Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 10 Issue 3

Adya distribution with properties and application 

Rama Shanker, ,1 Kamlesh Kumar Shukla,2 Amaresh Ranjan,3 Ravi Shanker4

1 Department of Statistics, Assam University, Silchar, Assam, India
2 Department of Community Medicine, Noida International Institute of Medical Science, India
3 Department of Mathematics, Nalanda Open University, India
4 Department of Mathematics, G.L.A. College, N.P University, India

Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, Assam, India

Received: June 18, 2021 | Published: August 11, 2021

Citation: Shanker R, Shukla KK, Ranjan A, et al. Adya distribution with properties and application. Biom Biostat Int J. 2021;10(3):81-88. DOI: 10.15406/bbij.2021.10.00334

Download PDF

Abstract

In the present paper, a new one parameter lifetime distribution named, “Adya distribution’ has been proposed for modeling lifetime data from engineering. Its various statistical properties including moments and moments based measures, hazard rate function, mean residual life function, stochastic ordering, deviations from the mean and the median, Bonferroni and Lorenz curves, and stress-strength reliability have been studied. Both the method of moment and the maximum likelihood estimation have been discussed for estimating the parameter of the proposed distribution. A numerical example has been presented to test the goodness of fit of the proposed distribution over other one parameter lifetime distributions available in statistical literature.

Keywords: lifetime distributions, statistical and mathematical properties, parameter estimation, goodness of fit

Introduction

The classical one parameter exponential distribution and Lindley distribution proposed by Lindley1 were useful for modeling lifetime data from engineering and biomedical. It has been observed by Shanker et al.2 that exponential and Lindley distributions are not suitable for several lifetime data. In search for better one parameter lifetime distributions, Shanker has introduced several one parameter lifetime distributions including Shanker,3 Aradhana,4 Sujatha,5 Devya.6 The probability density function (pdf) and the cumulative distribution function (cdf) of these distributions are presented in table 1.

Distributions

Probability density functions and Cumulative distribution functions

Shanker

pdf

f( x )= θ 2 θ 2 +1 ( θ+x ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaacaaMc8UaaGPaVlabg2da9iaaykW7 caaMc8+aaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacq aH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaaaiaaykW7 caaMc8+aaeWaaeaacqaH4oqCcqGHRaWkcaWG4baacaGLOaGaayzkaa GaaGPaVlaaykW7caWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG 4baaaOGaaGPaVdaa@5994@

cdf

F( x )=1[ 1+ θx θ 2 +1 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaamWa aeaacaaIXaGaey4kaSYaaSaaaeaacqaH4oqCcaWG4baabaGaeqiUde 3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaaaaiaawUfacaGL DbaacaaMe8UaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaa aaaaa@4D37@

Aradhana

pdf

f( x )= θ 3 θ 2 +2θ+2 ( 1+x ) 2 e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaG4maaaaaOqaaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdacqaH4oqCcqGHRaWkcaaIYaaaamaabmaabaGa aGymaiabgUcaRiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaGccaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4baaaOGa aGPaVdaa@508A@

cdf

F( x )=1[ 1+ θx( θx+2θ+2 ) θ 2 +2θ+2 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaamWa aeaacaaIXaGaey4kaSYaaSaaaeaacqaH4oqCcaWG4bWaaeWaaeaacq aH4oqCcaWG4bGaey4kaSIaaGOmaiabeI7aXjabgUcaRiaaikdaaiaa wIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaIYaGaeqiUdeNaey4kaSIaaGOmaaaaaiaawUfacaGLDbaacaWG LbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4baaaOGaaGPaVdaa@59C2@

Sujatha

pdf

f( x )= θ 3 θ 2 +θ+2 ( 1+x+ x 2 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaG4maaaaaOqaaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiabeI7aXjabgUcaRiaaikdaaaWaaeWaaeaacaaIXaGa ey4kaSIaamiEaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaaki aawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG 4baaaaaa@5018@

cdf

F( x )=1[ 1+ θx( θx+θ+2 ) θ 2 +θ+2 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaamWa aeaacaaIXaGaey4kaSYaaSaaaeaacqaH4oqCcaWG4bWaaeWaaeaacq aH4oqCcaWG4bGaey4kaSIaeqiUdeNaey4kaSIaaGOmaaGaayjkaiaa wMcaaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeI 7aXjabgUcaRiaaikdaaaaacaGLBbGaayzxaaGaamyzamaaCaaaleqa baGaeyOeI0IaeqiUdeNaamiEaaaaaaa@56B5@

Devya

pdf

f( x )= θ 5 θ 4 + θ 3 +2 θ 2 +6θ+24 ( 1+x+ x 2 + x 3 + x 4 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaGynaaaaaOqaaiabeI7aXnaaCaaaleqabaGaaGinaa aakiabgUcaRiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaa ikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaeq iUdeNaey4kaSIaaGOmaiaaisdaaaWaaeWaaeaacaaIXaGaey4kaSIa amiEaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca WG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamiEamaaCaaaleqa baGaaGinaaaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgk HiTiabeI7aXjaadIhaaaaaaa@5F14@

cdf

F( x )=1[ 1+ { θ 4 ( x 4 + x 3 + x 2 +x )+ θ 3 ( 4 x 3 +3 x 2 +2x ) +6 θ 2 ( 2 x 2 +x )+24θx } θ 4 + θ 3 +2 θ 2 +6θ+24 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaamWa aeaacaaIXaGaey4kaSYaaSaaaeaadaGadaabaeqabaGaeqiUde3aaW baaSqabeaacaaI0aaaaOWaaeWaaeaacaWG4bWaaWbaaSqabeaacaaI 0aaaaOGaey4kaSIaamiEamaaCaaaleqabaGaaG4maaaakiabgUcaRi aadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4baacaGLOaGa ayzkaaGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIZaaaaOWaaeWaae aacaaI0aGaamiEamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaioda caWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhaai aawIcacaGLPaaaaeaacqGHRaWkcaaI2aGaeqiUde3aaWbaaSqabeaa caaIYaaaaOWaaeWaaeaacaaIYaGaamiEamaaCaaaleqabaGaaGOmaa aakiabgUcaRiaadIhaaiaawIcacaGLPaaacqGHRaWkcaaIYaGaaGin aiabeI7aXjaadIhaaaGaay5Eaiaaw2haaaqaaiabeI7aXnaaCaaale qabaGaaGinaaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaG4maaaa kiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaI2aGaeqiUdeNaey4kaSIaaGOmaiaaisdaaaaacaGLBbGaayzx aaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaaaaa@8221@

Lindley

pdf

f( x )= θ 2 θ+1 ( 1+x ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaGOmaaaaaOqaaiabeI7aXjabgUcaRiaaigdaaaWaae WaaeaacaaIXaGaey4kaSIaamiEaaGaayjkaiaawMcaaiaadwgadaah aaWcbeqaaiabgkHiTiabeI7aXjaaykW7caWG4baaaaaa@4B44@

cdf

F( x )=1[ 1+ θx θ+1 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaamWa aeaacaaIXaGaey4kaSYaaSaaaeaacqaH4oqCcaaMc8UaamiEaaqaai abeI7aXjabgUcaRiaaigdaaaaacaGLBbGaayzxaaGaamyzamaaCaaa leqabaGaeyOeI0IaeqiUdeNaaGPaVlaadIhaaaaaaa@4DCD@

Table 1 pdf and cdf of Shanker, Aradhana, Sujatha, Devya, and Lindley distributions for x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH+a GpcaaIWaGaaiilaiaaykW7cqaH4oqCcqGH+aGpcaaIWaaaaa@3ECE@

The reasons for introducing such lifetime distributions with their advantages and disadvantages, statistical properties, parameter estimation and applications are available in the respective papers.

In this paper, a new lifetime distribution which gives better fit over several one parameter lifetime distributions are introduced. The new one parameter lifetime distribution is defined by its cdf and pdf, respectively

F( x,θ )=1[ 1+ θx( θx+2 θ 2 +2 ) θ 4 +2 θ 2 +2 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEamaabmaabaGaeqiUdeNaamiEaiabgUcaRiaaikdacqaH4oqCdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaayzkaaaaba GaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7a XnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaaaacaGLBbGaay zxaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPaVlaadIha aaGccaaMc8UaaGPaVlaacUdacaWG4bGaeyOpa4JaaGimaiaacYcacq aH4oqCcqGH+aGpcaaIWaaaaa@68CC@ (1.1)

f( x;θ )= θ 3 θ 4 +2 θ 2 +2 ( θ+x ) 2 e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiEaiaacUdacqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabeI7aXnaaCa aaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaIYaaaamaabmaabaGaeqiUdeNaey4kaS IaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaadwga daahaaWcbeqaaiabgkHiTiabeI7aXjaaykW7caWG4baaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaacUdacaWG4bGaeyOpa4JaaGimaiaacYca caaMc8UaaGPaVlabeI7aXjabg6da+iaaicdaaaa@6571@ (1.2)

 We name this distribution, “Adya distribution”. This is a convex combination of exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@399D@ , gamma ( 2,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG OmaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3B09@ and gamma ( 3,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG 4maiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3B0A@ distributions. We have

f( x;θ )= p 1 g 1 ( x;θ )+ p 2 g 2 ( x;2,θ )+( 1 p 1 p 2 ) g 3 ( x;3,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiEaiaacUdacqaH4oqCaiaawIcacaGLPaaacqGH9aqpcaWG WbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaadEgadaWgaaWcbaGaaG ymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzk aaGaey4kaSIaamiCamaaBaaaleaacaaIYaaabeaakiaaykW7caWGNb WaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG4bGaai4oaiaaikda caGGSaGaeqiUdehacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaaIXa GaeyOeI0IaamiCamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadcha daWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaWGNbWaaSbaaS qaaiaaiodaaeqaaOWaaeWaaeaacaWG4bGaai4oaiaaiodacaGGSaGa eqiUdehacaGLOaGaayzkaaaaaa@64D8@

 Where p 1 = θ 4 θ 4 +2 θ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa beaacaaI0aaaaaGcbaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey 4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa ikdaaaaaaa@442D@ , p 2 = 2 θ 4 θ 4 +2 θ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaikdacqaH4oqCdaah aaWcbeqaaiaaisdaaaaakeaacqaH4oqCdaahaaWcbeqaaiaaisdaaa GccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4k aSIaaGOmaaaacaaMc8oaaa@46DB@ , g 1 ( x;θ )=θ e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdehacaGL OaGaayzkaaGaeyypa0JaeqiUdeNaaGPaVlaadwgadaahaaWcbeqaai abgkHiTiabeI7aXjaaykW7caWG4baaaaaa@47BD@ , g 2 ( x;2,θ )= θ 2 Γ( 2 ) x 21 e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaaGOmaiaacYca cqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCa aaleqabaGaaGOmaaaaaOqaaiabfo5ahnaabmaabaGaaGOmaaGaayjk aiaawMcaaaaacaWG4bWaaWbaaSqabeaacaaIYaGaeyOeI0IaaGymaa aakiaaykW7caWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaaMc8Ua amiEaaaaaaa@5172@ , and g 3 ( x;3,θ )= θ 3 Γ( 3 ) x 31 e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaaG4maiaacYca cqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCa aaleqabaGaaG4maaaaaOqaaiabfo5ahnaabmaabaGaaG4maaGaayjk aiaawMcaaaaacaWG4bWaaWbaaSqabeaacaaIZaGaeyOeI0IaaGymaa aakiaaykW7caWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4baa aaaa@4FEC@ ; ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4oai aadIhacqGH+aGpcaaIWaGaaiilaiabeI7aXjabg6da+iaaicdaaaa@3E2A@ .

The pdf and the cdf of Adya distribution for values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AC@ are shown in figures 1 and 2, respectively.

Figure 1 The pdf of Adya distribution .

Figure 2 The cdf of Adya distribution .

Moments and moments based measures

The r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36ED@ th moment about origin μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3C5E@ of (1.2) can be obtained as

μ r = r!{ θ 4 +2( r+1 ) θ 2 +( r+1 )( r+2 ) } θ r ( θ 4 +2 θ 2 +2 ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaamOCaiaacgcadaGadaqaaiabeI7aXnaaCaaaleqaba GaaGinaaaakiabgUcaRiaaikdadaqadaqaaiaadkhacqGHRaWkcaaI XaaacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaacaWGYbGaey4kaSIaaGymaaGaayjkaiaawMcaamaa bmaabaGaamOCaiabgUcaRiaaikdaaiaawIcacaGLPaaaaiaawUhaca GL9baaaeaacqaH4oqCdaahaaWcbeqaaiaadkhaaaGcdaqadaqaaiab eI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaayzkaaaa aiaaykW7caaMc8UaaGPaVlaacUdacaWGYbGaeyypa0JaaGymaiaacY cacaaIYaGaaiilaiaaiodacaGGSaGaaiOlaiaac6cacaGGUaaaaa@7021@ (2.1)

Substituting r=1,2,3,and4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaiaaykW7 caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGPaVl aaisdaaaa@4981@ in (2.1), the first four moments about origin of (1.2) are obtained as

μ 1 = θ 4 +4 θ 2 +6 θ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG inaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaeaa cqaH4oqCdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgU caRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI YaaacaGLOaGaayzkaaaaaaaa@519D@ , μ 2 = 2( θ 4 +6 θ 2 +12 ) θ 2 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0a aaaOGaey4kaSIaaGOnaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaigdacaaIYaaacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaS qabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmaaGaayjkaiaawMcaaaaaaaa@558F@ ,

μ 3 = 6( θ 4 +8 θ 2 +20 ) θ 3 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOnamaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0a aaaOGaey4kaSIaaGioaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaikdacaaIWaaacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaS qabeaacaaIZaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmaaGaayjkaiaawMcaaaaaaaa@5596@ , μ 4 = 24( θ 4 +10 θ 2 +30 ) θ 4 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmaiaaisdadaqadaqaaiabeI7aXnaaCaaaleqaba GaaGinaaaakiabgUcaRiaaigdacaaIWaGaeqiUde3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaG4maiaaicdaaiaawIcacaGLPaaaaeaacq aH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiabeI7aXnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaayzkaaaaaaaa@5706@

Thus, the central moments of (1.2) are obtained as

μ 2 = θ 8 +8 θ 6 +24 θ 4 +24 θ 2 +12 θ 2 ( θ 4 +2 θ 2 +2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa beaacaaI4aaaaOGaey4kaSIaaGioaiabeI7aXnaaCaaaleqabaGaaG OnaaaakiabgUcaRiaaikdacaaI0aGaeqiUde3aaWbaaSqabeaacaaI 0aaaaOGaey4kaSIaaGOmaiaaisdacqaH4oqCdaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaIXaGaaGOmaaqaaiabeI7aXnaaCaaaleqabaGa aGOmaaaakmaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey 4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa ikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaaa@5B2A@ μ 3 = 2( θ 12 +12 θ 10 +54 θ 8 +100 θ 6 +108 θ 4 +72 θ 2 +24 ) θ 3 ( θ 4 +2 θ 2 +2 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmamaabmaabaGa eqiUde3aaWbaaSqabeaacaaIXaGaaGOmaaaakiabgUcaRiaaigdaca aIYaGaeqiUde3aaWbaaSqabeaacaaIXaGaaGimaaaakiabgUcaRiaa iwdacaaI0aGaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIaaG ymaiaaicdacaaIWaGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4k aSIaaGymaiaaicdacaaI4aGaeqiUde3aaWbaaSqabeaacaaI0aaaaO Gaey4kaSIaaG4naiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIYaGaaGinaaGaayjkaiaawMcaaaqaaiabeI7aXnaaCa aaleqabaGaaG4maaaakmaabmaabaGaeqiUde3aaWbaaSqabeaacaaI 0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaa aaaa@6B20@ μ 4 = 3( 3 θ 16 +48 θ 14 +304 θ 12 +944 θ 10 +1816 θ 8 +2304 θ 6 +1920 θ 4 +960 θ 2 +240 ) θ 4 ( θ 4 +2 θ 2 +2 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaG4mamaabmaaeaqa beaacaaIZaGaeqiUde3aaWbaaSqabeaacaaIXaGaaGOnaaaakiabgU caRiaaisdacaaI4aGaeqiUde3aaWbaaSqabeaacaaIXaGaaGinaaaa kiabgUcaRiaaiodacaaIWaGaaGinaiabeI7aXnaaCaaaleqabaGaaG ymaiaaikdaaaGccqGHRaWkcaaI5aGaaGinaiaaisdacqaH4oqCdaah aaWcbeqaaiaaigdacaaIWaaaaOGaey4kaSIaaGymaiaaiIdacaaIXa GaaGOnaiabeI7aXnaaCaaaleqabaGaaGioaaaakiabgUcaRiaaikda caaIZaGaaGimaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiAdaaaaake aacqGHRaWkcaaIXaGaaGyoaiaaikdacaaIWaGaeqiUde3aaWbaaSqa beaacaaI0aaaaOGaey4kaSIaaGyoaiaaiAdacaaIWaGaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdacaaIWaaaaiaa wIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqada qaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaay zkaaWaaWbaaSqabeaacaaI0aaaaaaaaaa@7D6B@

Descriptive measures including coefficient of variation ( C.V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGdbGaaiOlaiaadAfaaiaawIcacaGLPaaaaaa@3A62@ , coefficient of skweness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aadaGcaaqaaiabek7aITWaaSbaaKqbagaajugWaiaaigdaaKqbagqa aaqabaaacaGLOaGaayzkaaaaaa@3CEF@ , coefficient of kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3A78@ and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeq4SdCgakiaawIcacaGLPaaaaaa@3A57@ of (1.2) are thus obtained as

C.V= σ μ 1 = θ 8 +8 θ 6 +24 θ 4 +24 θ 2 +12 θ 4 +4 θ 2 +6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGUa GaamOvaiabg2da9maalaaabaGaeq4WdmhabaGaeqiVd02aaSbaaSqa aiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaaaaaiabg2da9m aalaaabaWaaOaaaeaacqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGH RaWkcaaI4aGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaG OmaiaaisdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI YaGaaGinaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaig dacaaIYaaaleqaaaGcbaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGa ey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaiAdaaaaaaa@5E86@ β 1 = μ 3 μ 2 3/2 = 2( θ 12 +12 θ 10 +54 θ 8 +100 θ 6 +108 θ 4 +72 θ 2 +24 ) ( θ 8 +8 θ 6 +24 θ 4 +24 θ 2 +12 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaaca aIYaaabeaakmaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiab g2da9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaaca aIXaGaaGOmaaaakiabgUcaRiaaigdacaaIYaGaeqiUde3aaWbaaSqa beaacaaIXaGaaGimaaaakiabgUcaRiaaiwdacaaI0aGaeqiUde3aaW baaSqabeaacaaI4aaaaOGaey4kaSIaaGymaiaaicdacaaIWaGaeqiU de3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGymaiaaicdacaaI4a GaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG4naiaaikda cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaGinaa GaayjkaiaawMcaaaqaamaabmaabaGaeqiUde3aaWbaaSqabeaacaaI 4aaaaOGaey4kaSIaaGioaiabeI7aXnaaCaaaleqabaGaaGOnaaaaki abgUcaRiaaikdacaaI0aGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGa ey4kaSIaaGOmaiaaisdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIXaGaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4m aiaac+cacaaIYaaaaaaaaaa@7D7D@ β 2 = μ 4 μ 2 2 = 3( 3 θ 16 +48 θ 14 +304 θ 12 +944 θ 10 +1816 θ 8 +2304 θ 6 +1920 θ 4 +960 θ 2 +240 ) ( θ 8 +8 θ 6 +24 θ 4 +24 θ 2 +12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaaisdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaGaaG4mamaabmaa eaqabeaacaaIZaGaeqiUde3aaWbaaSqabeaacaaIXaGaaGOnaaaaki abgUcaRiaaisdacaaI4aGaeqiUde3aaWbaaSqabeaacaaIXaGaaGin aaaakiabgUcaRiaaiodacaaIWaGaaGinaiabeI7aXnaaCaaaleqaba GaaGymaiaaikdaaaGccqGHRaWkcaaI5aGaaGinaiaaisdacqaH4oqC daahaaWcbeqaaiaaigdacaaIWaaaaOGaey4kaSIaaGymaiaaiIdaca aIXaGaaGOnaiabeI7aXnaaCaaaleqabaGaaGioaaaakiabgUcaRiaa ikdacaaIZaGaaGimaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiAdaaa aakeaacqGHRaWkcaaIXaGaaGyoaiaaikdacaaIWaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGyoaiaaiAdacaaIWaGaeqiUde 3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdacaaIWaaa aiaawIcacaGLPaaaaeaadaqadaqaaiabeI7aXnaaCaaaleqabaGaaG ioaaaakiabgUcaRiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiAdaaaGc cqGHRaWkcaaIYaGaaGinaiabeI7aXnaaCaaaleqabaGaaGinaaaaki abgUcaRiaaikdacaaI0aGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGymaiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaaaaaa@8CD7@ γ= σ 2 μ 1 = θ 8 +8 θ 6 +24 θ 4 +24 θ 2 +12 θ( θ 4 +2 θ 2 +2 )( θ 4 +4 θ 2 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGcbaGaeqiV d02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaa aaaiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI4aaaaOGa ey4kaSIaaGioaiabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRi aaikdacaaI0aGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIa aGOmaiaaisdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIXaGaaGOmaaqaaiabeI7aXnaabmaabaGaeqiUde3aaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiabeI7aXnaa CaaaleqabaGaaGinaaaakiabgUcaRiaaisdacqaH4oqCdaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaaaaaaaa@6BFE@

The natures of these descriptive measures for values of parameter  are shown in figure 3.

Figure 3 Coefficients of variation, skewness, kurtosis and index of dispersion of Adya distribution .

The condition under which Adya distribution is over-dispersed, equi-dispersed, and under-dispersed along with condition under which Shanker, Aradhana, Sujatha, Devya, Lindley and exponential distributions are over-dispersed, equi-dispersed, and under-dispersed are presented in table 2.

Distribution

Over-dispersion ( μ< σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iVd0MaeyipaWJaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGccaGLOaGa ayzkaaaaaa@3D55@

Equi-dispersion
( μ= σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iVd0Maeyypa0Jaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGccaGLOaGa ayzkaaaaaa@3D57@

Under-dispersion
( μ> σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iVd0MaeyOpa4Jaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGccaGLOaGa ayzkaaaaaa@3D59@

Adya

θ<1.305719841 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgY da8iaaigdacaGGUaGaaG4maiaaicdacaaI1aGaaG4naiaaigdacaaI 5aGaaGioaiaaisdacaaIXaaaaa@4133@

θ=1.305719841 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaG4maiaaicdacaaI1aGaaG4naiaaigdacaaI 5aGaaGioaiaaisdacaaIXaaaaa@4135@

θ>1.305719841 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaigdacaGGUaGaaG4maiaaicdacaaI1aGaaG4naiaaigdacaaI 5aGaaGioaiaaisdacaaIXaaaaa@4137@

Shanker

θ<1.171535555 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgY da8iaaigdacaGGUaGaaGymaiaaiEdacaaIXaGaaGynaiaaiodacaaI 1aGaaGynaiaaiwdacaaI1aaaaa@4132@

θ=1.171535555 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaGymaiaaiEdacaaIXaGaaGynaiaaiodacaaI 1aGaaGynaiaaiwdacaaI1aaaaa@4134@

θ>1.171535555 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaigdacaGGUaGaaGymaiaaiEdacaaIXaGaaGynaiaaiodacaaI 1aGaaGynaiaaiwdacaaI1aaaaa@4136@

Aradhana

θ<1.283826505 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgY da8iaaigdacaGGUaGaaGOmaiaaiIdacaaIZaGaaGioaiaaikdacaaI 2aGaaGynaiaaicdacaaI1aaaaa@4134@

θ=1.283826505 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaGOmaiaaiIdacaaIZaGaaGioaiaaikdacaaI 2aGaaGynaiaaicdacaaI1aaaaa@4136@

θ>1.283826505 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaigdacaGGUaGaaGOmaiaaiIdacaaIZaGaaGioaiaaikdacaaI 2aGaaGynaiaaicdacaaI1aaaaa@4138@

Sujatha

θ<1.364271174 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgY da8iaaigdacaGGUaGaaG4maiaaiAdacaaI0aGaaGOmaiaaiEdacaaI XaGaaGymaiaaiEdacaaI0aaaaa@4130@

θ=1.364271174 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaG4maiaaiAdacaaI0aGaaGOmaiaaiEdacaaI XaGaaGymaiaaiEdacaaI0aaaaa@4132@

θ>1.364271174 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaigdacaGGUaGaaG4maiaaiAdacaaI0aGaaGOmaiaaiEdacaaI XaGaaGymaiaaiEdacaaI0aaaaa@4134@

Devya

θ<1.451669994 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgY da8iaaigdacaGGUaGaaGinaiaaiwdacaaIXaGaaGOnaiaaiAdacaaI 5aGaaGyoaiaaiMdacaaI0aaaaa@4142@

θ=1.451669994 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaGinaiaaiwdacaaIXaGaaGOnaiaaiAdacaaI 5aGaaGyoaiaaiMdacaaI0aaaaa@4144@

θ>1.451669994 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaigdacaGGUaGaaGinaiaaiwdacaaIXaGaaGOnaiaaiAdacaaI 5aGaaGyoaiaaiMdacaaI0aaaaa@4146@

Lindley

θ<1.170086487 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgY da8iaaigdacaGGUaGaaGymaiaaiEdacaaIWaGaaGimaiaaiIdacaaI 2aGaaGinaiaaiIdacaaI3aaaaa@4136@

θ=1.170086487 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaGymaiaaiEdacaaIWaGaaGimaiaaiIdacaaI 2aGaaGinaiaaiIdacaaI3aaaaa@4138@

θ>1.170086487 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaigdacaGGUaGaaGymaiaaiEdacaaIWaGaaGimaiaaiIdacaaI 2aGaaGinaiaaiIdacaaI3aaaaa@413A@

Exponential

θ<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgY da8iaaigdaaaa@39D1@

θ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdaaaa@39D3@

θ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaigdaaaa@39D5@

Table 2 Over-dispersion, equi-dispersion and under-dispersion of Adya, Shanker, Aradhana, Sujatha, Devya, Lindley and exponential distributions for parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AC@

 

Hazard rate function and mean residual life function

The hazard rate function and the mean residual life function of a continuous random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiwaa aa@3761@ having pdf and cdf f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@39F5@ and F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@39D5@ are, respectively, defined as

 

h( x )= lim Δx0 P( X<x+Δx|X>x ) Δx = f( x ) 1F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWfqaqaaiGacYgacaGG PbGaaiyBaaWcbaGaeyiLdqKaamiEaiabgkziUkaaicdaaeqaaOWaaS aaaeaacaWGqbWaaeWaaeaadaabcaqaaiaadIfacqGH8aapcaWG4bGa ey4kaSIaeyiLdqKaamiEaiaaykW7aiaawIa7aiaadIfacqGH+aGpca WG4baacaGLOaGaayzkaaaabaGaeyiLdqKaamiEaaaacqGH9aqpdaWc aaqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaeaacaaIXa GaeyOeI0IaamOramaabmaabaGaamiEaaGaayjkaiaawMcaaaaaaaa@5D6C@ (3.1)

 

and  m( x )=E[ Xx|X>x ]= 1 1F( x ) x [ 1F( t ) ] dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabccacaWGTb WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0Jaamyramaadmaa baWaaqGaaeaacaWGybGaeyOeI0IaamiEaaGaayjcSdGaamiwaiabg6 da+iaadIhaaiaawUfacaGLDbaacaaMe8Uaeyypa0JaaGjbVpaalaaa baGaaGymaaqaaiaaigdacqGHsislcaWGgbWaaeWaaeaacaWG4baaca GLOaGaayzkaaaaamaapedabaWaamWaaeaacaaIXaGaeyOeI0IaamOr amaabmaabaGaamiDaaGaayjkaiaawMcaaaGaay5waiaaw2faaaWcba GaamiEaaqaaiabg6HiLcqdcqGHRiI8aOGaaGjbVlaaykW7caWGKbGa amiDaaaa@5FDE@ (3.2)

 

Thus, h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAam aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@39F7@ and m( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBam aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@39FC@ of (1.2) are obtained as

h( x )= θ 3 ( θ+x ) 2 θ 2 x 2 +2θ( θ 2 +1 )x+( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3a aWbaaSqabeaacaaIZaaaaOWaaeWaaeaacqaH4oqCcqGHRaWkcaWG4b aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcbaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaikdacqaH4oqCdaqadaqaaiabeI7aXnaaCaaaleqabaGa aGOmaaaakiabgUcaRiaaigdaaiaawIcacaGLPaaacaWG4bGaey4kaS YaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI YaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaaGaay jkaiaawMcaaaaaaaa@5CEE@ (3.3)

 and

m( x )= 1 [ θ 2 x 2 +2θ( θ 2 +1 )x+( θ 4 +2 θ 2 +2 ) ] e θx × x [ θ 2 t 2 +2θ( θ 2 +1 )t+( θ 4 +2 θ 2 +2 ) ] e θt dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGym aaqaamaadmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaamiEam aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCdaqadaqa aiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaiaawI cacaGLPaaacaWG4bGaey4kaSYaaeWaaeaacqaH4oqCdaahaaWcbeqa aiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaa dwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaaaaaGcbaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHxdaTdaWdXbqaam aadmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaamiDamaaCaaa leqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCdaqadaqaaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaiaawIcacaGL PaaacaWG0bGaey4kaSYaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaais daaaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaadwgada ahaaWcbeqaaiabgkHiTiabeI7aXjaadshaaaGccaWGKbGaamiDaaWc baGaamiEaaqaaiabg6HiLcqdcqGHRiI8aaaaaa@9AD8@

= θ 2 x 2 +2θ( θ 2 +2 )x+( θ 4 +4 θ 2 +6 ) θ[ θ 2 x 2 +2θ( θ 2 +1 )x+( θ 4 +2 θ 2 +2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCdaqadaqaaiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaa caWG4bGaey4kaSYaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaa GccqGHRaWkcaaI0aGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4k aSIaaGOnaaGaayjkaiaawMcaaaqaaiabeI7aXnaadmaabaGaeqiUde 3aaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaaGOmaaaa kiabgUcaRiaaikdacqaH4oqCdaqadaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaigdaaiaawIcacaGLPaaacaWG4bGaey4k aSYaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkca aIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaaGa ayjkaiaawMcaaaGaay5waiaaw2faaaaaaaa@6E89@ (3.4)

This gives h( 0 )= θ 5 θ 4 +2 θ 2 +2 =f( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3a aWbaaSqabeaacaaI1aaaaaGcbaGaeqiUde3aaWbaaSqabeaacaaI0a aaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaikdaaaGaeyypa0JaamOzamaabmaabaGaaGimaaGaayjkai aawMcaaaaa@49AC@ and m( 0 )= θ 4 +4 θ 2 +6 θ( θ 4 +2 θ 2 +2 ) = μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3a aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGinaiabeI7aXnaaCaaale qabaGaaGOmaaaakiabgUcaRiaaiAdaaeaacqaH4oqCdaqadaqaaiab eI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaayzkaaaa aiabg2da9iabeY7aTnaaBaaaleaacaaIXaaabeaakmaaCaaaleqaba GccWaGGBOmGikaaaaa@5572@ . The hazard rate function and mean residual life function of Adya distribution are shown in figure 4.

Figure 4 Graphs of h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm aabaGaamiEaaGaayjkaiaawMcaaaaa@3969@ and m( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaamiEaaGaayjkaiaawMcaaaaa@396E@ of Adya distribution .

Stochastic orderings

A random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@36D3@ is said to be smaller than a random variable in the

  1. stochastic order ( X st Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGybGaeyizIm6aaSbaaSqaaiaadohacaWG0baabeaakiaadMfaaiaa wIcacaGLPaaaaaa@3D16@ if F X ( x ) F Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGybaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiab gwMiZkaadAeadaWgaaWcbaGaamywaaqabaGcdaqadaqaaiaadIhaai aawIcacaGLPaaaaaa@4085@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@
  2. hazard rate order ( X hr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGObGaamOCaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3D6F@ if h X ( x ) h Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH LjYScaWGObWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG4baaca GLOaGaayzkaaaaaa@412F@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@3759@
  3. mean residual life order ( X mrl Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGTbGaamOCaiaadYgaaeqaaOGaamyw aaGaayjkaiaawMcaaaaa@3E65@ if m X ( x ) m Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaamiwaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH KjYOcaWGTbWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaacaWG4baaca GLOaGaayzkaaaaaa@4128@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@3759@
  4. likelihood ratio order ( X lr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iwaiabgsMiJoaaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbaacaGL OaGaayzkaaaaaa@3D73@ if f X ( x ) f Y ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OzamaaBaaaleaacaWGybaabeaakmaabmaabaGaamiEaaGaayjkaiaa wMcaaaqaaiaadAgadaWgaaWcbaGaamywaaqabaGcdaqadaqaaiaadI haaiaawIcacaGLPaaaaaaaaa@3F75@ decreases in x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@3759@

Shaked and Shanthikumar7 proposed following results for establishing stochastic ordering of distributions

X lr YX hr YX mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaiabgkDiElaadIfa cqGHKjYOdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaiabgkDiEl aadIfacqGHKjYOdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaa dMfaaaa@4CAE@ (4.1)

X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaey 40H8naleaacaWGybGaeyizIm6aaSbaaWqaaiaadohacaWG0baabeaa liaadMfaaeqaaaaa@3E8D@

The distribution (1.2) is ordered with respect to the strongest ‘likelihood ratio’ ordering.

Theorem: Suppose X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@3739@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae8hpI4 haaa@3761@ Adya distributon ( θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3A8C@ and Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfaaaa@373A@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae8hpI4 haaa@3761@ Adya distribution ( θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3A8D@ . If θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa beaaaaa@3CA9@ , then X lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3BEA@ and hence X hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3BE6@ , X mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3CDC@ and X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3BF3@ .

Proof: We have

f X ( x ) f Y ( x ) = θ 1 3 ( θ 2 4 +2 θ 2 2 +2 ) θ 2 3 ( θ 1 4 +2 θ 1 2 +2 ) ( ( θ 1 +x) 2 ( θ 2 +x) 2 ) e ( θ 1 θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaleaajqwaac qaaiaadAgalmaaBaaajqMaacqaaiaadIfaaeqaaSWaaeWaaKazbaia baGaamiEaaGaayjkaiaawMcaaaqaaiaadAgalmaaBaaajqMaacqaai aadMfaaeqaaSWaaeWaaKazbaiabaGaamiEaaGaayjkaiaawMcaaaaa kiabg2da9maalaaabaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaW baaSqabeaacaaIZaaaaOWaaeWaaeaacqaH4oqCdaWgaaWcbaGaaGOm aaqabaGcdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde 3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOmaaGaayjk aiaawMcaaaqaaiabeI7aXnaaBaaaleaacaaIYaaabeaakmaaCaaale qabaGaaG4maaaakmaabmaabaGaeqiUde3aaSbaaSqaaiaaigdaaeqa aOWaaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaDa aaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGL PaaaaaWaaeWaaeaadaWcaaqaaiaacIcacqaH4oqCdaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWG4bGaaiykamaaCaaaleqabaGaaGOmaaaa aOqaaiaacIcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkca WG4bGaaiykamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaa caWGLbWaaWbaaSqabeaacqGHsisldaqadaqaaiabeI7aXnaaBaaame aacaaIXaaabeaaliabgkHiTiabeI7aXnaaBaaameaacaaIYaaabeaa aSGaayjkaiaawMcaaiaaykW7caWG4baaaaaa@7F96@ ; x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUdacaqGGa GaamiEaiabg6da+iaaicdaaaa@3A7D@

  Now

ln f X ( x ) f Y ( x ) =ln[ θ 1 3 ( θ 2 4 +2 θ 2 2 +2 ) θ 2 3 ( θ 1 4 +2 θ 1 2 +2 ) ]+2ln( θ 1 +x θ 2 +x )( θ 1 θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb WaaSqaaKazbaiabaGaamOzaSWaaSbaaKazcaiabaGaamiwaaqabaWc daqadaqcKfaGaeaacaWG4baacaGLOaGaayzkaaaabaGaamOzaSWaaS baaKazcaiabaGaamywaaqabaWcdaqadaqcKfaGaeaacaWG4baacaGL OaGaayzkaaaaaOGaeyypa0JaciiBaiaac6gadaWadaqaamaalaaaba GaeqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIZaaa aOWaaeWaaeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbe qaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aa0baaSqaaiaaikda aeaacaaIYaaaaOGaey4kaSIaaGOmaaGaayjkaiaawMcaaaqaaiabeI 7aXnaaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaG4maaaakmaa bmaabaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaaca aI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaDaaaleaacaaIXaaabaGa aGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaaaaaacaGLBbGaay zxaaGaey4kaSIaaGOmaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiab eI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiaadIhaaeaacqaH4o qCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG4baaaaGaayjkaiaa wMcaaiabgkHiTmaabmaabaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaeqiUde3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaGaamiEaaaa@8194@

 .

 This gives d dx { ln f X ( x ) f Y ( x ) }= 2( θ 1 θ 2 ) ( θ 1 +x )( θ 2 +x ) ( θ 1 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaamaacmaabaGaciiBaiaac6gadaWcbaqc baEaaiaadAgalmaaBaaajia4baGaamiwaaqabaWcdaqadaqcbaEaai aadIhaaiaawIcacaGLPaaaaeaacaWGMbWcdaWgaaqccaEaaiaadMfa aeqaaSWaaeWaaKqaGhaacaWG4baacaGLOaGaayzkaaaaaaGccaGL7b GaayzFaaGaeyypa0ZaaSaaaeaacqGHsislcaaIYaWaaeWaaeaacqaH 4oqCdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH4oqCdaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaaaeaadaqadaqaaiabeI7aXnaa BaaaleaacaaIXaaabeaakiabgUcaRiaadIhaaiaawIcacaGLPaaada qadaqaaiabeI7aXnaaBaaaleaacaaIYaaabeaakiabgUcaRiaadIha aiaawIcacaGLPaaaaaGaeyOeI0YaaeWaaeaacqaH4oqCdaWgaaWcba GaaGymaaqabaGccqGHsislcqaH4oqCdaWgaaWcbaGaaGOmaaqabaaa kiaawIcacaGLPaaaaaa@6A5F@

 Thus for θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa beaaaaa@3CA9@ , d dx { ln f X ( x ) f Y ( x ) }<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG4baaamaacmaabaGaciiBaiaac6gadaWcbaqc baEaaiaadAgalmaaBaaajia4baGaamiwaaqabaWcdaqadaqcbaEaai aadIhaaiaawIcacaGLPaaaaeaacaWGMbWcdaWgaaqccaEaaiaadMfa aeqaaSWaaeWaaKqaGhaacaWG4baacaGLOaGaayzkaaaaaaGccaGL7b GaayzFaaGaeyipaWJaaGimaaaa@4CC8@ . This means that X lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3BEA@ and hence X hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3BE6@ , X mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3CDC@ and X st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3BF3@ .

Mean deviations

The mean deviation about the mean and the mean deviation about the median are used to measure the amount of scatter in the population from the mean and the median and defined by

δ 1 ( X )= 0 | xμ | f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maapehabaWaaqWaaeaacaWG4bGaeyOeI0IaeqiVd0gacaGLhW UaayjcSdaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaaMc8Ua amOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaaa@4EA0@ and δ 2 ( X )= 0 | xM | f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maapehabaWaaqWaaeaacaWG4bGaeyOeI0IaamytaaGaay5bSl aawIa7aaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaaGPaVlaa dAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaaa@4DBD@ , respectively, where μ=E( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9iaadweadaqadaqaaiaadIfaaiaawIcacaGLPaaaaaa@3C48@ and M=Median ( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpcaqGnbGaaeyzaiaabsgacaqGPbGaaeyyaiaab6gacaqGGaWaaeWa aeaacaWGybaacaGLOaGaayzkaaaaaa@409D@ . The computation of these measures are simplified as

δ 1 ( X )= 0 μ ( μx ) f( x )dx+ μ ( xμ ) f( x )dx=2μF( μ )2 0 μ x f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maapehabaWaaeWaaeaacqaH8oqBcqGHsislcaWG4baacaGLOa GaayzkaaaaleaacaaIWaaabaGaeqiVd0ganiabgUIiYdGccaWGMbWa aeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHRaWkda WdXbqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMca aaWcbaGaeqiVd0gabaGaeyOhIukaniabgUIiYdGccaWGMbWaaeWaae aacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGH9aqpcaaIYaGa eqiVd0MaamOramaabmaabaGaeqiVd0gacaGLOaGaayzkaaGaeyOeI0 IaaGOmamaapehabaGaamiEaiaaykW7aSqaaiaaicdaaeaacqaH8oqB a0Gaey4kIipakiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaca WGKbGaamiEaaaa@72AA@ (5.1)

and

δ 2 ( X )= 0 M ( Mx ) f( x )dx+ M ( xM ) f( x )dx=μ2 0 M x f( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maapehabaWaaeWaaeaacaWGnbGaeyOeI0IaamiEaaGaayjkai aawMcaaaWcbaGaaGimaaqaaiaad2eaa0Gaey4kIipakiaadAgadaqa daqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaiabgUcaRmaape habaWaaeWaaeaacaWG4bGaeyOeI0IaamytaaGaayjkaiaawMcaaaWc baGaamytaaqaaiabg6HiLcqdcqGHRiI8aOGaamOzamaabmaabaGaam iEaaGaayjkaiaawMcaaiaadsgacaWG4bGaeyypa0JaeqiVd0MaeyOe I0IaaGOmamaapehabaGaamiEaiaaykW7aSqaaiaaicdaaeaacaWGnb aaniabgUIiYdGccaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa amizaiaadIhaaaa@6971@ (5.2)

Using pdf (1.2) and expression for the mean of Adya distribution ,we get

0 μ x f( x;θ )dx=μ { θ 5 μ+ θ 4 ( 2 μ 2 +1 )+ θ 3 ( μ 3 +4μ)+ θ 2 (3 μ 2 +μ)+6θμ+6 } e θμ θ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam iEaiaaykW7aSqaaiaaicdaaeaacqaH8oqBa0Gaey4kIipakiaadAga daqadaqaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaamizai aadIhacqGH9aqpcqaH8oqBcqGHsisldaWcaaqaamaacmaabaGaeqiU de3aaWbaaSqabeaacaaI1aaaaOGaeqiVd0Maey4kaSIaeqiUde3aaW baaSqabeaacaaI0aaaaOWaaeWaaeaacaaIYaGaeqiVd02aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgUcaRi abeI7aXnaaCaaaleqabaGaaG4maaaakiaacIcacqaH8oqBdaahaaWc beqaaiaaiodaaaGccqGHRaWkcaaI0aGaeqiVd0MaaiykaiabgUcaRi abeI7aXnaaCaaaleqabaGaaGOmaaaakiaacIcacaaIZaGaeqiVd02a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiVd0MaaiykaiabgUcaRi aaiAdacqaH4oqCcqaH8oqBcqGHRaWkcaaI2aaacaGL7bGaayzFaaGa amyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPaVlabeY7aTbaaaO qaaiabeI7aXnaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGa ey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaikdaaiaawIcacaGLPaaaaaaaaa@8942@ (5.3)

0 M x f( x;θ )dx=μ { θ 5 M+ θ 4 (2 M 2 +1)+ θ 3 ( M 3 +4M)+ θ 2 (3 M 2 +M)+6θM+6 } e θM θ( θ 4 +2 θ 2 +2) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam iEaiaaykW7aSqaaiaaicdaaeaacaWGnbaaniabgUIiYdGccaWGMbWa aeWaaeaacaWG4bGaai4oaiabeI7aXbGaayjkaiaawMcaaiaadsgaca WG4bGaeyypa0JaeqiVd0MaeyOeI0YaaSaaaeaadaGadaqaaiabeI7a XnaaCaaaleqabaGaaGynaaaakiaad2eacqGHRaWkcqaH4oqCdaahaa WcbeqaaiaaisdaaaGccaGGOaGaaGOmaiaad2eadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaaIXaGaaiykaiabgUcaRiabeI7aXnaaCaaale qabaGaaG4maaaakiaacIcacaWGnbWaaWbaaSqabeaacaaIZaaaaOGa ey4kaSIaaGinaiaad2eacaGGPaGaey4kaSIaeqiUde3aaWbaaSqabe aacaaIYaaaaOGaaiikaiaaiodacaWGnbWaaWbaaSqabeaacaaIYaaa aOGaey4kaSIaamytaiaacMcacqGHRaWkcaaI2aGaeqiUdeNaaGPaVl aad2eacqGHRaWkcaaI2aaacaGL7bGaayzFaaGaamyzamaaCaaaleqa baGaeyOeI0IaeqiUdeNaaGPaVlaad2eaaaaakeaacqaH4oqCdaqada qaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaiykaaGaay jkaiaawMcaaaaaaaa@8346@ (5.4)

Using expressions from (5.1), (5.2), (5.3), and (5.4), the mean deviation about mean, and the mean deviation about median, of Adya distribution are obtained as

δ 1 ( X )= 2{ 2 θ 3 μ+ θ 2 ( μ 2 +μ)+4θμ+( θ 4 +6 ) } e θμ θ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maalaaabaGaaGOmamaacmaabaGaaGOmaiabeI7aXnaaCaaale qabaGaaG4maaaakiabeY7aTjabgUcaRiabeI7aXnaaCaaaleqabaGa aGOmaaaakiaacIcacqaH8oqBdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcqaH8oqBcaGGPaGaey4kaSIaaGinaiabeI7aXjabeY7aTjabgUca RmaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG OnaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaadwgadaahaaWcbeqa aiabgkHiTiabeI7aXjaaykW7cqaH8oqBaaaakeaacqaH4oqCdaqada qaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaay zkaaaaaaaa@6D34@ (5.5)

δ 2 ( X )= 2{ θ 5 M+ θ 4 ( 2 M 2 +1 )+ θ 3 ( M 3 +4M)+ θ 2 (3 M 2 +M)+6θM+6 } e θM θ( θ 4 +2 θ 2 +2 ) μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiwaaGaayjkaiaawMcaaiab g2da9maalaaabaGaaGOmamaacmaabaGaeqiUde3aaWbaaSqabeaaca aI1aaaaOGaamytaiabgUcaRiabeI7aXnaaCaaaleqabaGaaGinaaaa kmaabmaabaGaaGOmaiaad2eadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaIXaaacaGLOaGaayzkaaGaey4kaSIaeqiUde3aaWbaaSqabeaa caaIZaaaaOGaaiikaiaad2eadaahaaWcbeqaaiaaiodaaaGccqGHRa WkcaaI0aGaamytaiaacMcacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaa ikdaaaGccaGGOaGaaG4maiaad2eadaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaWGnbGaaiykaiabgUcaRiaaiAdacaaMc8UaeqiUdeNaamyt aiabgUcaRiaaiAdaaiaawUhacaGL9baacaWGLbWaaWbaaSqabeaacq GHsislcqaH4oqCcaaMc8UaamytaaaaaOqaaiabeI7aXnaabmaabaGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaa aaGaeyOeI0IaeqiVd0gaaa@7A2F@ (5.6)

Bonferroni and lorenz curves

The Bonferroni8 and Lorenz curves are defined as

B( p )= 1 pμ 0 q xf( x ) dx= 1 pμ [ 0 xf( x )dx q xf( x ) dx ]= 1 pμ [ μ q xf( x ) dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa caWGWbGaeqiVd0gaamaapehabaGaamiEaiaaykW7caWGMbWaaeWaae aacaWG4baacaGLOaGaayzkaaGaaGPaVdWcbaGaaGimaaqaaiaadgha a0Gaey4kIipakiaadsgacaWG4bGaeyypa0ZaaSaaaeaacaaIXaaaba GaamiCaiabeY7aTbaadaWadaqaamaapehabaGaamiEaiaaykW7caWG MbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHsi slaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaapehabaGaamiE aiaaykW7caWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaaleaaca WGXbaabaGaeyOhIukaniabgUIiYdGccaaMc8UaamizaiaadIhaaiaa wUfacaGLDbaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGWbGaeqiVd0 gaamaadmaabaGaeqiVd0MaeyOeI0Yaa8qCaeaacaWG4bGaaGPaVlaa dAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaSqaaiaadghaaeaacq GHEisPa0Gaey4kIipakiaaykW7caWGKbGaamiEaaGaay5waiaaw2fa aaaa@851B@ (6.1)

 and L( p )= 1 μ 0 q xf( x ) dx= 1 μ [ 0 xf( x )dx q xf( x ) dx ]= 1 μ [ μ q xf( x ) dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa cqaH8oqBaaWaa8qCaeaacaWG4bGaaGPaVlaadAgadaqadaqaaiaadI haaiaawIcacaGLPaaaaSqaaiaaicdaaeaacaWGXbaaniabgUIiYdGc caaMc8UaamizaiaadIhacqGH9aqpdaWcaaqaaiaaigdaaeaacqaH8o qBaaWaamWaaeaadaWdXbqaaiaadIhacaaMc8UaamOzamaabmaabaGa amiEaaGaayjkaiaawMcaaiaadsgacaWG4bGaeyOeI0caleaacaaIWa aabaGaeyOhIukaniabgUIiYdGcdaWdXbqaaiaadIhacaaMc8UaamOz amaabmaabaGaamiEaaGaayjkaiaawMcaaiaaykW7aSqaaiaadghaae aacqGHEisPa0Gaey4kIipakiaadsgacaWG4baacaGLBbGaayzxaaGa eyypa0ZaaSaaaeaacaaIXaaabaGaeqiVd0gaamaadmaabaGaeqiVd0 MaeyOeI0Yaa8qCaeaacaWG4bGaaGPaVlaadAgadaqadaqaaiaadIha aiaawIcacaGLPaaaaSqaaiaadghaaeaacqGHEisPa0Gaey4kIipaki aaykW7caWGKbGaamiEaaGaay5waiaaw2faaaaa@8246@ (6.2)

 respectively or equivalently

B( p )= 1 pμ 0 p F 1 ( x ) dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa caWGWbGaeqiVd0gaamaapehabaGaamOramaaCaaaleqabaGaeyOeI0 IaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaawMcaaaWcbaGaaGim aaqaaiaadchaa0Gaey4kIipakiaaykW7caWGKbGaamiEaaaa@4AE0@ (6.3)

 and L( p )= 1 μ 0 p F 1 ( x ) dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa cqaH8oqBaaWaa8qCaeaacaWGgbWaaWbaaSqabeaacqGHsislcaaIXa aaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaaaleaacaaIWaaabaGa amiCaaqdcqGHRiI8aOGaaGPaVlaadsgacaWG4baaaa@49F5@ (6.4)

 respectively, where μ=E( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9iaadweadaqadaqaaiaadIfaaiaawIcacaGLPaaaaaa@3C48@ and q= F 1 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghacqGH9a qpcaWGgbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG WbaacaGLOaGaayzkaaaaaa@3D80@ .

 The Bonferroni and Gini indices are thus defined as

B=1 0 1 B( p ) dp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpcaaIXaGaeyOeI0Yaa8qCaeaacaWGcbWaaeWaaeaacaWGWbaacaGL OaGaayzkaaaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaaGPaVl aadsgacaWGWbaaaa@4467@ (6.5)

 and G=12 0 1 L( p ) dp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpcaaIXaGaeyOeI0IaaGOmamaapehabaGaamitamaabmaabaGaamiC aaGaayjkaiaawMcaaiaaykW7aSqaaiaaicdaaeaacaaIXaaaniabgU IiYdGccaWGKbGaamiCaaaa@4532@ (6.6)

 respectively.

 Using pdf (1.2), we have

q xf( x ) dx= { θ 5 q+ θ 4 (2 q 2 +1)+ θ 3 ( q 3 +4q)+ θ 2 (3 q 2 +1)+6θq+6 } e θq θ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam iEaiaaykW7caWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaaleaa caWGXbaabaGaeyOhIukaniabgUIiYdGccaaMc8UaamizaiaadIhacq GH9aqpdaWcaaqaamaacmaabaGaeqiUde3aaWbaaSqabeaacaaI1aaa aOGaamyCaiabgUcaRiabeI7aXnaaCaaaleqabaGaaGinaaaakiaacI cacaaIYaGaamyCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigda caGGPaGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaaiikai aadghadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI0aGaamyCaiaa cMcacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccaaMc8Uaai ikaiaaiodacaWGXbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGym aiaacMcacqGHRaWkcaaI2aGaeqiUdeNaaGPaVlaadghacqGHRaWkca aI2aaacaGL7bGaayzFaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiU deNaamyCaaaaaOqaaiabeI7aXnaabmaabaGaeqiUde3aaWbaaSqabe aacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaikdaaiaawIcacaGLPaaaaaaaaa@80CC@ (6.7)

Now using equation (6.7) in (6.1) and (6.2), we have

B( p )= 1 p [ 1 { θ 5 q+ θ 4 (2 q 2 +1)+ θ 3 ( q 3 +4q)+ θ 2 (3 q 2 +4)+6θq+6 } e θq θ 4 +4 θ 2 +6 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa caWGWbaaamaadmaabaGaaGymaiabgkHiTmaalaaabaWaaiWaaeaacq aH4oqCdaahaaWcbeqaaiaaiwdaaaGccaWGXbGaey4kaSIaaGPaVlab eI7aXnaaCaaaleqabaGaaGinaaaakiaacIcacaaIYaGaamyCamaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaigdacaGGPaGaey4kaSIaeqiU de3aaWbaaSqabeaacaaIZaaaaOGaaiikaiaadghadaahaaWcbeqaai aaiodaaaGccqGHRaWkcaaI0aGaamyCaiaacMcacqGHRaWkcaaMc8Ua eqiUde3aaWbaaSqabeaacaaIYaaaaOGaaGPaVlaacIcacaaIZaGaam yCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdacaGGPaGaey4k aSIaaGOnaiaaykW7cqaH4oqCcaaMc8UaamyCaiabgUcaRiaaiAdaai aawUhacaGL9baacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG XbaaaaGcbaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG inaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaaaa caGLBbGaayzxaaaaaa@7C92@ (6.8)

 and L( p )=1 { θ 5 q+ θ 4 (2 q 2 +1)+ θ 3 ( q 3 +4q)+ θ 2 (3 q 2 +4)+6θq+6 } e θq θ 4 +4 θ 2 +6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaaSaa aeaadaGadaqaaiabeI7aXnaaCaaaleqabaGaaGynaaaakiaadghacq GHRaWkcaaMc8UaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaaiikaiaa ikdacaWGXbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaacM cacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiodaaaGccaGGOaGaamyC amaaCaaaleqabaGaaG4maaaakiabgUcaRiaaisdacaWGXbGaaiykai abgUcaRiaaykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccaaMc8Ua aiikaiaaiodacaWGXbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG inaiaacMcacqGHRaWkcaaI2aGaaGPaVlabeI7aXjaaykW7caWGXbGa ey4kaSIaaGOnaaGaay5Eaiaaw2haaiaadwgadaahaaWcbeqaaiabgk HiTiabeI7aXjaadghaaaaakeaacqaH4oqCdaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaI0aGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOnaaaaaaa@78EA@ (6.9)

 Now using equations (6.8) and (6.9) in (6.5) and (6.6), the Bonferroni and Gini indices are obtained as

B=1 { θ 5 q+ θ 4 (2 q 2 +1)+ θ 3 ( q 3 +4q)+ θ 2 (3 q 2 +4)+6θq+6 } e θq θ 4 +4 θ 2 +6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpcaaIXaGaeyOeI0YaaSaaaeaadaGadaqaaiabeI7aXnaaCaaaleqa baGaaGynaaaakiaadghacqGHRaWkcaaMc8UaeqiUde3aaWbaaSqabe aacaaI0aaaaOGaaiikaiaaikdacaWGXbWaaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGymaiaacMcacqGHRaWkcqaH4oqCdaahaaWcbeqaai aaiodaaaGccaGGOaGaamyCamaaCaaaleqabaGaaG4maaaakiabgUca RiaaisdacaWGXbGaaiykaiabgUcaRiaaykW7cqaH4oqCdaahaaWcbe qaaiaaikdaaaGccaaMc8UaaiikaiaaiodacaWGXbWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGinaiaacMcacqGHRaWkcaaI2aGaaGPaVl abeI7aXjaaykW7caWGXbGaey4kaSIaaGOnaaGaay5Eaiaaw2haaiaa dwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadghaaaaakeaacqaH4o qCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI0aGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGOnaaaaaaa@7662@ (6.10)

G= 2{ θ 5 q+ θ 4 (2 q 2 +1)+ θ 3 ( q 3 +4q)+ θ 2 (3 q 2 +4)+6θq+6 } e θq θ 4 +4 θ 2 +6 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpdaWcaaqaaiaaikdadaGadaqaaiabeI7aXnaaCaaaleqabaGaaGyn aaaakiaadghacqGHRaWkcaaMc8UaeqiUde3aaWbaaSqabeaacaaI0a aaaOGaaiikaiaaikdacaWGXbWaaWbaaSqabeaacaaIYaaaaOGaey4k aSIaaGymaiaacMcacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiodaaa GccaGGOaGaamyCamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaisda caWGXbGaaiykaiabgUcaRiaaykW7cqaH4oqCdaahaaWcbeqaaiaaik daaaGccaaMc8UaaiikaiaaiodacaWGXbWaaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGinaiaacMcacqGHRaWkcaaI2aGaaGPaVlabeI7aXj aaykW7caWGXbGaey4kaSIaaGOnaaGaay5Eaiaaw2haaiaadwgadaah aaWcbeqaaiabgkHiTiabeI7aXjaadghaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaisdaaaGccqGHRaWkcaaI0aGaeqiUde3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGOnaaaacqGHsislcaaIXaaaaa@7723@ (6.11)

Stress-strength reliability

Suppose X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@3739@ and Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfaaaa@373A@ be independent strength and stress random variables having Adya distribution with parameter θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaaaaa@38F9@ and θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIYaaabeaaaaa@38FA@ respectively. Then R=P( Y<X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGqbWaaeWaaeaacaWGzbGaeyipaWJaamiwaaGaayjkaiaawMca aaaa@3D56@ is known as stress-strength parameter and is a measure of the component reliability.

Thus, R=P( Y<X )= 0 P( Y<X|X=x ) f X ( x )dx= 0 f( x; θ 1 ) F( x; θ 2 )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGH9a qpcaWGqbWaaeWaaeaacaWGzbGaeyipaWJaamiwaaGaayjkaiaawMca aiabg2da9maapehabaGaamiuamaabmaabaGaamywaiabgYda8iaadI facaGG8bGaamiwaiabg2da9iaadIhaaiaawIcacaGLPaaaaSqaaiaa icdaaeaacqGHEisPa0Gaey4kIipakiaadAgadaWgaaWcbaGaamiwaa qabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaiab g2da9maapehabaGaamOzamaabmaabaGaamiEaiaacUdacqaH4oqCda WgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaSqaaiaaicdaaeaa cqGHEisPa0Gaey4kIipakiaaykW7caaMc8UaamOramaabmaabaGaam iEaiaacUdacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL PaaacaWGKbGaamiEaaaa@6A90@ =1 θ 1 3 [ 24 θ 2 2 +12 θ 2 ( θ 2 2 + θ 1 θ 2 +1 )( θ 1 + θ 2 )+2( θ 2 4 +4 θ 1 θ 2 3 + θ 1 2 θ 2 2 +2 θ 2 2 +4 θ 1 θ 2 +2 ) ( θ 1 + θ 2 ) 2 +2 θ 1 ( θ 2 4 + θ 1 θ 2 3 +2 θ 2 + θ 1 θ 2 +2 ) ( θ 1 + θ 2 ) 3 + θ 1 2 ( θ 2 4 +2 θ 2 2 +2) ( θ 1 + θ 2 ) 4 ] ( θ 1 4 +2 θ 1 2 +2 )( θ 2 4 +2 θ 2 2 +2 ) ( θ 1 + θ 2 ) 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaaig dacqGHsisldaWcaaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakmaa CaaaleqabaGaaG4maaaakmaadmaaeaqabeaacaaIYaGaaGinaiaayk W7cqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIXaGaaGOmaiaaykW7cqaH4oqCdaqhaaWcbaGaaG OmaaqaaaaakmaabmaabaGaeqiUde3aa0baaSqaaiaaikdaaeaacaaI YaaaaOGaey4kaSIaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeqiUde 3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGymaaGaayjkaiaawMca aiaacIcacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH4o qCdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaSIaaGOmamaabmaa baGaeqiUde3aa0baaSqaaiaaikdaaeaacaaI0aaaaOGaey4kaSIaaG inaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabeI7aXnaaDaaaleaa caaIYaaabaGaaG4maaaakiabgUcaRiabeI7aXnaaDaaaleaacaaIXa aabaGaaGOmaaaakiabeI7aXnaaDaaaleaacaaIYaaabaGaaGOmaaaa kiabgUcaRiaaikdacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaaikdaaa GccqGHRaWkcaaI0aGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeqiU de3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGOmaaGaayjkaiaawM caaiaacIcacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH 4oqCdaWgaaWcbaGaaGOmaaqabaGccaGGPaWaaWbaaSqabeaacaaIYa aaaaGcbaGaey4kaSIaaGOmaiabeI7aXnaaBaaaleaacaaIXaaabeaa kmaabmaabaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaI0aaaaOGaey4kaSIaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGa eqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIZaaaaO Gaey4kaSIaaGOmaiabeI7aXnaaBaaaleaacaaIYaaabeaakiabgUca RiabeI7aXnaaBaaaleaacaaIXaaabeaakiabeI7aXnaaBaaaleaaca aIYaaabeaakiabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiab eI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeI7aXnaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaa kiabgUcaRiabeI7aXnaaDaaaleaacaaIXaaabaGaaGOmaaaakiaacI cacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccqGHRaWkcaaI YaGaeqiUde3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaG OmaiaacMcadaqadaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiab gUcaRiabeI7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGinaaaaaaGccaGLBbGaayzxaaaabaWaaeWaaeaa cqaH4oqCdaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaisdaaa GccqGHRaWkcaaIYaGaeqiUde3aa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaaGOmaaGaayjkaiaawMcaamaabmaabaGaeqiUde3aaS baaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaI0aaaaOGaey4kaSIa aGOmaiabeI7aXnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRi aaikdaaiaawIcacaGLPaaadaqadaqaaiabeI7aXnaaBaaaleaacaaI XaaabeaakiabgUcaRiabeI7aXnaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGynaaaaaaaaaa@E9EF@ =1 θ 1 3 [ 24 θ 2 2 +12 θ 2 ( θ 2 2 + θ 1 θ 2 +1 )( θ 1 + θ 2 )+2( θ 2 4 +4 θ 1 θ 2 3 + θ 1 2 θ 2 2 +2 θ 2 2 +4 θ 1 θ 2 +2 ) ( θ 1 + θ 2 ) 2 +2 θ 1 ( θ 2 4 + θ 1 θ 2 3 +2 θ 2 + θ 1 θ 2 +2 ) ( θ 1 + θ 2 ) 3 + θ 1 2 ( θ 2 4 +2 θ 2 2 +2) ( θ 1 + θ 2 ) 4 ] ( θ 1 4 +2 θ 1 2 +2 )( θ 2 4 +2 θ 2 2 +2 ) ( θ 1 + θ 2 ) 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaaig dacqGHsisldaWcaaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakmaa CaaaleqabaGaaG4maaaakmaadmaaeaqabeaacaaIYaGaaGinaiaayk W7cqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIXaGaaGOmaiaaykW7cqaH4oqCdaqhaaWcbaGaaG OmaaqaaaaakmaabmaabaGaeqiUde3aa0baaSqaaiaaikdaaeaacaaI YaaaaOGaey4kaSIaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeqiUde 3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGymaaGaayjkaiaawMca aiaacIcacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH4o qCdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaSIaaGOmamaabmaa baGaeqiUde3aa0baaSqaaiaaikdaaeaacaaI0aaaaOGaey4kaSIaaG inaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabeI7aXnaaDaaaleaa caaIYaaabaGaaG4maaaakiabgUcaRiabeI7aXnaaDaaaleaacaaIXa aabaGaaGOmaaaakiabeI7aXnaaDaaaleaacaaIYaaabaGaaGOmaaaa kiabgUcaRiaaikdacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaaikdaaa GccqGHRaWkcaaI0aGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeqiU de3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGOmaaGaayjkaiaawM caaiaacIcacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH 4oqCdaWgaaWcbaGaaGOmaaqabaGccaGGPaWaaWbaaSqabeaacaaIYa aaaaGcbaGaey4kaSIaaGOmaiabeI7aXnaaBaaaleaacaaIXaaabeaa kmaabmaabaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacaaI0aaaaOGaey4kaSIaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGa eqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIZaaaaO Gaey4kaSIaaGOmaiabeI7aXnaaBaaaleaacaaIYaaabeaakiabgUca RiabeI7aXnaaBaaaleaacaaIXaaabeaakiabeI7aXnaaBaaaleaaca aIYaaabeaakiabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiab eI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeI7aXnaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaa kiabgUcaRiabeI7aXnaaDaaaleaacaaIXaaabaGaaGOmaaaakiaacI cacqaH4oqCdaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccqGHRaWkcaaI YaGaeqiUde3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaG OmaiaacMcadaqadaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiab gUcaRiabeI7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGinaaaaaaGccaGLBbGaayzxaaaabaWaaeWaaeaa cqaH4oqCdaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaaisdaaa GccqGHRaWkcaaIYaGaeqiUde3aa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaaGOmaaGaayjkaiaawMcaamaabmaabaGaeqiUde3aaS baaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaI0aaaaOGaey4kaSIa aGOmaiabeI7aXnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRi aaikdaaiaawIcacaGLPaaadaqadaqaaiabeI7aXnaaBaaaleaacaaI XaaabeaakiabgUcaRiabeI7aXnaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGynaaaaaaaaaa@E9EF@

Estimation of parameter

Estimation using method of moment

Since Adya distribution has one parameter, equating the population mean to the corresponding sample mean, the moment estimate θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaG aaaaa@37BB@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AC@ is the solution of the following fifth degree polynomial equation x ¯ θ 5 θ 4 +2 x ¯ θ 3 4 θ 2 +2θ x ¯ 6=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeai aaykW7cqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHsislcqaH4oqC daahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaGPaVlqadIhaga qeaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHsislcaaI 0aGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI 7aXjqadIhagaqeaiabgkHiTiaaiAdacqGH9aqpcaaIWaaaaa@53DD@

, where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeaa aa@3771@ is the sample mean.

Estimation using maximum likelihood estimation

Taking ( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZa aabeaakiaacYcacaaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7 caaMc8UaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcaca GLPaaaaaa@4DF0@ a random sample from (1.2), the natural log likelihood function of Adya distribution is

lnL=nln( θ 3 θ 4 +2 θ 2 +2 )+2 i=1 n ln( θ+ x i ) nθ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb Gaamitaiabg2da9iaad6gacaaMc8UaciiBaiaac6gadaqadaqaamaa laaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUde3aaW baaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaikdaaaaacaGLOaGaayzkaaGaey4kaS IaaGOmamaaqahabaGaciiBaiaac6gadaqadaqaaiabeI7aXjabgUca RiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaSqaai aadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaeyOeI0Ia amOBaiaaykW7cqaH4oqCcaaMc8UabmiEayaaraaaaa@62BF@ .

This gives, dlnL dθ = 3n θ 4nθ( θ 2 +1 ) θ 4 +2 θ 2 +2 +2 i=1 n 1 θ+ x i n x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGUbGaamitaaqaaiaadsgacqaH4oqCaaGaeyypa0Za aSaaaeaacaaIZaGaamOBaaqaaiabeI7aXbaacqGHsisldaWcaaqaai aaisdacaaMc8UaamOBaiaaykW7cqaH4oqCdaqadaqaaiabeI7aXnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaiaawIcacaGLPaaaae aacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiU de3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaaaacqGHRaWkca aIYaWaaabCaeaadaWcaaqaaiaaigdaaeaacqaH4oqCcqGHRaWkcaWG 4bWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPbGaeyypa0JaaGymaa qaaiaad6gaa0GaeyyeIuoakiabgkHiTiaad6gacaaMc8UabmiEayaa raaaaa@6879@ ,

 

The MLE θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaia aaaa@3821@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3812@ is the solution of dlnL dθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGUbGaamitaaqaaiaadsgacqaH4oqCaaGaeyypa0Ja aGimaaaa@3E69@ which is given by

3n θ 4nθ( θ 2 +1 ) θ 4 +2 θ 2 +2 +2 i=1 n 1 θ+ x i n x ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maiaad6gaaeaacqaH4oqCaaGaeyOeI0YaaSaaaeaacaaI0aGaaGPa Vlaad6gacaaMc8UaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaabaGaeqiUde3a aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaale qabaGaaGOmaaaakiabgUcaRiaaikdaaaGaey4kaSIaaGOmamaaqaha baWaaSaaaeaacaaIXaaabaGaeqiUdeNaey4kaSIaamiEamaaBaaale aacaWGPbaabeaaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaa niabggHiLdGccqGHsislcaWGUbGaaGPaVlqadIhagaqeaiabg2da9i aaicdaaaa@62E6@ .

This non-linear equation is not in compact form and its solution can be obtained analytically. We have to use non-linear optimization technique such as quasi-Newton algorithm available in R software to maximize the log-likelihood function.

A simulation study

A simulation study has been conducted to examine the performance of the maximum likelihood estimate (MLE) of the parameter of Adya distribution. Random number n=20,40,60 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIYaGaaGimaiaacYcacaaI0aGaaGimaiaacYcacaaI2aGaaGim aaaa@3E1D@ and 80 generated corresponding to the parameter θ=0.1,0.2,0.3,0.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaicdacaGGUaGaaGymaiaacYcacaaIWaGaaiOlaiaaikdacaGG SaGaaGimaiaac6cacaaIZaGaaiilaiaaicdacaGGUaGaaGinaaaa@43CA@ and 0.5 using Acceptance- Rejection method. Its Bias and Mean Square Error have been calculated and presented in the table 3.

n

θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3812@

Bias  ( θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3812@ )

MSE( θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3812@ )

20

0.1

0.01200

0.00288

0.2

0.021244

0.009028

0.3

0.018753

0.007033

0.4

0.023497

0.0110371

40

0.1

0.004884

0.000954

0.2

0.007587

0.002302

0.3

0.008900

0.003168

0.4

0.010251

0.0042034

60

0.1

0.003484

0.000728

0.2

0.005428

0.001768

0.3

0.005854

0.002056

0.4

0.006242

0.002338

80

0.1

0.0023048

0.000424

0.2

0.0038444

0.001182

0.3

0.004266

0.001456

0.4

0.004735

0.001794

Table 3 Average Bias and Average Mean Square Error of simulated MLE ( θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3812@ ) for fixed values θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3812@ =0.1,0.2,0.3 &0.4

Data analysis

The data set considered for the goodness of fit of Adya distribution is the strength data of glass of the aircraft window reported by Fuller et al.9 and are given as

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69, 26.77, 26.78, 27.05, 27.67, 29.90, 31.11, 33.20, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381        

The goodness of fit of the distributions are based on the values of 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3ABA@ , AIC (Akaike Information Criterion) and K-S (Kolmogorov-Smirnov) statistic. AIC and K-S are computed using, AIC=2lnL+2k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGjb Gaam4qaiabg2da9iabgkHiTiaaikdaciGGSbGaaiOBaiaadYeacqGH RaWkcaaIYaGaam4Aaaaa@40AA@ , K-S= Sup x | F n ( x ) F 0 ( x ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeacaqGTa Gaam4uaiabg2da9maaxababaGaae4uaiaabwhacaqGWbaaleaacaWG 4baabeaakmaaemaabaGaamOramaaBaaaleaacaWGUbaabeaakmaabm aabaGaamiEaaGaayjkaiaawMcaaiabgkHiTiaadAeadaWgaaWcbaGa aGimaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawEa7ca GLiWoaaaa@4A85@ where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgaaaa@374C@ = the number of parameters, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@374F@ = the sample size and F n ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa@3AD6@ is the empirical distribution function. The distribution having lower 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3ABA@ , AIC , and K-S are said to be best distribution. The MLE ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaaaiaawIcacaGLPaaaaaa@39AB@ and standard error, S.E ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaaaiaawIcacaGLPaaaaaa@39AB@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3812@ , 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3ABA@ , AIC, K-S and p-value of the fitted distributions are presented in the table 4.

Distributions

MLE ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaaaiaawIcacaGLPaaaaaa@39AB@

S.E ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaaaiaawIcacaGLPaaaaaa@39AB@

2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaaiOBaiaadYeaaaa@3ABA@

AIC

K-S

p-value

Adya

0.096970

0.01000

240.63

242.63

0.298

0.006

Shanker

0.647164

0.008200

252.35

254.35

0.358

0.0004

Aradhana

0.094319

0.009780

242.22

244.22

0.306

0.0044

Sujatha

0.095613

0.009904

241.50

243.50

0.303

0.0051

Devya

0.160873

0.012916

227.68

229.68

0.422

0.0000

Lindley

0.062992

0.008001

253.98

255.98

0.365

0.0003

Exponential

0.032449

0.005822

274.52

276.53

0.458

0.0000

Table 4 MLE’s, S.E ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaaaiaawIcacaGLPaaaaaa@39AB@ , AIC and K-S Statistics of the fitted distributions of the given data set

Clearly Adya distribution gives better fit than Shanker, Aradhana, Sujatha, Devya, Lindley and exponential distributions.

Concluding remarks

Adya distribution, a one parameter lifetime distribution, for modeling lifetime data has been presented and studied. The statistical properties including coefficient of variation, skewness, kurtosis, index of dispersion, hazard rate function, mean residual life function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves and stress-strength reliability have been discussed. Over-dispersed, equi-dispersed, and under-dispersed of Adya distribution are presented. Method of moment and method of maximum likelihood are explained for estimating parameter. The asymptotic property of the ML estimate of the parameter has been discussed with simulation study. Finally, the goodness of fit test has been presented with a real lifetime data.

NOTE: The paper is named Adya distribution in the name of my loving niece Adya Vedanshi, the daughter of my younger brother Dr. Ravi Shanker.

Acknowledgement

None.

Conflicts of interest

All authors declare that there is no conflict of interest.

References

Creative Commons Attribution License

©2021 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.