Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Review Article Volume 9 Issue 6

Dynamics of Spruce budworms and single species competition models with bifurcation analysis

Farah Tasnim, Md. Kamrujjaman

Department of Mathematics, University of Dhaka, Bangladesh

Correspondence: M. Kamrujjaman, Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh

Received: January 15, 2021 | Published: December 31, 2020

Citation: Tasnim F, Kamrujjaman Md. Dynamics of Spruce budworms and single species competition models with bifurcation analysis. Biom Biostat Int J. 2020;9(6):217-222. DOI: 10.15406/bbij.2020.09.00323

Download PDF

Abstract

Choristoneura Fumiferana is perilous defoliators of forest lands in North America and many countries in Europe. In this study, we consider mathematical models in ecology, epidemiology and bifurcation studies; the spruce budworm model and the population model with harvesting. The study is designed based on bifurcation analysis. In particular, the results support population thresholds necessary for survival in certain cases. In a series of numerical examples, the outcomes are presented graphically to compare with bifurcation results.

Keywords: Bifurcation analysis,; competition, stability analysis, Spruce budworm, numerical illustration, AMS Subject Classification 2010: 37N25, 49J15, 92D30

Introduction

Bifurcation analysis is a powerful tool as it allows one to identify in a systematic way where dynamics of interest exist in parameter space. Regions of stable solutions can be determined by computing stability boundaries directly as functions of the relevant system parameters. Sudden qualitative behavior changes in dynamical systems arise as a parameter is changed, which is known as bifurcation analysis.

Spruce budworms (Choristoneura fumiferana) are dangerous defoliators of forest lands in North America.1 These forests known as coniferous forests have pines, spruces, firs, and larches and the spruce budworm at larvae stage start feeding on needles of these trees. Fully grown insects can go through a tree in a time span of 4-5 years since they eat photosynthetic tissue which is crucial for the development of trees. The population usually stays at a low level in and less forestland because of their avian predators. But every three-four decades there is an outbreak of budworms and it results in a completely destroyed forest. It is assumed by scientists that this phenomenon has been occurring for more than thousands of years. Some papers that have studied bifurcation on various ecological models.1-4

The dynamics of one dimensional ordinary differential equations are not very diverse, like solutions either converge to a stable equilibrium or diverge. Geometric approaches give better insight on these models. As control parameter is varied bifurcations like saddle node bifurcations, transcritical bifurcation and pitchfork bifurcation occur. When two fixed points annihilate each other or reappear as a parameter is changed it is known as saddle node bifurcation. Transcirital bifurcation is when a steady equilibrium changes its stability. And pitchfork bifurcation works with symmetry, fixed points disappear or appear in symmetric pairs.

The dispersal dynamics of prey-predator, competition, and mutualism is explored in.5 A very recent study of diffusion reaction in competition model is.6 There are also other studies7-9 related to diffusion where the effect of dispersion procedures on competitive populations are explored. In another study, the relation between growth rates, carrying capacity, and diffusion strategies is discussed, it is analyzed in9 whether coexistence is promoted when diffusion strategies are diverse. Here bifurcation analysis will be used to understand why this happens thus giving a mathematical point of view on this phenomenon.

In this paper, we have an elementary discussion on bifurcations in one-dimensional ordinary differential equations. Graphical methods are used to identify equilibrium points, determine their stability, and to see the behaviors of the numerical solutions near fixed points.10-12 In section 2, the general forms of bifurcations in autonomous differential equations such as Saddle node bifurcation, transcritical bifurcation, and pitchfork bifurcation will be analyzed. Following this discussion, in section 3 the mathematical model for spruce budworm for single species pray is explored. We talk thoroughly about the function for the rate of predation. In section 4 a dimensionless model is going to be introduced for further analysis of the model. Further into the paper, in section 5 we look into bifurcations that occur in the spruce budworm model when change of parameter values occur. In section 6 we studied harvesting in population models, we took different levels of harvesting into consideration, leading us to the conclusion.

Bifurcation Preliminaries

In this section we have discussed about some common bifurcation behavior.

Pitchfork Bifurcation

Consider the following equation for the classic form of the Pitchfork Bifurcation in one dimensional
form:

du dt =αu u 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacaWG1baak8aabaqcLbsapeGaamizaiaa dshaaaGaeyypa0JaeqySdeMaamyDaiabgkHiTiaadwhak8aadaahaa WcbeqaaKqzadWdbiaaiodaaaaaaa@43CA@      (1.1)

Pitchfork bifurcation is a local type of bifurcation that deals with symmetry, where equilibrium points show up or dissipate in pairs.14,15 In Figure 1 we see the vector field of equation (1.1) for multiple values of α. First, when α=4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabeg 7aHjabg2da9iabgkHiTiaaisdaaaa@3B18@ and α=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaeqySdeMaeyypa0JaaGimaaaa@3AB6@ there is only one fixed point, and it stable for both times. But when the value of α is increased to  two new equilibrium points appear, and the stability at u = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacaGGGcGaeyypa0JaaiiOaiaaicdaaaa@3BCA@ changes. The new two fixed points are stable, and this will be true for all α > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabeg 7aHjaacckacqGH+aGpcaGGGcGaaGimaaaa@3C71@  as the fixed points will be symmetrically positioned at u=± α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacqGH9aqpcqGHXcqSdaGcaaWdaeaapeGaeqySdegaleqaaaaa@3C8F@ .

Figure 1 Pitchfork bifurcation.

The stable lines in Figure 2 are given by u = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacaGGGcGaeyypa0JaaiiOaiaaicdaaaa@3BCA@  when α<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycqGH8a apcaaIWaaaaa@3B20@ and u= α 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bGaeyypa0 JaeqySde2aaWbaaSqabeaacaaIZaaaaaaa@3C4C@ . The origin becomes unstable for α>0 and that is shown using the dotted line. Some other bifurcations are discussed and can be found in Appendix.

Figure 2 Bifurcation diagram for Pitchfork bifurcation.

Spruce Budworm mathematical model

In this study, we propose the following spruce budworm model3,10 for a single species prey:

du dt =ru( 1 u K ) β u 2 α 2 + u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacaWG1baak8aabaqcLbsapeGaamizaiaa dshaaaGaeyypa0JaamOCaiaadwhakmaabmaapaqaaKqzGeWdbiaaig dacqGHsislkmaalaaapaqaaKqzGeWdbiaadwhaaOWdaeaajugib8qa caWGlbaaaaGccaGLOaGaayzkaaqcLbsacqGHsislkmaalaaapaqaaK qzGeWdbiabek7aIjaadwhak8aadaahaaWcbeqaaKqzadWdbiaaikda aaaak8aabaqcLbsapeGaeqySdeMcpaWaaWbaaSqabeaajugWa8qaca aIYaaaaKqzGeGaey4kaSIaamyDaOWdamaaCaaaleqajeaWbaqcLbma peGaaGOmaaaaaaaaaa@5762@      (2.1)

where r  is the intrinsic growth rate of the spruce budworm. K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadU eaaaa@3798@  is the carrying capacity, which
depends on the availability of the foliage of the balsam firs. The rate of predation

h( u )= β u 2 α 2 + u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamiAaOWaaeWaa8aabaqcLbsapeGaamyDaaGccaGLOaGaayzkaaqc LbsacqGH9aqpkmaalaaapaqaaKqzGeWdbiabek7aIjaadwhak8aada ahaaWcbeqaaKqzadWdbiaaikdaaaaak8aabaqcLbsapeGaeqySdeMc paWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaey4kaSIaamyDaO WdamaaCaaaleqabaqcLbmapeGaaGOmaaaaaaaaaa@4C03@      (2.2)

is from avian predators, which associate reward with prey, a learned behavior. They focus on their best sources of prey, which allows a low density prey to escape notice. The functional form of this type of predation follows the Holling’s Type III S-shaped response as defined by h( u ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadI gadaqadaWdaeaapeGaamyDaaGaayjkaiaawMcaaaaa@3A57@ .3,10,14  represents the saturation level of the predator, e.g., constant population can eat so much prey, this saturation level works like an upper limit on the predation. α determines the densities of spruce budworm that cause avian predation. Now if taking the limiting value of the predation function,

lim u h( u )= lim u β u 2 α 2 + u 2 = lim u 2βu 2u =β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaadaWfqaqaaKqzGeaeaa aaaaaaa8qaciGGSbGaaiyAaiaac2gaaSWdaeaajugib8qacaWG1bGa eyOKH4QaeyOhIukal8aabeaajugib8qacaWGObGcdaqadaWdaeaaju gib8qacaWG1baakiaawIcacaGLPaaajugibiabg2da9OWdamaaxaba baqcLbsapeGaaeiBaiaabMgacaqGTbaal8aabaqcLbsapeGaamyDai abgkziUkabg6HiLcWcpaqabaGcpeWaaSaaa8aabaqcLbsapeGaeqOS diMaamyDaOWdamaaCaaaleqabaqcLbmapeGaaGOmaaaaaOWdaeaaju gib8qacqaHXoqyk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsa cqGHRaWkcaWG1bGcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaaaju gibiabg2da9OWdamaaxababaqcLbsapeGaaeiBaiaabMgacaqGTbaa l8aabaqcLbsapeGaamyDaiabgkziUkabg6HiLcWcpaqabaGcpeWaaS aaa8aabaqcLbsapeGaaGOmaiabek7aIjaadwhaaOWdaeaajugib8qa caaIYaGaamyDaaaacqGH9aqpcqaHYoGyaaa@716C@

From Figure 3 it is seen that the function is monotonically increasing until it reaches its asymptote at the value β.3 This indicates that no matter how much the budworm population increases the birds can eat a limited quantity. Using basic calculus, the first and second derivative is calculated to find the point of inflection. This point determines when the budworm population increases rapidly.

Figure 3 Rate of Predation.

Differentiating equation (2.2) with respect to u,

h ( u )= ( α 2 + u 2 )+2βuβ u 2 *( 2u ) ( α 2 + u 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GabmiAa8aagaqbaOWdbmaabmaapaqaaKqzGeWdbiaadwhaaOGaayjk aiaawMcaaKqzGeGaeyypa0JcdaWcaaWdaeaapeWaaeWaa8aabaqcLb sapeGaeqySdeMcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGa ey4kaSIaamyDaOWdamaaCaaaleqabaqcLbmapeGaaGOmaaaaaOGaay jkaiaawMcaaKqzGeGaey4kaSIaaGOmaiabek7aIjaadwhacqGHsisl cqaHYoGycaWG1bGcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGe GaaiOkaOWaaeWaa8aabaqcLbsapeGaaGOmaiaadwhaaOGaayjkaiaa wMcaaaWdaeaapeWaaeWaa8aabaqcLbsapeGaeqySdeMcpaWaaWbaaS qabeaajugWa8qacaaIYaaaaKqzGeGaey4kaSIaamyDaOWdamaaCaaa leqabaqcLbmapeGaaGOmaaaaaOGaayjkaiaawMcaa8aadaahaaWcbe qaaKqzGeWdbiaaikdaaaaaaaaa@649C@

= 2 α 2 βu ( α 2 + u 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape Gaeyypa0JcdaWcaaWdaeaajugib8qacaaIYaGaeqySdeMcpaWaaWba aSqabeaajugWa8qacaaIYaaaaKqzGeGaeqOSdiMaamyDaaGcpaqaa8 qadaqadaWdaeaajugib8qacqaHXoqyk8aadaahaaWcbeqaaKqzadWd biaaikdaaaqcLbsacqGHRaWkcaWG1bGcpaWaaWbaaSqabeaajugWa8 qacaaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaqcLbmapeGa aGOmaaaaaaaaaa@4E14@      (2.3)

It is obvious that h^' (u)>0  since all the constants are positive. Now again differentiating with
respect to ,

h''( u )= ( α 2 + u 2 ) 2 *2 α 2 β2 α 2 βu*2( α 2 + u 2 )*( 2u ) ( α 2 + u 2 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamiAaiaacEcacaGGNaGcdaqadaWdaeaajugib8qacaWG1baakiaa wIcacaGLPaaajugibiabg2da9OWaaSaaa8aabaWdbmaabmaapaqaaK qzGeWdbiabeg7aHPWdamaaCaaaleqabaqcLbmapeGaaGOmaaaajugi biabgUcaRiaadwhak8aadaahaaWcbeqaaKqzadWdbiaaikdaaaaaki aawIcacaGLPaaapaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGa aiOkaiaaikdacqaHXoqyk8aadaahaaWcbeqaaKqzadWdbiaaikdaaa qcLbsacqaHYoGycqGHsislcaaIYaGaeqySdeMcpaWaaWbaaSqabeaa jugWa8qacaaIYaaaaKqzGeGaeqOSdiMaamyDaiaacQcacaaIYaGcda qadaWdaeaajugib8qacqaHXoqyk8aadaahaaWcbeqaaKqzadWdbiaa ikdaaaqcLbsacqGHRaWkcaWG1bGcpaWaaWbaaSqabeaajugWa8qaca aIYaaaaaGccaGLOaGaayzkaaqcLbsacaGGQaGcdaqadaWdaeaajugi b8qacaaIYaGaamyDaaGccaGLOaGaayzkaaaapaqaa8qadaqadaWdae aajugib8qacqaHXoqyk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqc LbsacqGHRaWkcaWG1bGcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaa GccaGLOaGaayzkaaWdamaaCaaaleqabaqcLbmapeGaaGinaaaaaaaa aa@7B07@

= 2 α 2 β( α 2 3 u 2 ) ( α 2 + u 2 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape Gaeyypa0JcdaWcaaWdaeaajugib8qacaaIYaGaeqySdeMcpaWaaWba aSqabeaajugWa8qacaaIYaaaaKqzGeGaeqOSdiMcdaqadaWdaeaaju gib8qacqaHXoqyk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsa cqGHsislcaaIZaGaamyDaOWdamaaCaaaleqabaqcLbmapeGaaGOmaa aaaOGaayjkaiaawMcaaaWdaeaapeWaaeWaa8aabaqcLbsapeGaeqyS deMcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaey4kaSIaam yDaOWdamaaCaaaleqabaqcLbmapeGaaGOmaaaaaOGaayjkaiaawMca a8aadaahaaWcbeqaaKqzadWdbiaaiodaaaaaaaaa@58AE@      (2.4)

Substituting equation (2.4) to zero, yields,

2 α 2 β( α 2 3 u 2 ) ( α 2 + u 2 ) 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaaikdacqaHXoqyk8aadaahaaWcbeqaaKqzadWd biaaikdaaaqcLbsacqaHYoGykmaabmaapaqaaKqzGeWdbiabeg7aHP WdamaaCaaaleqabaqcLbmapeGaaGOmaaaajugibiabgkHiTiaaioda caWG1bGcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaGccaGLOaGaay zkaaaapaqaa8qadaqadaWdaeaajugib8qacqaHXoqyk8aadaahaaWc beqaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcaWG1bGcpaWaaWbaaS qabeaajugWa8qacaaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaaleqa baqcLbmapeGaaG4maaaaaaqcLbsacqGH9aqpcaaIWaaaaa@595E@

u=± α 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaeyO0H4TaamyDaiabg2da9iabgglaXQWaaSaaa8aabaqcLbsapeGa eqySdegak8aabaWdbmaakaaapaqaaKqzGeWdbiaaiodaaSqabaaaaa aa@41B8@      (2.5)

Population cannot be negative so the negative is omitted. Thus predation dramatically climbs upwards to α 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiabeg7aHbGcpaqaa8qadaGcaaWdaeaajugib8qa caaIZaaaleqaaaaaaaa@3AD4@  from below. After crossing the point of inflection, the function gradually approaches its asymptote at h=β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadI gacqGH9aqpcqaHYoGyaaa@3A5C@ .

Dimensionless Model

In order to simplify the differential equation and analyze the behavior better we reduce the number of parameters. Let,

ρ=mU,λ=nt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcqGH9a qpcaWGTbGaamyvaiaacYcacqaH7oaBcqGH9aqpcaWGUbGaamiDaaaa @41AB@

Substituting the above values in (2.1),

dρ dλ = m n [ ru( 1 u K ) β u 2 α 2 + u 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacqaHbpGCaOWdaeaajugib8qacaWGKbGa eq4UdWgaaiabg2da9OWaaSaaa8aabaqcLbsapeGaamyBaaGcpaqaaK qzGeWdbiaad6gaaaGcdaWadaWdaeaajugib8qacaWGYbGaamyDaOWa aeWaa8aabaqcLbsapeGaaGymaiabgkHiTOWaaSaaa8aabaqcLbsape GaamyDaaGcpaqaaKqzGeWdbiaadUeaaaaakiaawIcacaGLPaaajugi biabgkHiTOWaaSaaa8aabaqcLbsapeGaeqOSdiMaamyDaOWdamaaCa aaleqabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacqaHXoqyk8aa daahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcaWG1bGcpa WaaWbaaSqabeaajugWa8qacaaIYaaaaaaaaOGaay5waiaaw2faaaaa @5E32@

dρ dλ = m n [ rρ s ( 1 ρ Ks ) β ρ 2 s 2 α 2 + ρ 2 s 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaeyO0H4TcdaWcaaWdaeaajugib8qacaWGKbGaeqyWdihak8aabaqc LbsapeGaamizaiabeU7aSbaacqGH9aqpkmaalaaapaqaaKqzGeWdbi aad2gaaOWdaeaajugib8qacaWGUbaaaOWaamWaa8aabaWdbmaalaaa paqaaKqzGeWdbiaadkhacqaHbpGCaOWdaeaajugib8qacaWGZbaaaO WaaeWaa8aabaqcLbsapeGaaGymaiabgkHiTOWaaSaaa8aabaqcLbsa peGaeqyWdihak8aabaqcLbsapeGaam4saiaadohaaaaakiaawIcaca GLPaaajugibiabgkHiTOWaaSaaa8aabaqcLbsapeGaeqOSdiMaeqyW diNcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaam4CaOWdam aaCaaaleqabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacqaHXoqy k8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcqaHbp GCk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacaWGZbGcpaWa aWbaaSqabeaajugWa8qacaaIYaaaaaaaaOGaay5waiaaw2faaaaa@6EA5@      (2.6)

If m= 1 α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamyBaiabg2da9OWaaSaaa8aabaqcLbsapeGaaGymaaGcpaqaaKqz GeWdbiabeg7aHbaaaaa@3D29@ , from equation we have,

dρ dλ = rρ n [ ( 1 ρα K ) β αn ( ρ 2 α 2 α 2 + ρ 2 α 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacqaHbpGCaOWdaeaajugib8qacaWGKbGa eq4UdWgaaiabg2da9OWaaSaaa8aabaqcLbsapeGaamOCaiabeg8aYb GcpaqaaKqzGeWdbiaad6gaaaGcdaWadaWdaeaapeWaaeWaa8aabaqc LbsapeGaaGymaiabgkHiTOWaaSaaa8aabaqcLbsapeGaeqyWdiNaeq ySdegak8aabaqcLbsapeGaam4saaaaaOGaayjkaiaawMcaaKqzGeGa eyOeI0IcdaWcaaWdaeaajugib8qacqaHYoGyaOWdaeaajugib8qacq aHXoqycaWGUbaaaOWaaeWaa8aabaWdbmaalaaapaqaaKqzGeWdbiab eg8aYPWdamaaCaaaleqabaqcLbmapeGaaGOmaaaajugibiabeg7aHP WdamaaCaaaleqabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacqaH Xoqyk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcq aHbpGCk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaHXoqy k8aadaahaaWcbeqaaKqzadWdbiaaikdaaaaaaaGccaGLOaGaayzkaa aacaGLBbGaayzxaaaaaa@6FF4@

= rρ n [ ( 1 ρα K ) β αn ( ρ 2 1+ ρ 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape Gaeyypa0JcdaWcaaWdaeaajugib8qacaWGYbGaeqyWdihak8aabaqc LbsapeGaamOBaaaakmaadmaapaqaa8qadaqadaWdaeaajugib8qaca aIXaGaeyOeI0IcdaWcaaWdaeaajugib8qacqaHbpGCcqaHXoqyaOWd aeaajugib8qacaWGlbaaaaGccaGLOaGaayzkaaqcLbsacqGHsislkm aalaaapaqaaKqzGeWdbiabek7aIbGcpaqaaKqzGeWdbiabeg7aHjaa d6gaaaGcdaqadaWdaeaapeWaaSaaa8aabaqcLbsapeGaeqyWdiNcpa WaaWbaaSqabeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiaaigda cqGHRaWkcqaHbpGCk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaaaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@5D38@      (2.7)

Assume that n= β α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0ZaaSaaa8aabaWdbiabek7aIbWdaeaapeGaeqyS degaaaaa@3B9E@ , then from equation (2.7) we get,

dρ dλ = rρα β [ ( 1 ρα K )( ρ 2 1+ ρ 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacqaHbpGCaOWdaeaajugib8qacaWGKbGa eq4UdWgaaiabg2da9OWaaSaaa8aabaqcLbsapeGaamOCaiabeg8aYj abeg7aHbGcpaqaaKqzGeWdbiabek7aIbaakmaadmaapaqaa8qadaqa daWdaeaajugib8qacaaIXaGaeyOeI0IcdaWcaaWdaeaajugib8qacq aHbpGCcqaHXoqyaOWdaeaajugib8qacaWGlbaaaaGccaGLOaGaayzk aaqcLbsacqGHsislkmaabmaapaqaa8qadaWcaaWdaeaajugib8qacq aHbpGCk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaaak8aabaqcLbsa peGaaGymaiabgUcaRiabeg8aYPWdamaaCaaaleqabaqcLbmapeGaaG OmaaaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@5FFF@

Defining the new scaled parameters R= αr β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadk facqGH9aqpdaWcaaWdaeaapeGaeqySdeMaamOCaaWdaeaapeGaeqOS digaaaaa@3D2A@ and C= K α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaado eacqGH9aqpdaWcaaWdaeaapeGaam4saaWdaeaapeGaeqySdegaaaaa @3B53@ . Then the dimensionless model is given by,

dρ dλ =Rρ[ ( 1 ρ C )( ρ 2 1+ ρ 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacqaHbpGCaOWdaeaajugib8qacaWGKbGa eq4UdWgaaiabg2da9iaadkfacqaHbpGCkmaadmaapaqaa8qadaqada Wdaeaajugib8qacaaIXaGaeyOeI0IcdaWcaaWdaeaajugib8qacqaH bpGCaOWdaeaajugib8qacaWGdbaaaaGccaGLOaGaayzkaaqcLbsacq GHsislkmaabmaapaqaa8qadaWcaaWdaeaajugib8qacqaHbpGCk8aa daahaaWcbeqaaKqzadWdbiaaikdaaaaak8aabaqcLbsapeGaaGymai abgUcaRiabeg8aYPWdamaaCaaaleqabaqcLbmapeGaaGOmaaaaaaaa kiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@5978@      (2.8)

To find the equilibrium points, let dρ dλ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacqaHbpGCaOWdaeaajugib8qacaWGKbGa eq4UdWgaaiabg2da9iaaicdaaaa@3F44@ , then,

Rρ[ ( 1 ρ C )( ρ 2 1+ ρ 2 ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOuaiabeg8aYPWaamWaa8aabaWdbmaabmaapaqaaKqzGeWdbiaa igdacqGHsislkmaalaaapaqaaKqzGeWdbiabeg8aYbGcpaqaaKqzGe WdbiaadoeaaaaakiaawIcacaGLPaaajugibiabgkHiTOWaaeWaa8aa baWdbmaalaaapaqaaKqzGeWdbiabeg8aYPWdamaaCaaaleqabaqcLb mapeGaaGOmaaaaaOWdaeaajugib8qacaaIXaGaey4kaSIaeqyWdiNc paWaaWbaaSqabeaajugWa8qacaaIYaaaaaaaaOGaayjkaiaawMcaaa Gaay5waiaaw2faaKqzGeGaeyypa0JaaGimaaaa@5494@      (2.9)

Consider the function, f( ρ )=Rρ( 1 ρ C ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOzaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa jugibiabg2da9iaadkfacqaHbpGCkmaabmaapaqaaKqzGeWdbiaaig dacqGHsislkmaalaaapaqaaKqzGeWdbiabeg8aYbGcpaqaaKqzGeWd biaadoeaaaaakiaawIcacaGLPaaaaaa@4874@  and g( ρ )=( ρ 2 1+ ρ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape Gaam4zaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa jugibiabg2da9OWaaeWaa8aabaWdbmaalaaapaqaaKqzGeWdbiabeg 8aYPWdamaaCaaaleqabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qa caaIXaGaey4kaSIaeqyWdiNcpaWaaWbaaSqabeaajugWa8qacaaIYa aaaaaaaOGaayjkaiaawMcaaaaa@4AB2@ . Thus ρ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcqGH9a qpcaaIWaaaaa@3B43@ is a trivial equilibrium point. In order to find the other equilibrium points we will graph f( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOzaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa aaa@3C4D@ and g( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadE gadaqadaWdaeaapeGaeqyWdihacaGLOaGaayzkaaaaaa@3B1C@ and look at the intersection points. Here, f( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOzaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa aaa@3C4D@ =Per capita growth rate of the scaled population variable ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaaa@3983@ with respect to scaled time λ =  βt α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape Gaeq4UdWMaaiiOaiabg2da9iaacckakmaalaaapaqaaKqzGeWdbiab ek7aIjaadshaaOWdaeaajugib8qacqaHXoqyaaaaaa@4212@ . g( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape Gaam4zaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa aaa@3C4E@ =Per capita death rate of the spruce budworm due to avian predation.

Bifurcation Analysis

Qualitative changes in dynamical systems, like fixed points being created and destroyed or their stability changing is called bifurcation. In one dimensional systems these alterations occur when a parameter value is changed. Here we will see a practical example of saddle node bifurcation. We will plot f( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOzaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa aaa@3C4D@ and g( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadE gadaqadaWdaeaapeGaeqyWdihacaGLOaGaayzkaaaaaa@3B1C@ for different values of the parameters involved in the equation and look for fixed points. The stability of a fixed point is determined by reading the direction of the flow on x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bGaeyOeI0caaa@3801@ axis. If f( ρ )>g(ρ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOzaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa jugibiabg6da+iaadEgacaGGOaGaeqyWdiNaaiykaaaa@41E9@  then the flow is to the right otherwise it is directed to the left. Now if the flow is inwards then the point is stable and if the flow is outwards then the point is unstable.10 We will also plot the numerical solutions of the autonomous equation. First we start with small values of R = 0.22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaaiiOaiabg2da9iaacckacaaIWaGaaiOlaiaaikdacaaI Yaaaaa@3D20@  and C = 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaado eacaGGGcGaeyypa0JaaiiOaiaaiodaaaa@3B9B@ . From the Figure 4 it is seen that there is only one fixed point at ρ * = 0.21366 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabeg 8aY9aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0JaaiiOaiaaicda caGGUaGaaGOmaiaaigdacaaIZaGaaGOnaiaaiAdaaaa@40D6@ and it is stable. On the right figure the numerical solutions for equation  from various initial values and all of the solution gradually converge towards equilibrium solution. At this stage the budworm population stays limited.

Figure 4 For R=0.22 and C=3.

Here in Figure 5 the value of  is increased 0.8 to and C =8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaado eacaGGGcGaeyypa0JaaGioaaaa@3A7C@ . Despite this huge increment it is seen from the Figure 5 that the number of fixed points remain the same. This fixed point is also stable, the value is very low and the budworm population remains endemic.

Figure 5 For R=0.8 and C=8.

Figure 6 For R=0:22 and C=12.

We will increase C  to a higher value of  and change R  values. Since the parameter C  is acquainted with the carrying capacity K, holding C  at a higher value will help us analyze the model when the forest is large. Starting at R=0.22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaeyypa0JaaGimaiaac6cacaaIYaGaaGOmaaaa@3AD8@  we see that the results are quite similar to the ones obtained at Figure 4.

Next in Figure 7 we can see that when we raise R to 0.32  there is one fixed point at ρ*=0.34843 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcaGGQa Gaeyypa0JaaGimaiaac6cacaaIZaGaaGinaiaaiIdacaaI0aGaaG4m aaaa@405B@ and the function is f( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOzaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa aaa@3C4D@  tangent to g( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadE gadaqadaWdaeaapeGaeqyWdihacaGLOaGaayzkaaaaaa@3B1C@ at 5.82579. A saddle-node bifurcation is thus occurring.

Figure 7 For R=0.32 and C=12.

As R  continues to escalate to 0.45 we see from Figure 8 that two new fixed points have emerged at 2.32714 and 9.10661. Here the point 2.32714 is unstable since at the left of the point f( ρ ) < g( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadA gadaqadaWdaeaapeGaeqyWdihacaGLOaGaayzkaaGaaiiOaiabgYda 8iaacckacaWGNbWaaeWaa8aabaWdbiabeg8aYbGaayjkaiaawMcaaa aa@42BB@ and the flow is outwards. On the right f( ρ )>g(ρ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamOzaOWaaeWaa8aabaqcLbsapeGaeqyWdihakiaawIcacaGLPaaa jugibiabg6da+iaadEgacaGGOaGaeqyWdiNaaiykaaaa@41E9@  and the flow is inwards.10 The following fixed point is of course stable. Since two stable points or unstable points cannot occur side by side. As for the numerical solutions the solution curves remain close to the stable equilibria. Values that are larger than the unstable fixed point approaches the larger stable fixed point at ρ * =9.10661 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaWbaaSqabeaapeGaaiOkaaaakiabg2da9iaaiMda caGGUaGaaGymaiaaicdacaaI2aGaaGOnaiaaigdaaaa@3F06@  and values less than it approach the stable point occurring at a low value.

Figure 8 For R=0.45 and C=12.

In figure 9 we notice that a new saddle-node bifurcation arises. The two points 0.56624 and 2.32714 gradually approach each other and collide into a new fixed point at 9.78531, as R is raised to 0.548. The fixed point at 0.49743 is stable, but at a very high value.15 Which causes an outbreak in the spruce budworm population.

Figure 9 For R=0.548 and C=12.

Figure 10 For R=0.6 and C=12.

Now at R=0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaeyypa0 JaaGimaiaac6cacaaI2aaaaa@3BCC@ and the saddle node bifurcation disappears and there is only one stable fixed point at 10.02456.

Population models with harvesting

In this section we will analyze the behavior of the logistic population model when population is removed at some defined rate, more commonly known as harvesting.16 The harvesting function is defined as , dependent on time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@38BC@ .

Calibration of the model with constant harvesting
Let us consider the following model,

du dt =au( 1 u K )H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacaWG1baak8aabaqcLbsapeGaamizaiaa dshaaaGaeyypa0JaamyyaiaadwhakmaabmaapaqaaKqzGeWdbiaaig dacqGHsislkmaalaaapaqaaKqzGeWdbiaadwhaaOWdaeaajugib8qa caWGlbaaaaGccaGLOaGaayzkaaqcLbsacqGHsislcaWGibaaaa@486F@      (3.1)

Equation (3.1) is a population model with constant-yield harvesting. We would like to study this model and see how different harvesting levels affect the model. Some real-life examples are harvesting animals like deers, birds from sanctuaries, or even fishes, for example whales. In these sort of scenarios harvesting is allowed to some limited extent.

In Figure 11, we have plotted F ( u, H )=1.6u( 1 u K )H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadA eacaGGGcWaaeWaa8aabaWdbiaadwhacaGGSaGaaiiOaiaadIeaaiaa wIcacaGLPaaacqGH9aqpcaaIXaGaaiOlaiaaiAdacaWG1bWaaeWaa8 aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyDaaWdaeaapeGa am4saaaaaiaawIcacaGLPaaacqGHsislcaWGibaaaa@4949@  for different values of H. Now solving eqaution (3.1) analytically yields a very complicated structure, so we approach a graphical method to obtain the steady states. Solving the quadratic equation,

Figure 11 F(u,H) for different values of H.

au( 1 u K )H=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadg gacaWG1bWaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGa amyDaaWdaeaapeGaam4saaaaaiaawIcacaGLPaaacqGHsislcaWGib Gaeyypa0JaaGimaaaa@418A@

a u 2 au+kH=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaeyO0H4Taamyyaiaadwhak8aadaahaaWcbeqaaKqzadWdbiaaikda aaqcLbsacqGHsislcaWGHbGaamyDaiabgUcaRiaadUgacaWGibGaey ypa0JaaGimaaaa@458F@      (3.2)

 We get u= ka± ( ka ) 2 4aHk 2a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamyDaiabg2da9OWaaSaaa8aabaqcLbsapeGaam4AaiaadggacqGH XcqSkmaakaaapaqaa8qadaqadaWdaeaajugib8qacaWGRbGaamyyaa GccaGLOaGaayzkaaWdamaaCaaaleqabaqcLbmapeGaaGOmaaaajugi biabgkHiTiaaisdacaWGHbGaamisaiaadUgaaSqabaaak8aabaqcLb sapeGaaGOmaiaadggaaaaaaa@4BAB@ . Now when ( ka ) 2 4aHk>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaabm aapaqaaKqzGeWdbiaadUgacaWGHbaakiaawIcacaGLPaaapaWaaWba aSqabeaajugWa8qacaaIYaaaaKqzGeGaeyOeI0IaaGinaiaadggaca WGibGaam4Aaiabg6da+iaaicdaaaa@43B4@ that is, H< ka 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamisaiabgYda8OWaaSaaa8aabaqcLbsapeGaam4AaiaadggaaOWd aeaajugib8qacaaI0aaaaaaa@3D3C@ the quadratic equation (3.2) has two real roots, giving two fixed points for the model. H=0  and H=2.6 represents this case. When H=0 the model is constituted as the logistic growth model. Now when H=2.6  there are two fixed points, the one at u=1.94 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacqGH9aqpcaaIXaGaaiOlaiaaiMdacaaI0aaaaa@3BB6@ is unstable and the latter fixed point at u=10.06 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacqGH9aqpcaaIXaGaaGimaiaac6cacaaIWaGaaGOnaaaa@3C69@ is stable (Figure 12). For initial values, when 1.94<u<10.06 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIXaGaaiOlai aaiMdacaaI0aGaeyipaWJaamyDaiabgYda8iaaigdacaaIWaGaaiOl aiaaicdacaaI2aaaaa@4154@ the solutions move away from the unstable equilibrium, known as the extinction equilibrium and approach the solution curve near u=10.06 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacqGH9aqpcaaIXaGaaGimaiaac6cacaaIWaGaaGOnaaaa@3C69@ . But for initial values less than u=1.94 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacqGH9aqpcaaIXaGaaiOlaiaaiMdacaaI0aaaaa@3BB6@ the solutions approach negative infinity, thus the population declines.

Figure 12 Numerical solutions for different values of H.

Next when H=4.8 a saddle node bifurcation occurs, two fixed points collide into one at u=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bGaeyypa0 JaaGOnaaaa@3A83@ . This fixed point is half stable. The numerical solutions are observed in the second plot Figure 12 shows us that for initial values less than  the solutions diverge, but when they are greater than  they move towards the equilibrium. Gradually as H is increased, that is when H > Ka 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadI eacaGGGcGaeyOpa4ZaaSaaa8aabaWdbiaadUeacaWGHbaapaqaa8qa caaI0aaaaaaa@3C83@ all the fixed points disappear and the solutions diverge. Thus for harvesting, H>4.8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadI eacqGH+aGpcaaI0aGaaiOlaiaaiIdaaaa@3ACF@ the population fails to survive.

Calibration of the model with proportional harvesting

Here, we now consider the following equation,

du dt =au( 1 u K )uH=G( u,H ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadsgacaWG1baak8aabaqcLbsapeGaamizaiaa dshaaaGaeyypa0JaamyyaiaadwhakmaabmaapaqaaKqzGeWdbiaaig dacqGHsislkmaalaaapaqaaKqzGeWdbiaadwhaaOWdaeaajugib8qa caWGlbaaaaGccaGLOaGaayzkaaqcLbsacqGHsislcaWG1bGaamisai abg2da9iaadEeakmaabmaapaqaaKqzGeWdbiaadwhacaGGSaGaamis aaGccaGLOaGaayzkaaaaaa@4FFD@      (3.3)

In Figure 13 we have plotted G( u,H )=1.6u( 1 u K )uH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadE eadaqadaWdaeaapeGaamyDaiaacYcacaWGibaacaGLOaGaayzkaaGa eyypa0JaaGymaiaac6cacaaI2aGaamyDamaabmaapaqaa8qacaaIXa GaeyOeI0YaaSaaa8aabaWdbiaadwhaa8aabaWdbiaadUeaaaaacaGL OaGaayzkaaGaeyOeI0IaamyDaiaadIeaaaa@47FC@  for various values of .

Figure 13 G(u; H) for different values of H.

Solving equation (3.3) for equilibrium points we get,

au( 1 u K )uH=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadg gacaWG1bWaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGa amyDaaWdaeaapeGaam4saaaaaiaawIcacaGLPaaacqGHsislcaWG1b Gaamisaiabg2da9iaaicdaaaa@4284@

u[ au+( aK+KH ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabgk DiElaadwhadaWadaWdaeaapeGaamyyaiaadwhacqGHRaWkdaqadaWd aeaapeGaamyyaiaadUeacqGHRaWkcaWGlbGaamisaaGaayjkaiaawM caaaGaay5waiaaw2faaiabg2da9iaaicdaaaa@468F@

From equation (6.4) we have u = 0 is always an equilibrium point and the other one is u= K( aH ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacqGH9aqpdaWcaaWdaeaapeGaam4samaabmaapaqaa8qacaWGHbGa eyOeI0IaamisaaGaayjkaiaawMcaaaWdaeaapeGaamyyaaaaaaa@3F14@ . When H=0.3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadI eacqGH9aqpcaaIWaGaaiOlaiaaiodaaaa@3AC4@  we have two fixed points. The extinction equilibrium at u=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacqGH9aqpcaaIWaaaaa@3982@ and u=9.75 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadw hacqGH9aqpcaaI5aGaaiOlaiaaiEdacaaI1aaaaa@3BBD@ . From the first plot in Figure 14 we observe that u=9.75 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG1bGaeyypa0 JaaGyoaiaac6cacaaI3aGaaGynaaaa@3CB8@  is the stable
equilibrium. This case is true for all K( aH ) a >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbmaala aapaqaaKqzGeWdbiaadUeakmaabmaapaqaaKqzGeWdbiaadggacqGH sislcaWGibaakiaawIcacaGLPaaaa8aabaqcLbsapeGaamyyaaaacq GH+aGpcaaIWaaaaa@4097@ , that is when 0<H<a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaaic dacqGH8aapcaWGibGaeyipaWJaamyyaaaa@3B3D@  here a=1.6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadg gacqGH9aqpcaaIXaGaaiOlaiaaiAdaaaa@3AE1@ .

Figure 14 Numerical solutions for different values of H.

When H  is increased to 1.6 transcritical bifurcation occurs and u=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bGaeyypa0JaaGimaaaa@38D1@  is the only fixed point which is half stable. For H>a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadI eacqGH+aGpcaWGHbaaaa@3983@  or in this case H>1.6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadI eacqGH+aGpcaaIXaGaaiOlaiaaiAdaaaa@3ACA@ , the extinction equilibrium becomes stable and the other fixed point is negative. Thus when H>a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadI eacqGH+aGpcaWGHbaaaa@3983@ , harvesting is too intense and it surpasses population growth.

Conclusion

In this paper, we have studied the local behavior of bifurcations of one- dimensional ordinary differential equations to develop a proper understanding of the topic. We obtained the stable and unstable regions of equilibrium for saddle node bifurcation, transcritical bifurcation, and pitchfork bifurcation. Alongside we analyzed the bifurcation diagrams, where the fixed points dependence on parameter values is represented.

The spruce budworm problem has been analyzed here using bifurcation and numerical illustrations have been shown to justify the results. When the values of R and C are low the population remains endemic. But for higher C values saddle node bifurcation occurs and there are changes noticed in the stability of the system. For R values above 0.45 fixed stable points are found at higher values which lead to outbreaks in the budworm population.

We also studied the dynamics of population models with constant and proportional harvesting. These two cases exhibit examples of saddle node bifurcation and transcritical bifurcation. But the model for constant harvesting is not suitable for lower levels of population. When harvesting exceeds a certain level the population fails to survive. These changes in the qualitative structure of the dynamics of the models shows us that there is much scope for further study.

Acknowledgments

The author M. Kamrujjaman research was partially supported by University Grants Commission (UGC), 2019-2020, Bangladesh.

Conflicts of interest

The authors declare no conflict of interest exists.

References

  1. C Colona, D Claessen, M Ghil. Bifurcation analysis of an agent-based model for predator-prey interactions. Ecological Modelling. 2014;317:93–106.
  2. D Wu, H Zhang. Bifurcation analysis of a two-species competitive discrete model of plankton allelopathy. Advances in Difference Equations. 2014;70:1–10.
  3. White A, Huang. Spruce Budworm Population Model in ODE. 2012.
  4. S Saha, G Samanta. Modeling of Insect-Pathogen Dynamics with Biological Control. Mathematical Biology and Bioinformatics. 2020;15(2):268–294.
  5. L Korobenko, Md Kamrujjaman, E Braverman. Persistence and extinction in spatial models with a carrying capacity riven diffusion and harvesting. Journal of Mathematical Analysis and Applications. 2013;399:352–368.
  6. Md Kamrujjaman. Dispersal Dynamics: Competitive Symbiotic and Predator-Prey Interactions. Journal of Advanced Mathematics and Applications. 2017;6:1–11.
  7. Md. Kamrujjaman. Interplay of resource distributions and diffusion strategies for spatially heterogeneous populations. Journal of Mathematical Modeling. 2019;7(2):175–198.
  8. E Braverman, Md Kamrujjaman. Competitive –cooperative models with various diffusion strategies. Computers and Mathematics with Applications. 2016;72:653–662.
  9. E Braverman, Md Kamrujjaman, L Korobenko. Competitive spatially distributed population dynamics models: Does diversity in diffusion strategies promote coexistence?, Mathematical Biosciences. 2015;264:63–73.
  10. SH Strogatz. Nonlinear Dynamics and Chaos. First edition, CRC Press, 2000.
  11. DG Zill, A First Course in Differential Equations with Modeling Applications. Tenth Edition, Richard Stratton, 2013.
  12. L Edelstein-Keshet. Mathematical Models in Biology. First edition, SIAM: Society for Industrial and Applied Mathematics, 2005.
  13. LJS Allen. An introduction to mathematical biology. Pearson, 2006.
  14. JD Murray. Mathematical Biology. I and II, third edition, Springer, New York, 2002.
  15. CS Chou, A Friedman. Introduction to Mathematical Biology. Modeling, Analysis, and Simulations (Springer Undergraduate Texts in Mathematics and Technology, First edition, Springer, 2016.
  16. F Brauer, C Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. Second Edition, Springer, 2010.
Creative Commons Attribution License

©2020 Tasnim, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.