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Introduction
In our daily lives, following a conversation often involves listening 

to speech accompanied by some background noise. The auditory 
system adeptly processes and discriminates complex acoustic 
information, allowing us to extract relevant speech cues from the 
surrounding sound. Previous studies have demonstrated that speech 
segregation, the process of separating speech from noise, significantly 
contributes to speech perception and comprehension.1,2

Bregman3 ascribes auditory segregation to auditory scene 
analysis and outlines two stages involved in the segregation process: 
segmentation and grouping. During segmentation, the input is divided 
into segments. In the grouping stage, the segments that are estimated 
to originate from the same source are clustered together. Numerous 
studies have adopted the auditory scene analysis approach to achieve 
comprehensive speech segregation. A common technique involves 
employing a time-frequency (T-F) representation based on the speech 
spectrogram, utilizing a logarithmic scale of the frequency domain. 
Estimating the speech presence probability (SPP) relies on analyzing 
the statistical characteristics of both the speech and the background 
noise.4,5 Moreover, thresholding is often utilized to generate the ideal 
binary mask of the speech.6–8

The cochlea decompose sounds into narrow-band signals with 
specific characteristic frequencies. Then, auditory information 
propagates via the auditory nerve through multiple auditory nuclei, 
including the cochlear nucleus and inferior colliculus. These centers 
extract and process complex acoustic features from the neural 
input. In the inferior colliculus, one of the common cell types is the 
coincidence detection (CD) cell.9 This neuron encode information by 
detecting the occurrence of temporally close but spatially distributed 
input signals. Krips and Furst10 have shown that if the inputs act as a 
non-homogeneous Poisson process (NHPP), then the CD output also 
behaves as NHHP. The extracted information is transmitted to the 
auditory cortex, which is further processed and integrated over time to 
contribute to the comprehension and perception of spoken language.

This study aims to investigate the potential involvement of 
CD neurons in speech segregation using biologically motivated 
computational modeling. The model presented in this study includes 

three key stages: In the first stage, an initial T-F representation is 
obtained by a cochlear model, which generates instantaneous rates 
(IRs) of auditory nerve fibers (ANFs).11–14 In the second stage, a 
network of CD cells is integrated to enhance the neural representation 
of the auditory input. Finally, an optimal speech presence estimator 
is employed, enabling us to assess the effectiveness of the CD 
processing. The structure of this paper is organized as follows. The 
material and methodology are presented in Section 2. The study results 
are presented in Section 3. Finally, the discussion and conclusions are 
summarized in Section 4 and Section 5.

Material and methods
A schematic illustration of the model is depicted in Figure 1. The 

diagram is divided into three blocks, each representing a component 
of the model. The first block represents the auditory periphery, which 
is responsible for the initial processing of auditory stimuli. The second 
block illustrates the network of CD cells designed with excitatory 
inputs. The third block signifies the speech estimator, which integrates 
input from multiple tonotopic channels to estimate the probability of 
speech presence. Notably, this estimator can receive input from either 
CD cells or ANFs responses.

Figure 1 A schematic description of the computational model.

Cochlear model

The cochlear model utilized in this study employs a time-domain 
solution of cochlear mechanics. It calculates the basilar membrane 
motion as a response to an acoustic stimulus while integrating the 
electro-mechanical non-linear motion of the outer hair cells.11-13,15 
Practically, the model was simulated with an adaptive time step and 
256 cochlear partitions. The derivation of the ANFs’ IRs at each 
cochlear partition was obtained by phenomenological model.14,16
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Coincidence cells architecture

Each neural input is represented by a set of spikes that occur 
at instances{ },nt n∈ . This series of spikes events can be 
described as a random point process with IR ( )tλ , and refractory 
period rτ . A general excitatory-excitatory (EE) cell, N

MEE , has N
independent excitatory inputs { }1,.., NE EΨ = with corresponding 

IRs { }1 ,..,E ENλ λ λΨ = , and generates a spike when at least M of 
its inputs spike during an interval c∆ . To maintain simplicity, it was 
assumed that M N= and denote it as MEE . Such a cell generates 

spikes at instances{ },n fft n ∈ ,
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where { }1 ,..., M
n nf ft t  denote the discrete firing times of the M

excitatory inputs respectively.

According to Krips and Furst,10 CD cells exhibit NHHP behavior 
when their inputs are also NHPP point processes. As a result, their 
output can be computed analytically. The expression for the MEE
cell’s IR was obtained using this approach:
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Despite the diversity of the MEE  cell’s inputs, it is reasonable to 
presume that the firing rates of the M  neurons in response to a given 
stimulus would be similar on average, therefore:

  { }( ) ( ), 1,.., =E Em t t m Mλ λ
∆

∀ ∈                                                     (3)

where m denotes the input cell index.

The MEE cell’s output, EEMλ , may be described as follows:
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where cI  represents the coincidence integral.

A discrete MEE cell’s output, [ ]EEM nλ , can be obtained using 
a discrete approximation of the coincidence integral cI . For a time 
domain discretized into cN  equal panels, each of size sδ . By applying 
the trapezoidal rule, an approximation for cI  can be obtained by:

                      (5)

where c cN fs= ∆ ⋅  is the discrete integration window length, 

i st f iτ = ⋅ +  the discrete time index, 1
s

sf
δ = is the sample time, and

fs is the sample rate.

As a consequence, in the discrete-time domain, the coincidence 
integral can be computed by convolving [ ]nλ with the following 
finite impulse response (FIR) filter [ ]firh n :
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Finally, the discrete MEE cell’s IR, [ ]EEM nλ , was obtained by:
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|
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The corresponding CD cells’ IRs are generated from K vectors of 
ANFs’ IRs received.

Speech presence estimation

When an interfering noise coincides in frequency and time with a 
signal of interest, they both interfere on the basilar membrane, causing 
both the signal and the noise to compete for the same receptors. 
Let ( )nλK  be a IRs random vector distributed across K  cochlear 
partitions, as a function of time. In the neural activity domain, 
according to the tonotopic organization of the auditory system, it can 
be assumed that the neural response is an additive mixture of clean 
speech ( )Speech nλ  and acoustic noise ( )Noise nλ .

Two hypotheses [ ]1H n  and [ ]2H n  were suggested, and indicate 
speech absence and speech presence respectively,
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The process of separating an auditory scene into distinct objects 
was modeled as an unbiased optimal estimator of the SPP, which is the 
probability of speech being present in a noisy observation. Motivated 
by the central limit theorem,17 the IR’s distribution, λ , was assumed 
to be a superposition of multivariate Gaussians generated by two 
parent processes:
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where, correspondingly,  denotes a multivariate normal 
distribution function, 1,2π denote the prior probability of 1,2 ,Hλ ∈  

1,2µ  denote the Gaussian means, and  denote the Gaussians 
covariance matrices. Due to the statistical independence of ANFs 
across multiple characteristic frequencies, it was reasonable to 
hypothesize that any two different λ components are not correlated. 
The off-diagonal correlations were set to zero, resulting in a diagonal 
covariance matrices , therefore ( )λ yielded:
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Where k and 1,2σ  denote the cochlear position index and the 
Gaussians variances, respectively.

The problem was addressed as an optimization problem, with 
the objective of estimating a set of parameters that best fit the joint 
probability of the hypotheses, and was solved using the expectation-
maximization (EM) approach.18

Let Z be the latent vector that determine the component from λ  
originates, s.t.,

( ) ( )| Z ,z zP zλ µ= ∼ Σ                                                                   (11)

During the expectation step, the weights [ ]jw n  were defined as a 
’soft’ assignment of [ ]nλ to Gaussian ,j
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[ ] [ ]( );jw n P z nj λ θ= =                                                                    (12)

where θ indicates the parameters set of the model ( { }, ,θ µ σ π= ). 

A new parameter set θ was estimated throughout the maximization 
step by maximizing the log-likelihood with respect to the expectations,
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Given an initial estimate, the EM algorithm cycles through [12] 
and [13] repeatedly, until the estimates converge.

The entire algorithm for estimating the statistical properties 
of both the speech and the noise neural activities was illustrated in 
Algorithm 1. 

Algorithm 1: Estimating the speech presence probability using the 
EM algorithm with multivariate normal distribution and diagonal 
covariance matrix.

After estimating all the parameters, the SPP can be obtained by:
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Evaluation method

An effective method for evaluating the ability of speech estimator 
to separate speech from noise is to examine the area under the 

receiver-operator characteristic curve (AUC), with a higher AUC 
indicating better performance. Threshold values in the range of [ ]0,1  
were applied to SPPs outputs to categorize them as speech presence 
or absent. For each threshold, the true positive rate and false positive 
ratio were determined by calculating the proportion of correctly 
identified speech-containing segments and incorrectly identified noise 
segments, respectively. The ground truth used for the evaluation was 
manually labeled by inferring which segments contain speech versus 
which segments contain noise.

For the evaluation, a total of thirty speech utterances were taken 
from the NOIZEUS database, a repository of noisy speech corpus.19 
The sentences were degraded with three different types of real-world 
noise: car, white, and babble. This was done through the addition of 
interfering signals at signal-to-noise ratios (SNRs) ranging from -15 
to 15 dB, using method B of the ITU-T P.56.20

Results
Auditory periphary response

Figure 2 illustrates the relationship between the cochlear response 
and cochlear position at different frequencies, when a linear chirp 
stimulus is applied at a sound pressure level (SPL) of 65 dB. The 
derived ANFs IRs are displayed in a color-coded format, demonstrating 
how the response varies with changes in input frequency along the 
cochlear partition.

Figure 2 ANF IR derivation as a response to a linear chirp. The frequency (in 
kHz) is plotted along the x-axis, while the corresponding distance from the 
stapes (in cm) is represented on the y-axis and denoted by ’x’.

Example outcome

Figure 3 depicts an example of the model’s outputs as a response 
to the English phrase “We find joy in” at level of 65  dB SPL. The 
sentence was taken from track number 7  of NOIZEUS database.19

Figure 3 comprises panels that depict various variables or 
environmental conditions. The left and right columns of the figure 
denoted as Panels A and B, respectively, display the model’s inputs 
and outputs for noisy speech degraded by car noise at SNRs of 0 dB 
and 15 dB. Panels A1 and B1 show the acoustic waveforms, while 
Panels A2 and B2 present the ANFs’ IRs as a color-coded graph in 
spikes/sec, with the x-axis representing post stimulus time and the 
y-axis representing distance from the stapes. In Panels A3 and B3, the 
ANFs’ SPPs are displayed with gray backgrounds indicating binary 
flags for speech presence (1) or absence (0). Although the SPP for 
speech at 15 dB SNR speech matches the manually labeled speech 
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presence, the SPP for speech at 0 dB SNR does not clearly indicate 
it, regardless of the speech’s presence. Panels A4 and B4 display the 
CD cells’ IRs, while Panels A5 and B5 show their SPPs. The results 

show that the SPPs computed after CD processing better follow 
speech patterns and match manual labels, even when the energy of 
background noise equals that of the speech signal.

                                                         A                                                                                                           B

Figure 3 The acoustic waveforms, ANFs’ IRs, CD cells’ IRs and their corresponding SPPs were exhibited in response to the English sentence “We find joy in” at 
level of 65 dB SPL. The sample was obtained from file ’sp07.wav’ of NOIZEUS database between 0s and 1.20s. Panels A1 and B1 respectively display the acoustic 
waveform for noisy speech stimuli degraded by car noise at SNRs of 0dB and 15dB. Panels A2 and B2 illustrate the ANFs’ responses. Panels A3 and B3 show the 
corresponding ANFs’ SPPs. Panels A4 and B4 display the response of the CD cells’ network (with parameters  6M =  and  3c ms∆ = ). Panels A5 and B5 provide the 
corresponding SPPs of the CD cells’ response.

Coincidence detection cell parameters tuning

To determine the optimal architecture for the CD cell, we 
systematically varied the number of input cells ( M ) and the 
coincidence window ( )c∆ , as specified in Eq [5]. The results are 
presented in Figure 4. Based on these results, we selected 6M =
and 3c ms∆ =  as the parameters to be used in the evaluation. These 
parameter values correspond to those of actual CD cells found in the 
inferior colliculus and the ventral cochlear nucleus.21–23

Speech presence estimators

Figure 5 presents a comparison between CD-based and ANF-
based estimators. Figure 5A shows the noises power spectrum 
densities, while the average AUC scores of the 30 sentences with the 
corresponding standard deviations are plotted as a function of the 
SNR for three types of noise: babble noise (Figure 5B), white noise 
(Figure 5C), and car noise (Figure 5D).

Figure 4 A color-coded graph of the AUC of speech degraded by car noise 
at a SNR of 0dB, with various combinations of input cells ( )M  and coincidence 
window lengths( )c∆ . The speech was obtained from file ’sp09.wav’ of NOIZEUS 
database.
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                                                                       (A)                                                                                                 (B)

                                                                          (C)                                                                                              (D)

Figure 5 A comparison between ANF-based and CD-based estimators (with parameters M = 6, Δc = 3ms) for a healthy cochlea. The power spectrum density 
and AUC scores for three different real-word noises, babble, white and car noises, at SNRs of -15 to 15 dB are shown in panels a, b, c, and d respectively.

Both ANF-based and CD-based estimators showed an increase in 
average AUC with increasing SNR. However, CD-based estimators 
outperformed ANF-based estimators for all tested SNRs and noise 
types, with the most significant improvement observed for mid-low 
input SNRs. The statistical difference in performances was compared 
with ANOVA and yielded significant difference for all types of noises 
and SNRs ( .001P < ). For 10SNR dB≥ , the performance yielded by 
the ANF were reasonable ( 0.9AUC ≥ ), thus only minor improvement 
was yielded by the CD processing. However, for 0SNR dB≈  the 
ANF performances yielded 0.7AUC ≈ for all noise types, and 
the additional CD processing yielded 0.9AUC ≈ . On the other 
hand, for very low SNRs, for example 15SNR dB= − , and the ANF 
performances were close to chance ( 0.5AUC ≈ ), the improvement 
yielded by the CD processing was small.

Discussion
In this paper, a speech segregation model based on the physiology 

of the auditory pathway is presented. The proposed excitatory-
only coincidence detection (CD) architecture demonstrates its 
effectiveness in reducing noise components in stationary noise while 
concurrently improving the accuracy of speech segregation. These 
findings highlight the potential of CD cells to contribute significantly 
to enhancing speech perception. To ensure broad applicability and 
avoid over-fitting, the models and assumptions were simplified. Using 
an unsupervised optimal estimator further strengthens the study’s 
findings, as it provides unbiased insights into the neural representation 
of CD processing.

CD cells are widely distributed across various auditory nuclei, 
with a significant presence in the trapezoid body nuclei, where they 

play a significant role in binaural perception.24–26 Binaural processes 
have been demonstrated to enhance speech segregation,27,28 implying 
that CD cells may be involved in this aspect of auditory perception. 
However, speech segregation can also occur monaurally. In natural 
acoustic signals, amplitude modulation (AM) serves as a critical 
temporal feature, and its significance has been highlighted in various 
perceptual tasks, such as envelope detection and segregation.29 
Notably, CD cells have been linked to AM processing.9,30 Furthermore, 
envelope and temporal fine structure information are known to be 
important for speech perception.31–33 The CD cells presented in this 
paper function as auto-correlation units, effectively enhancing this 
information, which is essential for speech segregation. These findings 
provide valuable insights into the neural mechanisms underlying 
auditory processing.

While the tonotopic representation used in the estimator was 
found to be effective, it is important to acknowledge its limitations. 
The assumption of independence between different characteristic 
frequencies may not always hold true. Although spike generation in 
different auditory nerve fibers (ANFs) is statistically independent, the 
tuning curves of ANFs have a long low-frequency tail, and the tips 
of the curves broaden and decrease at higher sound pressure levels 
(SPLs).34–36 Consequently, the synaptic drive to different ANFs across 
the cochlear length is not entirely independent. Future investigations 
should incorporate more sophisticated models that account for the 
interactions between frequency channels. Moreover, an alternative 
architecture incorporating inhibitory inputs may be more effective for 
other types of noises or conditions. Future work should also consider 
including inhibitory inputs and evaluating the model’s performance 
against different noise types.
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Conclusion
Two distinct methods for speech estimation were compared: one 

based on coincidence detection and the other on auditory nerve fibers. 
CD-based estimators consistently outperformed ANF-based estimators 
across all tested SNRs and noise types. The improvement was most 
significant for mid-low input SNRs. These findings suggested that CD 
information plays a crucial role in speech segregation, contributing 
significantly to the enhanced performance of the model.
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