Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 10 Issue 2

AHM as a measure of central tendency of sex ratio

Dhritikesh Chakrabarty

Department of Statistics, Handique Girls’ College, Gauhati University, India

Correspondence: Department of Statistics, Handique Girls’ College, Gauhati University, India

Received: May 03, 2021 | Published: May 25, 2021

Citation: Chakrabarty D. AHM as a measure of central tendency of sex ratio. Biom Biostat Int J. 2021;10(2):50-57. DOI: 10.15406/bbij.2021.10.00330

Download PDF

Abstract

In some recent studies, four formulations of average namely Arithmetic-Geometric Mean (abbreviated as AGM), Arithmetic-Harmonic Mean (abbreviated as AHM), Geometric-Harmonic Mean (abbreviated as GHM) and Arithmetic-Geometric-Harmonic Mean (abbreviated as AGHM) have recently been derived from the three Pythagorean means namely Arithmetic Mean (AM), Geometric Mean (GM) and Harmonic Mean (HM). Each of these four formulations has been found to be a measure of central tendency of data. in addition to the existing measures of central tendency namely AM, GM & HM. This paper focuses on the suitability of AHM as a measure of central tendency of numerical data of ratio type along with the evaluation of central tendency of sex ratio namely male-female ratio and female-male ratio of the states in India.

 Keywords: AHM, sex ratio, central tendency, measure

Introduction

Several research had already been done on developing definitions/formulations of average,1,2 a basic concept used in developing most of the measures used in analysis of data. Pythagoras3 is the first mathematician to introduce the concept of average and develop its formulation. He had developed three formulations/definitions of average which were later named as Pythagorean means4,5 as a mark of honor to him. The three Pythagorean means are Arithmetic Mean (AM), Geometric Mean (GM) & Harmonic Mean (HM). A number of definitions/formulations of average have already been developed in continuation to the three Pythagorean means.6-19 The next attempt had been initiated towards the development of generalized formulation/definition of average. Kolmogorov20 formulated one generalized definition of average namely Generalized f - Mean.7,8 It has been shown that the definitions/formulations of the existing means and also of some new means can be derived from this Generalized f - Mean.9,10 In an study, Chakrabarty formulated one generalized definition of average namely Generalized fH – Mean.11 In another study, Chakrabarty formulated another generalized definition of average namely Generalized fG – Mean12,13 and developed one general method of defining average15-17 as well as the different formulations of average from the first principles.19

In many real situations, observed numerical data

x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@

are found to be composed of some parameter µ and respective errors

ε 1 , ε 2 ,......, ε Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaaIXaaabeaakiaacYcacqaH1oqzdaWgaaWcbaGaaGOmaaqa baGccaGGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaai ilaiabew7aLnaaBaaaleaacaWGAbaabeaaaaa@452D@

usually of random in nature i.e

xi=μ+εi  ,  ( i =   1 , 2 ,  ,N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaWGPb Gaeyypa0JaeqiVd0Maey4kaSIaeqyTduMaamyAaabaaaaaaaaapeGa aiiOaiaacckapaGaaiila8qacaGGGcGaaiiOa8aadaqadaqaaKqzGe WdbiaadMgacqGH9aqpk8aadaWgaaWcbaqcLbsapeGaaiiOaaWcpaqa baqcLbsapeGaaGymaiaabccacaGGSaGaaeiiaiaaikdacaqGGaGaai ilaiaabccacqGHMacVcqGHMacVcqGHMacVcqGHMacVcaqGGaGaaiil aiaad6eaaOWdaiaawIcacaGLPaaaaaa@5971@ (1.1)21-29

The statistical methods of estimation of the parameter developed so far namely least squares estimation, maximum likelihood estimation, minimum variance unbiased estimation, method of moment estimation and minimum chi-square estimation,31-52 cannot provide appropriate value of the parameter µ.21-23 Therefore, some methods have recently been developed for determining the value of parameter µ in the situation mentioned above.21-30,53-60 These methods, however, involve huge computational tasks. Moreover, these methods may not be able to yield the appropriate value of the parameter if observed data used are of relatively small size (and/or of moderately large size too) In reality, of course, the appropriate value of the parameter is not perfectly attainable in practical situation. What one can expect is to obtain that value which is more and more close to the appropriate value of the parameter. Four methods have therefore been developed for determining such value of parameter. These four methods involve lighter load of computational work than respective load involved in the earlier methods and can be applied even if the observed data used are of small size.61-64 The methods developed are based on the concepts of Arithmetic-Geometric Mean (abbreviated as AGM),61,62,67,68,69 Arithmetic-Harmonic Mean (abbreviated as AHM),63 Geometric-Harmonic Mean (abbreviated as GHM)64 and Arithmetic-Geometric-Harmonic Mean (abbreviated as AGHM)65,66 respectively. Each of these four formulations namely AGM, AHM, GHM & AGHM has been found to be a measure of parameter µ of the model described by equation (1.1). In other words, each of these four formulations can be regarded as a measure of the central tendency, in addition to the usual measures of central tendency namely AM, GM & HM of the observed values x 1 , x 2 ,........., x N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaakiaa cYcaaaa@45F3@ since the values can be expressed by the model (1.1) if µ is the central tendency of them and vice versa. However, for different types of data different measures are suitable. This paper focuses on the suitability of AHM as a measure of central tendency of numerical data of ratio type along with the evaluation of central tendency of sex ratio namely male-female ratio and female-male ratio of the states in India.

Four formulations of average from pythagorean means

Let

x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@

N positive numbers or values or observations (not all equal or identical)

and

a 0 =AM( x 1 , x 2 ,........., x N )= 1 N i=1 N x i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyaO WaaSbaaSqaaiaaicdaaeqaaKqzGeGaeyypa0Jaamyqaiaad2eakmaa bmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaS baaSqaaiaaikdaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaac6ca caGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bWaaSbaaS qaaiaad6eaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaI XaaabaGaamOtaaaadaaeWaqaaiaadIhadaWgaaWcbaGaamyAaaqaba aabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccaGG Saaaaa@5756@ (2.1)

g 0 =GM( x 1 , x 2 ,........., x N )= ( i=1 N   x i ) 1/N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGimaaqabaqcLbsacqGH9aqpcaWGhbGaamytaOWaaeWaaeaa caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcba GaaGOmaaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6ca caGGUaGaaiOlaiaac6cacaGGUaGaaiilaiaadIhadaWgaaWcbaGaam OtaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiabg+Givpaa DaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaaaqcLbsaqaaaaa aaaaWdbiaabccacaWG4bGcdaWgaaWcbaGaamyAaaqabaaak8aacaGL OaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaad6eaaaaaaa@59A5@ (2.2)

 & h 0 =HM( x 1 , x 2 ,........., x N )= ( 1 N i=1 N x i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGimaaqabaqcLbsacqGH9aqpcaWGibGaamytaOWaaeWaaeaa caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadIhadaWgaaWcba GaaGOmaaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6ca caGGUaGaaiOlaiaac6cacaGGUaGaaiilaiaadIhadaWgaaWcbaGaam OtaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaamaalaaabaGa aGymaaqaaiaad6eaaaWaaabmaeaacaWG4bWaa0baaSqaaiaadMgaae aacqGHsislcaaIXaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOt aaqdcqGHris5aaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislca aIXaaaaaaa@5B22@ (2.3)

i.e. a 0 ,  g 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGimaaqabaGccaGGSaqcLbsaqaaaaaaaaaWdbiaabccak8aa caWGNbWaaSbaaSqaaiaaicdaaeqaaaaa@3CD1@ & h 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGimaaqabaaaaa@38E1@ are respectively the Arithmetic Mean (AM), the Geometric Mean (GM) & the Harmonic Mean (HM) of x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@

which satisfy the inequality 4 ,5namely

 AM > GM > HM i.e. h 0 <  g 0 < a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGimaaqabaGccqGH8aapjugibabaaaaaaaaapeGaaeiiaOWd aiaadEgadaWgaaWcbaGaaGimaaqabaGccqGH8aapcaWGHbWaaSbaaS qaaiaaicdaaeqaaaaa@4006@ (2.4)

 Arithmetic-geometric mean (AGM)

 The two sequences { a n }&{ g n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaGaam yyamaaBaaaleaacaWGUbaabeaaaOGaay5Eaiaaw2haaiaacAcadaGa daqaaiaadEgadaWgaaWcbaGaamOBaaqabaaakiaawUhacaGL9baaaa a@403E@ respectively defined by

a n+1 = 1 2 ( a n + g n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0ZaaSGaaeaacaaI XaaabaGaaGOmaaaadaqadaqaaiaadggadaWgaaWcbaGaamOBaaqaba GccqGHRaWkcaWGNbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzk aaaaaa@43D8@ (2.5)

 & g n+1 = ( a n   g n ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0ZaaeWaaeaacaWG HbWaaSbaaSqaaiaad6gaaeqaaOaeaaaaaaaaa8qacaGGGcWdaiaadE gadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaadaahaaWcbeqa amaaliaabaGaaGymaaqaaiaaikdaaaaaaaaa@447C@ (2.6)

where the square root assumes the principal value,

converge to a common point M AG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamyqaiaadEeaaeqaaaaa@399E@ which can be termed as the Arithmetic-Geometric Mean (abbreviated as AGM) of x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ 61 , 62, 66 , 67 , 68.

Thus,

 AGM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) = common converging point of { a n }&{ g n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaGaam yyamaaBaaaleaacaWGUbaabeaaaOGaay5Eaiaaw2haaiaacAcadaGa daqaaiaadEgadaWgaaWcbaGaamOBaaqabaaakiaawUhacaGL9baaaa a@403E@ (2.7)

Arithmetic-harmonic mean (AHM)

The two sequences { a / n }&{ h / n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaGaam yyamaaCaaaleqabaGaai4laaaakiaad6gaaiaawUhacaGL9baacaGG MaWaaiWaaeaacaWGObWaaWbaaSqabeaacaGGVaaaaOGaamOBaaGaay 5Eaiaaw2haaaaa@41A7@ respectively defined by

a / n + 1 =½( a / n  +  h / n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGa amOBaaWdaeqaaOWaaSbaaSqaa8qacqGHRaWkcaqGGaGaaGymaaWdae qaaOWdbiabg2da9iaac2lapaGaaiika8qacaWGHbWdamaaCaaaleqa baWdbiaac+caaaGcpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaai iOaiabgUcaRiaacckacaWGObWdamaaCaaaleqabaWdbiaac+caaaGc paWaaSbaaSqaa8qacaWGUbaapaqabaGccaGGPaaaaa@4AA5@ (2.8)

h / n + 1 = ½( a / n    1   +  h / n     1 )}     1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGa amOBaaWdaeqaaOWaaSbaaSqaa8qacqGHRaWkcaqGGaGaaGymaaWdae qaaOWdbiabg2da9iaacckacaGG9cWdaiaacIcapeGaamyya8aadaah aaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGaamOBaiaacckaa8 aabeaakmaaCaaaleqabaWdbiaacckacqGHsislaaGcpaWaaWbaaSqa beaapeGaaGymaaaakiaacckacaGGGcGaey4kaSIaaiiOaiaadIgapa WaaWbaaSqabeaapeGaai4laaaak8aadaWgaaWcbaWdbiaad6gacaGG GcGaaiiOaaWdaeqaaOWaaWbaaSqabeaapeGaaiiOaiabgkHiTaaak8 aadaahaaWcbeqaa8qacaaIXaaaaOWdaiaacMcacaGG9bWdbiaaccka paWaaWbaaSqabeaapeGaaiiOaiabgkHiTaaak8aadaahaaWcbeqaa8 qacaaIXaaaaaaa@5CD4@ (2.9)

converge to common point M AH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamyqaiaadIeaaeqaaaaa@399F@ which can be termed as the Arithmetic-Harmonic Mean (abbreviated as AHM) of x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ .63,66

Thus,

 AHM ( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) = common converging point of { a / n } & { h / n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhaqaaaaa aaaaWdbiaadggapaWaaWbaaSqabeaapeGaai4laaaak8aadaWgaaWc baWdbiaad6gaa8aabeaakiaac2hapeGaaiiOaiaacAcacaqGGaWdai aacUhapeGaamiAa8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaa leaapeGaamOBaaWdaeqaaOGaaiyFaaaa@4461@ (2.10)

Geometric-harmonic mean (GHM)

The two sequences { g // n} & { h // n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhacaGGNb WaaWbaaSqabeaaqaaaaaaaaaWdbiaac+cacaGGVaaaaOWdaiaad6ga caGG9bWdbiaacckacaGGMaGaaeiia8aacaGG7bWdbiaadIgapaWaaW baaSqabeaadaahaaadbeqaa8qacaGGVaGaai4laaaaaaGcpaWaaSba aSqaa8qacaWGUbaapaqabaGccaGG9baaaa@4586@ defined respectively by

  g // n+1 = ( g // n .  h // n ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacEgadaahaa WcbeqaaabaaaaaaaaapeGaai4laiaac+caaaGcpaWaaSbaaSqaaiaa d6gacqGHRaWkcaaIXaaabeaakiabg2da9maabmaabaGaai4zamaaCa aaleqabaWdbiaac+cacaGGVaaaaOWdamaaBaaaleaacaWGUbaabeaa kiaac6capeGaaiiOa8aacaWGObWaaWbaaSqabeaapeGaai4laiaac+ caaaGcpaWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaWaaWba aSqabeaadaWccaqaaiaaigdaaeaacaaIYaaaaaaaaaa@4A67@ (2.11)

 & h // n+1 = { 1 2 ( g // n 1 + h // n 1 ) } 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaahaa WcbeqaaabaaaaaaaaapeGaai4laiaac+caaaGcpaWaaSbaaSqaaiaa d6gacqGHRaWkcaaIXaaabeaakiabg2da9maacmaabaWaaSGaaeaaca aIXaaabaGaaGOmaaaadaqadaqaaiaacEgadaahaaWcbeqaa8qacaGG VaGaai4laaaak8aadaWgaaWcbaGaamOBaaqabaGcdaahaaWcbeqaai abgkHiTiaaigdaaaGccqGHRaWkcaWGObWaaWbaaSqabeaapeGaai4l aiaac+caaaGcpaWaaSbaaSqaaiaad6gaaeqaaOWaaWbaaSqabeaacq GHsislcaaIXaaaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaWaaWba aSqabeaacqGHsislcaaIXaaaaaaa@50ED@ (2.12)

where the square root takes the principal value,

converge to common point M GH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4raiaadIeaaeqaaaaa@39A5@ which can be termed as the Geometric-Harmonic Mean (abbreviated as GHM) of x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ .64,66

Thus,

 GHM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) = common converging point of { g // n } & { h // n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhacaGGNb WaaWbaaSqabeaaqaaaaaaaaaWdbiaac+cacaGGVaaaaOWdamaaBaaa leaacaWGUbaabeaakiaac2hapeGaaiiOaiaacAcacaqGGaWdaiaacU hapeGaamiAa8aadaahaaWcbeqaamaaCaaameqabaWdbiaac+cacaGG Vaaaaaaak8aadaWgaaWcbaWdbiaad6gaa8aabeaakiaac2haaaa@45BC@ (2.13)

Arithmetic-geometric-harmonic mean (AGHM)

The three sequences { a /// n },{ g /// n }&{ h /// n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaGaam yyamaaCaaaleqabaaeaaaaaaaaa8qacaGGVaGaai4laiaac+caaaGc paWaaSbaaSqaa8qacaWGUbaapaqabaaakiaawUhacaGL9baacaGGSa WaaiWaaeaacaWGNbWaaWbaaSqabeaapeGaai4laiaac+cacaGGVaaa aOWdamaaBaaaleaapeGaamOBaaWdaeqaaaGccaGL7bGaayzFaaGaai OjamaacmaabaGaamiAamaaCaaaleqabaWdbiaac+cacaGGVaGaai4l aaaak8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOGaay5Eaiaaw2haaa aa@4CEF@ defined respectively by

a /// n =1/3( a /// n1 + g /// n1 + h /// n1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaahaa WcbeqaaabaaaaaaaaapeGaai4laiaac+cacaGGVaaaaOWdamaaBaaa leaacaWGUbaabeaakiabg2da9iaaigdacaGGVaGaaG4mamaabmaaba GaamyyamaaCaaaleqabaWdbiaac+cacaGGVaGaai4laaaak8aadaWg aaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaey4kaSIaam4zamaaCa aaleqabaWdbiaac+cacaGGVaGaai4laaaak8aadaWgaaWcbaGaamOB aiabgkHiTiaaigdaaeqaaOGaey4kaSIaamiAamaaCaaaleqabaWdbi aac+cacaGGVaGaai4laaaak8aadaWgaaWcbaGaamOBaiabgkHiTiaa igdaaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@5549@ (2.14)

g /// n= ( a /// n1    g /// n1    h /// n1 ) 1/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaahaa WcbeqaaabaaaaaaaaapeGaai4laiaac+cacaGGVaaaaOWdaiaad6ga cqGH9aqpdaqadaqaaiaadggadaahaaWcbeqaa8qacaGGVaGaai4lai aac+caaaGcpaWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaak8qa caGGGcGaaiiOa8aacaWGNbWaaWbaaSqabeaapeGaai4laiaac+caca GGVaaaaOWdamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGcpeGa aiiOaiaacckapaGaamiAamaaCaaaleqabaWdbiaac+cacaGGVaGaai 4laaaak8aadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaiodaaaaaaa@57A0@ (2.15)

 & h /// n= { 1/3( a /// n1 1  +  g /// n1 1  +  h /// n1 1 ) } 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaahaa WcbeqaaabaaaaaaaaapeGaai4laiaac+cacaGGVaaaaOWdaiaad6ga cqGH9aqpdaGadaqaaiaaigdacaGGVaGaaG4mamaabmaabaGaamyyam aaCaaaleqabaWdbiaac+cacaGGVaGaai4laaaak8aadaqhaaWcbaGa amOBaiabgkHiTiaaigdaaeaacqGHsislcaaIXaaaaOWdbiaacckacq GHRaWkcaGGGcGaai4za8aadaahaaWcbeqaa8qacaGGVaGaai4laiaa c+caaaGcpaWaa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaeyOeI0 IaaGymaaaak8qacaGGGcGaey4kaSIaaiiOaiaadIgapaWaaWbaaSqa beaapeGaai4laiaac+cacaGGVaaaaOWdamaaDaaaleaacaWGUbGaey OeI0IaaGymaaqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaiaa wUhacaGL9baadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@6238@ (2.16)

converges to a common limit M AGH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamyqaiaadEeacaWGibaabeaaaaa@3A6B@ which can be termed as the Arithmetic-Geometric-Harmonic Mean (abbreviated as AGHM) of x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ .65,66

Thus,

 AGHM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) = common converging point of { a /// n },{ g /// n }&{ h /// n }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaGaam yyamaaCaaaleqabaaeaaaaaaaaa8qacaGGVaGaai4laiaac+caaaGc paWaaSbaaSqaaiaad6gaaeqaaaGccaGL7bGaayzFaaGaaiilamaacm aabaGaam4zamaaCaaaleqabaWdbiaac+cacaGGVaGaai4laaaak8aa daWgaaWcbaGaamOBaaqabaaakiaawUhacaGL9baacaGGMaWaaiWaae aacaWGObWaaWbaaSqabeaapeGaai4laiaac+cacaGGVaaaaOWdamaa BaaaleaacaWGUbaabeaaaOGaay5Eaiaaw2haaiaacYcaaaa@4D42@ (2.17)

AHM as measure of central tendency of sex ratio

Let

x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@

be observed values (which are strictly positive and not all identical) on the Ratio Male/Female.

Also let µ be the central tendency of the observed values.

Then xi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bGaamyAaaaa@3801@ can be expressed as

x i =μ+ ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcqaH8oqBcqGHRaWkcqaH1oqzdaWg aaWcbaGaamyAaaqabaaaaa@3F8E@ (3.1)

where ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWGPbaabeaaaaa@39CF@ is the error associated to xi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bGaamyAaaaa@3801@ for (i = 1 , 2 , ………… , N) which is random in nature

 i.e. each ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWGPbaabeaaaaa@39CF@ assumes either positive real value or negative real value with equal probability.

Again since µ is the central tendency of the observed values

x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@

therefore, µ    1    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyTa8aadaahaaWcbeqaa8qacaGGGcGaeyOeI0caaOWdamaaCaaa leqabaWdbiaacckacaaIXaaaaOGaaiiOaiaacckaaaa@3F4C@ will be the central tendency of reciprocals

x 1 1 , x 2 1 ,........., x N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaaGymaaqaaiabgkHiTiaaigdaaaGccaGGSaGaamiEamaaDaaa leaacaaIYaaabaGaeyOeI0IaaGymaaaakiaacYcacaGGUaGaaiOlai aac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGSaGa amiEamaaDaaaleaacaWGobaabaGaeyOeI0IaaGymaaaaaaa@4A34@

of the observed values.

Accordingly, the reciprocals can be expressed as

x i 1 = μ 1 + ε i /       ,       ( I =   1 , 2 ,  ,N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH 9aqpcqaH8oqBdaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHRaWkcq aH1oqzdaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaac+caaaGc qaaaaaaaaaWdbiaacckapaWaaSbaaSqaa8qacaGGGcGaaiiOaaWdae qaaOWdbiaacckacaGGSaGaaiiOa8aadaWgaaWcbaWdbiaacckacaGG GcaapaqabaGcpeGaaiiOa8aadaqadaqaa8qacaWGjbGaeyypa0Zdam aaBaaaleaapeGaaiiOaaWdaeqaaOWdbiaaigdacaqGGaGaaiilaiaa bccacaaIYaGaaeiiaiaacYcacaqGGaGaeyOjGWRaeyOjGWRaeyOjGW RaeyOjGWRaaeiiaiaacYcacaWGobaapaGaayjkaiaawMcaaaaa@61FC@  (3.2)

where

ε 1 / , ε 2 / ,........ ε N / MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaGGVaaa aOGaaiilaiabew7aLnaaBaaaleaacaaIYaaabeaakmaaCaaaleqaba Gaai4laaaakiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaa c6cacaGGUaGaaiOlaiabew7aLnaaBaaaleaacaWGobaabeaakmaaCa aaleqabaGaai4laaaaaaa@48B3@

are the random errors, which assume positive and negative values in random order, associated to are the random errors associated to

x 1 1 , x 2 1 ,........., x N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaaGymaaqaaiabgkHiTiaaigdaaaGccaGGSaGaamiEamaaDaaa leaacaaIYaaabaGaeyOeI0IaaGymaaaakiaacYcacaGGUaGaaiOlai aac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGSaGa amiEamaaDaaaleaacaWGobaabaGaeyOeI0IaaGymaaaaaaa@4A34@ respectively.

Let us now write

 AM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) = a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGimaaqabaaaaa@38DA@ (3.3)

 & HM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) = h 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGimaaqabaaaaa@38E1@ (3.4)

and then define the two sequences { a / n } & { h / n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhaqaaaaa aaaaWdbiaadggapaWaaWbaaSqabeaapeGaai4laaaak8aadaWgaaWc baWdbiaad6gaa8aabeaakiaac2hapeGaaiiOaiaacAcacaqGGaWdai aacUhapeGaamiAa8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaa leaapeGaamOBaaWdaeqaaOGaaiyFaaaa@4461@ respectively by

a / n + 1  = ½ ( a / n  +  h / n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGa amOBaaWdaeqaaOWaaSbaaSqaa8qacqGHRaWkcaqGGaGaaGymaiaacc kaa8aabeaak8qacqGH9aqpcaGGGcGaaiyVaiaabccapaGaaiika8qa caWGHbWdamaaCaaaleqabaWdbiaac+caaaGcpaWaaSbaaSqaa8qaca WGUbaapaqabaGcpeGaaiiOaiabgUcaRiaacckacaWGObWdamaaCaaa leqabaWdbiaac+caaaGcpaWaaSbaaSqaa8qacaWGUbaapaqabaGcca GGPaaaaa@4D90@ (3.5)

h / n + 1  = ½( a / n    1   +  h / n   1 )}     1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGa amOBaaWdaeqaaOWaaSbaaSqaa8qacqGHRaWkcaqGGaGaaGymaaWdae qaaOWdbiaacckacqGH9aqpcaGGGcGaaiyVa8aacaGGOaWdbiaadgga paWaaWbaaSqabeaapeGaai4laaaak8aadaWgaaWcbaWdbiaad6gaca GGGcaapaqabaGcdaahaaWcbeqaa8qacaGGGcGaeyOeI0caaOWdamaa CaaaleqabaWdbiaaigdaaaGccaGGGcGaaiiOaiabgUcaRiaacckaca WGObWdamaaCaaaleqabaWdbiaac+caaaGcpaWaaSbaaSqaa8qacaWG UbGaaiiOaiaacckaa8aabeaakmaaCaaaleqabaGaeyOeI0caaOWaaW baaSqabeaapeGaaGymaaaak8aacaGGPaGaaiyFa8qacaGGGcWdamaa CaaaleqabaWdbiaacckacqGHsislaaGcpaWaaWbaaSqabeaapeGaaG ymaaaaaaa@5CB5@ (3.6)

Then, both of { a / n } & { h / n }  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhaqaaaaa aaaaWdbiaadggapaWaaWbaaSqabeaapeGaai4laaaak8aadaWgaaWc baWdbiaad6gaa8aabeaakiaac2hapeGaaiiOaiaacAcacaqGGaWdai aacUhapeGaamiAa8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaa leaapeGaamOBaaWdaeqaaOGaaiyFa8qacaGGGcaaaa@4595@ converges to some common real number C. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaac6caaaa@38A8@

Let us now search the relation between C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaaaa@37F6@ and µ.

Equation (3.1) together with (3.3) & (3.4) implies that a 0 =μ+ δ 0    &   h 0 =μ+ e 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iabeY7aTjabgUca Riabes7aKnaaBaaaleaacaaIWaaabeaakmaaBaaaleaacaGGGcaabe aakiaacckacaGGMaGaaiiOaiaacckacaWGObWaaSbaaSqaaiaaicda aeqaaOGaeyypa0JaeqiVd0Maey4kaSIaamyzamaaBaaaleaacaaIWa aabeaaaaa@4BF2@

By inequality (2.4), h 0 < a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaaBaaaleaacaaIWaaabeaakiabgYda8iaadggadaWgaaWc baGaaGimaaqabaaaaa@3BDB@ i.e. e 0 < δ 0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaBaaaleaacaaIWaaabeaakiabgYda8iabes7aKnaaBaaa leaacaaIWaaabeaakmaaBaaaleaacaGGGcaabeaaaaa@3DF1@

Therefore, a / 1   =µ+ δ 1   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGa aGymaaWdaeqaaOWaaSbaaSqaa8qacaGGGcaapaqabaGcpeGaeyypa0 JaamyTaiabgUcaRiabes7aKnaaBaaaleaacaaIXaaabeaakmaaBaaa leaacaGGGcaabeaaaaa@42CD@ where δ 1   =½( δ 0 + ) e 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2aaSbaaSqaaiaaigdaaeqaaOWaaSbaaSqaaiaacckaaeqa aOGaeyypa0JaaiyVamaabmaabaGaeqiTdq2aaSbaaSqaaiaaicdaae qaaOGaey4kaScacaGLOaGaayzkaaGaamyzamaaBaaaleaacaaIWaaa beaaaaa@4435@

Since ½( δ 0 + e 0 )< δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiyVamaabmaabaGaeqiTdq2aaSbaaSqaaiaaicdaaeqaaOGaey4k aSIaamyzamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiabgY da8iabes7aKnaaBaaaleaacaaIWaaabeaaaaa@42D8@

Therefore, δ 1 < δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2aaSbaaSqaaiaaigdaaeqaaOGaeyipaWJaeqiTdq2aaSba aSqaaiaaicdaaeqaaaaa@3D53@

At the nth step, one can obtain that

δ n+1 =½( δ n + e n )< δ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2aaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da 9iaac2ladaqadaqaaiabes7aKnaaBaaaleaacaWGUbaabeaakiabgU caRiaadwgadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGH 8aapcqaH0oazdaWgaaWcbaGaamOBaaqabaaaaa@48F4@

which implies, δ n+1 < δ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2aaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabgYda 8iabes7aKnaaBaaaleaacaWGUbaabeaaaaa@3F61@ since ½( δ n + e n )< δ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiyVamaabmaabaGaeqiTdq2aaSbaaSqaaiaad6gaaeqaaOGaey4k aSIaamyzamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiabgY da8iabes7aKnaaBaaaleaacaWGUbaabeaaaaa@4383@

This implies, δ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2aaSbaaSqaaiaad6gaaeqaaaaa@39F2@ becomes more and more smaller as n becomes more and more larger.

This means. a/n becomes more and more closer to µ as n becomes more and more larger.

Since {h/n } converges to the same point to which {a/n } converges,

Therefore,  also becomes more and more closer to µ as n becomes more and more larger.

Accordingly, the AHM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) can be regarded as the value of  i.e. the value of the central tendency of x 1 , x 2 ,........., x N . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaakiaa c6caaaa@45F5@

Example

Data on the population of India (state-wise) in 2011, published in “Census Report” by Register General of India, have been shown in the following table (Table 1):

State

Number of Persons

Number of Males 

Number of Females

Jammu & Kashmir

1,25,41,302

66,40,662

59,00,640

Himachal Pradesh

68,64,602

34,81,873

33,82,729

Punjab

2,77,43,338

1,46,39,465

1,31,03,873

Chandigarh

10,55,450

5,80,663

4,74,787

Uttarakhand

1,00,86,292

51,37,773

49,48,519

Haryana

2,53,51,462

1,34,94,734

1,18,56,728

Delhi

1,67,87,941

89,87,326

78,00,615

Rajasthan

6,85,48,437

3,55,50,997

3,29,97,440

Uttar Pradesh

19,98,12,341

10,44,80,510

9,53,31,831

Bihar

10,40,99,452

5,42,78,157

4,98,21,295

Sikkim

6,10,577

3,23,070

2,87,507

Arunachal Pradesh

13,83,727

7,13,912

6,69,815

Nagaland

19,78,502

10,24,649

9,53,853

Manipur

28,55,794

14,38,586

14,17,208

Mizoram

10,97,206

5,55,339

5,41,867

Tripura

36,73,917

18,74,376

17,99,541

Meghalaya

29,66,889

14,91,832

14,75,057

Assam

3,12,05,576

1,59,39,443

1,52,66,133

West Bengal

9,12,76,115

4,68,09,027

4,44,67,088

Jharkhand

3,29,88,134

1,69,30,315

1,60,57,819

Odisha

4,19,74,218

2,12,12,136

2,07,62,082

Chhattisgarh

2,55,45,198

1,28,32,895

1,27,12,303

Madhya Pradesh

7,26,26,809

3,76,12,306

3,50,14,503

Gujarat

6,04,39,692

3,14,91,260

2,89,48,432

Daman & Diu

2,43,247

1,50,301

92,946

Dadra & Nagar Haveli

3,43,709

1,93,760

1,49,949

Maharashtra

11,23,74,333

5,82,43,056

5,41,31,277

Andhra Pradesh

8,45,80,777

4,24,42,146

4,21,38,631

Karnataka

6,10,95,297

3,09,66,657

3,01,28,640

Goa

14,58,545

7,39,140

7,19,405

Lakshadweep

64,473

33,123

31,350

Kerala

3,34,06,061

1,60,27,412

1,73,78,649

Tamil Nadu

7,21,47,030

3,61,37,975

3,60,09,055

Pondicherry

12,47,953

6,12,511

6,35,442

Andaman & Nicobar

3,80,581

2,02,871

1,77,710

India

1,21,08,54,977

62,32,70,258

58,75,84,719

Table 1 Population of India in 2011 (State-wise)

From the data in the observed values on the two ratios

Male/Female & Female/Male have been computed which have been shown in Table 2.

State

Value of the Ratio
Male/Female

Value of the Ratio
Female/Male 

Jammu & Kashmir

1.1254138534125111852273651671683

0.88856201384741461016988968870875

Himachal Pradesh

1.0293088804926436613751796256809

0.97152567023553127871119940330966

Punjab

1.11718611741734676457868601138

0.89510600284914783429585712319405

Chandigarh

1.2229968385823537712700642603947

0.81766360177934533455722165869015

Uttarakhand

1.0382445737805593956494862402266

0.96316419584905755859591305415792

Haryana

1.1381499179200197558719403869263

0.878618874592118673847146598073

Delhi

1.1521304409972803426396508480421

0.86795727672502366109786158864161

Rajasthan

1.077386518469311558714857879884

0.92817200035205763708961523638845

Uttar Pradesh

1.0959666766496911194331303675474

0.91243650131493423988837726768373

Bihar

1.0894569681498644304609103396449

0.91788847952225054362107394324387

Sikkim

1.1236943796151050235298618816238

0.88992168879809329247531494722506

Arunachal Pradesh

1.0658345961198241305435082821376

0.93823188292114434272011116216004

Nagaland

1.0742210801874083323111632505218

0.93090707159232088256563955071444

Manipur

1.0150845888535768920299631387912

0.98513957455445833617176866728857

Mizoram

1.0248621894302476437945104610541

0.97574094381990099740878994632108

Tripura

1.0415856043291039214999824955364

0.96007471286444128606000076825568

Meghalaya

1.0113724418785172369610123540989

0.98875543626896326127874988604615

Assam

1.0441048168517855831597956077024

0.95775824788858682201128358123932

West Bengal

1.0526667948213744061675457587868

0.94996821873695430584361430969287

Jharkhand

1.0543346515488809532602154750904

0.9484654597389357492757813425208

Odisha

1.0216767277963741786589610810708

0.97878318336258074151514020087369

Chhattisgarh

1.0094862433659738915914763831542

0.99060289981333128651017560729672

Madhya Pradesh

1.0741921997293521487367677330733

0.93093209972289388478334723747063

Gujarat

1.0878399216924771607664276945985

0.9192528974705997791133158851059

Daman & Diu

1.6170787338884943945947109074086

0.61839907918110990612171575704752

Dadra & Nagar Haveli

1.29217267204182755470193199021

0.77389037985136251032204789430223

Maharashtra

1.0759593940486569345112623151307

0.92940310343605596519523288750508

Andhra Pradesh

1.0072027731513157131279371653056

0.99284873578258743089946488568226

Karnataka

1.0278146308628600560795309711955

0.97293808627776643762353811714322

Goa

1.0274323920462048498411882041409

0.97330005141109938577265470682144

Lakshadweep

1.0565550239234449760765550239234

0.94647223983334842858436735802916

Kerala

0.92224729321594561234305382426448

1.0843078720382305015931455433978

Tamil Nadu

1.0035802105886977594941050244168

0.99643256159206485698216349975338

Pondicherry

0.96391330758747454527714567183158

1.0374376949964980220763382208646

Andaman & Nicobar

1.1415846041303246862866467840864

0.87597537351321775906857066806002

India

1.0607325851848778252519531570732

0.94274467850509882664736426425148

Table 2 Central tendency of the ratio Male/Female

 Central tendency of the ratio Male/Female

From the observed values on the ratio Male/Female in Table 3 it has been obtained that

AM of Male/Female = 1.0835068016450523020161865887443 & HM of Male/Female = 1.0740468088974845410059550737324

n

Value  of  a/n

Value  ofh/n

0

1.0835068016450523020161865887443

1.0740468088974845410059550737324

1

1.0787768052712684215110708312384

1.0787560661660274789282541031017

2

1.0787664357186479502196624671701

1.0787664356189714883012948072843

3

1.0787664356688097192604786372272

1.078766435668809719258176146917

4

1.0787664356688097192593273920721

1.0787664356688097192593273920721

Table 3 Values of { a / n } & { h / n }  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhaqaaaaa aaaaWdbiaadggapaWaaWbaaSqabeaapeGaai4laaaak8aadaWgaaWc baWdbiaad6gaa8aabeaakiaac2hapeGaaiiOaiaacAcacaqGGaWdai aacUhapeGaamiAa8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaa leaapeGaamOBaaWdaeqaaOGaaiyFa8qacaGGGcaaaa@4595@ of the Ratio Male / Female
The digits in a / n  &  h / n  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGa aCOBaaWdaeqaaOWdbiaacckacaGGMaGaaiiOaiaadIgapaWaaWbaaS qabeaapeGaai4laaaak8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qa caGGGcGaaiilaaaa@42AB@ , which are agreed, have been underlined in the above table.

The following table (Table 3) shows the values of a / n   & h / n  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGa amOBaaWdaeqaaOWdbiaacckacaGGGcGaaiOjaiaadIgapaWaaWbaaS qabeaapeGaai4laaaak8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qa caGGGcGaaiilaaaa@42A7@ in this case, for n = 1 , 2 , 3 , ………… :

It is seen that the values of a / n  &  h / n   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaahaaWcbeqaa8qacaGGVaaaaOWdamaaBaaaleaapeGa aCOBaaWdaeqaaOWdbiaacckacaGGMaGaaiiOaiaadIgapaWaaWbaaS qabeaapeGaai4laaaak8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qa caGGGcaaaa@41FB@ become identical at n = 4 which is

1.0787664356688097192593273920721

Therefore, this value can be regarded as the AHM and consequently the central tendency of the Ratio Male/Female.

Central tendency of the ratio female/male

From the observed values on Female/Male in Table 3 it has been obtained that AM of Female/Male = 0.9310581175009550726813265197974 & HM of Female/Male = 0.92292913942185992242619179784686

The computed values of {a/n } & {h/n }, in this case, have been shown in the following table Table 4:

n

Value  of  a/n

Value  ofh/n

0

0.9310581175009550726813265197974

0.92292913942185992242619179784686

1

0.92699362846140749755375915882213

0.92697580733443813334996246257971

2

0.92698471789792281545186081070092

0.92698471781227076522756233102558

3

0.92698471785509679033971157086325

0.92698471785509679033773303940364

4

0.92698471785509679033872230513345

0.92698471785509679033872230513345

Table 4 Values of {a/n } & {h/n } of the Ratio Female/Male
The digits in a/n & h/n , which are agreed, have been underlined in the above table

It is seen that the values of a/n & h/n become identical at n = 4 which is

0.92698471785509679033872230513345

Therefore, this value can be regarded as the AHM and consequently the central tendency of the Ratio Female/Male.

Results and discussions

If µ is the central tendency of x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ then the central tendency of x 1 1 , x 2 1 ,........., x N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaaGymaaqaaiabgkHiTiaaigdaaaGccaGGSaGaamiEamaaDaaa leaacaaIYaaabaGaeyOeI0IaaGymaaaakiaacYcacaGGUaGaaiOlai aac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGSaGa amiEamaaDaaaleaacaWGobaabaGaeyOeI0IaaGymaaaaaaa@4A34@

should logically be µ  ̶ 1 . Similarly, the central tendency of x 1 1 , x 2 1 ,........., x N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadI hadaqhaaWcbaGaaGymaaqaaiabgkHiTiaaigdaaaGccaGGSaGaeyOe I0IaamiEamaaDaaaleaacaaIYaaabaGaeyOeI0IaaGymaaaakiaacY cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOl aiaac6cacaGGSaGaeyOeI0IaamiEamaaDaaaleaacaWGobaabaGaey OeI0IaaGymaaaaaaa@4CFB@ should logically be  ̶ µ .

It is seen in the in the above example that the AHM of the ratio Male/Female is 1.0787664356688097192593273920721 and of the ratio Female/Male is 0.92698471785509679033872230513345

These two values are reciprocals each other i.e.

(1.0787664356688097192593273920721)  ̶ 1 = 0.92698471785509679033872230513345

& (0.92698471785509679033872230513345)  ̶ 1 = 1.0787664356688097192593273920721

Moreover, it is found that the AHM of the additive inverses of the observed values of the ratio Male/Female, is

̶ 1.0787664356688097192593273920721 and of the ratio Female/Male is

̶ 0.92698471785509679033872230513345

Thus, AHM can logically be regarded as an acceptable measure of central tendency of data of ratio type.

It is to be noted that each of AM & HM does not satisfy these two properties of central tendency and therefore cannot logically be regarded as acceptable measure of central tendency of data of ratio type.

Of course, GM satisfies the first property but not the second property of central tendency. Thus, is to be studied further on the acceptability of GM as a measure of central tendency of data of ratio type.

Regarding accuracy, it is to be noted that a 0 =μ+ δ 0   &   δ n+1 < δ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iabeY7aTjabgUca Riabes7aKnaaBaaaleaacaaIWaaabeaakiaacckacaGGGcGaaiOjai aacckacaGGGcGaeqiTdq2aaSbaaSqaaiaad6gacqGHRaWkcaaIXaaa beaakiabgYda8iabes7aKnaaBaaaleaacaWGUbaabeaaaaa@4CA4@

This means, δ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2aaSbaaSqaaiaad6gaaeqaaaaa@39F2@ becomes more and more smaller as n becomes more and more larger which means, a/n becomes more and more closer to µ as n becomes more and more larger which further means, AHM ( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) becomes more and more closer to µ as n becomes more and more larger.

Since δ n < δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2aaSbaaSqaaiaad6gaaeqaaOGaeyipaWJaeqiTdq2aaSba aSqaaiaaicdaaeqaaaaa@3D8B@ for all n > 1 therefore, the deviation of AHM ( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) from µ is more than that the deviation of  . But,  = AM ( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ )

Hence, AHM ( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) is more accurate measure of central tendency than AM ( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) in the case of data of ratio type.

Similarly, AHM ( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) can be shown to be more accurate measure of central tendency than HM ( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) in the case of data of ratio type.

Therefore, AHM can be regarded as a measure of central tendency of data of ratio type which is more accurate than each of AM and HM. However, it is yet to be studied on the comparison of accuracy of AHM with that of GM as measure of central tendency of data of ratio type.

It is to be noted that the GM of AM of the Ratio Male/Female & HM of the Ratio Male/Female is found to be 1.0787664356688097192593273920721 which is nothing but the AHM of the observed values of the Ratio Male/Female.

Similarly, the GM of AM of the Ratio Female/Male & HM of the Ratio Female/Male is found to be 0.92698471785509679033872230513345 which is nothing but the AHM of the observed values of the Ratio Female/Male.

Thus, AHM of the observed values can be regarded as the GM of AM of the observed values and HM of observed values. In general, AHM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) can be defined as the GM of AM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) and HM( x 1 , x 2 ,........., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaacaWGobaabeaaaaa@4539@ ) in the instant case. However, it is to be established for general case.

On the whole, the two values 1.0787664356688097192593273920721 and 0.92698471785509679033872230513345 can be regarded as the respective values of central tendency of the Ratio Male/Female and the Ratio Female/Male of the states in India which are very close to the respective actual values while the overall values of these two ratios in India (combing the states) are 1.0607325851848778252519531570732 and 0.94274467850509882664736426425148 respectively.

However, it is yet to be determined the size of errors or discrepancies in values obtained by AHM. It is also to be assessed the performance of AHM by applying it in the data with various sample sizes.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Arthur B .The early history of average values and implications for education. Journal of Statistics Education. 11(1):17‒26.
  2. Carvalho MD. Mean, what do you Mean?The American Statistician.70(3):764‒776.
  3. Riedweg C. Pythagoras: his life, teaching, and influence (translated by Steven Rendall in collaboration with Christoph Riedweg and Andreas Schatzmann, Ithaca). ISBN 0-8014-4240-0, Cornell University Press.USA.
  4. David W. Cantrell:Pythagorean Means. Math World.
  5. Dhritikesh C. Pythagorean mean: concept behind the averages and lot of measures of characteristics of data. NaSAEAST- 2016, Abstract ID: CMAST_NaSAEAST (Inv)-1601).
  6. Dhritikesh C. Objectives and philosophy behind the construction of different types of measures of average. NaSAEAST- 2017, Abstract ID: CMAST_NaSAEAST (Inv)- 1701).
  7. Andrey K. On the notion of mean, in mathematics and mechanics. (Kluwer 1991):144–146.
  8. Andrey K. Grundbegriffe der Wahrscheinlichkeitsrechnung (in German). Berlin: Julius Springer.
  9. Dhritikesh C. Derivation of some formulations of average from one technique of construction of mean. American Journal of Mathematical and Computational Sciences. 2018:3(3):62‒68.
  10. Dhritikesh C. One generalized definition of average: derivation of formulations of various means. Journal of Environmental Science, Computer Science and Engineering & Technology, Section. 2018;7(3):212‒225.  
  11. Dhritikesh C. fH -Mean: one generalized definition of average. Journal of Environmental Science, Computer Science and Engineering & Technology, Section C. 2018;7(4):301–314.
  12. Dhritikesh C .Generalized fG - mean: derivation of various formulations of average. American Journal of Computation, Communication and Control. 2018;5(3):101–108.
  13. Dhritikesh C. One definition of generalized fg - mean: derivation of various formulations of average. Journal of Environmental Science, Computer Science and Engineering & Technology, Section C , 2019;8(2): 051‒066.
  14. Dhritikesh C. Pythagorean mean: concept behind the averages and lot of measures of characteristics of data. NaSAEAST- 2016, Abstract ID: CMAST_NaSAEAST (Inv)-1601), 2016.  
  15. Dhritikesh C. General technique of defining average. NaSAEAST- 2018, Abstract ID: CMAST_NaSAEAST -1801 (I).  
  16.  Dhritikesh C. One general method of defining average: derivation of definitions/formulations of various means. Journal of Environmental Science, Computer Science and Engineering & Technology, Section C. 2019;8(4):327–338.
  17. Dhritikesh C. A general method of defining average of function of a set of values. Aryabhatta. Journal of Mathematics & Informatics. 2019;11(2):269‒284.
  18. Dhritikesh C. Pythagorean geometric mean: measure of relative change in a group of variables. NaSAEAST- 2019, Abstract ID: CMAST_NaSAEAST -1902 (I), 2019.
  19. Dhritikesh C. Definition / formulation of average from first principle. Journal of Environmental Science, Computer Science and Engineering & Technology, Section C. 2020;9(2):151–163.
  20. Youschkevitch AP, Kolmogorov AN. Historian and philosopher of mathematics on the occasion of his 80th birfhday. Historia Mathematica . 1983;10(4):383–395.
  21. Dhritikesh C. Determination of Parameter from Observations Composed of Itself and Errors. International Journal of Engineering Science and Innovative Technology. 2014;3(2):304–311.
  22.  Dhritikesh C. Analysis of errors associated to observations of measurement type. International Journal of Electronics and Applied Research. 2014;1(1):15–28.  
  23. Dhritikesh C. Observation composed of a parameter and random error: an analytical method of determining the parameter. International Journal of Electronics and Applied Research. 2014;1(2): 20–38.
  24. Dhritikesh C. Observation consisting of parameter and error: determination of parameter. Proceedings of the World Congress on Engineering. ISBN: 978-988-14047-0-1.
  25. Dhritikesh C.Observation Consisting of Parameter and Error: Determination of Parameter. Lecture Notes in Engineering and Computer Science (ISBN: 978-988-14047-0-1), London. 2015;680‒684.
  26. Dhritikesh C. Central tendency of annual extremum of surface air temperature at guwahati. J Chem Bio Phy Sci. 2015;7(12):2863–2877.
  27. Dhritikesh C. Central tendency of annual extremum of surface air temperature at guwahati based on midrange and median. J Chem Bio Phy Sci Sec D. 2015;5(3):3193–3204.
  28. Dhritikesh C. Observation composed of a parameter and random error: determining the parameter as stable mid range. International Journal of Electronics and Applied Research. 2015;2(1):35– 47.  
  29. Dhritikesh C. A method of finding appropriate value of parameter from observation containing itself and random error. Indian Journal of Scientific Research and Technology. 2015;3(4):14–21.
  30. Dhritikesh C. Theoretical model modified for observed data: error estimation associated to parameter. International Journal of Electronics and Applied Research. 2015;2(2): 29–45.   
  31. Anders H. On the history of maximum likelihood in relation to inverse probability and least squares. Statistical Science. 14:214–222.
  32. Barnard GA. Statistical inference. Journal of the royal statistical society, series b. 1949;11:115–149.
  33. Allan B. On the foundations of statistical inference. Journal of the American Statistical Association. 1962;57:269 –306.
  34. Ivory. On the method of least squares. Phil. Mag., LXV. 1825;3–10.
  35. Kendall MG, Stuart A. Advanced Theory of Statistics. Volume 1 & 2, 4th Edition, New York, Hafner Press. USA. 1997.
  36. Lehmann Erich L, George C. Theory of point estimation. 2nd edn. Springer. ISBN 0‒387‒98502‒6 .
  37. Lucien Le Cam. Maximum likelihood — An introduction. ISI Review. 1990;8(2):153–171.
  38. Walker Helen M, Lev J. Statistical inference. Oxford & IBH Publishing Company. 1965.
  39. Dhritikesh D, Atwar R. Exponential curve: estimation using the just preceding observation in fitted curve. Int J Agricult Stat Sci. 2007;3(2):381–386.
  40. Dhritikesh C, Atwar R. Gompartz curve: estimation using the just preceding observation in fitted curve. Int J Agricult Stat Sci. 2008;4(2):421–424.
  41. Atwar R, Dhritikesh C. Linear curve: a simpler method of obtaining least squares estimates of parameters. Int J Agricult Stat Sci. 2009;5(2): 415– 424.
  42. Dhritikesh C. Finite difference calculus: method of determining least squares estimates. Arya Bhatta J Math Info. 2011;3(2):363–373.
  43. Atwar R, Dhritikesh C. General linear curve: a simpler method of obtaining least squares estimates of parameters. Int J Agricult Stat Sci. 2011;7(2):429–440. 
  44. Dhritikesh C. Curve fitting: step-wise least squares method. Arya Bhatta J Math Info. 2014;6(1):15–24.   .
  45. Atwar R, Dhritikesh C. Elimination of parameters and principle of least squares: fitting of linear curve to average minimum temperature data in the context of assam. International Journal of Engineering Sciences & Research Technology. 2015;4(2): 255–259.
  46. Atwar R, Dhritikesh C. Elimination of parameters and principle of least squares: fitting of linear curve to average maximum temperature data in the context of assam. Arya Bhatta J Math Info. 7(1): 23–28.
  47. Atwar R, Dhritikesh R. Basian-markovian principle in fitting of linear curve. The International Journal of Engineering and Science. 2015;4(6):31–43.
  48. Atwar R, Dhritikesh R. Method of least squares in reverse order: fitting of linear curve to average minimum temperature data at guwahati and tezpur. Arya Bhatta J Math Info. 2015;7(2): 305–312.
  49. Dhritikesh C. Elimination-minimization principle: fitting of polynomial curve to numerical data. International Journal of Advanced Research in Science, Engineering and Technology. 2016;3(5):2067–2078.  
  50. Dhritikesh C. Elimination-minimization principle: fitting of exponential curve to numerical data. International Journal of Advanced Research in Science, Engineering and Technology. 2016;3(6):2256–2264.
  51. Dhritikesh C. Impact of error contained in observed data on theoretical model: study of some important situations. International Journal of Advanced Research in Science, Engineering and Technology. 2016;3(1):1255–1265.  
  52. Dhritikesh C. Theoretical model and model satisfied by observed data: one pair of related variables. International Journal of Advanced Research in Science, Engineering and Technology. 2016;3(2):1527–1534.
  53. Dhritikesh C. Variable(s) connected by theoretical model and model for respective observed data. FSDM2017, Abstract ID: FSDM2220, 2017.   
  54. Dhritikesh C. Numerical data containing one parameter and random error: evaluation of the parameter by convergence of statistic. International Journal of Electronics and Applied Research. 2017;4(2):59–73.
  55. Dhritikesh C. Observed data containing one parameter and random error: evaluation of the parameter applying pythagorean mean. International Journal of Electronics and Applied Research. 2018;5(1):32–45
  56. Dhritikesh C. Significance of change of rainfall: confidence interval of annual total rainfall. Journal of Chemical, Biological and Physical Sciences. Sec C. 2019;9(3):151–166.
  57. Dhritikesh C. Observed data containing one parameter and random error: probabilistic evaluation of parameter by pythagorean mean. International Journal of Electronics and Applied Research. 2019;6(1):24–40.
  58. Dhritikesh C. Significance of change in surface air temperature in the context of india. Journal of Chemical, Biological and Physical Sciences, Sec C. 2019;9(4):251–261.
  59. Dhritikesh C. Arithmetic-geometric mean: evaluation of parameter from observed data containing itself and random error. International Journal of Electronics and Applied Research. 2019;6(2): 98–111.
  60. Dhritikesh C. AGM: A technique of determining the value of parameter from observed data containing itself and random error. Journal of Environmental Science, Computer Science and Engineering & Technology, Section C. 2020;9(3):473–486.
  61. Dhritikesh C. Arithmetic-Harmonic Mean: Evaluation of Parameter from Observed Data Containing Itself and Random Error. International Journal of Electronics and Applied Research. 2020;7(1):29–45.
  62. Dhritikesh C. determination of the value of parameter μ of the model X = μ + e by GHM. International Journal of Advanced Research in Science, Engineering and Technology. 2020;7(11):15801–15810.
  63. Dhritikesh C. Central tendency of annual extremum of surface air temperature at guwahati by AGHM. International Journal of Advanced Research in Science, Engineering and Technology. 2020;7(12):16088–16098.
  64. Dhritikesh C. AGM, AHM, GHM & AGHM: Evaluation of parameter μ of the Model X = μ + e . International Journal of Advanced Research in Science, Engineering and Technology. 2021;8(2):16691–16699 .  
  65. David A. Cox .The Arithmetic-Geometric Mean of Gauss. In: Berggren JL, Jonathan M, Borwein P (eds.). Pi: A Source Book. Springer. p. 481. ISBN 978-0-387-20571-7 , (first published in L'Enseignement Mathématique, t. 30 (1984), p. 275‒330).
  66. Michiel H. Arithmetic–geometric mean processEncyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, USA.2001. ISBN 978-1-55608-010-4.
  67. Dhritikesh C. Comparison of measures of parameter of the model x = μ + e based on pythagorean means. International Journal of Advanced Research in Science, Engineering and Technology. 2021;8(3):16948–16956.
Creative Commons Attribution License

©2021 Chakrabarty. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.