0 p x θ 4 ( θ (θ+1) 3 +6 ) (θ+1) 4 ( θ 4 +6) while( p x <u)do xx+1 p x1 = p x * p x1 p x p x + p x1 while return(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaae4rai aabwgacaqGUbGaaeyzaiaabkhacaqGHbGaaeiDaiaabwgacaGGSaGa amyDaiablYJi6iaadwfacaGGOaGaaGimaiaacYcacaaIXaGaaiykaa qaaiaadIhacqGHsgIRcaaIWaaabaGaamiCamaaBaaaleaacaWG4baa beaakiabgkDiEpaalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaO WaaeWaaeaacqaH4oqCcaGGOaGaeqiUdeNaey4kaSIaaGymaiaacMca daahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaa aabaGaaiikaiabeI7aXjabgUcaRiaaigdacaGGPaWaaWbaaSqabeaa caaI0aaaaOGaaiikaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgU caRiaaiAdacaGGPaaaaaqaaiaabEhacaqGObGaaeyAaiaabYgacaqG LbGaaiikaiaadchadaWgaaWcbaGaamiEaaqabaGccqGH8aapcaWG1b GaaiykaiaabsgacaqGVbaabaGaamiEaiabgkziUkaadIhacqGHRaWk caaIXaaabaGaamiCamaaBaaaleaacaWG4bGaaGymaaqabaGccqGH9a qpcaWGWbWaaSbaaSqaaiaadIhaaeqaaOGaaiOkaiaadchadaWgaaWc baGaamiEaiabgkHiTiaaigdaaeqaaaGcbaGaamiCamaaBaaaleaaca WG4baabeaakiabgkDiElaadchadaWgaaWcbaGaamiEaaqabaGccqGH RaWkcaWGWbWaaSbaaSqaaiaadIhacaaIXaaabeaaaOqaaiaabEhaca qGObGaaeyAaiaabYgacaqGLbaabaGaaeOCaiaabwgacaqG0bGaaeyD aiaabkhacaqGUbGaaiikaiaadIhacaGGPaaaaaa@996B@

The ML estimate, biases and the mean squares error (MSE) of the parameter based on simulated data are presented in Table 3.

Sample size(n)

θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@        

Bias

MSE

50

1.5

-0.00146

0.0001

 

2.0

0.00545

0.00148

 

2.5

0.00237

0.00282

 

3.0

0.000516

0.000013

100

1.5

-0.000343

0.000011

 

2.0

-0.000257

0.000006

 

2.5

0.001433

0.000205

 

3.0

-0.00105

0.000111

150

1.5

-0.000433

0.00028

 

2.0

-0.00002

0.0000006

 

2.5

0.000123

0.0000022

 

3.0

-0.00308

0.001431

200

1.5

0.00518

0.00537

 

2.0

0.00118

0.00028

 

2.5

0.00039

0.00003

 

3.0

0.00088

0.000156

Table 3 Estimated Bias and MSE of MLEs ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacuaH4o qCgaWeaiaacMcaaaa@3A37@

This table shows that bias and mean square error tends to zero for increasing sample size and increasing values of parameter. Further, MLE of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  has a negative bias in some cases.

Goodness of fit

In this section two examples of observed count datasets have been considered for goodness of fit of over-dispersed distributions namely PPD, PLD, PAD and PID. The dataset in Table 4 has been taken from Kemp & kemp14 and dataset in Table 5 has been taken from Loeschke & Kohler15 and Janardan & Schaeffer.16 The fitted plots of the distributions for dataset in Tables 4 & 5 have been presented in Figures 4 & 5, respectively.

No. of errors per group

Observed frequency

                        Expected frequency

 

 

 

PD

PLD

PAD

PID

PPD

0

35

27.4

33

33.5

33.7

34.3

1

11

21.5

15.3

14.7

14.5

13.8

2

8

8.4

6.8

6.6

6.5

6.3

3

4

2.2

2.9

2.9

2.9

3.0

4

2

0.5

2.0

2.3

2.4

2.6

Total

60

60

60

60

60

60

ML estimate

 

θ ^ =0.7833 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI3aGaaGioaiaaiodacaaIZaaaaa@3E43@  

θ ^ =1.7434 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGymaiaac6cacaaI3aGaaGinaiaaiodacaaI0aaaaa@3E41@  

θ ^ =2.07797 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaIWaGaaG4naiaaiEdacaaI5aGaaG4n aaaa@3F08@  

 

θ ^ =2.1171 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaIXaGaaGymaiaaiEdacaaIXaaaaa@3E3A@  

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@    

7.98

2.2

1.4

1.33

1.07

d.f.

 

1

1

2

2

2

p-value

 

0.0047

0.138

0.4966

0.514

0.5856

Table 4 Distribution of mistakes in copying groups of random digits

No. of Chromatid aberrations

Observed frequency

                                           

          Expected frequency

   
   

PD

PLD

PAD

PID

PPD

 

0

268

231.3

257

260.4

260.8

264.1

 

1

87

126.7

93.4

89.7

89.3

85.9

 

2

26

34.7

32.8

32.1

31.8

30.7

 

3

9

6.3

11.2

11.5

11.5

11.7

 

4

4

0.8

3.8

4.1

4.2

4.6

 

5

2

0.1

1.2

1.4

1.5

1.8

 

6                         

1

0.1

0.4

0.5

0.6

0.7

 

7+

3

0.1

0.2

0.3

0.3

0.5

 

Total

400

400.0

400.0

400.0

400.0

400.0

 

ML estimate

θ ^ =0.5475 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI1aGaaGinaiaaiEdacaaI1aaaaa@3E43@  

θ ^ =2.380442 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaIZaGaaGioaiaaicdacaaI0aGaaGin aiaaikdaaaa@3FB9@

θ ^ =2.659408 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaI2aGaaGynaiaaiMdacaaI0aGaaGim aiaaiIdaaaa@3FC4@         

θ ^ =2.3362 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaIZaGaaG4maiaaiAdacaaIYaaaaa@3E3E@  

θ ^ =2.5388 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaI1aGaaG4maiaaiIdacaaI4aaaaa@3E48@

 
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@    

38.21

6.21

4.17

3.61

2.17

 

d.f.

 

2

3

3

3

3

 

p-value

 

0.000

0.1018

0.2437

0.3067

0.5375

 

Table 5 Distribution of number of chromatid aberrations (0.2 g chinon 1, 24 hours)

Figure 4 Fitted probability plot of distributions for datasets in table 4

Figure 5 Fitted probability plot of distributions for datasets in table 5

Conclusion

A Poisson mixture of Pranav distribution named Poisson-Pranav distribution (PPD) has been proposed. Its factorial moments, raw moments and central moments have been derived. The statistical constants including coefficients of variation, skewness, kurtosis and Index of have been studied. Method of moment and maximum likelihood has been explained. Goodness of fit of PPD over Poisson distribution (PD), PLD, PAD and PID has been discussed with two examples of observed real datasets. PPD gives much closure fit over the considered distributions.

Acknowledgments

None.

Conflicts of interest

The authors declared no conflicts of interest.

References

  1. Shukla KK. Pranav distribution and its properties and applications, Biometrics and Biostatistics International Journal. 2018;7(3):244–254.
  2. Lindley DV. Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society. 1958;20(1):102–107.
  3. Shanker R. Akash distribution and Its Applications. International Journal of Probability and Statistics. 2015;4(3):65–75.
  4. Shanker R, Shukla KK. Ishita distribution and its Applications Biometrics and Biostatistics International Journal. 2017;5(2):1–9.
  5. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its Application. Mathematics and Computers in Simulation. 2008;78(4):493–506.
  6. Shanker R, Hagos F, Sujatha S. On Modeling of Lifetimes data using Exponential and Lindley distributions. Biom Biostat Int J. 2015;2(5):140–147.
  7. Shanker R, Hagos F, Sujatha S. On modeling of lifetime data using one parameter akash, lindley and exponential distributions. Biom Biostat Int J. 2016;3(2):1–10.
  8. Sankaran, M. The discrete Poisson-Lindley distribution. Biometrics. 1970;26(1):145–149.
  9. Shanker R. The discrete Poisson Akash distribution. International Journal of Probability and Statistics. 2017;6(1):1–10.
  10. Shukla KK. Shanker R. A Discrete Poisson Ishita distribution and its Application. International Journal of Statistics and Economics. 2019;19(2).
  11. Ghitany ME, Al-Mutairi DK. Estimation method for the discrete Poisson-Lindley distribution. Journal of Statistical Computation and Simulation. 2009;79(1):1–9.
  12. Shanker R, Hagos F. On Poisson-Lindley distribution and its Applications to Biological Sciences, Biometrics & Biostatistics International Journal. 2015;2(4):1–5.
  13. Vladimir Kalashnikov. Grandell J: Mixed Poisson Processes. Chapman& Hall, London, 1997. Astin Bulletin. 2001;31(1):254.
  14. Kemp CD, Kemp AW. Some properties of the Hermite distribution. Biometrika. 1965;52(3):381–394.
  15. Loeschke V, Kohler W. Deterministic and Stochastic models of the negative binomial distribution and the analysis of chromosomal aberrations in human leukocytes. Biometrische Zeitschrift. 1976;18(6):427–451.
  16. Janardan KG, Schaeffer DJ. Models for the analysis of chromosomal aberrations in human leukocytes, Biometrical Journal. 1977;19(8):599–612.
Creative Commons Attribution License

©2022 Shukla, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.