Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 5 Issue 6

Bayesian analysis of joint modeling of longitudinal and time to event data using some skew-elliptical distributions

Batoul Khoundabi,1 Anoshirvan Kazemnejad,2 Marjan Mansourian,3 Seyed Mohammad Reza Hashemian4

1PhD Student, Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, IR Iran
2Professor, Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, IR Iran
3Assistant Professor, Department of Epidemiology and Biostatistics, School of Public health, Isfahan University of Medical Sciences, IR Iran
4Associate Professor, Anaesthetics, Chronic Respiratory Disease Research Center(CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Iran

Correspondence: Anoshirvan Kazemnejad, Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran, Tel 98-2182883875, Fax 98-2182884524

Received: August 14, 2016 | Published: May 22, 2017

Citation: Khoundabi B, Kazemnejad A, Mansourian M, et al. Bayesian analysis of joint modeling of longitudinal and time to event data using some skew-elliptical distributions. Biom Biostat Int J. 2017;5(6):239-247. DOI: 10.15406/bbij.2017.05.00153

Download PDF

Abstract

Joint modeling of longitudinal and time to event data have been widely used for analyzing medical data, where longitudinal measurements is gathered with a time to event or survival data. In most of these studies, distributional assumption for modeling longitudinal response is normal, which leads to vulnerable inference in the presence of outliers in longitudinal measurements and violation of this assumption. Violation of the normality assumption can also make the statistical inference vague. Powerful distributions for robust analyzing and relaxing normality assumption, are skew-elliptical distributions, which include univariate and multivariate versions of the student’s t, the Laplace and normal distributions. In this paper, a linear mixed effects model with skew-elliptical distribution for both random effects and residuals and a Cox’s model for time to event data are used for joint modeling. This strategy allows for the skewness and the heavy tails of random effect distributions and thus makes inferences robust to the violation. For estimation, a Bayesian parametric approach using Markov chain Monte Carlo is adopted. The method is illustrated in a real Intensive Care Unit (ICU) data set and the best model is selected using some Bayesian criteria for model selection.

Keywords: joint models, bayesian approach, cox’s proportional model, longitudinal data, time to event data, markov chain Monte Carlo, skew-elliptical distributions

Introducton

Data collected in many clinical and epidemiologic studies, contain both the longitudinal measurements and time to event data. In these studies, usually a biological marker, for example CD4 count measurements in AIDS clinical trials, is considered as a predictor of survival. Also, an interest event such as death or disease progression is considered as an important part of the study. These two types of outcomes often are analyzed using joint modeling of longitudinal and time to event data. Joint modeling has become a progressively popular approach to determine the relationship between of these processes.

Development of joint modeling of longitudinal and time to event data have been discussed broadly in the literature. Hogan and Laird,1 Tsiatis and Davidian,2 Ibrahim et al.3 and McCrink et al.4 give so excellent reviews of models and methods for joint analysis of this type of responses. The most common approach is to suppose that a random effect underlines both longitudinal and survival outcomes as shared parameter models (Henderson et al.5; Hashemi et al.5). Also some other researches are done on Bayesian method (Ibrahim et al.7; Chi and Ibrahim8), nonparametric random effect distributions (Wang and Taylor9; Brown and Ibrahim3), cure fractions (Yu et al.10 Chi and Ibrahim8), multiple longitudinal variables (Lin et al.11), count data (Dunson and Herring12), zero-inflated outcomes (Rizopoulos et al.13), competing risks (Elashoff et al.14), accelerated failure time (Tseng et al.15), parametric assumptions by allowing flexible longitudinal trends (Brown et al.16). In joint modeling of longitudinal and survival data a mixed effects model is often used for analyzing longitudinal response of joint modeling. This part maybe incomplete due to dropout, where dropout mechanism (Diggle and Kenward17) can be considered or with some reasons ignored.

The traditional treatment, in many statistical models in particular mixed effect models contexts, is that the random effects follow the multivariate normal distribution (Verbeke and Lesaffre,18 Rosa et al.19). In practical applications, this assumption is likely to be failed if, for example, potential outliers exist in the data set.

The normality may be a reasonable model for many problems with continuous measurements, in other situations the normality assumption on a transformed scale is, at best, hoped for. Although such methods may give sensible empirical results, they should not be used if a more suitable theoretical model can be found. Some reasons for this are: (i) transforming usually prepares reduced information on an underlying data generation mechanism; (ii) the transformations are commonly applied to each component one by one, and joint normality is not secured; (iii) the interpretation based on transformed variables are more difficult, especially when transformations are various for the different proportions; (iv) multivariate homogeneity often requires a different transformation from the one to get normality; and (v) a model derived for a given data set may not be relevant to subsequent data sets.

Parametric robust analyses are statistical methods based non normal assumption for adjustment of usual statistical methods in the presence of outliers. The use of heavy-tailed distribution in mixed effects model for robust analysis is valuable for adjusting the role of outlier individuals in the sample and is widely applied in the literature, for example: Rosa et al.,19 Lange et al.20] and Wu.21

A common approach for robust inference is to replace the multivariate t-distribution, which has heavier tails than the normal (Lange and Sinsheimer,22 Pinheiro et al.23). There are, however, many other situations when the underlying distribution no longer satisfies the symmetric property (e.g., Zhang and Davidian).24 Robust joint modeling can be found in Li et al.25 and Huang et al.26 where a student’s t distribution in different structures of joint modeling of longitudinal and survival data is applied. Thus alternative flexible distributions, such as the multivariate skew-elliptical (SE) distribution, are proposed in recent studies (Azzalini and Capitanio,27 Ma et al.,28).

In this paper, we have developed robust inference of joint modeling of longitudinal and time to event data using skew-elliptical distributions (Lange and Sinsheimer).22 These distributions include the skew student’s t (ST), the skew slash (SS), skew Laplace (SL) and the skew normal (SN) distributions. We consider a linear mixed effect model with skew-elliptical distribution assumption for longitudinal response modeling. Also, a Cox proportional hazard model with step baseline hazard in a frailty model structure is chosen for survival response modeling.

We have used Bayesian approach and the available software OpenBUGS (Spiegelhalter et al.)29 for implementation of the models, where Bayesian criteria of DIC (deviance information criterion has been used for model selection. In application section, we have reanalyzed an ICU data set and we present a strategy, in a Bayesian perspective, and show that these skewed distributions are more appropriate than the commonly used distributions.

The rest of the article is organized as follows: In Section 2, some SE distributions are briefly introduced. In Section 3, the specification of joint models as a shared parameter model and Bayesian hierarchical joint models when the random effect terms follow SE distributions. This is done by the Gibbs sampling implementation. In Section 4, we describe the real data set on the hospitalized patients in ICU and subsequently present a Bayesian analysis of the data set. The McMC scheme and statistical interpretation are given in Section 5. Finally, discussions and concluding remarks are illustrated in Section 6.

Multivariate SE distributions

Several versions of the multivariate SE distributions have been offered in the literature and some of them have recently been used in the univariate mixed effect models (Gosh et al.,30 Jara et al.31). Here, we utilize the multivariate SN and ST distributions introduced by Sahu et al.32 and extended by others (Arellano-Valle and Genton).33 We also make use of the multivariate Laplace distribution and its skewed version proposed by Arsla.34 These distributions are shown to be a scaled mixture of normal that produces flexible distributions with, for example, heavier tails than the multivariate normal distribution.

The multivariate SN distribution

In general, the p-variate Y follows the SN distribution with location vector μ, scale matrix , and p×p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiCaiabgEna0kaadchaaaa@3A9B@  skewness matrix D=diag( δ 1 , δ 2 ,, δ p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaCiraiabg2da9iaabsgacaqGPbGaaeyyaiaabEgadaqadaWd aeaapeGaaeiTd8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaape Gaaiilaiaabs7apaWaaSbaaeaajugWa8qacaaIYaaajuaGpaqabaWd biaacYcacqGHMacVcaGGSaGaaeiTd8aadaWgaaqaaKqzadWdbiaabc haaKqba+aabeaaa8qacaGLOaGaayzkaaaaaa@4DBD@ if the probability density function (pdf) of Y is given by

f( y|μ, ,D )= 2 p p { y|µ, } p { ( I D 1 D ) 1/2 D 1 ( yµ ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOzamaabmaapaqaaGqad8qacaWF5bGaaeiFaiaahY7acaGG SaWdamaavacabeqabeaacaaMb8oabaWdbiabggHiLdaacaGGSaGaa8 hraaGaayjkaiaawMcaaiabg2da9iaaikdapaWaaWbaaeqabaqcLbma peGaamiCaaaajuaGpaWaaSbaaeaajugWa8qacaWGWbaajuaGpaqaba Wdbmaacmaapaqaa8qacaWF5bGaaeiFaiaahwlacaGGSaaacaGL7bGa ayzFaaWdamaaBaaabaqcLbmapeGaamiCaaqcfa4daeqaa8qadaGada WdaeaapeWaaeWaa8aabaWdbiaadMeacqGHsislcaWFebWdamaaCaaa beqaaKqzadWdbiabgkHiTiaaigdaaaqcfaOaa8hraaGaayjkaiaawM caa8aadaahaaqabeaajugWa8qacqGHsislcaaIXaGaai4laiaaikda aaqcfaOaa8hra8aadaahaaqabeaajugWa8qacaaIXaaaaKqbaoaabm aapaqaa8qacaWF5bGaaCyTaaGaayjkaiaawMcaaaGaay5Eaiaaw2ha aaaa@6A88@  (1)

where Ω= + D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuyQdCLaeyypa0ZdamaavacabeqabeaacaaMb8oabaWdbiab ggHiLdaacqGHRaWkcaWGebWdamaaCaaabeqaaKqzadWdbiaaikdaaa aaaa@408F@ , ϕ p { y|µ,Ω } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMn aaBaaabaqcLbmacaWGWbaajuaGbeaaqaaaaaaaaaWdbmaacmaapaqa a8qacaWH5bGaaeiFaiaahwlacaGGSaGaeuyQdCfacaGL7bGaayzFaa aaaa@4301@  is the pdf of N p ( µ,Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOta8aadaWgaaqaaKqzadWdbiaadchaaKqba+aabeaapeWa aeWaa8aabaWdbiaadwlacaGGSaGaeuyQdCfacaGLOaGaayzkaaaaaa@3F9D@ evaluated at y and Φ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfA6agn aaBaaabaqcLbmacaWGWbaajuaGbeaaaaa@3AC6@  denotes the cumulative density function (cdf) of the p-variate standard normal distribution (Sahu et al. [32]). We denote the density by S N p ( µ, ,D ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4uaiaad6eapaWaaSbaaeaajugWa8qacaWGWbaajuaGpaqa baWdbmaabmaapaqaa8qacaWH1cGaaiila8aadaqfGaqabeqabaGaaG zaVdqaa8qacqGHris5aaGaaiilaGqadiaa=reaaiaawIcacaGLPaaa aaa@43F7@ . If D = 0 density (2) reduces to the usual symmetric multivariate normal distribution. The mean and variance of Y are given by E( Y )=μ+δ 2/π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyramaabmaapaqaaGqad8qacaWFzbaacaGLOaGaayzkaaGa eyypa0Jaa8hVdiabgUcaRiaa=r7adaGcaaWdaeaapeGaaGOmaiaac+ cacqaHapaCaeqaaaaa@41AD@ and Var( Y )= +( I2/π ) D 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvaiaadggacaWGYbWaaeWaa8aabaWdbiaadMfaaiaawIca caGLPaaacqGH9aqppaWaaubiaeqabeqaaiaaygW7aeaapeGaeyyeIu oaaiabgUcaRmaabmaapaqaa8qacaWGjbGaeyOeI0IaaGOmaiaac+ca cqaHapaCaiaawIcacaGLPaaacaWGebWdamaaCaaabeqaaKqzadWdbi aaikdaaaaaaa@4ACE@ ,

where δ =( δ 1 ,., δ p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGab8hTd8aagaqba8qacqGH9aqpdaqadaWdaeaapeGaeqiT dq2damaaBaaabaqcLbmapeGaaGymaaqcfa4daeqaa8qacaGGSaGaey OjGWRaaiOlaiaacYcacqaH0oazpaWaaSbaaeaajugWa8qacaWGWbaa juaGpaqabaaapeGaayjkaiaawMcaaaaa@4787@ .

The multivariate ST distribution

The p-variate Y follows the ST distribution with location vector μ, scale matrix , degree of freedom ν, and p×p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiCaiabgEna0kaadchaaaa@3A9B@ skewness matrix D=diag( δ 1 , δ 2 ,, δ p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaCiraiabg2da9iaabsgacaqGPbGaaeyyaiaabEgadaqadaWd aeaapeGaaeiTd8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaape Gaaiilaiaabs7apaWaaSbaaeaajugWa8qacaaIYaaajuaGpaqabaWd biaacYcacqGHMacVcaGGSaGaaeiTd8aadaWgaaqaaKqzadWdbiaabc haaKqba+aabeaaa8qacaGLOaGaayzkaaaaaa@4DBD@ if the pdf of Y is given by

f( y|μ, ,D,v )= 2 p t p,v (y|µ,) T p,v+p { ( v+g v+p ) 1/2 ( I D 1 D ) 1/2 D 1 ( yµ ) }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOzamaabmaapaqaa8qacaWG5bGaaiiFaiabeY7aTjaacYca paWaaubiaeqabeqaaiaaygW7aeaapeGaeyyeIuoaaiaacYcacaWGeb GaaiilaiaadAhaaiaawIcacaGLPaaacqGH9aqpcaaIYaWdamaaCaaa beqaaKqzadWdbiaadchaaaqcfaOaamiDa8aadaWgaaqaaKqzadWdbi aadchacaGGSaGaamODaaqcfa4daeqaa8qacaGGOaGaamyEaiaacYha caWG1cGaaiilaiaacMcacaWGubWdamaaBaaabaqcLbmapeGaamiCai aacYcacaWG2bGaey4kaSIaamiCaaqcfa4daeqaa8qadaGadaWdaeaa peWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG2bGaey4kaSIaam4zaa WdaeaapeGaamODaiabgUcaRiaadchaaaaacaGLOaGaayzkaaWdamaa CaaabeqaaKqzadWdbiabgkHiTiaaigdacaGGVaGaaGOmaaaajuaGda qadaWdaeaapeGaamysaiabgkHiTiaadseapaWaaWbaaeqabaqcLbma peGaeyOeI0IaaGymaaaajuaGcaWGebaacaGLOaGaayzkaaWdamaaCa aabeqaaKqzadWdbiaaigdacaGGVaGaaGOmaaaajuaGcaWGebWdamaa CaaabeqaaKqzadWdbiaaigdaaaqcfa4aaeWaa8aabaWdbiaadMhaca WG1caacaGLOaGaayzkaaaacaGL7bGaayzFaaGaaiilaaaa@7F1A@     (2)      

Where g= ( yμ ) ' 1 ( yμ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4zaiabg2da9maabmaapaqaa8qacaWG5bGaeyOeI0IaeqiV d0gacaGLOaGaayzkaaWcpaWaaWbaaKqbagqabaqcLbmapeGaai4jaa aajuaGpaWaaWbaaeqabaqcLbmapeGaeyOeI0IaaGymaaaajuaGdaqa daWdaeaapeGaamyEaiabgkHiTiabeY7aTbGaayjkaiaawMcaaaaa@4A04@ , t p,v (y|µ,) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiDa8aadaWgaaqaaKqzadWdbiaadchacaGGSaGaamODaaqc fa4daeqaa8qacaGGOaacbmGaa8xEaiaacYhacaWG1cGaaiilaiaacM caaaa@4197@ is the pdf of student’s evaluated at y, and T r,v+r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiva8aadaWgaaqaaKqzadWdbiaadkhacaGGSaGaamODaiab gUcaRiaadkhaaKqba+aabeaaaaa@3DF9@  denotes the cdf of the p-variate standard t distribution with degrees of freedom v+r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamODaiabgUcaRiaadkhaaaa@396E@  (Sahu et al. [32]). We denote the density by S T p ( μ, ,D,v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4uaiaadsfapaWaaSbaaeaajugWa8qacaWGWbaajuaGpaqa baWdbmaabmaapaqaa8qacqaH8oqBcaGGSaWdamaavacabeqabeaaca aMb8oabaWdbiabggHiLdaacaGGSaGaamiraiaacYcacaWG2baacaGL OaGaayzkaaaaaa@4618@ . As SN, If D = 0, then density (3) reduces to the usual symmetric multivariate student’s t distribution. As ν tends to infinity and D = 0, then the distribution reduces to the multivariate normal. The mean and the variance of Y are shown to be

E(Y) = μ+ ( v π ) (1/2) Γ((v1)/2) Γ(v/2) δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyraiaacIcacaWGzbGaaiykaiaacckacqGH9aqpcaGGGcGa eqiVd0Maey4kaSIaaiikamaalaaabaGaamODaaqaaiabec8aWbaaca GGPaWdamaaCaaabeqaaKqzadWdbiaacIcacaaIXaGaai4laiaaikda caGGPaWcdaWcaaqcfayaaKqzadGaeu4KdCKaaiikaiaacIcacaWG2b GaeyOeI0IaaGymaiaacMcacaGGVaGaaGOmaiaacMcaaKqbagaajugW aiabfo5ahjaacIcacaWG2bGaai4laiaaikdacaGGPaaaaaaajuaGpa GaeqiTdqgaaa@5BBF@                                and

Var( Y ) =   v v2 v π [ Γ(( v1 )/2) Γ(v/2) ] 2 D 2     for   n>2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvaiaadggacaWGYbWaaeWaa8aabaacbmWdbiaa=Lfaaiaa wIcacaGLPaaacaGGGcGaeyypa0JaaiiOaiaacckadaWcaaWdaeaape GaamODaaWdaeaapeGaamODaiabgkHiTiaaikdaaaWaaSaaa8aabaWd biaadAhaa8aabaWdbiabec8aWbaadaWadaWdaeaapeWaaSaaa8aaba Wdbiaabo5acaGGOaWaaeWaa8aabaWdbiaadAhacqGHsislcaaIXaaa caGLOaGaayzkaaGaai4laiaaikdacaGGPaaapaqaa8qacaqGtoGaai ikaiaadAhacaGGVaGaaGOmaiaacMcaaaaacaGLBbGaayzxaaWdamaa CaaabeqaaKqzadWdbiaaikdaaaqcfaOaa8hra8aadaahaaqabeaaju gWa8qacaaIYaaaaKqbakaacckacaGGGcGaaiiOaiaacckacaWGMbGa am4BaiaadkhacaGGGcGaaiiOaiaacckacaWGUbGaeyOpa4JaaGOmai aac6caaaa@6B1E@

The multivariate SL distribution

The p-variate Y follows the SL distribution with location vector μ, scale matrix , and p×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiCaiabgEna0kaadchaaaa@3A9A@ skewness vector δ=( δ 1 , δ 2 ,, δ p )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTdiabg2da9maabmaapaqaa8qacqaH0oazpaWaaSba aeaajugWa8qacaaIXaaajuaGpaqabaWdbiaacYcacqaH0oazpaWaaS baaeaajugWa8qacaaIYaaajuaGpaqabaWdbiaacYcacqGHMacVcaGG SaGaeqiTdq2damaaBaaabaqcLbmapeGaamiCaaqcfa4daeqaaaWdbi aawIcacaGLPaaacaGGNaaaaa@4C81@  if the pdf of Y is given by

f( y|μ,  ,δ )  =   | | 1/2 2 p π ( p1 )/2 αΓ(( p+1 )/2) exp [ ( yμ ) ' 1 δα ( yμ ) ' 1 ( yμ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOzamaabmaapaqaa8qacaWG5bGaaeiFaGqadiaa=X7acaGG SaGaaiiOa8aadaqfGaqabeqabaGaaGzaVdqaa8qacqGHris5aaGaai ilaiaa=r7aaiaawIcacaGLPaaacaGGGcGaaiiOaiabg2da9iaaccka caGGGcWaaSaaa8aabaWdbmaaemaapaqaamaavacabeqabeaacaaMb8 oabaWdbiabggHiLdaaaiaawEa7caGLiWoapaWaaWbaaeqabaqcLbma peGaeyOeI0IaaGymaiaac+cacaaIYaaaaaqcfa4daeaajugWa8qaca aIYaWcpaWaaWbaaKqbagqabaqcLbmapeGaamiCaaaacqaHapaCl8aa daahaaqcfayabeaal8qadaqadaqcfa4daeaajugWa8qacaWGWbGaey OeI0IaaGymaaqcfaOaayjkaiaawMcaaKqzadGaai4laiaaikdaaaGa eqySdeMaae4KdiaacIcalmaabmaajuaGpaqaaKqzadWdbiaadchacq GHRaWkcaaIXaaajuaGcaGLOaGaayzkaaqcLbmacaGGVaGaaGOmaiaa cMcaaaqcfaOaaeyzaiaabIhacaqGWbGaaiiOamaadmaapaqaa8qada qadaWdaeaapeGaa8xEaiabgkHiTiaa=X7aaiaawIcacaGLPaaapaWa aWbaaeqabaqcLbmapeGaai4jaaaajuaGpaWaaubiaeqabeqaaiaayg W7aeaapeGaeyyeIuoaa8aadaahaaqabeaajugWa8qacqGHsislcaaI XaaaaKqbakaa=r7acqaHXoqydaGcaaWdaeaapeWaaeWaa8aabaWdbi aa=LhacaWF8oaacaGLOaGaayzkaaWdamaaCaaabeqaaKqzadWdbiaa cEcaaaqcfa4damaavacabeqabeaacaaMb8oabaWdbiabggHiLdaapa WaaWbaaeqabaqcLbmapeGaeyOeI0IaaGymaaaajuaGdaqadaWdaeaa peGaa8xEaiaa=X7aaiaawIcacaGLPaaaaeqaaaGaay5waiaaw2faaa aa@9D36@      (3)           

Where α= 1+ δ 1 δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqySdeMaeyypa0ZaaOaaa8aabaWdbiaaigdacqGHRaWkcuaH 0oazpaGbauaadaqfGaqabeqabaGaaGzaVdqaa8qacqGHris5aaWdam aaCaaabeqaaKqzadWdbiabgkHiTiaaigdaaaqcfaOaeqiTdqgabeaa aaa@4591@  (Arslan, [31]). We denote the density by S L p ( μ, ,D,v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4uaiaadYeapaWaaSbaaeaajugWa8qacaWGWbaajuaGpaqa baWdbmaabmaapaqaaGqad8qacaWF8oGaaiila8aadaqfGaqabeqaba GaaGzaVdqaa8qacqGHris5aaGaaiilaiaa=reacaGGSaGaamODaaGa ayjkaiaawMcaaaaa@45A2@ . If D = 0, then (4) reduces to the density function of the multivariate symmetric Laplace distribution. The mean and the variance of Y are shown to be E( Y )=μ+( p+1 )δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyramaabmaapaqaaGqad8qacaWFzbaacaGLOaGaayzkaaGa eyypa0Jaa8hVdiabgUcaRmaabmaapaqaa8qacaWGWbGaey4kaSIaaG ymaaGaayjkaiaawMcaaiaa=r7aaaa@428B@ and Var( Y )=(p+1)(Σ+22δ δ )). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOvaiaadggacaWGYbWaaeWaa8aabaacbmWdbiaa=Lfaaiaa wIcacaGLPaaacqGH9aqpcaGGOaGaamiCaiabgUcaRiaaigdacaGGPa Gaaiikaiabfo6atjabgUcaRiaaikdacaaIYaGaa8hTdiqa=r7apaGb auaapeGaaiykaiaacMcacaGGUaaaaa@4A02@ .

Specification of joint modeling

The longitudinal part of the joint model can be described as follows. Let y i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyEa8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaapeWa aeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3D42@ denote the value of longitudinal measurement, at time point t for the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgal8aadaahaaqabeaajugWa8qacaWG0bGaamiAaaaa aaa@3AF4@ individual i:1,2,,m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyAaiaacQdacaaIXaGaaiilaiaaikdacaGGSaGaeyOjGWRa aiilaiaad2gaaaa@3E4D@ . The observed times are t ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiDa8aadaWgaaqaaKqzadWdbiaadMgacaWGQbaajuaGpaqa baaaaa@3B7B@ , i:1,2,,m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyAaiaacQdacaaIXaGaaiilaiaaikdacaGGSaGaeyOjGWRa aiilaiaad2gaaaa@3E4D@ . Thus, the observed longitudinal data for the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgal8aadaahaaqabeaajugWa8qacaWG0bGaamiAaaaa aaa@3AF4@ individual consist of measurements y i ={ y i ( t ij ),j:1,2,, n i } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyEa8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaapeGa eyypa0ZaaiWaa8aabaWdbiaadMhapaWaaSbaaeaajugWa8qacaWGPb aajuaGpaqabaWdbmaabmaapaqaa8qacaWG0bWdamaaBaaabaqcLbma peGaamyAaiaadQgaaKqba+aabeaaa8qacaGLOaGaayzkaaGaaiilai aadQgacaGG6aGaaGymaiaacYcacaaIYaGaaiilaiabgAci8kaacYca caWGUbWdamaaBaaabaqcLbmapeGaamyAaaqcfa4daeqaaaWdbiaawU hacaGL9baaaaa@5405@ . For the longitudinal process, we consider the following linear mixed effect model

y ij = x 1 ' ( t ij ) β 1 + z 1 ' ( t ij ) b 1i + ε ij ;       i:1,2,,m,     j:1,2,, n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyEa8aadaWgaaqaaKqzadWdbiaadMgacaWGQbaajuaGpaqa baWdbiabg2da9Gqadiaa=HhapaWaa0baaeaajugWa8qacaaIXaaaju aGpaqaa8qacaGGNaaaamaabmaapaqaa8qacaWG0bWdamaaBaaabaqc LbmapeGaamyAaiaadQgaaKqba+aabeaaa8qacaGLOaGaayzkaaGaa8 NSd8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaapeGaey4kaSIa a8NEa8aadaqhaaqaaKqzadWdbiaaigdaaKqba+aabaWdbiaacEcaaa WaaeWaa8aabaWdbiaadshapaWaaSbaaeaajugWa8qacaWGPbGaamOA aaqcfa4daeqaaaWdbiaawIcacaGLPaaacaWFIbWdamaaBaaabaqcLb mapeGaaGymaiaadMgaaKqba+aabeaapeGaey4kaSIaeqyTdu2damaa BaaabaqcLbmapeGaamyAaiaadQgaaKqba+aabeaapeGaai4oaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWGPbGaaiOo aiaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGGSaGaamyBaiaacY cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaadQgacaGG6aGaaGym aiaacYcacaaIYaGaaiilaiabgAci8kaacYcacaWGUbWdamaaBaaaba qcLbmapeGaamyAaaqcfa4daeqaa8qacaGGSaaaaa@8522@       (4)

where components of ε i =( ε i1 ,, ε i n i )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8xTdSWdamaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4d aeqaa8qacqGH9aqpdaqadaWdaeaapeGaeqyTdu2damaaBaaabaqcLb mapeGaamyAaiaaigdaaKqba+aabeaapeGaaiilaiabgAci8kaacYca cqaH1oqzpaWaaSbaaeaajugWa8qacaWGPbGaamOBaSWdamaaBaaaju aGbaqcLbmapeGaamyAaaqcfa4daeqaaaqabaaapeGaayjkaiaawMca aiaacEcaaaa@4FCB@ are measurement errors, β 1 =( β 11 ,, β 1 p 1 )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8NSd8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaa peGaeyypa0ZaaeWaa8aabaWdbiabek7aI9aadaWgaaqaaKqzadWdbi aaigdacaaIXaaajuaGpaqabaWdbiaacYcacqGHMacVcaGGSaGaeqOS di2damaaBaaabaqcLbmapeGaaGymaiaadchal8aadaWgaaqcfayaaK qzadWdbiaaigdaaKqba+aabeaaaeqaaaWdbiaawIcacaGLPaaacaGG Naaaaa@4E59@ is a p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiCaSWdamaaBaaajuaGbaqcLbmapeGaaGymaaqcfa4daeqa aaaa@3AEE@ -dimensional vector of longitudinal fixed-effect parameters. b 1i =( b 1i1 ,, b 1i q 1 )' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8Nya8aadaWgaaqaaKqzadWdbiaaigdacaWGPbaajuaG paqabaWdbiabg2da9maabmaapaqaa8qacaWGIbWdamaaBaaabaqcLb mapeGaaGymaiaadMgacaaIXaaajuaGpaqabaWdbiaacYcacqGHMacV caGGSaGaamOya8aadaWgaaqaaKqzadWdbiaaigdacaWGPbGaamyCaS WdamaaBaaajuaGbaqcLbmapeGaaGymaaqcfa4daeqaaaqabaaapeGa ayjkaiaawMcaaiaacEcaaaa@4F5C@ is a q 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyCa8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaaaaa@3A56@ -dimensional vector of random effects and is independent of ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8xTd8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaa aaa@3AD8@ . x 1 ' ( t ij ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hEa8aadaqhaaqaaKqzadWdbiaaigdaaKqba+aabaWd biaacEcaaaWaaeWaa8aabaWdbiaadshapaWaaSbaaeaajugWa8qaca WGPbGaamOAaaqcfa4daeqaaaWdbiaawIcacaGLPaaaaaa@41BA@  and z 1 ' ( t ij ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8NEa8aadaqhaaqaaKqzadWdbiaaigdaaKqba+aabaWd biaacEcaaaWaaeWaa8aabaWdbiaadshapaWaaSbaaeaajugWa8qaca WGPbGaamOAaaqcfa4daeqaaaWdbiaawIcacaGLPaaaaaa@41BC@  are, respectively, p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiCa8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaaaaa@3A55@ -dimensional and q 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyCa8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaaaaa@3A56@ -dimensional explanatory variables. Let U i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyva8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaaaaa@3A6D@ denote the observed survival time for the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyAa8aadaahaaqabeaajugWa8qacaWG0bGaamiAaaaaaaa@3ADD@ individual, i:1,2,,m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyAaiaacQdacaaIXaGaaiilaiaaikdacaGGSaGaeyOjGWRa aiilaiaad2gaaaa@3E4D@ , which is taken as the minimum of the true event time U i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyva8aadaqhaaqaaKqzadWdbiaadMgaaKqba+aabaqcLbma peGaaiOkaaaaaaa@3C5A@ and the censoring time C i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4qa8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaaaaa@3A5B@ , i.e., U i =min( U i * , C i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyva8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaapeGa eyypa0JaaeyBaiaabMgacaqGUbWaaeWaa8aabaWdbiaadwfapaWaa0 baaeaajugWa8qacaWGPbaajuaGpaqaaKqzadWdbiaacQcaaaqcfaOa aiilaiaadoeapaWaaSbaaeaajugWa8qacaWGPbaajuaGpaqabaaape GaayjkaiaawMcaaaaa@4AC7@ . We define a censoring indicator, δ it =I( U i * C i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiTdq2damaaBaaabaqcLbmapeGaamyAaiaadshaaKqba+aa beaapeGaeyypa0Jaamysamaabmaapaqaa8qacaWGvbWdamaaDaaaba qcLbmapeGaamyAaaqcfa4daeaajugWa8qacaGGQaaaaKqbakabgsMi JkaadoeapaWaaSbaaeaajugWa8qacaWGPbaajuaGpaqabaaapeGaay jkaiaawMcaaaaa@4B91@ , which is 0 for right-censored and 1 for complete observed individuals. Therefore, the observed data for the time to event consist of the pairs { ( U i ,  δ it ), i = 1, 2, ...,m } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaiWaa8aabaWdbmaabmaapaqaa8qacaqGvbWdamaaBaaabaqc LbmapeGaamyAaaqcfa4daeqaa8qacaGGSaGaaeiOaiaabs7apaWaaS baaeaajugWa8qacaWGPbGaamiDaaqcfa4daeqaaaWdbiaawIcacaGL PaaacaGGSaGaaeiOaiaabMgacaqGGcGaeyypa0JaaeiOaiaaigdaca GGSaGaaeiOaiaaikdacaGGSaGaaeiOaiaac6cacaGGUaGaaiOlaiaa cYcacaqGTbaacaGL7bGaayzFaaaaaa@5460@ .

For the time to event process, we consider a semiparametric proportional hazard model in a frailty structure.

The hazard function in our proposed model is given by:

h( u i | x 2i , z 2i , b 2i )= h 0 ( u i )exp{ x 2i ' β 2 + z 2i ' b 2i }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiAamaabmaapaqaa8qacaWG1bWdamaaBaaabaqcLbmapeGa amyAaaqcfa4daeqaa8qacaqG8bacbmGaa8hEa8aadaWgaaqaaKqzad WdbiaaikdacaWGPbaajuaGpaqabaWdbiaacYcacaWF6bWdamaaBaaa baqcLbmapeGaaGOmaiaadMgaaKqba+aabeaapeGaaiilaiaa=jgapa WaaSbaaeaapeGaaGOmaiaadMgaa8aabeaaa8qacaGLOaGaayzkaaGa eyypa0JaamiAa8aadaWgaaqaaKqzadWdbiaaicdaaKqba+aabeaape WaaeWaa8aabaWdbiaadwhapaWaaSbaaeaajugWa8qacaWGPbaajuaG paqabaaapeGaayjkaiaawMcaaiGacwgacaGG4bGaaiiCamaacmaapa qaa8qacaWF4bWdamaaDaaabaqcLbmapeGaaGOmaiaadMgaaKqba+aa baWdbiaacEcaaaGaa8NSd8aadaWgaaqaaKqzadWdbiaaikdaaKqba+ aabeaapeGaey4kaSIaa8NEa8aadaqhaaqaaKqzadWdbiaaikdacaWG PbaajuaGpaqaa8qacaGGNaaaaiaa=jgapaWaaSbaaeaajugWa8qaca aIYaGaamyAaaqcfa4daeqaaaWdbiaawUhacaGL9baacaGGSaaaaa@70C2@ (5)

where h 0 ( u i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiAa8aadaWgaaqaaKqzadWdbiaaicdaaKqba+aabeaapeWa aeWaa8aabaWdbiaadwhapaWaaSbaaeaajugWa8qacaWGPbaajuaGpa qabaaapeGaayjkaiaawMcaaaaa@4007@  is the baseline hazard function. Thus, the density function of survival time for i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyAa8aadaahaaqabeaajugWa8qacaWG0bGaamiAaaaaaaa@3ADD@  individual can be written in the form:

h δ it ( u i | x 2i , z 2i , b 2i ) × exp { H 0 ( u i )exp{ x 2i ' β 2 + z 2i ' b 2i } } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiAa8aadaahaaqabeaajugWa8qacqaH0oazl8aadaWgaaqc fayaaKqzadWdbiaadMgacaWG0baajuaGpaqabaaaa8qacaGGOaGaam yDa8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaapeGaaiiFaGqa diaa=HhapaWaaSbaaeaajugWa8qacaaIYaGaamyAaaqcfa4daeqaa8 qacaGGSaGaa8NEa8aadaWgaaqaaKqzadWdbiaaikdacaWGPbaajuaG paqabaWdbiaacYcacaWFIbWdamaaBaaabaqcLbmapeGaaGOmaiaadM gaaKqba+aabeaapeGaaiykaiaacckacqGHxdaTcaGGGcGaaeyzaiaa bIhacaqGWbGaaiiOamaacmaapaqaa8qacqGHsislcaWGibWdamaaBa aabaqcLbmapeGaaGimaaqcfa4daeqaa8qadaqadaWdaeaapeGaamyD a8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaaa8qacaGLOaGaay zkaaGaciyzaiaacIhacaGGWbWaaiWaa8aabaWdbiaa=HhapaWaa0ba aeaajugWa8qacaaIYaGaamyAaaqcfa4daeaapeGaai4jaaaacaWFYo WdamaaBaaabaqcLbmapeGaaGOmaaqcfa4daeqaa8qacqGHRaWkcaWF 6bWdamaaDaaabaqcLbmapeGaaGOmaiaadMgaaKqba+aabaWdbiaacE caaaGaa8Nya8aadaWgaaqaaKqzadWdbiaaikdacaWGPbaajuaGpaqa baaapeGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaaa@839F@  (6)

Where H 0 ( w )= 0 w h 0 ( u )du MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamisa8aadaWgaaqaaKqzadWdbiaaicdaaKqba+aabeaapeWa aeWaa8aabaWdbiaadEhaaiaawIcacaGLPaaacqGH9aqpdaGfWbqab8 aabaqcLbmapeGaaGimaaqcfa4daeaajugWa8qacaWG3baajuaGpaqa a8qacqGHRiI8aaGaamiAa8aadaWgaaqaaKqzadWdbiaaicdaaKqba+ aabeaapeWaaeWaa8aabaWdbiaadwhaaiaawIcacaGLPaaacaWGKbGa amyDaaaa@4E11@ , x 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hEa8aadaqhaaqaaKqzadWdbiaaikdaaKqba+aabaqc LbmapeGaai4jaaaaaaa@3C50@ and z 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8NEa8aadaqhaaqaaKqzadWdbiaaikdaaKqba+aabaWd biaacEcaaaaaaa@3B24@ are p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiCa8aadaWgaaqaaKqzadWdbiaaikdaaKqba+aabeaaaaa@3A56@ and q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyCa8aadaWgaaqaaKqzadWdbiaaikdaaKqba+aabeaacqGH sislaaa@3B44@ dimensional vectors of explanatory variables, respectively. β 2 =( β 21 ,, β 2 p 2 )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8NSd8aadaWgaaqaaKqzadWdbiaaikdaaKqba+aabeaa peGaeyypa0ZaaeWaa8aabaWdbiabek7aI9aadaWgaaqaaKqzadWdbi aaikdacaaIXaaajuaGpaqabaWdbiaacYcacqGHMacVcaGGSaGaeqOS di2damaaBaaabaqcLbmapeGaaGOmaiaadchal8aadaWgaaqcfayaaK qzadWdbiaaikdaaKqba+aabeaaaeqaaaWdbiaawIcacaGLPaaacaGG Naaaaa@4E5D@ is a p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiCa8aadaWgaaqaaKqzadWdbiaaikdaaKqba+aabeaaaaa@3A56@ -dimensional vector of time to event fixed effect parameters, and b 2i =( b 2i1 ,, b 2i q 2 )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8Nya8aadaWgaaqaaKqzadWdbiaaikdacaWGPbaajuaG paqabaWdbiabg2da9maabmaapaqaa8qacaWGIbWdamaaBaaabaqcLb mapeGaaGOmaiaadMgacaaIXaaajuaGpaqabaWdbiaacYcacqGHMacV caGGSaGaamOya8aadaWgaaqaaKqzadWdbiaaikdacaWGPbGaamyCaS WdamaaBaaajuaGbaqcLbmapeGaaGOmaaqcfa4daeqaaaqabaaapeGa ayjkaiaawMcaaiaacEcaaaa@4F61@  is a q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyCa8aadaWgaaqaaKqzadWdbiaaikdaaKqba+aabeaacqGH sislaaa@3B44@ dimensional of random effects of time to event process. It is important to note that some elements of b 1i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8Nya8aadaWgaaqaaKqzadWdbiaaigdacaWGPbaajuaG paqabaaaaa@3B3D@  and b 2i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8Nya8aadaWgaaqaaKqzadWdbiaaikdacaWGPbaajuaG paqabaaaaa@3B3E@ are shared between two models and joint modeling is formed using this structure.

Suppose that b 1 =( b 11 ' , b 12 ' ,, b 1m ' )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8Nya8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaa peGaeyypa0ZaaeWaa8aabaWdbiaa=jgapaWaa0baaeaajugWa8qaca aIXaGaaGymaaqcfa4daeaapeGaai4jaaaacaGGSaGaa8Nya8aadaqh aaqaaKqzadWdbiaaigdacaaIYaaajuaGpaqaa8qacaGGNaaaaiaacY cacqGHMacVcaGGSaGaa8Nya8aadaqhaaqaaKqzadWdbiaaigdacaWG TbaajuaGpaqaa8qacaGGNaaaaaGaayjkaiaawMcaaiaacEcaaaa@50EE@ , b 2 =( b 21 ' , b 22 ' ,, b 2m ' )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8Nya8aadaWgaaqaaKqzadWdbiaaikdaaKqba+aabeaa peGaeyypa0ZaaeWaa8aabaWdbiaa=jgapaWaa0baaeaajugWa8qaca aIYaGaaGymaaqcfa4daeaapeGaai4jaaaacaGGSaGaa8Nya8aadaqh aaqaaKqzadWdbiaaikdacaaIYaaajuaGpaqaa8qacaGGNaaaaiaacY cacqGHMacVcaGGSaGaa8Nya8aadaqhaaqaaKqzadWdbiaaikdacaWG TbaajuaGpaqaa8qacaGGNaaaaaGaayjkaiaawMcaaiaacEcaaaa@50F2@ , t=( t 1 , t 2 ,, t m )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hDaiabg2da9maabmaapaqaa8qacaWG0bWdamaaBaaa baqcLbmapeGaaGymaaqcfa4daeqaa8qacaGGSaGaamiDa8aadaWgaa qaaKqzadWdbiaaikdaaKqba+aabeaapeGaaiilaiabgAci8kaacYca caWG0bWdamaaBaaabaqcLbmapeGaamyBaaqcfa4daeqaaaWdbiaawI cacaGLPaaacaGGNaaaaa@4A37@ .

We further assume that the baseline hazard is a step function, h o ( u )= h k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiAa8aadaWgaaqaaKqzadWdbiaad+gaaKqba+aabeaapeWa aeWaa8aabaWdbiaadwhaaiaawIcacaGLPaaacqGH9aqpcaWGObWdam aaBaaabaqcLbmapeGaam4Aaaqcfa4daeqaaaaa@4226@ , for s k1 <u< s k ,  k = 1, 2, ...,K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4Ca8aadaWgaaqaaKqzadWdbiaadUgacqGHsislcaaIXaaa juaGpaqabaWdbiabgYda8iaadwhacqGH8aapcaWGZbWdamaaBaaaba qcLbmapeGaam4Aaaqcfa4daeqaa8qacaGGSaGaaeiOaiaabckacaqG RbGaaeiOaiabg2da9iaabckacaaIXaGaaiilaiaabckacaaIYaGaai ilaiaabckacaGGUaGaaiOlaiaac6cacaGGSaGaae4saaaa@532B@ , where 0< s 1 < s 2 << s K < MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaGimaiabgYda8iaadohapaWaaSbaaeaajugWa8qacaaIXaaa juaGpaqabaWdbiabgYda8iaabohapaWaaSbaaeaajugWa8qacaaIYa aajuaGpaqabaWdbiabgYda8iabgAci8kabgYda8iaadohal8aadaWg aaqcfayaaKqzadWdbiaadUeaaKqba+aabeaapeGaeyipaWJaeyOhIu kaaa@4B7E@ is a partition of (0,∞) and K indicates the number of steps for the baseline hazard, also s 0  =  o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4Ca8aadaWgaaqaaKqzadWdbiaaicdaaKqba+aabeaapeGa aiiOaiabg2da9iaacckacaGGGcGaam4Baaaa@3FCD@ . Therefore the cumulative baseline hazard is given by

H 0 ( u )=( h j ( u s j1 )+ i=1 j1 h i ( s i s i1 ) )I( u( s i1 , s j ] ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamisa8aadaWgaaqaaKqzadWdbiaaicdaaKqba+aabeaapeWa aeWaa8aabaWdbiaadwhaaiaawIcacaGLPaaacqGH9aqpdaqadaWdae aapeGaamiAa8aadaWgaaqaaKqzadWdbiaadQgaaKqba+aabeaapeWa aeWaa8aabaWdbiaadwhacqGHsislcaWGZbWdamaaBaaabaqcLbmape GaamOAaiabgkHiTiaaigdaaKqba+aabeaaa8qacaGLOaGaayzkaaGa ey4kaSYaaybCaeqapaqaaKqzadWdbiaadMgacqGH9aqpcaaIXaaaju aGpaqaaKqzadWdbiaadQgacqGHsislcaaIXaaajuaGpaqaa8qacqGH ris5aaGaamiAaSWdamaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4dae qaa8qadaqadaWdaeaapeGaam4Ca8aadaWgaaqaaKqzadWdbiaadMga aKqba+aabeaapeGaeyOeI0Iaam4Ca8aadaWgaaqaaKqzadWdbiaadM gacqGHsislcaaIXaaajuaGpaqabaaapeGaayjkaiaawMcaaaGaayjk aiaawMcaaiaadMeadaqadaWdaeaapeGaamyDaiabgIGiopaajadapa qaa8qacaWGZbWdamaaBaaabaqcLbmapeGaamyAaiabgkHiTiaaigda aKqba+aabeaapeGaaiilaiaadohapaWaaSbaaeaajugWa8qacaWGQb aajuaGpaqabaaapeGaayjkaiaaw2faaaGaayjkaiaawMcaaiaac6ca aaa@7BCB@ (7)

We implement the Bayesian methodology using MCMC techniques for the joint modeling of longitudinal and survival data with SE distributional assumption. ST distribution was used for random effects terms distribution in tow longitudinal and survival models because of more parameters than other distribution. Inference based on the another distribution will be similar. Multivariate SE distributions will be reconstructed by the mixing strategy approach, therefore they are very convenient to implement in the Bayesian framework. A key characteristic of this model, which allows writing BUGS codes, is that it can be expressed in a flexible hierarchical representation. For example by using multivariate ST distribution for b ik ~ST( 0, Ψ k , D b k ), k=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8Nya8aadaWgaaqaaKqzadWdbiaadMgacaWGRbaajuaG paqabaWdbiaac6hacaWGtbGaamivamaabmaapaqaa8qacaaIWaGaai ilaiaahI6apaWaaSbaaeaajugWa8qacaWGRbaajuaGpaqabaWdbiaa cYcacaWFebWdamaaBaaabaqcLbmapeGaamOyaSWdamaaBaaajuaGba qcLbmapeGaam4Aaaqcfa4daeqaaaqabaaapeGaayjkaiaawMcaaiaa cYcacaGGGcGaam4Aaiabg2da9iaaigdacaGGSaGaaGOmaaaa@52E5@ , hierarchical representation can be followed:

b ik | Ψ k , D b k , w b ik ~ iid N q k ( D b k w b ik , s b ik 2 Ψ k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8Nya8aadaWgaaqaaKqzadWdbiaadMgacaWGRbaajuaG paqabaWdbiaacYhacaWHOoWdamaaBaaabaqcLbmapeGaam4Aaaqcfa 4daeqaa8qacaGGSaGaa8hra8aadaWgaaqaaKqzadWdbiaadkgal8aa daWgaaqcfayaaKqzadWdbiaadUgaaKqba+aabeaaaeqaa8qacaGGSa Gaam4Da8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqcfayaaKqz adWdbiaadMgacaWGRbaajuaGpaqabaaabeaapeGaaiOFa8aadaahaa qabeaajugWa8qacaWGPbGaamyAaiaadsgaaaqcfaOaamOta8aadaWg aaqaaKqzadWdbiaadghal8aadaWgaaqcfayaaKqzadWdbiaadUgaaK qba+aabeaaaeqaa8qadaqadaWdaeaapeGaa8hra8aadaWgaaqaaKqz adWdbiaadkgal8aadaWgaaqcfayaaKqzadWdbiaadUgaaKqba+aabe aaaeqaa8qacaWF3bWdamaaBaaabaqcLbmapeGaamOyaSWdamaaBaaa juaGbaqcLbmapeGaamyAaiaadUgaaKqba+aabeaaaeqaa8qacaGGSa Gaam4Ca8aadaqhaaqaaKqzadWdbiaadkgal8aadaWgaaqcfayaaKqz adWdbiaadMgacaWGRbaajuaGpaqabaaabaqcLbmapeGaeyOeI0IaaG OmaaaajuaGcaWHOoWdamaaBaaabaWdbiaadUgaa8aabeaaa8qacaGL OaGaayzkaaaaaa@7C1E@

w b ik | s b ik 2 ~ iid N q k ( 0, s b ik 2 I q k )I( w b ik >0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa83Da8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaadMgacaWGRbaajuaGpaqabaaabeaapeGaaiiFai aadohapaWaa0baaeaajugWa8qacaWGIbWcpaWaaSbaaKqbagaajugW a8qacaWGPbGaam4Aaaqcfa4daeqaaaqaaKqzadWdbiabgkHiTiaaik daaaqcfaOaaiOFa8aadaahaaqabeaajugWa8qacaWGPbGaamyAaiaa dsgaaaqcfaOaamOta8aadaWgaaqaaKqzadWdbiaadghal8aadaWgaa qcfayaaKqzadWdbiaadUgaaKqba+aabeaaaeqaa8qadaqadaWdaeaa peGaaGimaiaacYcacaWGZbWdamaaDaaabaqcLbmapeGaamOyaSWdam aaBaaajuaGbaqcLbmapeGaamyAaiaadUgaaKqba+aabeaaaeaajugW a8qacqGHsislcaaIYaaaaKqbakaa=LeapaWaaSbaaeaajugWa8qaca WGXbWcpaWaaSbaaKqbagaajugWa8qacaWGRbaajuaGpaqabaaabeaa a8qacaGLOaGaayzkaaGaamysamaabmaapaqaa8qacaWG3bWdamaaBa aabaqcLbmapeGaamOyaSWdamaaBaaajuaGbaqcLbmapeGaamyAaiaa dUgaaKqba+aabeaaaeqaa8qacqGH+aGpcaaIWaaacaGLOaGaayzkaa aaaa@78AD@

s b ik 2 | ν b k ~Gamma( ν b k 2 , ν b k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4Ca8aadaqhaaqaaKqzadWdbiaadkgal8aadaWgaaqcfaya aKqzadWdbiaadMgacaWGRbaajuaGpaqabaaabaqcLbmapeGaaGOmaa aajuaGcaGG8bGaeqyVd42damaaBaaabaqcLbmapeGaamOyaSWdamaa BaaajuaGbaqcLbmapeGaam4Aaaqcfa4daeqaaaqabaWdbiaac6haca WGhbGaamyyaiaad2gacaWGTbGaamyyamaabmaapaqaa8qadaWcaaWd aeaapeGaeqyVd42damaaBaaabaqcLbmapeGaamOyaSWdamaaBaaaju aGbaqcLbmapeGaam4Aaaqcfa4daeqaaaqabaaabaWdbiaaikdaaaGa aiilamaalaaapaqaa8qacqaH9oGBpaWaaSbaaeaajugWa8qacaWGIb WcpaWaaSbaaKqbagaajugWa8qacaWGRbaajuaGpaqabaaabeaaaeaa peGaaGOmaaaaaiaawIcacaGLPaaaaaa@62B1@ ……………. (8)

Bayesian specification of the model needs to consider prior distribution for all the unknown parameters. In our modeling θ=( β 1 ' , β 2 ' , Ψ 1 , Ψ 2 , σ e 2 , ν b 1 , ν b 2 )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hUdiabg2da9maabmaapaqaa8qacaWFYoWcpaWaa0ba aKqbagaajugWa8qacaaIXaaajuaGpaqaaKqzadWdbiaacEcaaaqcfa Oaaiilaiaa=j7al8aadaqhaaqcfayaaKqzadWdbiaaikdaaKqba+aa baqcLbmapeGaai4jaaaajuaGcaGGSaGaaCiQdSWdamaaBaaajuaGba qcLbmapeGaaGymaaqcfa4daeqaa8qacaGGSaGaaCiQd8aadaWgaaqa aKqzadWdbiaaikdaaKqba+aabeaapeGaaiilaiabeo8aZ9aadaqhaa qaaKqzadWdbiaadwgaaKqba+aabaqcLbmapeGaaGOmaaaajuaGcaGG SaGaeqyVd42damaaBaaabaqcLbmapeGaamOyaSWdamaaBaaajuaGba qcLbmapeGaaGymaaqcfa4daeqaaaqabaWdbiaacYcacqaH9oGBpaWa aSbaaeaajugWa8qacaWGIbWcpaWaaSbaaKqbagaajugWa8qacaaIYa aajuaGpaqabaaabeaaa8qacaGLOaGaayzkaaGaai4jaaaa@6C5E@ is the unknown vector of parameters and because of not having any prior information from historical data or previous experiment, we try to assign non-informative prior distributions for the parameters. Assuming elements of the parameter vector to be independent, the prior distributions are given by: 

β 1 ~ N p 1 ( β 01 , S β 1 ),     β 2 ~ N p 2 ( β 02 , S β 2 ),     σ e 2 ~IG( τ e 2 , T e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8NSd8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaa peGaaiOFaiaad6eapaWaaSbaaeaajugWa8qacaWGWbWcpaWaaSbaaK qbagaajugWa8qacaaIXaaajuaGpaqabaaabeaapeWaaeWaa8aabaWd biaa=j7apaWaaSbaaeaajugWa8qacaaIWaGaaGymaaqcfa4daeqaa8 qacaGGSaGaa83ua8aadaWgaaqaaKqzadWdbiabek7aITWdamaaBaaa juaGbaqcLbmapeGaaGymaaqcfa4daeqaaaqabaaapeGaayjkaiaawM caaiaacYcacaWFGcGaa8hOaiaa=bkacaWFGcGaa8NSd8aadaWgaaqa aKqzadWdbiaaikdaaKqba+aabeaapeGaaiOFaiaad6eapaWaaSbaae aajugWa8qacaWGWbWcpaWaaSbaaKqbagaajugWa8qacaaIYaaajuaG paqabaaabeaapeWaaeWaa8aabaWdbiaa=j7apaWaaSbaaeaajugWa8 qacaaIWaGaaGOmaaqcfa4daeqaa8qacaGGSaGaa83ua8aadaWgaaqa aKqzadWdbiabek7aITWdamaaBaaajuaGbaqcLbmapeGaaGOmaaqcfa 4daeqaaaqabaaapeGaayjkaiaawMcaaiaacYcacaGGGcGaaiiOaiaa cckacaGGGcGaeq4Wdm3damaaDaaabaqcLbmapeGaamyzaaqcfa4dae aajugWa8qacaaIYaaaaKqbakaac6hacaWGjbGaam4ramaabmaapaqa a8qadaWcaaWdaeaapeGaeqiXdq3damaaBaaabaqcLbmapeGaamyzaa qcfa4daeqaaaqaa8qacaaIYaaaaiaacYcadaWcaaWdaeaapeGaamiv a8aadaWgaaqaaKqzadWdbiaadwgaaKqba+aabeaaaeaapeGaaGOmaa aaaiaawIcacaGLPaaaaaa@8C17@ …. (9)

Ψ 1 ~I W τ b 1 ( T b 1 ),     Ψ 2 ~I W τ b 2 ( T b 2 ),  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaCiQd8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaapeGa aiOFaiaadMeacaWGxbWdamaaBaaabaqcLbmapeGaeqiXdqNaamOyaS WdamaaBaaajuaGbaqcLbmapeGaaGymaaqcfa4daeqaaaqabaWdbmaa bmaapaqaa8qacaWGubWdamaaBaaabaqcLbmapeGaamOyaSWdamaaBa aajuaGbaqcLbmapeGaaGymaaqcfa4daeqaaaqabaaapeGaayjkaiaa wMcaaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaCiQd8aadaWgaa qaaKqzadWdbiaaikdaaKqba+aabeaapeGaaiOFaiaadMeacaWGxbWd amaaBaaabaqcLbmapeGaeqiXdqNaamOyaSWdamaaBaaajuaGbaqcLb mapeGaaGOmaaqcfa4daeqaaaqabaWdbmaabmaapaqaa8qacaWGubWd amaaBaaabaqcLbmapeGaamOyaSWdamaaBaaajuaGbaqcLbmapeGaaG Omaaqcfa4daeqaaaqabaaapeGaayjkaiaawMcaaiaacYcacaGGGcaa aa@6AB9@

ν b 1 ~exp( λ b 1 )I{ ν b 1 >0 },     ν b 2 ~exp( λ b 2 )I{ ν b 2 >0 },  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyVd42damaaBaaabaqcLbmapeGaamOyaSWdamaaBaaajuaG baqcLbmapeGaaGymaaqcfa4daeqaaaqabaWdbiaac6haciGGLbGaai iEaiaacchadaqadaWdaeaapeGaeq4UdW2damaaBaaabaqcLbmapeGa amOyaSWdamaaBaaajuaGbaqcLbmapeGaaGymaaqcfa4daeqaaaqaba aapeGaayjkaiaawMcaaiaadMeadaGadaWdaeaapeGaeqyVd42damaa BaaabaqcLbmapeGaamOyaSWdamaaBaaajuaGbaqcLbmapeGaaGymaa qcfa4daeqaaaqabaWdbiabg6da+iaaicdaaiaawUhacaGL9baacaGG SaGaaiiOaiaacckacaGGGcGaaiiOaiabe27aU9aadaWgaaqaaKqzad Wdbiaadkgal8aadaWgaaqcfayaaKqzadWdbiaaikdaaKqba+aabeaa aeqaa8qacaGG+bGaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabeU 7aS9aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqcfayaaKqzadWd biaaikdaaKqba+aabeaaaeqaaaWdbiaawIcacaGLPaaacaWGjbWaai Waa8aabaWdbiabe27aU9aadaWgaaqaaKqzadWdbiaadkgal8aadaWg aaqcfayaaKqzadWdbiaaikdaaKqba+aabeaaaeqaa8qacqGH+aGpca aIWaaacaGL7bGaayzFaaGaaiilaiaacckaaaa@7F5B@

δ b 1 ~ N q 1 ( μ b 1 , γ b 1 )I{ δ b 1 >0 },     δ b 2 ~ N q 2 ( μ b 2 , γ b 2 )I{ δ b 2 >0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaaigdaaKqba+aabeaaaeqaa8qacaGG+bGaamOta8 aadaWgaaqaaKqzadWdbiaadghal8aadaWgaaqcfayaaKqzadWdbiaa igdaaKqba+aabeaaaeqaa8qadaqadaWdaeaapeGaeqiVd02damaaBa aabaqcLbmapeGaamOyaSWdamaaBaaajuaGbaqcLbmapeGaaGymaaqc fa4daeqaaaqabaWdbiaacYcacqaHZoWzpaWaaSbaaeaajugWa8qaca WGIbWcpaWaaSbaaKqbagaajugWa8qacaaIXaaajuaGpaqabaaabeaa a8qacaGLOaGaayzkaaGaamysamaacmaapaqaa8qacqaH0oazpaWaaS baaeaajugWa8qacaWGIbWcpaWaaSbaaKqbagaajugWa8qacaaIXaaa juaGpaqabaaabeaapeGaeyOpa4JaaGimaaGaay5Eaiaaw2haaiaacY cacaGGGcGaaiiOaiaacckacaGGGcGaa8hTd8aadaWgaaqaaKqzadWd biaadkgal8aadaWgaaqcfayaaKqzadWdbiaaikdaaKqba+aabeaaae qaa8qacaGG+bGaamOta8aadaWgaaqaaKqzadWdbiaadghal8aadaWg aaqcfayaaKqzadWdbiaaikdaaKqba+aabeaaaeqaa8qadaqadaWdae aapeGaeqiVd02damaaBaaabaqcLbmapeGaamOyaSWdamaaBaaajuaG baqcLbmapeGaaGOmaaqcfa4daeqaaaqabaWdbiaacYcacqaHZoWzpa WaaSbaaeaajugWa8qacaWGIbWcpaWaaSbaaKqbagaajugWa8qacaaI YaaajuaGpaqabaaabeaaa8qacaGLOaGaayzkaaGaamysamaacmaapa qaa8qacqaH0oazpaWaaSbaaeaajugWa8qacaWGIbWcpaWaaSbaaKqb agaajugWa8qacaaIYaaajuaGpaqabaaabeaapeGaeyOpa4JaaGimaa Gaay5Eaiaaw2haaaaa@943F@

where σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4Wdm3damaaDaaabaqcLbmapeGaamyzaaqcfa4daeaajugW a8qacaaIYaaaaaaa@3D4D@  follows inverted gamma, β 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqOSdi2damaaBaaabaqcLbmapeGaaGymaaqcfa4daeqaaaaa @3B01@ and β 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8NSdSWdamaaBaaajuaGbaqcLbmapeGaaGOmaaqcfa4d aeqaaaaa@3B3C@  are assumed to be normally distributed, Ψ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaCiQd8aadaWgaaqaaKqzadWdbiaaigdaaKqba+aabeaaaaa@3A94@ and Ψ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaCiQd8aadaWgaaqaaKqzadWdbiaaikdaaKqba+aabeaaaaa@3A95@  were denoted by inverse-Wishart distribution, δ b 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaaigdaaKqba+aabeaaaeqaaaaa@3D92@ and δ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaaikdaaKqba+aabeaaaeqaaaaa@3D93@ distributions are assumed truncated exponential distribution and in final truncated normal distribution for δ b 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaaigdaaKqba+aabeaaaeqaaaaa@3D92@ and δ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaaikdaaKqba+aabeaaaeqaaaaa@3D93@ are determined. The hyper parameters of these priors are selected so that they lead to the non-informative prior distributions.

According to y i | β 1 , b i1 , σ e 2 ~ iid N( x 1i ' β 1 + z 1i ' b 1i , σ e 2 I i ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8xEa8aadaWgaaqaaKqzadWdbiaabMgaaKqba+aabeaa peGaaiiFaiaa=j7apaWaaSbaaeaajugWa8qacaaIXaaajuaGpaqaba WdbiaacYcacaWFIbWdamaaBaaabaqcLbmapeGaamyAaiaaigdaaKqb a+aabeaapeGaaiilaiabeo8aZ9aadaqhaaqaaKqzadWdbiaadwgaaK qba+aabaqcLbmapeGaaGOmaaaajuaGcaGG+bWdamaaCaaabeqaaKqz adWdbiaabMgacaWGPbGaaeizaaaajuaGcaWGobWaaeWaa8aabaWdbi aa=HhapaWaa0baaeaajugWa8qacaaIXaGaamyAaaqcfa4daeaapeGa ai4jaaaacaWFYoWdamaaBaaabaqcLbmapeGaaGymaaqcfa4daeqaa8 qacqGHRaWkcaWF6bWdamaaDaaabaqcLbmapeGaaGymaiaadMgaaKqb a+aabaWdbiaacEcaaaGaa8Nya8aadaWgaaqaaKqzadWdbiaaigdaca WGPbaajuaGpaqabaWdbiaacYcacqaHdpWCpaWaa0baaeaajugWa8qa caWGLbaajuaGpaqaaKqzadWdbiaaikdaaaqcfaOaamysa8aadaWgaa qaaKqzadWdbiaadMgaaKqba+aabeaaa8qacaGLOaGaayzkaaGaaiil aaaa@7617@  the joint posterior density of all unobservable is given by :

( θ, b 1i , b 2i , W b i1 , W b i2 |y,t )              ( ϕ( y i | x 1i T β 1 + z 1i T b 1i , σ e 2 I i )× φ q 1  ( b 1i | μ b 1 + D b 1 w b 1 , s b 1i 2 Ψ 1 )×   ϕ( w b 1 |0, s b 1i 2 I q 1 )I( w b 1 >0 ) )                    × i=1 m { h δ it ( t i | x 2i , z 2i , b 2i ) ×   exp{ H 0 ( t i )exp{ x 2i T β 2 + z 2i T b 2i } } }                     × φ q 2 ( b 2i | μ b 2 + D b 2 w b 2 , s b 2i 2 Ψ 2 )×   ϕ( w b 2 |0, s b 2i 2 I q 2 )I( w b 2 >0 )   ×   π( θ )    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaieaa aaaaaaa8qadaqadaWdaeaaieWapeGaa8hUdiaacYcacaWFIbWdamaa BaaabaqcLbmapeGaaGymaiaadMgaaKqba+aabeaapeGaaiilaiaa=j gapaWaaSbaaeaapeGaaGOmaiaadMgaa8aabeaapeGaaiilaiaa=Dfa paWaaSbaaeaajugWa8qacaWGIbWcpaWaaSbaaKqbagaajugWa8qaca WGPbGaaGymaaqcfa4daeqaaaqabaWdbiaacYcacaWFxbWdamaaBaaa baqcLbmapeGaamOyaSWdamaaBaaajuaGbaqcLbmapeGaamyAaiaaik daaKqba+aabeaaaeqaa8qacaGG8bGaa8xEaiaacYcacaWF0baacaGL OaGaayzkaaaabaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiabg2Hi 1oaabmaapaqaa8qacqaHvpGzdaqadaWdaeaapeGaaeyEa8aadaWgaa qaaKqzadWdbiaabMgaaKqba+aabeaapeGaaiiFaiaa=HhapaWaa0ba aeaajugWa8qacaaIXaGaamyAaaqcfa4daeaajugWa8qacaWGubaaaK qbakaa=j7apaWaaSbaaeaajugWa8qacaaIXaaajuaGpaqabaWdbiab gUcaRiaa=PhapaWaa0baaeaajugWa8qacaaIXaGaamyAaaqcfa4dae aajugWa8qacaWGubaaaKqbakaa=jgapaWaaSbaaeaajugWa8qacaaI XaGaamyAaaqcfa4daeqaa8qacaGGSaGaae4Wd8aadaqhaaqaaKqzad WdbiaabwgaaKqba+aabaqcLbmapeGaaGOmaaaajuaGcaqGjbWdamaa BaaabaqcLbmapeGaaeyAaaqcfa4daeqaaaWdbiaawIcacaGLPaaacq GHxdaTcaqGgpWdamaaBaaabaqcLbmapeGaamyCaSWdamaaBaaajuaG baqcLbmapeGaaGymaaqcfa4daeqaaaqabaWdbiaacckadaqadaWdae aapeGaa8Nya8aadaWgaaqaaKqzadWdbiaaigdacaWGPbaajuaGpaqa baWdbiaacYhacaWH8oWdamaaBaaabaqcLbmapeGaamOyaSWdamaaBa aajuaGbaqcLbmapeGaaGymaaqcfa4daeqaaaqabaWdbiabgUcaRiaa hseapaWaaSbaaeaajugWa8qacaWGIbWcpaWaaSbaaKqbagaajugWa8 qacaaIXaaajuaGpaqabaaabeaapeGaae4Da8aadaWgaaqaaKqzadWd biaadkgal8aadaWgaaqcfayaaKqzadWdbiaaigdaaKqba+aabeaaae qaa8qacaGGSaGaae4Ca8aadaqhaaqaaKqzadWdbiaadkgal8aadaWg aaqcfayaaKqzadWdbiaaigdacaWGPbaajuaGpaqabaaabaqcLbmape GaeyOeI0IaaGOmaaaajuaGcaWHOoWdamaaBaaabaqcLbmapeGaaGym aaqcfa4daeqaaaWdbiaawIcacaGLPaaacqGHxdaTcaGGGcGaaiiOai aacckacqaHvpGzdaqadaWdaeaapeGaae4Da8aadaWgaaqaaKqzadWd biaadkgal8aadaWgaaqcfayaaKqzadWdbiaaigdaaKqba+aabeaaae qaa8qacaGG8bGaaGimaiaacYcacaqGZbWdamaaDaaabaqcLbmapeGa amOyaSWdamaaBaaajuaGbaqcLbmapeGaaGymaiaadMgaaKqba+aabe aaaeaajugWa8qacqGHsislcaaIYaaaaKqbakaabMeapaWaaSbaaeaa jugWa8qacaWGXbWcpaWaaSbaaKqbagaajugWa8qacaaIXaaajuaGpa qabaaabeaaa8qacaGLOaGaayzkaaGaaeysamaabmaapaqaa8qacaqG 3bWdamaaBaaabaqcLbmapeGaamOyaSWdamaaBaaajuaGbaqcLbmape GaaGymaaqcfa4daeqaaaqabaWdbiabg6da+iaaicdaaiaawIcacaGL PaaaaiaawIcacaGLPaaaaeaacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaey41aq7aay bCaeqapaqaaKqzadWdbiaadMgacqGH9aqpcaaIXaaajuaGpaqaaKqz adWdbiaad2gaaKqba+aabaWdbiabg+GivdaadaGadaWdaeaapeGaam iAa8aadaahaaqabeaajugWa8qacqaH0oazl8aadaWgaaqcfayaaKqz adWdbiaadMgacaWG0baajuaGpaqabaaaa8qadaqadaWdaeaapeGaam iDa8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaapeGaaiiFaiaa =HhapaWaaSbaaeaajugWa8qacaaIYaGaamyAaaqcfa4daeqaa8qaca GGSaGaa8NEa8aadaWgaaqaaKqzadWdbiaaikdacaWGPbaajuaGpaqa baWdbiaacYcacaWFIbWdamaaBaaabaqcLbmapeGaaGOmaiaadMgaaK qba+aabeaaa8qacaGLOaGaayzkaaGaaiiOaiabgEna0kaacckacaGG GcGaaiiOaiGacwgacaGG4bGaaiiCamaacmaapaqaa8qacqGHsislca WGibWdamaaBaaabaqcLbmapeGaaGimaaqcfa4daeqaa8qadaqadaWd aeaapeGaamiDa8aadaWgaaqaaKqzadWdbiaadMgaaKqba+aabeaaa8 qacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaiWaa8aabaWdbiaa =HhapaWaa0baaeaajugWa8qacaaIYaGaamyAaaqcfa4daeaajugWa8 qacaWGubaaaKqbakaa=j7apaWaaSbaaeaajugWa8qacaaIYaaajuaG paqabaWdbiabgUcaRiaa=PhapaWaa0baaeaajugWa8qacaaIYaGaam yAaaqcfa4daeaajugWa8qacaWGubaaaKqbakaa=jgapaWaaSbaaeaa jugWa8qacaaIYaGaamyAaaqcfa4daeqaaaWdbiaawUhacaGL9baaai aawUhacaGL9baaaiaawUhacaGL9baaaeaacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiabgEna0kaabA8apaWaaSbaaeaajugWa8qacaWGXbWcpaWaaS baaKqbagaajugWa8qacaaIYaaajuaGpaqabaaabeaapeWaaeWaa8aa baWdbiaadkgapaWaaSbaaeaajugWa8qacaaIYaGaamyAaaqcfa4dae qaa8qacaGG8bGaaCiVd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWg aaqcfayaaKqzadWdbiaaikdaaKqba+aabeaaaeqaa8qacqGHRaWkca WHebWdamaaBaaabaqcLbmapeGaamOyaSWdamaaBaaajuaGbaqcLbma peGaaGOmaaqcfa4daeqaaaqabaWdbiaabEhapaWaaSbaaeaajugWa8 qacaWGIbWcpaWaaSbaaKqbagaajugWa8qacaaIYaaajuaGpaqabaaa beaapeGaaiilaiaabohapaWaa0baaeaajugWa8qacaWGIbWcpaWaaS baaKqbagaajugWa8qacaaIYaGaamyAaaqcfa4daeqaaaqaaKqzadWd biabgkHiTiaaikdaaaqcfaOaa8hQd8aadaWgaaqaaKqzadWdbiaaik daaKqba+aabeaaa8qacaGLOaGaayzkaaGaey41aqRaaiiOaiaaccka caGGGcGaeqy1dy2aaeWaa8aabaWdbiaabEhapaWaaSbaaeaajugWa8 qacaWGIbWcpaWaaSbaaKqbagaajugWa8qacaaIYaaajuaGpaqabaaa beaapeGaaiiFaiaaicdacaGGSaGaae4Ca8aadaqhaaqaaKqzadWdbi aadkgal8aadaWgaaqcfayaaKqzadWdbiaaikdacaWGPbaajuaGpaqa baaabaqcLbmapeGaeyOeI0IaaGOmaaaajuaGcaqGjbWdamaaBaaaba qcLbmapeGaamyCaSWdamaaBaaajuaGbaqcLbmapeGaaGOmaaqcfa4d aeqaaaqabaaapeGaayjkaiaawMcaaiaabMeadaqadaWdaeaapeGaae 4Da8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqcfayaaKqzadWd biaaikdaaKqba+aabeaaaeqaa8qacqGH+aGpcaaIWaaacaGLOaGaay zkaaGaaiiOaiaacckacaGGGcGaey41aqRaaiiOaiaacckacaGGGcGa eqiWda3aaeWaa8aabaWdbiaa=H7aaiaawIcacaGLPaaacaqGGcGaae iOaiaacckaaaaa@FBFA@ …. (11)       

The above described joint posterior distribution is analytically intractable but MCMC methods such as the Gibbs sampler and Metropolis-Hastings algorithm can be used to draw samples, from which features of marginal posterior distribution of interest can be inferred. The Gibbs sampler works by drawing samples iteratively from conditional posterior distributions deriving from (11). For this purpose, we have needed all full conditional distribution. Let ϑ=( θ , b 1 ' , b 2 ' ,, W b i1 , W b i2 )' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqy0dOKaeyypa0ZaaeWaa8aabaacbmWdbiqa=H7apaGbauaa peGaaiilaiaa=jgapaWaa0baaeaajugWa8qacaaIXaaajuaGpaqaa8 qacaGGNaaaaiaacYcacaWFIbWdamaaDaaabaqcLbmapeGaaGOmaaqc fa4daeaapeGaai4jaaaacaGGSaGaaiilaiaa=DfapaWaaSbaaeaaju gWa8qacaWGIbWcpaWaaSbaaKqbagaajugWa8qacaWGPbGaaGymaaqc fa4daeqaaaqabaWdbiaacYcacaWFxbWdamaaBaaabaqcLbmapeGaam OyaSWdamaaBaaajuaGbaqcLbmapeGaamyAaiaaikdaaKqba+aabeaa aeqaaaWdbiaawIcacaGLPaaacaGGNaaaaa@585D@ , and let ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqOVdGhaaa@385D@ is one of the component of it, we define ϑ ( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqy0dO0damaaBaaabaWcpeWaaeWaaKqba+aabaqcLbmapeGa eyOeI0IaeqOVdGhajuaGcaGLOaGaayzkaaaapaqabaaaaa@3F3E@  for the above-mentioned vector when v is omitted from it. The full conditional distributions for β 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqOSdi2damaaBaaabaqcLbmapeGaaGymaaqcfa4daeqaaaaa @3B01@ , β 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8NSdSWdamaaBaaajuaGbaqcLbmapeGaaGOmaaqcfa4d aeqaaaaa@3B3C@   δ b 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaaigdaaKqba+aabeaaaeqaaaaa@3D92@ and δ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaaikdaaKqba+aabeaaaeqaaaaa@3D93@ , respectively, have the form:

π( β 2 | θ ( β 2 ) ,y,t)  i=1 m { h δ it ( t i | x 2i , z 2i , b 2i ) ×exp{ H 0 ( t i )exp{ x 2i T β 2 + z 2i T b 2i } } } ×  exp{ 1 2 ( β 2 β 02 ) S β 2 1 ( β 2 β 02 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiabec8aWjaacIcaieWacaWFYoWdamaaBaaajuaibaWd biaaikdaaKqba+aabeaapeGaaiiFaiaa=H7apaWaaSbaaeaapeWaae Waa8aabaWdbiabgkHiTiaa=j7apaWaaSbaaKqbGeaapeGaaGOmaaWd aeqaaaqcfa4dbiaawIcacaGLPaaaa8aabeaapeGaaiilaiaa=Lhaca GGSaGaa8hDaiaacMcacaGGGcGaeyyhIu7aaybCaeqajuaipaqaa8qa caWGPbGaeyypa0JaaGymaaWdaeaapeGaamyBaaqcfa4daeaapeGaey 4dIunaamaacmaapaqaa8qacaWGObWdamaaCaaabeqaa8qacqaH0oaz paWaaSbaaKqbGeaapeGaamyAaiaadshaa8aabeaaaaqcfa4dbmaabm aapaqaa8qacaWG0bWdamaaBaaajuaibaWdbiaadMgaa8aabeaajuaG peGaaiiFaiaa=HhapaWaaSbaaKqbGeaapeGaaGOmaiaadMgaaKqba+ aabeaapeGaaiilaiaa=PhapaWaaSbaaKqbGeaapeGaaGOmaiaadMga a8aabeaajuaGpeGaaiilaiaa=jgapaWaaSbaaKqbGeaapeGaaGOmai aadMgaaKqba+aabeaaa8qacaGLOaGaayzkaaGaaiiOaiabgEna0kGa cwgacaGG4bGaaiiCamaacmaapaqaa8qacqGHsislcaWGibWdamaaBa aajuaibaWdbiaaicdaaKqba+aabeaapeWaaeWaa8aabaWdbiaadsha paWaaSbaaKqbGeaapeGaamyAaaqcfa4daeqaaaWdbiaawIcacaGLPa aaciGGLbGaaiiEaiaacchadaGadaWdaeaapeGaa8hEa8aadaqhaaqc fasaa8qacaaIYaGaamyAaaWdaeaapeGaamivaaaajuaGcaWFYoWdam aaBaaajuaibaWdbiaaikdaa8aabeaajuaGpeGaey4kaSIaa8NEa8aa daqhaaqcfasaa8qacaaIYaGaamyAaaWdaeaapeGaamivaaaajuaGca WFIbWdamaaBaaajuaibaWdbiaaikdacaWGPbaajuaGpaqabaaapeGa ay5Eaiaaw2haaaGaay5Eaiaaw2haaaGaay5Eaiaaw2haaiaacckacq GHxdaTcaGGGcaakeaajuaGcaqGLbGaaeiEaiaabchadaGadaWdaeaa peWaaSaaa8aabaWdbiabgkHiTiaaigdaa8aabaWdbiaaikdaaaWaae Waa8aabaWdbiaa=j7apaWaaSbaaKqbGeaapeGaaGOmaaqcfa4daeqa a8qacqGHsislcaWFYoWdamaaBaaajuaibaWdbiaaicdacaaIYaaaju aGpaqabaaapeGaayjkaiaawMcaaiaahofapaWaa0baaKqbGeaapeGa eqOSdiwcfa4damaaBaaajuaibaWdbiaaikdaa8aabeaaaeaapeGaey OeI0IaaGymaaaajuaGdaqadaWdaeaapeGaa8NSd8aadaWgaaqcfasa a8qacaaIYaaajuaGpaqabaWdbiabgkHiTiaa=j7apaWaaSbaaKqbGe aapeGaaGimaiaaikdaaKqba+aabeaaa8qacaGLOaGaayzkaaaacaGL 7bGaayzFaaaaaaa@B966@

and

π( b 2i | θ ( β 2 ) ,y,t) i=1 m { h δ it ( t i | x 2i , z 2i , b 2i ) ×exp{ H 0 ( t i )exp{ x 2i T β 2 + z 2i T b 2i } } } ×exp{ s b i2 2 2 ( b i2 D b 2 w b i2 + μ b 2 ) T Ψ 2 1 ( b i2 D b 2 w b i2 + μ b 2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiabec8aWjaacIcaieWacaWFIbWdamaaBaaajuaibaWd biaaikdacaWGPbaajuaGpaqabaWdbiaacYhacaWF4oWdamaaBaaaba Wdbmaabmaapaqaa8qacqGHsislcaWFYoWdamaaBaaajuaibaWdbiaa ikdaaKqba+aabeaaa8qacaGLOaGaayzkaaaapaqabaWdbiaacYcaca WF5bGaaiilaiaa=rhacaGGPaaabaGaeyyhIu7aaybCaeqajuaipaqa a8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamyBaaqcfa4daeaape Gaey4dIunaamaacmaapaqaa8qacaWGObWdamaaCaaabeqaaKqbG8qa cqaH0oazjuaGpaWaaSbaaeaapeGaamyAaiaadshaa8aabeaaaaWdbm aabmaapaqaa8qacaWG0bWdamaaBaaajuaibaWdbiaadMgaa8aabeaa juaGpeGaaiiFaiaa=HhapaWaaSbaaKqbGeaapeGaaGOmaiaadMgaa8 aabeaajuaGpeGaaiilaiaa=PhapaWaaSbaaKqbGeaapeGaaGOmaiaa dMgaa8aabeaajuaGpeGaaiilaiaa=jgapaWaaSbaaKqbGeaapeGaaG OmaiaadMgaaKqba+aabeaaa8qacaGLOaGaayzkaaGaaiiOaiabgEna 0kGacwgacaGG4bGaaiiCamaacmaapaqaa8qacqGHsislcaWGibWdam aaBaaajuaibaWdbiaaicdaa8aabeaajuaGpeWaaeWaa8aabaWdbiaa dshapaWaaSbaaKqbGeaapeGaamyAaaWdaeqaaaqcfa4dbiaawIcaca GLPaaaciGGLbGaaiiEaiaacchadaGadaWdaeaapeGaa8hEa8aadaqh aaqcfasaa8qacaaIYaGaamyAaaWdaeaapeGaamivaaaajuaGcaWFYo WdamaaBaaajuaibaWdbiaaikdaa8aabeaajuaGpeGaey4kaSIaa8NE a8aadaqhaaqcfasaa8qacaaIYaGaamyAaaWdaeaapeGaamivaaaaju aGcaWFIbWdamaaBaaajuaibaWdbiaaikdacaWGPbaajuaGpaqabaaa peGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaqaai abgEna0kGacwgacaGG4bGaaiiCamaacmaapaqaa8qadaWcaaWdaeaa peGaeyOeI0Iaa83Ca8aadaqhaaqcfasaa8qacaWFIbqcfa4damaaBa aajuaibaWdbiaadMgacaaIYaaapaqabaaabaWdbiaaikdaaaaajuaG paqaa8qacaaIYaaaamaabmaapaqaa8qacaWFIbWdamaaBaaajuaiba WdbiaadMgacaaIYaaapaqabaqcfa4dbiabgkHiTiaahseapaWaaSba aKqbGeaajuaGpeGaamOya8aadaWgaaqcfasaa8qacaaIYaaapaqaba aabeaajuaGpeGaaC4Da8aadaWgaaqaa8qacaWFIbWdamaaBaaajuai baWdbiaadMgacaaIYaaapaqabaaajuaGbeaapeGaey4kaSIaaCiVd8 aadaWgaaqaa8qacaWGIbWdamaaBaaajuaibaWdbiaaikdaa8aabeaa aKqbagqaaaWdbiaawIcacaGLPaaapaWaaWbaaKqbGeqabaWdbiaads faaaqcfaOaaCiQd8aadaWgaaqcfasaa8qacaaIYaaapaqabaqcfa4a aWbaaKqbGeqabaWdbiabgkHiTiaaigdaaaqcfa4aaeWaa8aabaWdbi aa=jgapaWaaSbaaKqbGeaapeGaamyAaiaaikdaaKqba+aabeaapeGa eyOeI0IaaCira8aadaWgaaqcfasaaKqba+qacaWGIbWdamaaBaaaju aibaWdbiaaikdaa8aabeaaaeqaaKqba+qacaWH3bWdamaaBaaabaWd biaa=jgapaWaaSbaaKqbGeaapeGaamyAaiaaikdaaKqba+aabeaaae qaa8qacqGHRaWkcaWH8oWdamaaBaaabaWdbiaadkgapaWaaSbaaKqb GeaapeGaaGOmaaqcfa4daeqaaaqabaaapeGaayjkaiaawMcaaaGaay 5Eaiaaw2haaaaaaa@D2E2@

and

π( δ b k | θ ( S b ki 2 ) ,y,t)f( b i | Ψ 1 , δ b k , w b ki )T( δ b k | μ b k , γ b k ) exp{ s b i 2 2 ( b ki D b k W b ki + μ b k ) T Ψ 1 1 ( b i1 D b k W b ki + μ b k ) } exp 1 2 ( δ b k μ b k ) T γ b k 1 ( δ b k μ b k )I{ δ b k >0 },     k=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiabec8aWjaacIcaieWacaWF0oWdamaaBaaajuaibaWd biaadkgajuaGpaWaaSbaaKqbGeaapeGaam4AaaWdaeqaaaqcfayaba WdbiaacYhacaWF4oWdamaaBaaabaWdbmaabmaapaqaa8qacqGHsisl caWHtbWdamaaDaaajuaibaWdbiaa=jgajuaGpaWaaSbaaKqbGeaape Gaam4AaiaadMgaa8aabeaaaeaapeGaaGOmaaaaaKqbakaawIcacaGL Paaaa8aabeaapeGaaiilaiaa=LhacaGGSaGaa8hDaiaacMcacqGHDi sTcaWGMbWaaeWaa8aabaWdbiaa=jgapaWaaSbaaKqbGeaapeGaamyA aaWdaeqaaKqba+qacaGG8bGaaCiQd8aadaWgaaqcfasaa8qacaaIXa aapaqabaqcfa4dbiaacYcacqaH0oazpaWaaSbaaKqbGeaapeGaamOy aKqba+aadaWgaaqcfasaa8qacaWGRbaapaqabaaajuaGbeaapeGaai ilaiaadEhapaWaaSbaaKqbGeaapeGaa8NyaKqba+aadaWgaaqcfasa a8qacaWGRbGaamyAaaWdaeqaaaqabaaajuaGpeGaayjkaiaawMcaai aadsfadaqadaWdaeaapeGaa8hTd8aadaWgaaqcfasaa8qacaWGIbqc fa4damaaBaaajuaibaWdbiaadUgaa8aabeaaaKqbagqaa8qacaGG8b Gaa8hVd8aadaWgaaqcfasaa8qacaWGIbqcfa4damaaBaaajuaibaWd biaadUgaa8aabeaaaeqaaKqba+qacaGGSaGaa83Sd8aadaWgaaqcfa saa8qacaWGIbqcfa4damaaBaaajuaibaWdbiaadUgaa8aabeaaaKqb agqaaaWdbiaawIcacaGLPaaaaeaacqGHDisTciGGLbGaaiiEaiaacc hadaGadaWdaeaapeWaaSaaa8aabaWdbiabgkHiTiaadohapaWaa0ba aKqbGeaapeGaamOyaKqba+aadaWgaaqcfasaa8qacaWGPbaapaqaba aabaWdbiaaikdaaaaajuaGpaqaa8qacaaIYaaaamaabmaapaqaa8qa caWFIbWdamaaBaaajuaibaWdbiaadUgacaWGPbaajuaGpaqabaWdbi abgkHiTiaa=reapaWaaSbaaKqbGeaapeGaamOyaKqba+aadaWgaaqc fasaa8qacaWGRbaapaqabaaajuaGbeaapeGaa83va8aadaWgaaqcfa saa8qacaWFIbqcfa4damaaBaaajuaibaWdbiaadUgacaWGPbaapaqa baaajuaGbeaapeGaey4kaSIaa8hVd8aadaWgaaqcfasaa8qacaWGIb qcfa4damaaBaaajuaibaWdbiaadUgaa8aabeaaaeqaaaqcfa4dbiaa wIcacaGLPaaapaWaaWbaaeqabaWdbiaadsfaaaGaaCiQd8aadaWgaa qcfasaa8qacaaIXaaajuaGpaqabaWaaWbaaeqabaWdbiabgkHiTiaa igdaaaWaaeWaa8aabaWdbiaa=jgapaWaaSbaaKqbGeaapeGaamyAai aaigdaa8aabeaajuaGpeGaeyOeI0Iaa8hra8aadaWgaaqcfasaa8qa caWGIbqcfa4damaaBaaajuaibaWdbiaadUgaa8aabeaaaKqbagqaa8 qacaWFxbWdamaaBaaajuaibaWdbiaa=jgajuaGpaWaaSbaaKqbGeaa peGaam4AaiaadMgaa8aabeaaaeqaaKqba+qacqGHRaWkcaWF8oWdam aaBaaajuaibaWdbiaadkgajuaGpaWaaSbaaKqbGeaapeGaam4AaaWd aeqaaaqabaaajuaGpeGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaai GacwgacaGG4bGaaiiCamaalaaapaqaa8qacqGHsislcaaIXaaapaqa a8qacaaIYaaaamaabmaapaqaa8qacaWF0oWdamaaBaaajuaibaWdbi aadkgajuaGpaWaaSbaaKqbGeaapeGaam4AaaWdaeqaaaqabaqcfa4d biabgkHiTiaa=X7apaWaaSbaaKqbGeaapeGaamOyaKqba+aadaWgaa qcfasaa8qacaWGRbaapaqabaaajuaGbeaaa8qacaGLOaGaayzkaaWd amaaCaaabeqaa8qacaqGubaaaiaa=n7apaWaa0baaKqbGeaapeGaam OyaKqba+aadaWgaaqcfasaa8qacaWGRbaapaqabaaabaWdbiabgkHi Tiaaigdaaaqcfa4aaeWaa8aabaWdbiaa=r7apaWaaSbaaKqbGeaape GaamOyaKqba+aadaWgaaqcfasaa8qacaWGRbaapaqabaaabeaajuaG peGaeyOeI0Iaa8hVd8aadaWgaaqcfasaa8qacaWGIbqcfa4damaaBa aajuaibaWdbiaadUgaa8aabeaaaeqaaaqcfa4dbiaawIcacaGLPaaa caWGjbWaaiWaa8aabaWdbiaa=r7apaWaaSbaaKqbGeaapeGaamOyaK qba+aadaWgaaqcfasaa8qacaWGRbaapaqabaaajuaGbeaapeGaeyOp a4JaaGimaaGaay5Eaiaaw2haaiaacYcacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaadUgacqGH9aqpcaaIXaGaaiilaiaaikdaaaaa@F6EF@

For β 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFYoWcpaWaaSbaaKqbagaajugWa8qacaaIXaaajuaG paqabaaaaa@3B46@  and b 1i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkgal8aadaWgaaqaaKqzadWdbiaaigdacaWGPbaal8aa beaaaaa@3AC9@ , i = 1, 2, ...,n the full conditional distributions have closed form, and are given
by:

π( β 1 | ϑ ( β 1 ) ,y,t )~N p 1 ( A β 1 1 a β 1 , A β 1 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabec8aWjaacIcacqaHYoGyl8aadaWgaaqaaKqzadWdbiaa igdaaSWdaeqaaKqzGeWdbiaabYhacqaHrpGsl8aadaWgaaqaa8qada qadaWdaeaajugWa8qacqGHsislcqaHYoGyl8aadaWgaaadbaqcLbma peGaaGymaaadpaqabaaal8qacaGLOaGaayzkaaaapaqabaqcLbsape GaaiilaiaahMhacaGGSaGaaCiDaiaabMcacaqG+bGaaeOtaSWdamaa BaaabaqcLbmapeGaamiCaSWdamaaBaaameaajugWa8qacaaIXaaam8 aabeaaaSqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamyqaSWdamaa DaaabaqcLbmapeGaeqOSdi2cpaWaaSbaaWqaaKqzadWdbiaaigdaaW WdaeqaaaWcbaqcLbmapeGaeyOeI0IaaGymaaaajugibiaadggal8aa daWgaaqaaKqzadWdbiabek7aITWdamaaBaaameaajugWa8qacaaIXa aam8aabeaaaSqabaqcLbsapeGaaiilaiaadgeal8aadaqhaaqaaKqz adWdbiabek7aITWdamaaBaaameaajugWa8qacaaIXaaam8aabeaaaS qaaKqzadWdbiabgkHiTiaaigdaaaaakiaawIcacaGLPaaajugibiaa cYcaaaa@728E@

where   A β 1 = i=1 m 1 σ e 2 x 1i ' I i 1 x 1i + S β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbWcpaWaaSbaaeaajugWa8qacqaHYoGyl8aadaWgaaadbaqc LbmapeGaaGymaaadpaqabaaaleqaaOWdbiabg2da9maawahabeWcpa qaaaqaaaqdbaWdbiabggHiLVWaa0baa4qaaKqzadGaamyAaiabg2da 9iaaigdaa4qaaKqzadGaamyBaaaaaaGcdaWcaaWdaeaapeGaaGymaa WdaeaapeGaae4WdSWdamaaDaaabaqcLbmapeGaaeyzaaWcpaqaaKqz adWdbiaaikdaaaaaaOGaamiEaSWdamaaDaaabaqcLbmapeGaaGymai aadMgaaSWdaeaajugWa8qacaGGNaaaaOGaamysaSWdamaaDaaabaqc LbmapeGaamyAaaWcpaqaaKqzadWdbiabgkHiTiaaigdaaaGccaWG4b WcpaWaaSbaaeaajugWa8qacaaIXaGaamyAaaWcpaqabaGcpeGaey4k aSIaam4uaSWdamaaDaaabaqcLbmapeGaeqOSdigal8aabaqcLbmape GaeyOeI0IaaGymaaaakiaacMcaaaa@6654@  and a β 1 = S β 1 β 01 + i=1 m σ e 2 x 1i ' ( y i z 1i ' b i1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggal8aadaWgaaqaaKqzadWdbiabek7aITWdamaaBaaa meaajugWa8qacaaIXaaam8aabeaaaSqabaqcLbsapeGaeyypa0Jaam 4uaSWdamaaDaaabaqcLbmapeGaeqOSdigal8aabaqcLbmapeGaeyOe I0IaaGymaaaajugibiabek7aITWdamaaBaaabaqcLbmapeGaaGimai aaigdaaSWdaeqaaKqzGeWdbiabgUcaRKqbaoaawahakeqal8aabaaa baaaneaajugib8qacqGHris5juaGdaqhaaGdbaqcLbsacaWGPbGaey ypa0JaaGymaaGdbaqcLbsacaWGTbaaaaaacaqGdpWcpaWaa0baaeaa jugWa8qacaqGLbaal8aabaqcLbmapeGaaGOmaaaajugibiaadIhal8 aadaqhaaqaaKqzadWdbiaaigdacaWGPbaal8aabaqcLbmapeGaai4j aaaajuaGdaqadaGcpaqaaKqzGeWdbiaadMhajuaGpaWaaSbaaSqaaK qzGeWdbiaadMgaaSWdaeqaaKqzGeWdbiabgkHiTiaadQhal8aadaqh aaqaaKqzadWdbiaaigdacaWGPbaal8aabaqcLbmapeGaai4jaaaaju gibiaadkgal8aadaWgaaqaaKqzadWdbiaadMgacaaIXaaal8aabeaa aOWdbiaawIcacaGLPaaaaaa@74A3@ ,

also π( b i1 | θ ( b i1 ) ,y,t)~ N q 1 ( A b i1 1 a b i1 , A b i1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabec8aWjaacIcacaWGIbqcfa4damaaBaaaleaajugWa8qa caWGPbGaaGymaaWcpaqabaqcLbsapeGaaiiFaiabeI7aXLqba+aada WgaaWcbaqcfa4dbmaabmaal8aabaqcLbsapeGaeyOeI0IaamOyaSWd amaaBaaameaajugWa8qacaWGPbGaaGymaaadpaqabaaal8qacaGLOa GaayzkaaaapaqabaqcLbsapeGaaiilaiaadMhacaGGSaGaamiDaiaa cMcacaGG+bGaamOtaKqba+aadaWgaaWcbaqcLbmapeGaamyCaSWdam aaBaaameaajugWa8qacaaIXaaam8aabeaaaSqabaqcfa4dbmaabmaa k8aabaqcLbsapeGaamyqaSWdamaaDaaabaqcLbmapeGaamOyaSWdam aaBaaameaajugWa8qacaWGPbGaaGymaaadpaqabaaaleaajugWa8qa cqGHsislcaaIXaaaaKqzGeGaamyyaKqba+aadaWgaaWcbaqcLbmape GaamOyaSWdamaaBaaameaajugWa8qacaWGPbGaaGymaaadpaqabaaa leqaaKqzGeWdbiaacYcacaWGbbWcpaWaa0baaeaajugWa8qacaWGIb WcpaWaaSbaaWqaaKqzadWdbiaadMgacaaIXaaam8aabeaaaSqaaKqz adWdbiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaaa@7491@

where, A ( b i ) (1) = s ( b i 1) 2 ψ 1 (1) + σ e (2) z i 1 T I i (1) z i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeal8aadaqhaaqaaKqzadWdbiaacIcacaWGIbWcpaWa aSbaaWqaaKqzadWdbiaadMgaaWWdaeqaaKqzadWdbiaacMcaaSWdae aajugWa8qacaGGOaGaeyOeI0IaaGymaiaacMcaaaqcLbsacqGH9aqp caWGZbWcpaWaa0baaeaajugWa8qacaGGOaGaamOyaSWdamaaBaaame aajugWa8qacaWGPbaam8aabeaajugWa8qacaaIXaGaaiykaaWcpaqa aKqzadWdbiaaikdaaaqcLbsacqaHipqEl8aadaWgaaqaaKqzadWdbi aaigdaaSWdaeqaamaaCaaabeqaaKqzadWdbiaacIcacqGHsislcaaI XaGaaiykaaaajugibiabgUcaRiabeo8aZTWdamaaDaaabaqcLbmape GaamyzaaWcpaqaaKqzadWdbiaacIcacqGHsislcaaIYaGaaiykaaaa jugibiaadQhal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqzad Wdbiaaigdal8aadaahaaqabeaajugWa8qacaWGubaaaKqzGeGaamys aSWdamaaDaaabaqcLbmapeGaamyAaaWcpaqaaKqzadWdbiaacIcacq GHsislcaaIXaGaaiykaaaajugibiaadQhal8aadaWgaaqaaKqzadWd biaadMgaaSWdaeqaaKqzadWdbiaaigdaaaa@79AB@  and a ( b i 1) = σ e (2) z i 1 T I i (1) ( y i x i 1 β 1 )+ Ψ 1 (1) ( D ( b 1 ) w ( b i 1) μ ( b 1 ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggal8aadaWgaaqaaKqzadWdbiaacIcacaWGIbWcpaWa aSbaaWqaaKqzadWdbiaadMgaaWWdaeqaaKqzadWdbiaaigdacaGGPa aal8aabeaajugib8qacqGH9aqpcqaHdpWCl8aadaqhaaqaaKqzadWd biaadwgaaSWdaeaajugWa8qacaGGOaGaeyOeI0IaaGOmaiaacMcaaa qcLbsacaWG6bWcpaWaaSbaaeaajugWa8qacaWGPbaal8aabeaajugW a8qacaaIXaWcpaWaaWbaaeqabaqcLbmapeGaamivaaaajugibiaadM eal8aadaqhaaqaaKqzadWdbiaadMgaaSWdaeaajugWa8qacaGGOaGa eyOeI0IaaGymaiaacMcaaaqcLbsacaGGOaGaamyEaKqba+aadaWgaa WcbaqcLbsapeGaamyAaaWcpaqabaqcLbsapeGaeyOeI0IaamiEaSWd amaaBaaabaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaaGymaiabek 7aITWdamaaBaaabaqcLbmapeGaaGymaaWcpaqabaqcLbsapeGaaiyk aiabgUcaRiabfI6azTWdamaaBaaabaqcLbmapeGaaGymaaWcpaqaba WaaWbaaeqabaqcLbmapeGaaiikaiabgkHiTiaaigdacaGGPaaaaKqz GeGaaiikaiaadseal8aadaWgaaqaaKqzadWdbiaacIcacaWGIbWcpa WaaSbaaWqaaKqzadWdbiaaigdaaWWdaeqaaKqzadWdbiaacMcaaSWd aeqaaKqzGeWdbiaadEhal8aadaWgaaqaaKqzadWdbiaacIcacaWGIb WcpaWaaSbaaWqaaKqzadWdbiaadMgaaWWdaeqaaKqzadWdbiaaigda caGGPaaal8aabeaajugib8qacqGHsislcqaH8oqBl8aadaWgaaqaaK qzadWdbiaacIcacaWGIbWcpaWaaSbaaWqaaKqzadWdbiaaigdaaWWd aeqaaKqzadWdbiaacMcaaSWdaeqaaKqzGeWdbiaacMcacaGGUaaaaa@93FD@
The full conditional distributions of ν b 1 , ν b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabe27aULqba+aadaWgaaWcbaqcLbmapeGaamOyaSWdamaa BaaameaajugWa8qacaaIXaaam8aabeaaaSqabaqcLbsapeGaaiilai abe27aULqba+aadaWgaaWcbaqcLbmapeGaamOyaSWdamaaBaaameaa jugWa8qacaaIYaaam8aabeaaaSqabaaaaa@460E@ , b 2i , δ b 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkgal8aadaWgaaqaaKqzadWdbiaaikdacaWGPbaal8aa beaajugib8qacaGGSaGaaCiTdSWdamaaBaaabaqcLbmapeGaamOyaS WdamaaBaaameaajugWa8qacaaIXaaam8aabeaaaSqabaaaaa@421F@  ,and δ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahs7al8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaad baqcLbmapeGaaGOmaaadpaqabaaaleqaaaaa@3CAD@ are not in closed forms of known distributions. Thus, the Gibbs sampling can readily be implemented. For these parameters a Metropolis-Hastings can be embedded in the Gibbs sampling scheme to obtain draws for them. The full conditional distributions of Ψ k , S b k2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahI6ajuaGpaWaaSbaaSqaaKqzadWdbiaadUgaaSWdaeqa aKqzGeWdbiaacYcacaWHtbWcpaWaa0baaeaajugWa8qacaqGIbWcpa WaaSbaaWqaaKqzadWdbiaadUgacaaIYaaam8aabeaaaSqaaKqzadWd biaaikdaaaaaaa@44C6@ , k=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH9aqpcaaIXaGaaiilaiaaikdaaaa@3AC2@  and σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZTWdamaaDaaabaqcLbmapeGaamyzaaWcpaqaaKqz adWdbiaaikdaaaaaaa@3CE1@  are presented in Appendix1.

Applications

We analyzed the data from a retrospective cohort study. All consecutive adult patients (N=380) were considered who, from October 2010 through October 2012, underwent cardiac surgical procedure with cardiopulmonary bypass at Masih Daneshvari Hospital,Tehran, Iran as a referral center. Patients who underwent more than one cardiac surgical procedure during hospitalization (n=40), were excluded from the study. Additional exclusion criteria were surgeries performed off-pump (n=15) and preoperative renal failure requiring dialysis (n=25). Overall, 300 patients could be included in the study. After surgery, patients were admitted to the intensive care unit (ICU) and were followed from the day of ICU admission until ICU discharge or end of study. Urine output (UO) and other physiological variables were repeatedly measured in 2 hours in the first 8 hours of admission in ICU. Patients’ demographics and laboratory data were gathered repeatedly. Main survival endpoint was the time of occurrence of acute kidney injury (AKI) after cardiac surgery that was defined, the amount of urine output less than 0.5 ml/kg per hour in first 6 hours. Patients were followed since ICU admission until AKI occurrence.

We have used the joint modeling which fitted by Guo and Carlin,35 but with some various distributional assumptions. The aim of fitting joint models is to additionally study the relationship between two longitudinal and time to event responses in terms of available covariates. Parameter  in our joint model is determined to assessment relationship strength between UO and AKI occur hazard. The joint modeling with random intercept and slop is given by:

U O ij = β 11 + β 12 t ij + β 13 ag e i + β 14 Se x i + β 15 DB P ij + β 16 infectio n ij + b 1i + b 2i t ij + ε ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwfacaWGpbWcpaWaaSbaaeaajugWa8qacaWGPbGaamOA aaWcpaqabaqcLbsapeGaeyypa0JaeqOSdi2cpaWaaSbaaeaajugWa8 qacaaIXaGaaGymaaWcpaqabaqcLbsapeGaey4kaSIaeqOSdi2cpaWa aSbaaeaajugWa8qacaaIXaGaaGOmaaWcpaqabaqcLbsapeGaamiDaS WdamaaBaaabaqcLbmapeGaamyAaiaadQgaaSWdaeqaaKqzGeWdbiab gUcaRiabek7aITWdamaaBaaabaqcLbmapeGaaGymaiaaiodaaSWdae qaaKqzGeWdbiaadggacaWGNbGaamyzaSWdamaaBaaabaqcLbmapeGa amyAaaWcpaqabaqcLbsapeGaey4kaSIaeqOSdi2cpaWaaSbaaeaaju gWa8qacaaIXaGaaGinaaWcpaqabaqcLbsapeGaam4uaiaadwgacaWG 4bWcpaWaaSbaaeaajugWa8qacaWGPbaal8aabeaajugib8qacqGHRa WkcqaHYoGyl8aadaWgaaqaaKqzadWdbiaaigdacaaI1aaal8aabeaa jugib8qacaWGebGaamOqaiaadcfal8aadaWgaaqaaKqzadWdbiaadM gacaWGQbaal8aabeaajugib8qacqGHRaWkcqaHYoGyl8aadaWgaaqa aKqzadWdbiaaigdacaaI2aaal8aabeaajugib8qacaWGPbGaamOBai aadAgacaWGLbGaam4yaiaadshacaWGPbGaam4Baiaad6gal8aadaWg aaqaaKqzadWdbiaadMgacaWGQbaal8aabeaajugib8qacqGHRaWkca WGIbWcpaWaaSbaaeaajugWa8qacaaIXaGaamyAaaWcpaqabaqcLbsa peGaey4kaSIaamOyaSWdamaaBaaabaqcLbmapeGaaGOmaiaadMgaaS WdaeqaaKqzGeWdbiaadshajuaGpaWaaSbaaSqaaKqzadWdbiaadMga caWGQbaal8aabeaajugib8qacqGHRaWkcqaH1oqzl8aadaWgaaqaaK qzadWdbiaadMgacaWGQbaal8aabeaaaaa@9C22@

For the time to event process, we have applied a Cox proportional hazard model; the hazard function for this model is given by:

h( t i )= h 0 ( t i )expexp{ β 21 + β 22 APACHEI I i + β 23 Se x i + β 24 DB P i + β 25 hospital_sta y i + β 26 emergency_surger y i +γ( b 1i + b 2i ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIgajuaGdaqadaGcpaqaaKqzGeWdbiaadshal8aadaWg aaqaaKqzadWdbiaadMgaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGe Gaeyypa0JaamiAaSWdamaaBaaabaqcLbmapeGaaGimaaWcpaqabaqc fa4dbmaabmaak8aabaqcLbsapeGaamiDaSWdamaaBaaabaqcLbmape GaamyAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsaciGGLbGaaiiE aiaacchaciGGLbGaaiiEaiaacchakmaacmaapaabaeqabaqcLbsape GaeqOSdiwcfa4damaaBaaaleaajugWa8qacaaIYaGaaGymaaWcpaqa baqcLbsapeGaey4kaSIaeqOSdi2cpaWaaSbaaeaajugWa8qacaaIYa GaaGOmaaWcpaqabaqcLbsapeGaamyqaiaadcfacaWGbbGaam4qaiaa dIeacaWGfbGaamysaiaadMeal8aadaWgaaqaaKqzadWdbiaadMgaaS WdaeqaaKqzGeWdbiabgUcaRiabek7aITWdamaaBaaabaqcLbmapeGa aGOmaiaaiodaaSWdaeqaaKqzGeWdbiaadofacaWGLbGaamiEaSWdam aaBaaabaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaey4kaSIaeqOS diwcfa4damaaBaaaleaajugWa8qacaaIYaGaaGinaaWcpaqabaqcLb sapeGaamiraiaadkeacaWGqbWcpaWaaSbaaeaajugWa8qacaWGPbaa l8aabeaajugib8qacqGHRaWkcqaHYoGyl8aadaWgaaqaaKqzadWdbi aaikdacaaI1aaal8aabeaajugib8qacaWGObGaam4BaiaadohacaWG WbGaamyAaiaadshacaWGHbGaamiBaiaac+facaWGZbGaamiDaiaadg gacaWG5bWcpaWaaSbaaeaajugWa8qacaWGPbaal8aabeaaaOqaaKqz GeWdbiabgUcaRiabek7aITWdamaaBaaabaqcLbmapeGaaGOmaiaaiA daaSWdaeqaaKqzGeWdbiaadwgacaWGTbGaamyzaiaadkhacaWGNbGa amyzaiaad6gacaWGJbGaamyEaiaac+facaWGZbGaamyDaiaadkhaca WGNbGaamyzaiaadkhacaWG5bWcpaWaaSbaaeaajugWa8qacaWGPbaa l8aabeaajugib8qacqGHRaWkcqaHZoWzjuaGdaqadaGcpaqaaKqzGe Wdbiaadkgal8aadaWgaaqaaKqzadWdbiaaigdacaWGPbaal8aabeaa jugib8qacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugWa8qacaaIYa GaamyAaaWcpaqabaaak8qacaGLOaGaayzkaaaaaiaawUhacaGL9baa aaa@BEF6@
the random effects, b i =( b 1i , b 2i )' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkgal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabg2da9Kqbaoaabmaak8aabaqcLbsapeGaamOyaKqba+aada WgaaWcbaqcLbmapeGaaGymaiaadMgaaSWdaeqaaKqzGeWdbiaacYca caWGIbWcpaWaaSbaaeaajugWa8qacaaIYaGaamyAaaWcpaqabaaak8 qacaGLOaGaayzkaaqcLbsacaGGNaaaaa@49FA@ , are shared between two models. Random effects are assumed to have a bivariate skew elliptical distribution, that is, b i ~S E 2 ( 0,Σ,D ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkgal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiaac6hacaWGtbGaamyraSWdamaaBaaabaqcLbmapeGaaGOmaa Wcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaaGimaiaacYcacaWH JoGaaiilaiaadseaaOGaayjkaiaawMcaaaaa@469B@ . In this model, U O ij   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwfacaWGpbWcpaWaaSbaaeaajugWa8qacaWGPbGaamOA aaWcpaqabaqcLbmapeGaaiiOaaaa@3E25@  is the j t h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQgal8aadaahaaqabeaajugWa8qacaWG0baaaiaadIga aaa@3AF4@ measurement urine output on the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgal8aadaahaaqabeaajugWa8qacaWG0bGaamiAaaaa aaa@3AF4@  individual in the study, j:1,2,..., n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQgacaGG6aGaaGymaiaacYcacaaIYaGaaiilaiaac6ca caGGUaGaaiOlaiaacYcacaWGUbWcpaWaaSbaaeaajugWa8qacaWGPb aal8aabeaaaaa@4164@ and i : 1, 2, ...,m. Se x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofacaWGLbGaamiEaSWdamaaBaaabaqcLbmapeGaamyA aaWcpaqabaaaaa@3BE6@ is a gender indicator (0=male, 1=female), also other three explanatory variables are infectio n ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgacaWGUbGaamOzaiaadwgacaWGJbGaamiDaiaadMga caWGVbGaamOBaSWdamaaBaaabaqcLbmapeGaamyAaiaadQgaaSWdae qaaaaa@4281@  (0=no, 1= yes), DB P ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadseacaWGcbGaamiuaSWdamaaBaaabaqcLbmapeGaamyA aiaadQgaaSWdaeqaaaaa@3C7A@ (0=no, 1=yes), and emergency_surger y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwgacaWGTbGaamyzaiaadkhacaWGNbGaamyzaiaad6ga caWGJbGaamyEaiaac+facaWGZbGaamyDaiaadkhacaWGNbGaamyzai aadkhacaWG5bWcpaWaaSbaaeaajugWa8qacaWGPbaal8aabeaaaaa@4929@  (0=no, 1=yes). APACHE II MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabgeacaqGqbGaaeyqaiaaboeacaqGibGaaeyraiaabcca caqGjbGaaeysaaaa@3D94@ score and DBP mean Acute Physiology and Chronic Health Evaluation II score and diastolic blood pressure.

In the Bayesian MCMC method, we ran two parallel MCMC chains with different starting values for each 100,000 iteration. Then, we discarded the first 40, 000 iterations as pre-convergence burn-in and retained 50, 000 as the posterior analysis.

 In all models, β k N pk ( 0,10000 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aITWdamaaBaaabaqcLbmapeGaam4AaaWcpaqabaqc LbsapeGaeyipI4NaamOtaSWdamaaBaaabaqcLbmapeGaamiCaiaadU gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaaicdacaGGSaGa aGymaiaaicdacaaIWaGaaGimaiaaicdaaOGaayjkaiaawMcaaaaa@4911@  , σ e Γ( 0.1,0.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZTWdamaaBaaabaqcLbmapeGaamyzaaWcpaqabaqc LbsapeGaeyipI4Naeu4KdCucfa4aaeWaaOWdaeaajugib8qacaaIWa GaaiOlaiaaigdacaGGSaGaaGimaiaac6cacaaIXaaakiaawIcacaGL Paaaaaa@462B@ and γN( 0,100 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo7aNjabgYJi+jaad6eajuaGdaqadaGcpaqaaKqzGeWd biaaicdacaGGSaGaaGymaiaaicdacaaIWaaakiaawIcacaGLPaaaaa a@40F9@ where, k = 1, 2, p1 = 6, p2 = 6, and Ψ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahI6ajuaGpaWaaSbaaSqaaKqzadWdbiaadUgaaSWdaeqa aaaa@3AEA@  ∼ IW(I2, 2). The hyper parameter of student’s t, ν k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaab27al8aadaWgaaqaaKqzadWdbiaadUgaaSWdaeqaaaaa @3A6B@ , is assumed to have U(1, 7) distribution. For the piecewise baseline hazard function [ h l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIgal8aadaWgaaqaaKqzadWdbiaadYgaaSWdaeqaaaaa @3A16@ , l=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4m aiaacYcacaaI0aaaaa@3D9E@ (the number of piecewise baseline=4)] the gamma (2, 2) prior distribution is considered.

Hyperparameters are chosen such that the priors of the parameters tend to be weakly informative. The implementation of this method is relatively easy in the publicly available software Open BUGS (Spiegelhalter et al. 2003). The parameter estimates are not sensitive to the choice of hyperparameters and initial values. In order to see how stable the final estimates are, multiple parallel chains with different initial values should be carried out (we considered two chains).

Figure 1 shows the observed longitudinal measures of UO plotted against time for the patients included in the analysis based on the AKI occurrence. UO decreases over time and it seems censoring mechanism be randomly, hence tow graphs have similar pattern.

Figure 1 Profile UO measurements over time (a) The individuals with censored survival time (b)The individuals with non-censored survival time.

In total, our results were organized on 10 different models, 9 models in all combinations of three distribution SN, ST and SL for for b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkgal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaaaa @3A0D@  and ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLTWdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaaa aa@3ACD@ , In addition to normal assumption for both of them table 1. In this table for example SN,SL model shows skew elliptical normal distribution for shared random effects and skew elliptical Laplace distribution for the residuals. The estimated random effects distribution surface and estimated residuals distribution histogram in N,N model, are depicted in Figure 2 (a) , (b) respectively. The plots clearly show deviation from bivariate normality distribution in shared random effects and normally distributed residuals. According to DIC criteria the model with bivariate skew t and skew Laplace distribution for shared random effects and residuals respectively (ST,SL), is the best-fitted model for the data, while (ST,ST) model is the second-best model.

Model

D ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGeb Gbaebaaaa@3767@

D ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGeb GbaKaaaaa@375E@

p D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaqa aaaaaaaaWdbiaa=bhal8aadaWgaaqaaKqzadWdbiaa=reaaSWdaeqa aaaa@39FB@

DIC

N,N

6405.75

6044.85

360.9

6766.65

SN,SN

5709.11

5241.32

467.79

6176.9

ST,SN

5559.66

5048.98

510.68

6070.34

SL,SN

5990.38

5601.93

388.45

6378.83

SN,ST

5799.42

5369.05

430.37

6229.79

ST,ST

5202.03

4668.69

533.34

5735.37

SL,ST

5990.12

5603.99

386.13

6376.25

SN,SL

5695.6

5215.05

480.55

6176.15

ST,SL

5039.34

4486.56

552.78

5592.12

SL,SL

5830.4

5440.13

390.27

6220.67

Table 1 Bayesian model selection for the ICU data set

SN, SL: shows skew elliptical normal distribution for shared random effect and Skew elliptical Laplace distribution for residuals.


Figure 2 (a) Estimated random effects distribution under the multivariate normal distribution fitted to the ICU data. (b) Histogram of residual estimates.

Parameters

mean

SD

median

95% HPD

Intercept ( β 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aITWdamaaBaaabaqcLbmapeGaaGymaiaaigdaaSWd aeqaaaaa@3B50@ )

8.236

0.415

8.123

(8.117,8.780)

Time ( β12)

-0.201

0.030

-0.201

(-0.242,-0.164)

Age ( β13)

1.500

1.101

1.500

(-0.926,1.695)

Sex(β14)

-0.040

0.010

-0.045

(-0.009,0.049)

DBP (β15)

3.653

1.838

3.474

(3.257, 3.807)

Infection (β16)

-0.386

0.221

-0.399

(-0.721, 0.053)

Intercept (β21)

-1.779

0.799

-1.774

(-3.235,0.368)

APACHE II score (β22)

0.439

0.275

0.431

(2.925, 4.996)

Sex (β23)

-0.646

0.393

-0.673

(-2.414, 0.779)

DBP (β24)

-0.216

0.088

-0.229

(-0.356, -0.179)

Hospital length of stay (β25)

0.765

0.674

0.765

(1.201, 1.832)

Emergency surgery(β26)

0.612

0.425

0.621

(-0.736, 0.792)

γ

-0.310

0.211

-0.315

(-0.611, -0.288)

βb0

0.430

0.311

0.401

( 0.119, 0.564)

δ b 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqbacbaaa aaaaaapeGaa8hTd8aadaWgaaqaaKqzadWdbiaadkgal8aadaWgaaqc fayaaKqzadWdbiaaigdaaKqba+aabeaaaeqaaaaa@3D92@

-0.012

0.004

-0.011

(-0.204, 0.178)

ϑb

11.199

6.108

11.199

(5.691, 18.344)

σ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgaaeaacaaIYaaaaaaa@3989@

0.073

0.082

0.070

(0.039,0.048)

σ b 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgadaWgaaadbaGaaGimaaqabaaaleaacaaIYaaaaaaa @3A7B@

0.147

0.099

0.147

(0.119,0.188)

σ b1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgacaaIXaaabaGaaGOmaaaaaaa@3A44@

0.067

0.055

0.070

(0.049,0.098)

σ b 0 , b 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadkgadaWgbaadbaGaaGimaaqabaaaleqaaOGaaiilamaa BaaaleaacaWGIbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaaa@3C7F@

0.031

0.022

0.031

(0.009,0.051)

h1

9.50e-04

9.86e-04

7.31e-04

(4.716e-08, 0.004)

h2

10.10e-04

10.06e-04

7.90e-04

(4.918e-08, 0.009)

h3

0.692

0.952

0.627

(6.796e-06, 2.136)

h4

1.211

1.001

1.196

(6.237e-05, 3.985)

Table 2 Bayesian parameter estimates (posterior mean, median and standard deviation, SD) and 95% HPD for analyzing the ICU data set

Table 2 includes parameter estimates and %95 highest posterior density intervals for parameters of (ST, SL) model for the ICU data set. According to the results of the mixed model of joint analysis, a decrease of UO occurred more in infected patients and also in low DBP, significantly. The total number of UO longitudinal measurements was 1540 and the average of measurements was 3.85 per patients. Low DBP (HR=1.2) and higher hospital length of stay (HR=2.0) had significant effects on the risk of AKI after cardiac surgery, similar results were obtained by other researchers such as: Kim and et al.,36 Khwaja.37 After using joint modeling, our findings showed a negative significant association between the risk of AKI following cardiac surgery and UO in patients ( γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo7aNbaa@384C@ = -0.31), that expressed the suitable selection of the joint modeling for this research.

Discussions and concluding remarks

Joint modeling of longitudinal and survival data provides a suitable tools for the analysis of relationship between tow responses. In this paper, flexible joint modeling of these responses is proposed to deal with the situations in which the underlying distributions follow asymmetric structures. We fitted some flexible models for an empirical example taken from a retrospective cohort study to illustrate the suggested strategy. In most studies, the random effects and residuals terms vector is taken to be normally distributed. However, in the analysis of ICU data, we showed that this assumption was violated, leading to inappropriate results. Thus, we applied suitable non-normal distributions to avoid model mis-specifications.

We have used the Cox proportional hazard model for time to event process and a linear mixed effect model for longitudinal measurements. These two models have joined by a vector of random effects which shared in some components together.

In this study, we assessed the association between UO and AKI using the joint modeling of longitudinal and survival data for first time.

After using joint modeling, our findings showed a negative significant association between the risk of AKI following cardiac surgery and UO, which expressed the suitable selection of the joint modeling for this research. Also significant skewness parameter for random intercept implied accurate choice in skew distribution for random effects. According to the results of the mixed model of joint analysis, a decrease of UO occurred more in female and infected patients and also in low DBP, significantly.

In survival part, Female gender, older age, high APACHE II score, low DBP, long hospitalization and emergency surgery had significant effects on the risk of AKI after cardiac diseases. Similar results were obtained by other researchers such as: Kumar,38 Bagshaw39 and Kim.36 Sepsis was also introduced as considerable risk factors of AKI. Majority of infected patients were septic in this study, Hashemian.40 Many other factors are associated with an increased risk of AKI but their influence will be highly dependent on the specific nature of the population, Brochard et al.41

However, the occurrence of AKI after cardiac surgery is often not rapid and other factors concerning intra operative and postoperative management of patients could be relevant. We recommend definite prevention programs in the ICU target patients with traditional risks of AKI such as older age, sex, cardiovascular surgery, chronic pulmonary disease etc.4255

Acknowledgements

The authors are grateful to the reviewers for their constructive comments that improved the manuscript.

Conflicts of interest

None.

References

  1. Hogan JW, Laird NM. Model-based approaches to analyzing incomplete longitudinal and failure time data. Stat Med. 1997;16(1–3):259–272.
  2. Tsiatis AA, Davidian M. A semi parametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika. 2001;88(2):447–458.
  3. Brown ER, Ibrahim JG. A Bayesian semi parametric joint hierarchical model for longitudinal and survival data. Biometrics. 2003;59(2):221–228.
  4. Mccrink K, Spelke ES, Dehaene S, et al. Non-symbolic halving in an Amazonian indigene group. Developmental Science. 2013;16(3):451–462.
  5. Henderson R, Diggle P, Dobson A. Joint modeling of longitudinal measurements and event time data. Biostatistics. 2000;1(4):465–480.
  6. Hashemi RH, Jacqmin-Gadda, Commenges D. A latent process model for joint modeling of events and markers. Lifetime Data Anal. 2003;8(4):335–348.
  7. Ibrahim JG, Chen MH, Sinha D. Bayesian Survival Analysis. Springer- Verlag, US; 2002.
  8. Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics. 2006;62(2):432-445.
  9. Wang Y, Taylor JMG. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association. 2001;96(455):895–905.
  10. Yu M, Law NJ, Taylor JMG. Joint longitudinal survival cures models and their application to prostate cancer. Statistica Sinica. 2004;14:835–862.
  11. Lin H, McCulloch CE, Mayne ST. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med. 2002;21(16):2369–2382.
  12. Dunson DB, Herring AH. Bayesian latent variable models for mixed discrete outcomes. Biostatistics. 2005;6(1):11–25.
  13. Rizopoulos D, Verbeke G, Lesaffre E, et al. A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. Biometrics. 2008;64(2):611–619.
  14. Elashoff RM, Li G, Li N. A joint model for longitudinal measurements and survival data in the Presence of multiple failure types. Biometrics. 2008;4(3):762–771.
  15. Tseng YK, Hseih F, Wang JL. Joint modeling of accelerated failure time and longitudinal data. Biometrika. 2005;92(3):587–603.
  16. Brown ER, Ibrahim JG, DeGruttola V. A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics. 2005;61(1):64–73.
  17. Diggle PJ, Kenward MG. Informative dropout in longitudinal data analysis (with discussion). Journal of the Royal Statistical Society Series C (Applied Statistics). 1994;43(1):49–93.
  18. Verbeke G, Lesaffre E. The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis. 1997. p. 541–556.
  19. Rosa GJM, Padovani CR, Gianola D. Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biometrical Journal. 2003;45 (5):573–590.
  20. Lange KL, Little JA, Taylor MGJ. Robust statistical modeling using the t distribution. Journal of the American Statistical Association. 1989;84:881–896.
  21. Wu L. Mixed Effects Models for Complex Data. Chapman, Hall, editors. Taylor & Francis, CRC Press, USA; 2010.
  22. Lange KL, Sinsheimer JS. Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics. 1993;2(2):175–198.
  23. Pinheiro JC, Liu CH, Wu YN. Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. Journal of Computational and Graphical Statistics. 2001;10(2):249–276.
  24. Zhang D, Davidian M. Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics. 2001;57(3):795–802.
  25. Li N, Elashoff RM, Li G. Robust Joint Modeling of Longitudinal Measurements and Competing Risks Failure Time Data. Biom J. 2009;51(1):19–30.
  26. Huang X, Li G, Elashoff RM. A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal. Stat Interface. 2010);3(2):185–195.
  27. Azzalini A, Capitanio A. Statistical applications of the multivariate skew normal distribution. Series B Statistical Methodology. 1999;61(3):579–602.
  28. Ma J, Plesken H, Treisman JE, et al. Lightoid and Claret: a rab GTPase and its putative guanine nucleotide exchange factor in biogenesis of Drosophila eye pigment granules. Proc Natl Acad Sci U S A. 2004;101(32):11652–11657.
  29. Spiegelhalter DJ, Thomas A, Best N, et al. Win BUGS Examples, MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and Public Health, Imperial College School of Medicine, UK, 2003.
  30. Ghosh SK, Hajra S, Jayaram M. Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters. Proc Natl Acad Sci U S A. 2007;104(32):13034–13039.
  31. Jara A, Mezzano S. Vascular damage in chronic kidney disease. Rev Med Chil. 2008;136(11):1476–1484.
  32. Sahoo R, Sengupta R, Ghosh S. Nitrosative stress on yeast: inhibition of glyoxalase-I and glyceraldehyde-3-phosphate dehydrogenase in the presence of GSNO. Biochem Biophys Res Commun. 2003;302(4):665–670.
  33. Arellano-Valle RB, Genton MG. On fundamental skew distributions. Journal of Multivariate Analysis. 2005;96:93–116.
  34. Arslan E, Mack W, Eraslan AN. Transient heating of a rotating elastic-plastic solid shaft. 2008;8(1)::0257–10258.
  35. Guo X, Carlin BP. Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages. The American Statistician. 2004;58(1):16–24.
  36. Kim MY, Park JH, Kang NR, et al. Increased risk of acute kidney injury associated with higher infusion rate of mannitol in patients with intracranial hemorrhage. J Neurosurg. 2014;120(6):1340–1348.
  37. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–c184.
  38. Kumar AB, Suneja M. Cardiopulmonary bypass-associated acute kidney injury. Anesthesiology. 2011;114(4): 964–970.
  39. Bagshaw SM, George C, Gibney RN, et al. A multi-center evaluation of early acute kidney injury in critically ill trauma patients. Ren Fail. 2008;30(6):581–589.
  40. Hashemian S, Jamaati HR, Malekmohammad M, et al. Assessing the performance of two clinical severity scoring systems in the ICU of a tertiary respiratory disease center. Tanaffos. 2010;9(3):58–64.
  41. Brochard L, Abroug F, Brenner M, et al. An official ATS/ERS/ESICM/SCCM/SRLF statement: prevention and management of acute renal failure in the ICU patient: an international consensus conference in intensive care medicine. Am J Respir Crit Care Med. 2010;181(10):1128–1155.
  42. Acuna E, Rodriguez CA. Meta-analysis study of outlier detection methods in classification, Technical paper, University of Puerto Rico at Mayaguez, Retrieved from academic.uprm.edu/ eacuna/ paperout.pdf. In proceedings IPSI 2004, Italy. 2004.
  43. Brooks SP. Discussion on the paper by Spiegelhalter Best Carlin and vande Linde, Journal of the Royal Statistical Society Series B 2002;64:3616–3618.
  44. Carlin P, Louis TA. Bayes and Empirical Bayes Methods for Data Analysis. second edition. Chapman & Hall, CRC Press, New York; 2000.
  45. Chen MH, Ibrahim JG, Sinha D. A new joint model for longitudinal and survival data with a cure fraction. Journal of Multivariate Analysis. 2004;91:18–34.
  46. Chi YY, Ibrahim JG. Bayesian approaches to joint longitudinal and survival models accommodating both zero and nonzero cure fractions. Statistica Sinica. 2007;17:445–462.
  47. Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple Sequences. Statistical Science. 1992;7(4):457–511.
  48. Geweke J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernado JM, editors. Bayesian Statistics, Clarendon Press, UK; 1992 p.
  49. Geweke J. Bayesian treatment of the independent Student-t linear model. Journal of Applied Economic. 1993;8:19–40.
  50. Goldman AI, Carlin BP, Crane LR, et al. Response of CD4+ and Clinical Consequences to Treatment Using ddI or ddC in Patients with Advanced HIV Infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1996;11(2):161–169.
  51. Heidelberger P, Welch PD. Simulation run length control in the presence of an initial transient. Operations Research. 1983;31(6):1109–1144.
  52. Ibrahim JG, Chen MH, Sinhav D. Bayesian methods for joint modeling of longitudinal and survival data with application to cancer vaccine trials. Statistica Sinica. 2004;14:863–883.
  53. Iglewics B, Martinez J. Outlier Detection using robust measures of scale. Journal of Statistical Computation and Simulation. 1982;15(4):285–293.
  54. Little RJA. Robust Estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society. Series C (Applied Statistics). 1988;37(1):23–38.
  55. Spiegelhalter DJ, Best NG, Carlin BP, et al. Bayesian measures of model Complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2002;64(4):583–639.
Creative Commons Attribution License

©2017 Khoundabi, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.