Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 12 Issue 4

Contribution of coincidence detection to speech segregation in noisy environments

Asaf Zorea, Miriam Furst

Electrical Engineering, Tel Aviv University, Israel

Correspondence: Asaf Zorea, Electrical Engineering, Tel Aviv University, Israel

Received: July 27, 2023 | Published: August 8, 2023

Citation: Zorea A, Furst M. Contribution of coincidence detection to speech segregation in noisy environments. Biom Biostat Int J. 2023;12(4):114-119. DOI: 10.15406/bbij.2023.12.00394

Download PDF

Abstract

This study introduces a biologically-inspired model designed to examine the role of coincidence detection cells in speech segregation tasks. The model consists of three stages: a time-domain cochlear model that generates instantaneous rates of auditory nerve fibers, coincidence detection cells that amplify neural activity synchronously with speech presence, and an optimal spectro-temporal speech presence estimator. A comparative analysis between speech estimation based on the firing rates of auditory nerve fibers and those of coincidence detection cells indicates that the neural representation of coincidence cells significantly reduces noise components, resulting in a more distinguishable representation of speech in noise. The proposed framework demonstrates the potential of brainstem nuclei processing in enhancing auditory skills. Moreover, this approach can be further tested in other sensory systems in general and within the auditory system in particular.

Keywords: coincidence detection, speech segregation, speech-in-noise, computational model, auditory pathway

Introduction

In our daily lives, following a conversation often involves listening to speech accompanied by some background noise. The auditory system adeptly processes and discriminates complex acoustic information, allowing us to extract relevant speech cues from the surrounding sound. Previous studies have demonstrated that speech segregation, the process of separating speech from noise, significantly contributes to speech perception and comprehension.1,2

Bregman3 ascribes auditory segregation to auditory scene analysis and outlines two stages involved in the segregation process: segmentation and grouping. During segmentation, the input is divided into segments. In the grouping stage, the segments that are estimated to originate from the same source are clustered together. Numerous studies have adopted the auditory scene analysis approach to achieve comprehensive speech segregation. A common technique involves employing a time-frequency (T-F) representation based on the speech spectrogram, utilizing a logarithmic scale of the frequency domain. Estimating the speech presence probability (SPP) relies on analyzing the statistical characteristics of both the speech and the background noise.4,5 Moreover, thresholding is often utilized to generate the ideal binary mask of the speech.6–8

The cochlea decompose sounds into narrow-band signals with specific characteristic frequencies. Then, auditory information propagates via the auditory nerve through multiple auditory nuclei, including the cochlear nucleus and inferior colliculus. These centers extract and process complex acoustic features from the neural input. In the inferior colliculus, one of the common cell types is the coincidence detection (CD) cell.9 This neuron encode information by detecting the occurrence of temporally close but spatially distributed input signals. Krips and Furst10 have shown that if the inputs act as a non-homogeneous Poisson process (NHPP), then the CD output also behaves as NHHP. The extracted information is transmitted to the auditory cortex, which is further processed and integrated over time to contribute to the comprehension and perception of spoken language.

This study aims to investigate the potential involvement of CD neurons in speech segregation using biologically motivated computational modeling. The model presented in this study includes three key stages: In the first stage, an initial T-F representation is obtained by a cochlear model, which generates instantaneous rates (IRs) of auditory nerve fibers (ANFs).11–14 In the second stage, a network of CD cells is integrated to enhance the neural representation of the auditory input. Finally, an optimal speech presence estimator is employed, enabling us to assess the effectiveness of the CD processing. The structure of this paper is organized as follows. The material and methodology are presented in Section 2. The study results are presented in Section 3. Finally, the discussion and conclusions are summarized in Section 4 and Section 5.

Material and methods

A schematic illustration of the model is depicted in Figure 1. The diagram is divided into three blocks, each representing a component of the model. The first block represents the auditory periphery, which is responsible for the initial processing of auditory stimuli. The second block illustrates the network of CD cells designed with excitatory inputs. The third block signifies the speech estimator, which integrates input from multiple tonotopic channels to estimate the probability of speech presence. Notably, this estimator can receive input from either CD cells or ANFs responses.

Figure 1 A schematic description of the computational model.

Cochlear model

The cochlear model utilized in this study employs a time-domain solution of cochlear mechanics. It calculates the basilar membrane motion as a response to an acoustic stimulus while integrating the electro-mechanical non-linear motion of the outer hair cells.11-13,15 Practically, the model was simulated with an adaptive time step and 256 cochlear partitions. The derivation of the ANFs’ IRs at each cochlear partition was obtained by phenomenological model.14,16

Coincidence cells architecture

Each neural input is represented by a set of spikes that occur at instances { t n ,nN } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaaiilaiaad6gacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaiab=1q8obGaay5Eaiaaw2haaaaa@4A60@ . This series of spikes events can be described as a random point process with IR λ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3B83@ , and refractory period τ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3AFA@ . A general excitatory-excitatory (EE) cell, E E M N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaadweapaWaa0baaSqaa8qacaWGnbaapaqaa8qacaWGobaa aaaa@3AD2@ , has N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6eaaaa@38B7@ independent excitatory inputs Ψ={ E 1 ,.., E N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfI6azjabg2da9maacmaapaqaa8qacaWGfbWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiaacYcacaGGUaGaaiOlaiaacYcacaWGfbWdam aaBaaaleaapeGaamOtaaWdaeqaaaGcpeGaay5Eaiaaw2haaaaa@4397@ with corresponding IRs Ψ λ ={ λ E 1 ,.., λ E N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfI6az9aadaWgaaWcbaWdbiabeU7aSbWdaeqaaOWdbiabg2da9maa cmaapaqaa8qacqaH7oaBpaWaaSbaaSqaa8qacaWGfbWdamaaBaaame aapeGaaGymaaWdaeqaaaWcbeaak8qacaGGSaGaaiOlaiaac6cacaGG SaGaeq4UdW2damaaBaaaleaapeGaamyra8aadaWgaaadbaWdbiaad6 eaa8aabeaaaSqabaaak8qacaGL7bGaayzFaaaaaa@49D5@ , and generates a spike when at least M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38B6@ of its inputs spike during an interval Δ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfs5ae9aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3A8C@ . To maintain simplicity, it was assumed that M=N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eacqGH9aqpcaWGobaaaa@3A8F@ and denote it as E E M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWGfbWdamaaBaaaleaapeGaamytaaWdaeqaaaaa@3AA4@ . Such a cell generates spikes at instances { t n f , n f N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaamOBa8aadaWgaaad baWdbiaadAgaa8aabeaaaSqabaGcpeGaaiilaiaad6gapaWaaSbaaS qaa8qacaWGMbaapaqabaGcpeGaeyicI48efv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiuaacqWFneVtaiaawUhacaGL9baaaaa@4DB7@ ,

t n f =max{ t 1 n f ,..., t M n f } if max{ t 1 n f ,..., t M n f }min{ t 1 n f ,..., t M n f }< Δ c } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aaciaapaqaauaabaqaceaaaeaapeGaamiDa8aadaWgaaWcbaWdbiaa d6gapaWaaSbaaWqaa8qacaWGMbaapaqabaaaleqaaOWdbiabg2da9i aab2gacaqGHbGaaeiEamaacmaapaqaa8qacaWG0bWdamaaCaaaleqa baWdbiaaigdaaaGcpaWaaSbaaSqaa8qacaWGUbWdamaaBaaameaape GaamOzaaWdaeqaaaWcbeaak8qacaGGSaGaaiOlaiaac6cacaGGUaGa aiilaiaadshapaWaaWbaaSqabeaapeGaamytaaaak8aadaWgaaWcba Wdbiaad6gapaWaaSbaaWqaa8qacaWGMbaapaqabaaaleqaaaGcpeGa ay5Eaiaaw2haaaWdaeaapeGaaeyAaiaabAgacaqGGaGaaeyBaiaabg gacaqG4bWaaiWaa8aabaWdbiaadshapaWaaWbaaSqabeaapeGaaGym aaaak8aadaWgaaWcbaWdbiaad6gapaWaaSbaaWqaa8qacaWGMbaapa qabaaaleqaaOWdbiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiD a8aadaahaaWcbeqaa8qacaWGnbaaaOWdamaaBaaaleaapeGaamOBa8 aadaWgaaadbaWdbiaadAgaa8aabeaaaSqabaaak8qacaGL7bGaayzF aaGaeyOeI0IaaGPaVlaab2gacaqGPbGaaeOBamaacmaapaqaa8qaca WG0bWdamaaCaaaleqabaWdbiaaigdaaaGcpaWaaSbaaSqaa8qacaWG UbWdamaaBaaameaapeGaamOzaaWdaeqaaaWcbeaak8qacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaadshapaWaaWbaaSqabeaapeGaamyt aaaak8aadaWgaaWcbaWdbiaad6gapaWaaSbaaWqaa8qacaWGMbaapa qabaaaleqaaaGcpeGaay5Eaiaaw2haaiabgYda8iabfs5ae9aadaWg aaWcbaWdbiaadogaa8aabeaaaaaak8qacaGL9baaaaa@7CDC@   1

where { t 1 n f ,..., t M n f } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaaigdaaaGcpaWa aSbaaSqaa8qacaWGUbWdamaaBaaameaapeGaamOzaaWdaeqaaaWcbe aak8qacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadshapaWaaWba aSqabeaapeGaamytaaaak8aadaWgaaWcbaWdbiaad6gapaWaaSbaaW qaa8qacaWGMbaapaqabaaaleqaaaGcpeGaay5Eaiaaw2haaaaa@4726@  denote the discrete firing times of the M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38B5@ excitatory inputs respectively.

According to Krips and Furst,10 CD cells exhibit NHHP behavior when their inputs are also NHPP point processes. As a result, their output can be computed analytically. The expression for the E E M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaadweapaWaaSbaaSqaa8qacaWGnbaapaqabaaaaa@39EE@  cell’s IR was obtained using this approach:

λ E E M ( t| Ψ λ )= m=1 M [ λ E m ( t )  m ˜ =1, m ˜ m M t Δ c t λ E m ˜ ( t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamyraiaadweapaWaaSbaaWqaa8qa caWGnbaapaqabaaaleqaaOWdbmaabmaapaqaa8qacaWG0bGaaiiFai abfI6az9aadaWgaaWcbaWdbiabeU7aSbWdaeqaaaGcpeGaayjkaiaa wMcaaiabg2da9maawahabeWcpaqaa8qacaWGTbGaeyypa0JaaGymaa WdaeaapeGaamytaaqdpaqaa8qacqGHris5aaGcdaWadaWdaeaapeGa eq4UdW2damaaBaaaleaapeGaamyra8aadaWgaaadbaWdbiaad2gaa8 aabeaaaSqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa cqGHflY1caGGGcWaaybCaeqal8aabaWdbiqad2gapaGbaGaapeGaey ypa0JaaGymaiaacYcaceWGTbWdayaaiaWdbiabgcMi5kaad2gaa8aa baWdbiaad2eaa0WdaeaapeGaey4dIunaaOWaaybCaeqal8aabaWdbi aadshacqGHsislcqqHuoarpaWaaSbaaWqaa8qacaWGJbaapaqabaaa leaapeGaamiDaaqdpaqaa8qacqGHRiI8aaGccqaH7oaBpaWaaSbaaS qaa8qacaWGfbaapaqabaGcdaWgaaWcbaWdbiqad2gapaGbaGaaaeqa aOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLBbGaay zxaaaaaa@7122@   2

Despite the diversity of the E E M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWGfbWdamaaBaaaleaapeGaamytaaWdaeqaaaaa@3AA3@  cell’s inputs, it is reasonable to presume that the firing rates of the M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbaaaa@36E9@  neurons in response to a given stimulus would be similar on average, therefore:

λ E m (t)  = Δ λ E (t),m{ 1,..,M } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aS9aadaWgaaWcbaWdbiaadweapaWaaSbaaWqaa8qacaWGTbaa paqabaaaleqaaOWdbiaacIcacaWG0bGaaiyka8aacauGGaWaaCbiae aacauG9aaaleqabaGaeuiLdqeaaOWdbiabeU7aS9aadaWgaaWcbaWd biaadweaa8aabeaak8qacaGGOaGaamiDaiaacMcacaGGSaGaeyiaIi IaamyBaiabgIGiopaacmaapaqaa8qacaaIXaGaaiilaiaac6cacaGG UaGaaiilaiaad2eaaiaawUhacaGL9baaaaa@5207@   3

where m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gaaaa@38D6@ denotes the input cell index.

The E E M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWGfbWdamaaBaaaleaapeGaamytaaWdaeqaaaaa@3AA3@ cell’s output, λ E E M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aS9aadaWgaaWcbaWdbiaadweacaWGfbWdamaaBaaameaapeGa amytaaWdaeqaaaWcbeaaaaa@3CAE@ , may be described as follows:

λ E E M ( t| Ψ λ )=M λ E ( t ) ( t Δ c t λ E ( τ )dτ ) I c ( t ) M1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeU7aS9aadaWgaaWcbaWdbiaadweacaWG fbWdamaaBaaameaapeGaamytaaWdaeqaaaWcbeaak8qadaqadaWdae aapeGaamiDaiaacYhacqqHOoqwpaWaaSbaaSqaa8qacqaH7oaBa8aa beaaaOWdbiaawIcacaGLPaaacqGH9aqpcaWGnbGaeyyXICTaeq4UdW 2damaaBaaaleaapeGaamyraaWdaeqaaOWdbmaabmaapaqaa8qacaWG 0baacaGLOaGaayzkaaGaeyyXIC9damaayaaabaWdbmaabmaapaqaa8 qadaGfWbqabSWdaeaapeGaamiDaiabgkHiTiabfs5ae9aadaWgaaad baWdbiaadogaa8aabeaaaSqaa8qacaWG0baan8aabaWdbiabgUIiYd aakiabeU7aS9aadaWgaaWcbaWdbiaadweaa8aabeaak8qadaqadaWd aeaapeGaeqiXdqhacaGLOaGaayzkaaGaamizaiabes8a0bGaayjkai aawMcaaaWcpaqaaiaadMeadaWgaaadbaWdbiaadogaa8aabeaal8qa daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGcpaGaayjo+dWdbm aaCaaaleqabaGaamytaiabgkHiTiaaigdaaaaaaa@7161@   4

where I c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMeapaWaaSbaaSqaa8qacaWGJbaapaqabaaaaa@39F4@  represents the coincidence integral.

A discrete E E M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWGfbWdamaaBaaaleaapeGaamytaaWdaeqaaaaa@3AA4@ cell’s output, λ E E M [ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aS9aadaWgaaWcbaWdbiaadweacaWGfbWdamaaBaaameaapeGa amytaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaamOBaaGaay5wai aaw2faaaaa@3FCD@ , can be obtained using a discrete approximation of the coincidence integral I c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMeapaWaaSbaaSqaa8qacaWGJbaapaqabaaaaa@39F4@ . For a time domain discretized into N c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6eapaWaaSbaaSqaa8qacaWGJbaapaqabaaaaa@39F9@  equal panels, each of size δ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes7aK9aadaWgaaWcbaWdbiaadohaa8aabeaaaaa@3ADB@ . By applying the trapezoidal rule, an approximation for I c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMeapaWaaSbaaSqaa8qacaWGJbaapaqabaaaaa@39F4@  can be obtained by:

t Δ c t λ E ( τ )dτ( 1 2 λ E ( τ 1 )+ λ E ( τ 2 )+..+ + λ E ( τ N c 1 )+ 1 2 λ E ( τ N c ) ) δ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aawahabeWcpaqaa8qacaWG0bGaeyOeI0IaeuiLdq0damaaBaaameaa peGaam4yaaWdaeqaaaWcbaWdbiaadshaa0WdaeaapeGaey4kIipaaO Gaeq4UdW2damaaBaaaleaapeGaamyraaWdaeqaaOWdbmaabmaapaqa a8qacqaHepaDaiaawIcacaGLPaaacaWGKbGaeqiXdqNaeS4qISZaae Waa8aabaqbaeaabiqaaaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaacqGHflY1cqaH7oaBpaWaaSbaaSqaa8qacaWGfbaapa qabaGcpeWaaeWaa8aabaWdbiabes8a09aadaWgaaWcbaWdbiaaigda a8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkcqaH7oaBpaWaaSbaaS qaa8qacaWGfbaapaqabaGcpeWaaeWaa8aabaWdbiabes8a09aadaWg aaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkca GGUaGaaiOlaiabgUcaRaWdaeaapeGaey4kaSIaeq4UdW2damaaBaaa leaapeGaamyraaWdaeqaaOWdbmaabmaapaqaa8qacqaHepaDpaWaaS baaSqaa8qacaWGobWdamaaBaaameaapeGaam4yaaWdaeqaaSWdbiab gkHiTiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkdaWcaa WdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacqGHflY1cqaH7oaBpaWa aSbaaSqaa8qacaWGfbaapaqabaGcpeWaaeWaa8aabaWdbiabes8a09 aadaWgaaWcbaWdbiaad6eapaWaaSbaaWqaa8qacaWGJbaapaqabaaa leqaaaGcpeGaayjkaiaawMcaaaaaaiaawIcacaGLPaaacqGHflY1cq aH0oazpaWaaSbaaSqaa8qacaWGZbaapaqabaaaaa@822C@   5

where N c = Δ c fs MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6eapaWaaSbaaSqaa8qacaWGJbaapaqabaGcpeGaeyypa0JaeuiL dq0damaaBaaaleaapeGaam4yaaWdaeqaaOWdbiabgwSixlaadAgaca WGZbaaaa@4208@  is the discrete integration window length, τ i =t f s +i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG 0bGaeyyXICTaamOza8aadaWgaaWcbaWdbiaadohaa8aabeaak8qacq GHRaWkcaWGPbaaaa@437B@  the discrete time index, δ s = 1 f s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes7aK9aadaWgaaWcbaWdbiaadohaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaado haa8aabeaaaaaaaa@3F41@ is the sample time, and fs MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgacaWGZbaaaa@39C7@ is the sample rate.

As a consequence, in the discrete-time domain, the coincidence integral can be computed by convolving λ[ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSnaadmaapaqaa8qacaWGUbaacaGLBbGaayzxaaaaaa@3C9C@ with the following finite impulse response (FIR) filter h fir [ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIgapaWaaSbaaSqaa8qacaWGMbGaamyAaiaadkhaa8aabeaak8qa daWadaWdaeaapeGaamOBaaGaay5waiaaw2faaaaa@3F19@ :

h fir [ n ]= [ 1 2 ,1,..,1, 1 2 ] N c δ s I c [ n ]= λ E [ n ]* h fir [ n ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aaciaapaqaauaabaqaceaaaeaapeGaamiAa8aadaWgaaWcbaWdbiaa dAgacaWGPbGaamOCaaWdaeqaaOWdbmaadmaapaqaa8qacaWGUbaaca GLBbGaayzxaaGaeyypa0ZaamWaa8aabaWdbmaalaaapaqaa8qacaaI Xaaapaqaa8qacaaIYaaaaiaacYcacaaIXaGaaiilaiaac6cacaGGUa GaaiilaiaaigdacaGGSaWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa ikdaaaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamOta8aadaWgaa adbaWdbiaadogaa8aabeaaaSqabaGcpeGaeyyXICTaeqiTdq2damaa BaaaleaapeGaam4CaaWdaeqaaaGcbaWdbiaadMeapaWaaSbaaSqaa8 qacaWGJbaapaqabaGcpeWaamWaa8aabaWdbiaad6gaaiaawUfacaGL DbaacqGH9aqpcqaH7oaBpaWaaSbaaSqaa8qacaWGfbaapaqabaGcpe WaamWaa8aabaWdbiaad6gaaiaawUfacaGLDbaacaqGQaGaamiAa8aa daWgaaWcbaWdbiaadAgacaWGPbGaamOCaaWdaeqaaOWdbmaadmaapa qaa8qacaWGUbaacaGLBbGaayzxaaaaaaGaayzFaaaaaa@6889@   6

Finally, the discrete E E M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWGfbWdamaaBaaaleaapeGaamytaaWdaeqaaaaa@3AA4@ cell’s IR, λ E E M [ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aS9aadaWgaaWcbaWdbiaadweacaWGfbWdamaaBaaameaapeGa amytaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaamOBaaGaay5wai aaw2faaaaa@3FCD@ , was obtained by:

λ E E M [ n| Ψ λ ]=M λ E [ n ] ( λ E [ n ] h fir [ n ] ) M1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aS9aadaWgaaWcbaWdbiaadweacaWGfbWdamaaBaaameaapeGa amytaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaamOBaiaacYhacq qHOoqwpaWaaSbaaSqaa8qacqaH7oaBa8aabeaaaOWdbiaawUfacaGL DbaacqGH9aqpcaWGnbGaeyyXICTaeq4UdW2damaaBaaaleaapeGaam yraaWdaeqaaOWdbmaadmaapaqaa8qacaWGUbaacaGLBbGaayzxaaGa eyyXIC9aaeWaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaadweaa8 aabeaak8qadaWadaWdaeaapeGaamOBaaGaay5waiaaw2faaiabgEHi QiaadIgapaWaaSbaaSqaa8qacaWGMbGaamyAaiaadkhaa8aabeaak8 qadaWadaWdaeaapeGaamOBaaGaay5waiaaw2faaaGaayjkaiaawMca a8aadaahaaWcbeqaa8qacaWGnbGaeyOeI0IaaGymaaaaaaa@636E@   7

The corresponding CD cells’ IRs are generated from K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadUeaaaa@38B4@ vectors of ANFs’ IRs received.

Speech presence estimation

When an interfering noise coincides in frequency and time with a signal of interest, they both interfere on the basilar membrane, causing both the signal and the noise to compete for the same receptors. Let λ K ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa Wcbaaeaaaaaaaaa8qacaWHlbaapaqabaGcpeWaaeWaa8aabaWdbiaa d6gaaiaawIcacaGLPaaaaaa@3D5C@  be a IRs random vector distributed across K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadUeaaaa@38B4@ cochlear partitions, as a function of time. In the neural activity domain, according to the tonotopic organization of the auditory system, it can be assumed that the neural response is an additive mixture of clean speech λ Speech ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaahaa WcbeqaaabaaaaaaaaapeGaam4uaiaadchacaWGLbGaamyzaiaadoga caWGObaaaOWaaeWaa8aabaWdbiaad6gaaiaawIcacaGLPaaaaaa@41E0@  and acoustic noise λ Noise ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaahaa WcbeqaaabaaaaaaaaapeGaamOtaiaad+gacaWGPbGaam4Caiaadwga aaGcdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaaaa@4101@ .

Two hypotheses H 1 [ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeWaamWaa8aabaWd biaad6gaaiaawUfacaGLDbaaaaa@3CE4@  and H 2 [ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaamWaa8aabaWd biaad6gaaiaawUfacaGLDbaaaaa@3CE5@  were suggested, and indicate speech absence and speech presence respectively,

H 1 [ n ]:Y( n )= λ Noise [ n ] H 2 [ n ]:Y( n )= λ Speech [ n ]+ λ Noise [ n ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aaciaapaqaauaabaqaceaaaeaapeGaamisa8aadaWgaaWcbaWdbiaa igdaa8aabeaak8qadaWadaWdaeaapeGaamOBaaGaay5waiaaw2faai aacQdacaGGzbWaaeWaa8aabaWdbiaad6gaaiaawIcacaGLPaaacqGH 9aqpcqaH7oaBpaWaaWbaaSqabeaapeGaamOtaiaad+gacaWGPbGaam 4CaiaadwgaaaGcdaWadaWdaeaapeGaamOBaaGaay5waiaaw2faaaWd aeaapeGaamisa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaWada WdaeaapeGaamOBaaGaay5waiaaw2faaiaacQdacaGGzbWaaeWaa8aa baWdbiaad6gaaiaawIcacaGLPaaacqGH9aqpcqaH7oaBpaWaaWbaaS qabeaapeGaam4uaiaadchacaWGLbGaamyzaiaadogacaWGObaaaOWa amWaa8aabaWdbiaad6gaaiaawUfacaGLDbaacqGHRaWkcqaH7oaBpa WaaWbaaSqabeaapeGaamOtaiaad+gacaWGPbGaam4CaiaadwgaaaGc daWadaWdaeaapeGaamOBaaGaay5waiaaw2faaaaaaiaaw2haaaaa@6C74@   8

The process of separating an auditory scene into distinct objects was modeled as an unbiased optimal estimator of the SPP, which is the probability of speech being present in a noisy observation. Motivated by the central limit theorem,17 the IR’s distribution, λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@3998@ , was assumed to be a superposition of multivariate Gaussians generated by two parent processes:

p( λ )= Σ i=1 2 π i N( λ| μ i , Σ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadchadaqadaWdaeaacqaH7oaBa8qacaGLOaGaayzkaaGaeyypa0Ja eu4Odm1damaaDaaaleaapeGaamyAaiabg2da9iaaigdaa8aabaWdbi aaikdaaaGccqaHapaCpaWaaSbaaSqaa8qacaWGPbaapaqabaWefv3y SLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaak8qacqWFneVtda qadaWdaeaapeGaeq4UdW2aaqqaaeaacqaH8oqBdaWgaaWcbaGaamyA aaqabaGccaGGSaGaeu4Odm1damaaBaaaleaapeGaaCyAaaWdaeqaaa GcpeGaay5bSdaacaGLOaGaayzkaaaaaa@5C7D@ s.t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadohacaGGUaGaamiDaaaa@3A87@   i=1 2 π i =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaaGOm aaqdpaqaa8qacqGHris5aaGccqaHapaCpaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeGaeyypa0JaaGymaaaa@42E0@   9

where, correspondingly, N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8xdX7ea aa@433F@ denotes a multivariate normal distribution function, π 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abec8aW9aadaWgaaWcbaWdbiaaigdacaGGSaGaaGOmaaWdaeqaaaaa @3C22@ denote the prior probability of λ H 1,2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSjabgIGiolaadIeapaWaaSbaaSqaa8qacaaIXaGaaiilaiaa ikdaa8aabeaakiaacYcaaaa@3F24@   μ 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBdaWgaa Wcbaaeaaaaaaaaa8qacaaIXaGaaiilaiaaikdaa8aabeaaaaa@3BFC@  denote the Gaussian means, and Σ 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaho6apaWaaSbaaSqaa8qacaaIXaGaaiilaiaaikdaa8aabeaaaaa@3B94@  denote the Gaussians covariance matrices. Due to the statistical independence of ANFs across multiple characteristic frequencies, it was reasonable to hypothesize that any two different λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3978@ components are not correlated. The off-diagonal correlations were set to zero, resulting in a diagonal covariance matrices Σ 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaho6apaWaaSbaaSqaa8qacaaIXaGaaiilaiaaikdaa8aabeaaaaa@3B94@ , therefore N( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8xdX70a aeWaa8aabaGaeq4UdWgapeGaayjkaiaawMcaaaaa@469B@ yielded:

N( λ| μ,Σ )= 1 ( 2π ) K/2 k=1 K 1 σ k exp{ 1 2 ( λ k μ k σ k ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8xdX70a aeWaa8aabaWdbiabeU7aSnaaeeaabaGaeqiVd0Maaiilaiabfo6atb Gaay5bSdaacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaaigda a8aabaWdbmaabmaapaqaa8qacaaIYaGaeqiWdahacaGLOaGaayzkaa WdamaaCaaaleqabaWdbiaadUeacaGGVaGaaGOmaaaaaaGcdaGfWbqa bSWdaeaapeGaam4Aaiabg2da9iaaigdaa8aabaWdbiaadUeaa0Wdae aapeGaey4dIunaaOWaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeo8a Z9aadaWgaaWcbaWdbiaadUgaa8aabeaaaaGcpeGaaeyzaiaabIhaca qGWbWaaiWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqa a8qacaaIYaaaamaabmaapaqaa8qadaWcaaWdaeaapeGaeq4UdW2dam aaBaaaleaapeGaam4AaaWdaeqaaOWdbiabgkHiTiabeY7aT9aadaWg aaWcbaWdbiaadUgaa8aabeaaaOqaa8qacqaHdpWCpaWaaSbaaSqaa8 qacaWGRbaapaqabaaaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqa a8qacaaIYaaaaaGccaGL7bGaayzFaaaaaa@7435@   10

Where k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadUgaaaa@38D4@ and σ 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa Wcbaaeaaaaaaaaa8qacaaIXaGaaiilaiaaikdaa8aabeaaaaa@3C09@  denote the cochlear position index and the Gaussians variances, respectively.

The problem was addressed as an optimization problem, with the objective of estimating a set of parameters that best fit the joint probability of the hypotheses, and was solved using the expectation-maximization (EM) approach.18

Let Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahQfaaaa@38C7@ be the latent vector that determine the component from λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3978@ originates, s.t.,

P( λ|Z=z )N( μ z , Σ z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadcfadaqadaWdaeaapeGaeq4UdWMaaiiFaiaacQfacqGH9aqpcaWG 6baacaGLOaGaayzkaaGaeyipI43efv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuaacqWFneVtdaqadaWdaeaacqaH8oqBdaWgaaWc baWdbiaadQhaa8aabeaak8qacaGGSaGaeu4Odm1damaaBaaaleaape GaamOEaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@5514@   11

During the expectation step, the weights w j [ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEhapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeWaamWaa8aabaWd biaad6gaaiaawUfacaGLDbaaaaa@3D47@  were defined as a ’soft’ assignment of λ[ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSnaadmaapaqaa8qacaWGUbaacaGLBbGaayzxaaaaaa@3C9C@ to Gaussian j, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadQgacaGGSaaaaa@3983@

w j [ n ]=P( z=j| λ[ n ];θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEhapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeWaamWaa8aabaWd biaad6gaaiaawUfacaGLDbaacqGH9aqpcaWGqbWaaeWaa8aabaWdbi aadQhacqGH9aqpcaWGQbWaaqqaaeaacqaH7oaBdaWadaWdaeaacaWG UbaapeGaay5waiaaw2faaaGaay5bSdGaai4oaiabeI7aXbGaayjkai aawMcaaaaa@4C7E@   12

where θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeI7aXbaa@399A@ indicates the parameters set of the model ( θ={ μ,σ,π } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeI7aXjabg2da9maacmaapaqaa8qacqaH8oqBcaGGSaGaeq4WdmNa aiilaiabec8aWbGaay5Eaiaaw2haaaaa@4386@ ).

A new parameter set θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeI7aXbaa@399A@ was estimated throughout the maximization step by maximizing the log-likelihood with respect to the expectations,

arg max θ n=1 N j=1 2 w j [ n ]log( π j N( λ[ n ]; μ j , σ 2 j ) ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aaciaapaqaauaabaqabeaaaeaapeGaciyyaiaackhacaGGNbGaciyB aiaacggacaGG4bWaaSbaaSqaaiabeI7aXbqabaGcdaGfWbqabSWdae aapeGaamOBaiabg2da9iaaigdaa8aabaWdbiaad6eaa0WdaeaapeGa eyyeIuoaaOWaaybCaeqal8aabaWdbiaadQgacqGH9aqpcaaIXaaapa qaa8qacaaIYaaan8aabaWdbiabggHiLdaakiaadEhapaWaaSbaaSqa a8qacaWGQbaapaqabaGcpeWaamWaa8aabaWdbiaad6gaaiaawUfaca GLDbaacaqGSbGaae4BaiaabEgadaqadaWdaeaapeGaeqiWda3damaa BaaaleaapeGaamOAaaWdaeqaaOWdbiaad6eadaqadaWdaeaapeGaeq 4UdW2aamWaa8aabaGaamOBaaWdbiaawUfacaGLDbaacaGG7aGaeqiV d02damaaBaaaleaapeGaaCOAaaWdaeqaaOWdbiaacYcacqaHdpWCpa WaaWbaaSqabeaapeGaaGOmaaaak8aadaWgaaWcbaWdbiaadQgaa8aa beaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaaaaacaGL9baaaa a@69F4@   13

Given an initial estimate, the EM algorithm cycles through [12] and [13] repeatedly, until the estimates converge.

The entire algorithm for estimating the statistical properties of both the speech and the noise neural activities was illustrated in Algorithm 1.

Data: λ 1,,N Result: N j=1,2 (λ| μ j , Σ j ) while  θ t+1 θ t do | E Step:for each n,j do |                    w j [n]= π j N(λ[n]| μ j , σ j ) j=1 2 N(λ[n]| μ j , σ j )             (14) end M Step:for each n,j do |                   μ j = n=1 N w j [n]λ[n] n=1 N w j [n]                        (15)                                   σ j 2 = n=1 N (λ[n] μ j ) 2 w j [n] n=1 N w j [n]           (16)                    π j = n=1 N w j [n] N                                  (17) end end MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaadseaca WGHbGaamiDaiaadggacaGG6aGaeq4UdW2aaSbaaSqaaiaaigdacaGG SaGaeSOjGSKaaiilaiaad6eaaeqaaaGcbaGaamOuaiaadwgacaWGZb GaamyDaiaadYgacaWG0bGaaiOoaiaab6eadaWgaaWcbaGaaeOAaiaa b2dacaqGXaGaaeilaiaabkdaaeqaaOGaaeikaiabeU7aSnaaeeaaba GaeqiVd02aaSbaaSqaaiaadQgaaeqaaaGccaGLhWoacaGGSaGaeu4O dm1aaSbaaSqaaiaadQgaaeqaaOGaaiykaaqaaiaabEhacaqGObGaae yAaiaabYgacaqGLbGaaeiiaiabeI7aXnaaBaaaleaacaWG0bGaey4k aSIaaGymaaqabaGccqGHGjsUcqaH4oqCdaWgaaWcbaGaamiDaaqaba GccaWGKbGaam4BaaqaamaaeeaaeaqabeaacaWGfbaeaaaaaaaaa8qa caGGGcWdaiaadofacaWG0bGaamyzaiaadchacaGG6aGaamOzaiaad+ gacaWGYbWdbiaacckapaGaamyzaiaadggacaWGJbGaamiAa8qacaGG GcWdaiaad6gacaGGSaGaamOAa8qacaGGGcWdaiaadsgacaWGVbaaba WaaqqaaeaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcWdaiaadEhadaWgaaWcbaGaamOAaaqa baGccaGGBbGaamOBaiaac2facqGH9aqpdaWcaaqaaiabec8aWnaaBa aaleaacaWGQbaabeaakiabgwSixprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaWdbiab=1q8ojaacIcapaGaeq4UdWMaai4wai aad6gacaGGDbWaaqqaaeaacqaH8oqBdaWgaaWcbaGaamOAaaqabaGc caGGSaGaeq4Wdm3aaSbaaSqaaiaadQgaaeqaaOGaaiykaaGaay5bSd aabaWaaabCaeaapeGae8xdX7Kaaiika8aacqaH7oaBcaGGBbGaamOB aiaac2fadaabbaqaaiabeY7aTnaaBaaaleaacaWGQbaabeaakiaacY cacqaHdpWCdaWgaaWcbaGaamOAaaqabaGccaGGPaaacaGLhWoaaSqa aiaadQgacqGH9aqpcaaIXaaabaGaaGOmaaqdcqGHris5aaaak8qaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGOaGaaGymaiaaisdacaGGPaaapa Gaay5bSdaabaGaamyzaiaad6gacaWGKbaabaGaamyta8qacaGGGcWd aiaadofacaWG0bGaamyzaiaadchacaGG6aGaamOzaiaad+gacaWGYb WdbiaacckapaGaamyzaiaadggacaWGJbGaamiAa8qacaGGGcWdaiaa d6gacaGGSaGaamOAa8qacaGGGcWdaiaadsgacaWGVbaabaWaaqqaaq aabeqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOa8aacqaH8oqBdaWgaaWcbaGaamOAaaqabaGccqGH 9aqpdaWcaaqaamaaqahabaGaam4DamaaBaaaleaacaWGQbaabeaaki aacUfacaWGUbGaaiyxaiabgwSixlabeU7aSjaacUfacaWGUbGaaiyx aaWcbaGaamOBaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaake aadaaeWbqaaiaadEhadaWgaaWcbaGaamOAaaqabaGccaGGBbGaamOB aiaac2faaSqaaiaad6gacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHri s5aaaak8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacIcacaaIXaGaaGynaiaacMcacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcaapaqaa8qacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aacqaHdpWCda WgaaWcbaGaamOAaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGH9aqp daWcaaqaamaaqahabaGaaiikaiabeU7aSjaacUfacaWGUbGaaiyxai abgkHiTiabeY7aTnaaBaaaleaacaWGQbaabeaakiaacMcadaahaaWc beqaaiaaikdaaaaabaGaamOBaiabg2da9iaaigdaaeaacaWGobaani abggHiLdGccqGHflY1caWG3bWaaSbaaSqaaiaadQgaaeqaaOGaai4w aiaad6gacaGGDbaabaWaaabCaeaacaWG3bWaaSbaaSqaaiaadQgaae qaaOGaai4waiaad6gacaGGDbaaleaacaWGUbGaeyypa0JaaGymaaqa aiaad6eaa0GaeyyeIuoaaaGcpeGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacIcacaaIXaGa aGOnaiaacMcaa8aabaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aacqaHapaCdaWgaaWcba GaamOAaaqabaGccqGH9aqpdaWcaaqaamaaqahabaGaam4DamaaBaaa leaacaWGQbaabeaakiaacUfacaWGUbGaaiyxaaWcbaGaamOBaiabg2 da9iaaigdaaeaacaWGobaaniabggHiLdaakeaacaWGobaaa8qacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGOaGaaGymaiaaiEdacaGGPaaaa8aacaGLhWoaaeaacaWGLbGaam OBaiaadsgaaaGaay5bSdaabaGaamyzaiaad6gacaWGKbaaaaa@F766@  

Algorithm 1: Estimating the speech presence probability using the EM algorithm with multivariate

normal distribution and diagonal covariance matrix.

After estimating all the parameters, the SPP can be obtained by:

SPP( λ| μ,σ )= π i N( λ| μ i , σ i ) j=1 2 π j N( λ| μ j , σ j ) ,    i H 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadofacaWGqbGaamiuamaabmaapaqaa8qacqaH7oaBdaabbaqaaiab eY7aTjaacYcacqaHdpWCaiaawEa7aaGaayjkaiaawMcaaiabg2da9m aalaaapaqaa8qacqaHapaCpaWaaSbaaSqaa8qacaWGPbaapaqabaWe fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaak8qacqWFne VtdaqadaWdaeaapeGaeq4UdW2aaqqaaeaacqaH8oqBpaWaaSbaaSqa a8qacaWGPbaapaqabaGcpeGaaiilaiabeo8aZ9aadaWgaaWcbaWdbi aadMgaa8aabeaaaOWdbiaawEa7aaGaayjkaiaawMcaaaWdaeaapeWa aubmaeqal8aabaWdbiaadQgacqGH9aqpcaaIXaaapaqaa8qacaaIYa aan8aabaWdbiabggHiLdaakiabec8aW9aadaWgaaWcbaWdbiaadQga a8aabeaak8qacqWFneVtdaqadaWdaeaapeGaeq4UdW2damaaeeaaba WdbiabeY7aT9aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacaGGSaGa eq4Wdm3damaaBaaaleaapeGaamOAaaWdaeqaaaGccaGLhWoaa8qaca GLOaGaayzkaaaaaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaamyA aiabgIGiolaadIeapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@7F8A@   18

Evaluation method

An effective method for evaluating the ability of speech estimator to separate speech from noise is to examine the area under the receiver-operator characteristic curve (AUC), with a higher AUC indicating better performance. Threshold values in the range of [ 0,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacaaIWaGaaiilaiaaigdaaiaawUfacaGLDbaaaaa@3C1A@  were applied to SPPs outputs to categorize them as speech presence or absent. For each threshold, the true positive rate and false positive ratio were determined by calculating the proportion of correctly identified speech-containing segments and incorrectly identified noise segments, respectively. The ground truth used for the evaluation was manually labeled by inferring which segments contain speech versus which segments contain noise.

For the evaluation, a total of thirty speech utterances were taken from the NOIZEUS database, a repository of noisy speech corpus.19 The sentences were degraded with three different types of real-world noise: car, white, and babble. This was done through the addition of interfering signals at signal-to-noise ratios (SNRs) ranging from -15 to 15 dB, using method B of the ITU-T P.56.20

Results

Auditory periphary response

Figure 2 illustrates the relationship between the cochlear response and cochlear position at different frequencies, when a linear chirp stimulus is applied at a sound pressure level (SPL) of 65 dB. The derived ANFs IRs are displayed in a color-coded format, demonstrating how the response varies with changes in input frequency along the cochlear partition.

Figure 2 ANF IR derivation as a response to a linear chirp. The frequency (in kHz) is plotted along the x-axis, while the corresponding distance from the stapes (in cm) is represented on the y-axis and denoted by ’x’.

Example outcome

Figure 3 depicts an example of the model’s outputs as a response to the English phrase “We find joy in” at level of 65 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaiAdacaaI1aaaaa@3963@  dB SPL. The sentence was taken from track number 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaiEdaaaa@38A5@  of NOIZEUS database.19

Figure 3 comprises panels that depict various variables or environmental conditions. The left and right columns of the figure denoted as Panels A and B, respectively, display the model’s inputs and outputs for noisy speech degraded by car noise at SNRs of 0 dB and 15 dB. Panels A1 and B1 show the acoustic waveforms, while Panels A2 and B2 present the ANFs’ IRs as a color-coded graph in spikes/sec, with the x-axis representing post stimulus time and the y-axis representing distance from the stapes. In Panels A3 and B3, the ANFs’ SPPs are displayed with gray backgrounds indicating binary flags for speech presence (1) or absence (0). Although the SPP for speech at 15 dB SNR speech matches the manually labeled speech presence, the SPP for speech at 0 dB SNR does not clearly indicate it, regardless of the speech’s presence. Panels A4 and B4 display the CD cells’ IRs, while Panels A5 and B5 show their SPPs. The results show that the SPPs computed after CD processing better follow speech patterns and match manual labels, even when the energy of background noise equals that of the speech signal.

Figure 3 The acoustic waveforms, ANFs’ IRs, CD cells’ IRs and their corresponding SPPs were exhibited in response to the English sentence “We find joy in” at level of 65 dB SPL. The sample was obtained from file ’sp07.wav’ of NOIZEUS database between 0s and 1.20s. Panels A1 and B1 respectively display the acoustic waveform for noisy speech stimuli degraded by car noise at SNRs of 0dB and 15dB. Panels A2 and B2 illustrate the ANFs’ responses. Panels A3 and B3 show the corresponding ANFs’ SPPs. Panels A4 and B4 display the response of the CD cells’ network (with parameters M= 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eacqGH9aqpcaqGGaGaaGOnaaaa@3B1E@ and Δc= 3ms MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfs5aejaadogacqGH9aqpcaqGGaGaaG4maiaad2gacaWGZbaaaa@3E81@ ). Panels A5 and B5 provide the corresponding SPPs of the CD cells’ response.

Coincidence detection cell parameters tuning

To determine the optimal architecture for the CD cell, we systematically varied the number of input cells ( M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbaaaa@36E9@ ) and the coincidence window ( Δ c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcacqqHuoarpaWaaSbaaSqaa8qacaWGJbaapaqabaGccaGGPaaa aa@3BEF@ , as specified in Eq [5]. The results are presented in Figure 4. Based on these results, we selected M=6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eacqGH9aqpcaaI2aaaaa@3A7C@ and Δ c =3ms MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfs5ae9aadaWgaaWcbaWdbiaadogaa8aabeaak8qacqGH9aqpcaaI ZaGaamyBaiaadohaaaa@3E53@  as the parameters to be used in the evaluation. These parameter values correspond to those of actual CD cells found in the inferior colliculus and the ventral cochlear nucleus.21–23

Figure 4 A color-coded graph of the AUC of speech degraded by car noise at a SNR of 0dB, with various combinations of input cells (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcacaWGnbGaaiykaaaa@3A0E@  and coincidence window lengths ( Δc ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaabaaa aaaaaapeGaeuiLdqKaam4yaaWdaiaawIcacaGLPaaaaaa@3BC9@ . The speech was obtained from file ’sp09.wav’ of NOIZEUS database.

Speech presence estimators

Figure 5 presents a comparison between CD-based and ANF-based estimators. Figure 5A shows the noises power spectrum densities, while the average AUC scores of the 30 sentences with the corresponding standard deviations are plotted as a function of the SNR for three types of noise: babble noise (Figure 5B), white noise (Figure 5C), and car noise (Figure 5D).

Figure 5 A comparison between ANF-based and CD-based estimators (with parameters M = 6, Δc = 3ms) for a healthy cochlea. The power spectrum density and AUC scores for three different real-word noises, babble, white and car noises, at SNRs of 15 to 15 dB are shown in panels a, b, c, and d respectively.

Both ANF-based and CD-based estimators showed an increase in average AUC with increasing SNR. However, CD-based estimators outperformed ANF-based estimators for all tested SNRs and noise types, with the most significant improvement observed for mid-low input SNRs. The statistical difference in performances was compared with ANOVA and yielded significant difference for all types of noises and SNRs ( P<.001 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadcfacqGH8aapcaGGUaGaaGimaiaaicdacaaIXaaaaa@3C9E@ ). For SNR10dB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadofacaWGobGaamOuaiabgwMiZkaaigdacaaIWaGaamizaiaadkea aaa@3F51@ , the performance yielded by the ANF were reasonable ( AUC0.9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeacaWGvbGaam4qaiabgwMiZkaaicdacaGGUaGaaGyoaaaa@3E41@ ), thus only minor improvement was yielded by the CD processing. However, for SNR0dB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadofacaWGobGaamOuaiabgIKi7kaaicdacaWGKbGaamOqaaaa@3E81@  the ANF performances yielded AUC0.7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeacaWGvbGaam4qaiabgIKi7kaaicdacaGGUaGaaG4naaaa@3E2A@ for all noise types, and the additional CD processing yielded AUC0.9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeacaWGvbGaam4qaiabgIKi7kaaicdacaGGUaGaaGyoaaaa@3E2C@ . On the other hand, for very low SNRs, for example SNR=15dB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadofacaWGobGaamOuaiabg2da9iabgkHiTiaaigdacaaI1aGaamiz aiaadkeaaaa@3F83@ , and the ANF performances were close to chance ( AUC0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeacaWGvbGaam4qaiabgIKi7kaaicdacaGGUaGaaGynaaaa@3E28@ ), the improvement yielded by the CD processing was small.

Discussion

In this paper, a speech segregation model based on the physiology of the auditory pathway is presented. The proposed excitatory-only coincidence detection (CD) architecture demonstrates its effectiveness in reducing noise components in stationary noise while concurrently improving the accuracy of speech segregation. These findings highlight the potential of CD cells to contribute significantly to enhancing speech perception. To ensure broad applicability and avoid over-fitting, the models and assumptions were simplified. Using an unsupervised optimal estimator further strengthens the study’s findings, as it provides unbiased insights into the neural representation of CD processing.

CD cells are widely distributed across various auditory nuclei, with a significant presence in the trapezoid body nuclei, where they play a significant role in binaural perception.24–26 Binaural processes have been demonstrated to enhance speech segregation,27,28 implying that CD cells may be involved in this aspect of auditory perception. However, speech segregation can also occur monaurally. In natural acoustic signals, amplitude modulation (AM) serves as a critical temporal feature, and its significance has been highlighted in various perceptual tasks, such as envelope detection and segregation.29 Notably, CD cells have been linked to AM processing.9,30 Furthermore, envelope and temporal fine structure information are known to be important for speech perception.31–33 The CD cells presented in this paper function as auto-correlation units, effectively enhancing this information, which is essential for speech segregation. These findings provide valuable insights into the neural mechanisms underlying auditory processing.

While the tonotopic representation used in the estimator was found to be effective, it is important to acknowledge its limitations. The assumption of independence between different characteristic frequencies may not always hold true. Although spike generation in different auditory nerve fibers (ANFs) is statistically independent, the tuning curves of ANFs have a long low-frequency tail, and the tips of the curves broaden and decrease at higher sound pressure levels (SPLs).34–36 Consequently, the synaptic drive to different ANFs across the cochlear length is not entirely independent. Future investigations should incorporate more sophisticated models that account for the interactions between frequency channels. Moreover, an alternative architecture incorporating inhibitory inputs may be more effective for other types of noises or conditions. Future work should also consider including inhibitory inputs and evaluating the model’s performance against different noise types.

Conclusion

Two distinct methods for speech estimation were compared: one based on coincidence detection and the other on auditory nerve fibers. CD-based estimators consistently outperformed ANF-based estimators across all tested SNRs and noise types. The improvement was most significant for mid-low input SNRs. These findings suggested that CD information plays a crucial role in speech segregation, contributing significantly to the enhanced performance of the model.

Acknowledgments

This research was partially supported by the ISRAEL SCIENCE FOUNDATION: grant No. 563/12.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Funding

None.

References

  1. Li N, Loizou PC. Factors influencing intelligibility of ideal binary-masked speech: Implications for noise reduction. J Acoust Soc Am 2008;123(3):1673–1682.
  2. Wang D, Kjems U, Pedersen MS, et al. Speech intelligibility in background noise with ideal binary time-frequency masking. J Acoust Soc Am 2009;125(4):2336–2347.
  3. Bregman AS. Auditory scene analysis: The perceptual organization of sound; Auditory scene analysis: The perceptual organization of sound. The MIT Press; 1990:xiii,200773.
  4. Cohen I, Berdugo B. Noise estimation by minima controlled recursive averaging for robust speech enhancement. IEEE Signal Processing Letters. 2002;9:12–15.
  5. Paliwal K, Schwerin B, Wójcicki K. Speech enhancement using a minimum mean-square error short-time spectral modulation magnitude estimator. Speech Communication. 2012;54:282–305.
  6. May T, Dau T. Computational speech segregation based on an auditory-inspired modulation analysis. J Acoust Soc Am. 2014;136(6):3350–3359.
  7. Han K, Wang D. A classification based approach to speech segregation. J Acoust Soc Am. 2012;132(5):3475–3483.
  8. Wang D. Speech separation by humans and machines. Divenyi P, editor. Boston: Springer US; 2005:181–197.
  9. Joris PX, Schreiner CE, Rees A. Neural processing of amplitude-modulated sounds. Physiological reviews. 2004;84(2):541–577.
  10. Krips R, Furst M. Stochastic properties of coincidence-detector neural cells. Neural Computation. 2009;21(9):2524–2553.
  11. Cohen A, Furst M. Integration of outer hair cell activity in a one-dimensional cochlear model. J Acoust Soc Am. 2004;115(5 Pt 1):2185–2192.
  12. Barzelay O, Furst M. Cochlear model with integrated tectorial membrane and outer hair cells. AIP Conference Proceedings. 2011;1403:79–84.
  13. Sabo D, Barzelay O, Weiss S, et al. Fast evaluation of a time-domain non-linear cochlear model on GPUs. Journal of Computational Physics. 2014;265:97–112.
  14. Furst M. Cochlear model for hearing loss. Intech Open; 2015.
  15. Faran M, Furst M. Inner-hair-cell induced hearing loss: a biophysical modeling perspective. J Acoust Soc Am. 2023;153:1776–1790.
  16. Zilany MSA, Bruce IC, Nelson PC, et al. A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am. 2009;126:2390–2412.
  17. Ephraim Y, Malah D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1984;32:1109–1121.
  18. Moon T. The expectation-maximization algorithm. IEEE Signal Processing Magazine. 1996;13:47–60.
  19. Hu Y, Loizou PC. Subjective comparison and evaluation of speech enhancement algorithms. Speech Communication. 2007;49(7):588–601.
  20. P.56. Objective measurement of active speech level. ITU. 2011.
  21. McGinley MJ, Oertel D. Rate thresholds determine the precision of temporal integration in principal cells of the ventral cochlear nucleus. Hearing Research. 2006;216-217:52–63.
  22. Wenstrup JJ, Nataraj K, Sanchez JT. Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus. Front Neural Circuits. 2012:6:75.
  23. Chen Y, Zhang H, Wang H. The role of coincidence detector neurons in the reliability and precision of subthreshold signal detection in noise. PLoS ONE. 2013;8:e56822.
  24. Yin T, Chan J. Interaural time sensitivity in medial superior olive of cat. J Neurophysiol. 1990;64(2):465–488.
  25. McAlpine D, Jiang, D, Shackleton TM, et al. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. J Neurophysiol. 1998;18(25):6026–6039.
  26. Caspary DM, Ling L, Turner JG, et al. Superior olivary complex-functional neuropharmacology of the principal cell types. The Journal of Experimental Biology. 2008;211:1781–1791.
  27. Rennies J, Best V, Roverud E, et al. Energetic and informational components of speech-on-speech masking in binaural speech intelligibility and perceived listening effort. Trends Hear. 2019;23: 2331216519854597.
  28. Roman N, Srinivasan S, Wang D. Binaural segregation in multisource reverberant environments. J Acoust Soc Am. 2006;120(6):4040–4051.
  29. Yost WA. Auditory perception. Fundamentals of hearing. Brill; 2006:203–221.
  30. Nelson PC, Carney LH. Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. J Neurophysiol. 2007;97(1):522–539.
  31. Ahissar E, Ahissar M. Processing of the temporal envelope of speech. Routledge: The Auditory Cortex, USA. 2005:313–332.
  32. Rosen, S. Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans R Soc Lond B Biol Sci. 1992;336(1278):367–373.
  33. Shannon RV, Zeng FG, Kamath V, et al. Speech recognition with primarily temporal cues. Science. 1995;270(5234):303–304.
  34. Shera CA, Guinan JJ, Oxenham AJ. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Biological Sciences. 2002;99:3318–3323.
  35. Glasberg BR, Moore BC. Derivation of auditory filter shapes from notched-noise data. Hearing Research. 1990;47:103–138.
  36. Brownell WE,  Bader CR, Bertrand D, et al. Evoked mechanical responses of isolated cochlear outer hair cells. Science (New York, N.Y.) 1985;227:194–196.
Creative Commons Attribution License

©2023 Zorea, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.