Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 2 Issue 3

On the curvature of reflected diffracted shock wave interacted by an yawed wedge (Subsonic case)

RS Srivastava, Sanjay Srivastava

Formerly of Defence Science Centre, India Bechtel, India

Correspondence: RS Srivastava, Formerly of Defence Science Centre, New Delhi, India

Received: January 24, 2018 | Published: May 9, 2018

Citation: Srivastava RS, Srivastava S. On the curvature of reflected diffracted shock wave interacted by an yawed wedge (Subsonic case). Aeron Aero Open Access J. 2018;2(3):113-117. DOI: 10.15406/aaoaj.2018.02.00040

Download PDF

Abstract

Lighthill considered the diffraction of normal shock wave past a small bend of angle d. Srivastava and Srivastava and Chopra extended the work of Lighthill to the diffraction of oblique shock wave (consisting of incident and reflected shock wave). Chopra and Srivastava further carried forward their work when the diffraction of oblique shock wave takes place with yawed wedges. In the present investigation curvature of the reflected diffracted is obtained when the interaction takes place with yawed wedge and the relative outflow behind reflected shock wave before diffraction is subsonic.

Keywords: curvature, diffraction reflection, yawed wedge, subsonic.

Introduction

Lighthill1 considered the diffraction of a normal shock wave past a small bend of small angle d. The analogous problem of a plane shock wave hitting the wall obliquely together with the reflected shock has been solved by Srivastava2 and Srivastava & Chopra.3 Srivastava2 solved the problem when the relative outflow behind reflected shock before diffraction is sonic and subsonic. Srivastava & Chopra3 solved the problem when the relative outflow behind the reflected shock wave before diffraction is supersonic. Srivastava4 gave the results concerning curvature of the reflected diffracted shock when the relative outflow behind the reflected shock before diffraction is sonic; subsequently he solved the curvature of reflected diffracted shock5 when the relative outflow before diffraction is subsonic. Chester6 considered the problem of reflection and diffraction of normal shock wave interacted by yawed wedges which was the extension of Lighthill’s1 problem of diffraction of a normal shock wave past a small bend. The results of Srivastava2 and Srivastava & Chopra3 have been extended results to the case of yawed wedges Chopra & Srivastava.7 More specifically the attempt is concerned with the interaction of an oblique shock configuration (consisting of incident and reflected shock) with an yawed wedge i.e. the shock line (line of intersection of incident and reflected shock) makes some non zero angle with the leading edge of the wedge. In the present case curvature results have been obtained for the yawed case when the relative outflow behind reflected shock before diffraction is subsonic.

Mathematical formulation

Let the velocity pressure, density and sound speed ahead of the shock wave be denoted by o,  p 0 ,  ρ 0,  a 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad+gacaGGSaGaaiiOaiaadchajuaGpaWaaSbaaSqaaKqz adWdbiaaicdaaSWdaeqaaKqzGeWdbiaacYcacaGGGcGaeqyWdixcfa 4damaaBaaaleaajugWa8qacaaIWaqcLbsacaGGSaGaaiiOaaWcpaqa baqcLbsapeGaamyyaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpa qabaaaaa@4B0F@ in the intermediate region by q 1 ,  p 1 ,  ρ 1 , a 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiaacYcacaGGGcGaamiCaKqba+aadaWgaaWcbaqcLbmape GaaGymaaWcpaqabaqcLbsapeGaaiilaiaacckacqaHbpGCjuaGpaWa aSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiaacYcacaWGHb qcfa4damaaBaaaleaajugWa8qacaaIXaaal8aabeaaaaa@4CDC@ and behind the reflected shock by q 2 ,  p 2 ,  ρ 2 , a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiaacYcacaGGGcGaamiCaKqba+aadaWgaaWcbaqcLbmape GaaGOmaaWcpaqabaqcLbsapeGaaiilaiaacckacqaHbpGCjuaGpaWa aSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiaacYcacaWGHb qcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaaa@4CE0@ . Let U denote the velocity of intersection of the incident and reflected shock, δ the angle of the bend, α 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHLqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqa baaaaa@3B20@ is the angle of incidence and α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHLqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqa baaaaa@3B21@ is the angle of reflection. The Rankine-Hugoniot equation across incident and reflected shock for γ=1.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzcqGH9aqpcaaIXaGaaiOlaiaaisdaaaa@3B5D@  (g being the ratio of specific heats are gives as follows Srivastava.8,9 Across the incident shock (Figure 1).

q 1 = 5 6 Usin α 0 ( 1 a 0 2 U 2 sin 2 α 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGynaaGcpa qaaKqzGeWdbiaaiAdaaaGaamyvaiGacohacaGGPbGaaiOBaiabeg7a HLqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaqcfa4dbmaabm aak8aabaqcLbsapeGaaGymaiabgkHiTKqbaoaalaaak8aabaqcLbsa peGaamyyaKqba+aadaqhaaWcbaqcLbmapeGaaGimaaWcpaqaaKqzad Wdbiaaikdaaaaak8aabaqcLbsapeGaamyvaKqba+aadaahaaWcbeqa aKqzadWdbiaaikdaaaqcLbsaciGGZbGaaiyAaiaac6gajuaGpaWaaW baaSqabeaajugWa8qacaaIYaaaaKqzGeGaeqySdewcfa4damaaBaaa leaajugWa8qacaaIWaaal8aabeaaaaaak8qacaGLOaGaayzkaaaaaa@6313@    (1)

p 1 = 5 6 ρ 0 ( U 2 sin 2 α 0 a 0 2 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGynaaGcpa qaaKqzGeWdbiaaiAdaaaGaeqyWdixcfa4damaaBaaaleaajugWa8qa caaIWaaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGvbqcfa 4damaaCaaaleqabaqcLbmapeGaaGOmaaaajugibiGacohacaGGPbGa aiOBaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaHXo qyjuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiab gkHiTKqbaoaalaaak8aabaqcLbsapeGaamyyaKqba+aadaqhaaWcba qcLbmapeGaaGimaaWcpaqaaKqzadWdbiaaikdaaaaak8aabaqcLbsa peGaaG4naaaaaOGaayjkaiaawMcaaaaa@6016@      (2)

ρ= 6 ρ 0 ( 1+ 5 a 0 2 U 2 sin 2 α 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYjabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGOn aiabeg8aYLqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaake aajuaGpeWaaeWaaOWdaeaajugib8qacaaIXaGaey4kaSscfa4aaSaa aOWdaeaajugib8qacaaI1aGaamyyaKqba+aadaqhaaWcbaqcLbmape GaaGimaaWcpaqaaKqzadWdbiaaikdaaaaak8aabaqcLbsapeGaamyv aKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsaciGGZbGaai yAaiaac6gajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGa eqySdewcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaaaak8 qacaGLOaGaayzkaaaaaaaa@5C17@  

a 0 = γ p 0 ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaakaaak8aabaqcfa4dbmaalaaak8aaba qcLbsapeGaeq4SdCMaamiCaKqba+aadaWgaaWcbaqcLbmapeGaaGim aaWcpaqabaaakeaajugib8qacqaHbpGCjuaGpaWaaSbaaSqaaKqzad WdbiaaicdaaSWdaeqaaaaaa8qabeaaaaa@48F4@    (3)

Across the reflected shock

q ¯ 2 = q ¯ 1 + 5 6 ( U * q ¯ 1 )( 1 a 1 2 ( U * q ¯ 1 ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqdaaGcbaqcLbsacaWGXbaaaKqbaoaaBaaaleaajugWaiaa ikdaaSqabaqcLbsacqGH9aqpjuaGdaqdaaGcbaqcLbsacaWGXbaaaK qba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaqcLbsapeGaey4k aSscfa4aaSaaaOWdaeaajugib8qacaaI1aaak8aabaqcLbsapeGaaG OnaaaajuaGdaqadaGcpaqaaKqzGeWdbiaadwfajuaGpaWaaWbaaSqa beaajugWa8qacaGGQaaaaKqzGeGaeyOeI0scfa4aa0aaaOqaaKqzGe GaamyCaaaajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaaGc peGaayjkaiaawMcaaKqbaoaabmaak8aabaqcLbsapeGaaGymaiabgk HiTKqbaoaalaaak8aabaqcLbsapeGaamyyaKqba+aadaqhaaWcbaqc LbmapeGaaGymaaWcpaqaaKqzadWdbiaaikdaaaaak8aabaqcfa4dbm aabmaak8aabaqcLbsapeGaamyvaKqba+aadaahaaWcbeqaaKqzadWd biaacQcaaaqcLbsacqGHsisljuaGdaqdaaGcbaqcLbsacaWGXbaaaK qba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaaak8qacaGLOaGa ayzkaaqcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaaaaaakiaawI cacaGLPaaaaaa@6F1F@      (4)

p 2 = 5 6 ρ 1 { ( U * q ¯ 1 ) 2 a 1 2 7 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGynaaGcpa qaaKqzGeWdbiaaiAdaaaGaeqyWdixcfa4damaaBaaaleaajugWa8qa caaIXaaal8aabeaajuaGpeWaaiWaaOWdaeaajuaGpeWaaeWaaOWdae aajugib8qacaWGvbqcfa4damaaCaaaleqabaqcLbmapeGaaiOkaaaa jugibiabgkHiTKqbaoaanaaakeaajugibiaadghaaaqcfa4damaaBa aaleaajugWa8qacaaIXaaal8aabeaaaOWdbiaawIcacaGLPaaajuaG paWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaeyOeI0scfa4aaS aaaOWdaeaajugib8qacaWGHbqcfa4damaaDaaaleaajugWa8qacaaI Xaaal8aabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaaI3aaaaa GccaGL7bGaayzFaaaaaa@6113@     (5)

ρ 2 = 6 ρ 1 1+ 5 a 1 2 ( U * q ¯ 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYLqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqa baqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaI2aGaeq yWdixcfa4damaaBaaaleaajugWa8qacaaIXaaal8aabeaaaOqaaKqz GeWdbiaaigdacqGHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiaaiwdaca WGHbqcfa4damaaDaaaleaajugWa8qacaaIXaaal8aabaqcLbmapeGa aGOmaaaaaOWdaeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGvbqcfa 4damaaCaaaleqabaqcLbmapeGaaiOkaaaajugibiabgkHiTKqbaoaa naaakeaajugibiaadghaaaqcfa4damaaBaaaleaajugWa8qacaaIXa aal8aabeaaaOWdbiaawIcacaGLPaaajuaGpaWaaWbaaSqabeaajugW a8qacaaIYaaaaaaaaaaaaa@5D9E@        (6)

Where q ¯ 2 = q 2 sin α 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeGaamyCaaaajuaGdaWgaaWcbaqcLbmaqaaaaaaaaaWdbiaa ikdaaSWdaeqaaKqzGeWdbiabg2da9iaadghajuaGpaWaaSbaaSqaaK qzadWdbiaaikdaaSWdaeqaaKqzGeWdbiGacohacaGGPbGaaiOBaiab eg7aHLqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaqcLbsape Gaaiilaaaa@49BC@ q ¯ 1 = q 1 cos( α 0 + α 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeGaamyCaaaajuaGdaWgaaWcbaqcLbmaqaaaaaaaaaWdbiaa igdaaSWdaeqaaKqzGeWdbiabg2da9iabgkHiTiaadghajuaGpaWaaS baaSqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiGacogacaGGVbGa ai4CaKqbaoaabmaak8aabaqcLbsapeGaeqySdewcfa4damaaBaaale aajugWa8qacaaIWaaal8aabeaajugib8qacqGHRaWkcqaHXoqyjuaG paWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaGcpeGaayjkaiaawM caaaaa@5238@

U * =Usin α 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwfajuaGpaWaaWbaaSqabeaajugWa8qacaGGQaaaaKqz GeGaeyypa0JaamyvaiGacohacaGGPbGaaiOBaiabeg7aHLqba+aada WgaaWcbaqcLbmapeGaaGOmaaWcpaqabaqcLbsapeGaaiilaaaa@4548@ a 1 = γ p 1 ρ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaakaaak8aabaqcfa4dbmaalaaak8aaba qcLbsapeGaeq4SdCMaamiCaKqba+aadaWgaaWcbaqcLbmapeGaaGym aaWcpaqabaaakeaajugib8qacqaHbpGCjuaGpaWaaSbaaSqaaKqzad WdbiaaigdaaSWdaeqaaaaaa8qabeaaaaa@48F7@  

Also we have

q 1 cos θ = q 2 cos α 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiGacogacaGGVbGaai4CaiqbeI7aX9aagaqba8qacqGH9a qpcaWGXbqcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaajugi b8qaciGGJbGaai4BaiaacohacqaHXoqyjuaGpaWaaSbaaSqaaKqzad WdbiaaikdaaSWdaeqaaKqzGeWdbiaacYcaaaa@4DE1@ θ = α 0 + α 2 π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqbeI7aX9aagaqba8qacqGH9aqpcqaHXoqyjuaGpaWaaSba aSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiabgUcaRiabeg7aHL qba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaqcLbsapeGaeyOe I0scfa4aaSaaaOWdaeaajugib8qacqaHapaCaOWdaeaajugib8qaca aIYaaaaaaa@4A16@

As the oblique shock configuration advances over a yawed wedge (shock line making some non zero angle with the leading edge of the wedge) the velocity of the point of intersection of the leading edge and shock line moves with velocity Ucosecχ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwfacaqGJbGaae4BaiaabohacaqGLbGaae4yaiabeE8a Jbaa@3DD2@ , U being the velocity of shock line and χ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE8aJbaa@385D@ being the angle of yaw (Figure 2).

By superimposing a velocity on the whole field in a direction opposite to the direction of motion of the point of intersection of the shock line and the leading edge, the shock configuration becomes stationary and the resulting velocity behind the reflected shock for stationary configuration say V2 is given by

V 2 2 = U 2 cosec 2 χ+ q 2 2 2U q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGpaWaa0baaSqaaKqzadWdbiaaikdaaSWdaeaa jugWa8qacaaIYaaaaKqzGeGaeyypa0JaamyvaKqba+aadaahaaWcbe qaaKqzadWdbiaaikdaaaqcLbsacaqGJbGaae4BaiaabohacaqGLbGa ae4yaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaHhp WycqGHRaWkcaWGXbqcfa4damaaDaaaleaajugWa8qacaaIYaaal8aa baqcLbmapeGaaGOmaaaajugibiabgkHiTiaaikdacaWGvbGaamyCaK qba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaaaaa@5956@     (7)

                                  

For conical field flow to occur behind the reflected shock V 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWccaGcpaqaaKqzGeWdbiaadAfajuaGpaWaaSbaaSqaaKqz adWdbiaaikdaaSWdaeqaaaGcbaqcLbsapeGaamyyaKqba+aadaWgaa WcbaqcLbmapeGaaGOmaaWcpaqabaaaaaaa@3F93@ should be greater than 1 which from (7) gives the condition that we should have

sin 2 χ< U 2 a 2 2 +2U q 2 q 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabohacaqGPbGaaeOBaKqba+aadaahaaWcbeqaaKqzadWd biaaikdaaaqcLbsacqaHhpWycqGH8aapjuaGdaWcaaGcpaqaaKqzGe WdbiaadwfajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaGcpaqa aKqzGeWdbiaadggajuaGpaWaa0baaSqaaKqzadWdbiaaikdaaSWdae aajugWa8qacaaIYaaaaKqzGeGaey4kaSIaaGOmaiaadwfacaWGXbqc fa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaajugib8qacqGHsi slcaWGXbqcfa4damaaDaaaleaajugWa8qacaaIYaaal8aabaqcLbma peGaaGOmaaaaaaaaaa@5924@     (8)

We have also the relation

tanμ= U q 2 Ucosecχ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiGacshacaGGHbGaaiOBaiabeY7aTjabg2da9Kqbaoaalaaa k8aabaqcLbsapeGaamyvaiabgkHiTiaadghajuaGpaWaaSbaaSqaaK qzadWdbiaaikdaaSWdaeqaaaGcbaqcLbsapeGaamyvaiaabogacaqG VbGaae4CaiaabwgacaqGJbGaeq4Xdmgaaaaa@4AF9@      (9)

Further the semi angle of the Mach cone is given by

sinα= a 2 V 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiGacohacaGGPbGaaiOBaiabeg7aHjabg2da9Kqbaoaalaaa k8aabaqcLbsapeGaamyyaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaa Wcpaqabaaakeaajugib8qacaWGwbqcfa4damaaBaaaleaajugWa8qa caaIYaaal8aabeaaaaaaaa@459D@        (10)

Let the disturbed flow variable behind the reflected diffracted shock referred to Ox'y'z' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad+eacaWG4bGaai4jaiaadMhacaGGNaGaamOEaiaacEca aaa@3C75@ axes be denoted by

V 2 =( u 2 ,  v 2 , V 2 + w 2 ),  p 2 ' ,  ρ 2 ' ,  S 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadAfapaGbaSaajuaGdaWgaaWcbaqcLbmapeGaaGOmaaWc paqabaqcLbsapeGaeyypa0tcfa4aaeWaaOWdaeaajugib8qacaWG1b qcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaajugib8qacaGG SaGaaiiOaiaadAhajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdae qaaKqzGeWdbiaacYcacaWGwbqcfa4damaaBaaaleaajugWa8qacaaI Yaaal8aabeaajugib8qacqGHRaWkcaWG3bqcfa4damaaBaaaleaaju gWa8qacaaIYaaal8aabeaaaOWdbiaawIcacaGLPaaajugibiaacYca caGGGcGaamiCaKqba+aadaqhaaWcbaqcLbmapeGaaGOmaaWcpaqaaK qzGeWdbiaacEcaaaGaaiilaiaacckacqaHbpGCjuaGpaWaa0baaSqa aKqzadWdbiaaikdaaSWdaeaajugib8qacaGGNaaaaiaacYcacaGGGc Gaam4uaKqba+aadaqhaaWcbaqcLbmapeGaaGOmaaWcpaqaaKqzGeWd biaacEcaaaaaaa@6991@       (11)

where u 2 ,  v 2 , w 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiaacYcacaGGGcGaamODaKqba+aadaWgaaWcbaqcLbmape GaaGOmaaWcpaqabaqcLbsapeGaaiilaiaadEhajuaGpaWaaSbaaSqa aKqzadWdbiaaikdaaSWdaeqaaaaa@45F0@ are small perturbation in the velocity along 0 x , 0y' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdaceWG4bWdayaafaWdbiaacYcacaGGGcGaaGimaiaa dMhacaGGNaaaaa@3CBF@ 0z' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacaWG6bGaai4jaaaa@390A@ and respectively, p 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajuaGpaWaa0baaSqaaKqzadWdbiaaikdaaSWdaeaa jugib8qacaGGNaaaaaaa@3BC2@ is the pressure, p 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajuaGpaWaa0baaSqaaKqzadWdbiaaikdaaSWdaeaa jugib8qacaGGNaaaaaaa@3BC2@ ρ 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYLqba+aadaqhaaWcbaqcLbmapeGaaGOmaaWcpaqa aKqzGeWdbiaacEcaaaaaaa@3C8E@ is the density and S 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaa0baaSqaaKqzadWdbiaaikdaaSWdaeaa jugib8qacaGGNaaaaaaa@3BA6@ is the entropy. Using conservation laws we obtain the flow equations as

V' 2 p 2 ' + ρ 2 ' V' 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8HaaO qaaKqzGeaeaaaaaaaaa8qacaWGwbGaai4jaaGcpaGaay51Gaqcfa4a aSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabgEGirlaadc hajuaGpaWaa0baaSqaaKqzadWdbiaaikdaaSWdaeaajugib8qacaGG NaaaaiabgUcaRiabeg8aYLqba+aadaqhaaWcbaqcLbmapeGaaGOmaa WcpaqaaKqzGeWdbiaacEcaaaGaey4bIeDcfa4damaaFiaakeaajugi b8qacaWGwbGaai4jaaGcpaGaay51Gaqcfa4aaSbaaSqaaKqzadWdbi aaikdaaSWdaeqaaKqzGeWdbiabg2da9iaaicdaaaa@56B6@      (12)

( V' 2 ) V' 2 + 1 ρ 2 ' ρ 2 ' =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqbaoaaFiaakeaajugib8qacaWGwbGaai4j aaGcpaGaay51Gaqcfa4aaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaK qzGeWdbiabgEGirdGccaGLOaGaayzkaaqcfa4damaaFiaakeaajugi b8qacaWGwbGaai4jaaGcpaGaay51Gaqcfa4aaSbaaSqaaKqzadWdbi aaikdaaSWdaeqaaKqzGeWdbiabgUcaRKqbaoaalaaak8aabaqcLbsa peGaaGymaaGcpaqaaKqzGeWdbiabeg8aYLqba+aadaqhaaWcbaqcLb mapeGaaGOmaaWcpaqaaKqzGeWdbiaacEcaaaaaaiabgEGirlabeg8a YLqba+aadaqhaaWcbaqcLbmapeGaaGOmaaWcpaqaaKqzGeWdbiaacE caaaGaeyypa0JaaGimaaaa@5C95@     (13)

V' 2 S 2 ' =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8HaaO qaaKqzGeaeaaaaaaaaa8qacaWGwbGaai4jaaGcpaGaay51Gaqcfa4a aSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabgEGirlaado fajuaGpaWaa0baaSqaaKqzadWdbiaaikdaaSWdaeaajugib8qacaGG Naaaaiabg2da9iaaicdaaaa@4643@      (14)

We introduce the following transformations

x= x' z'tanα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadIha caGGNaaak8aabaqcLbsapeGaamOEaiaacEcaciGG0bGaaiyyaiaac6 gacqaHXoqyaaaaaa@4279@ M

x= x' z'tanα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadIha caGGNaaak8aabaqcLbsapeGaamOEaiaacEcaciGG0bGaaiyyaiaac6 gacqaHXoqyaaaaaa@4279@    

p= p 2 ' p 2 a 2 ρ 2 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadcha juaGpaWaa0baaSqaaKqzadWdbiaaikdaaSWdaeaajugib8qacaGGNa aaaiabgkHiTiaadchajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWd aeqaaaGcbaqcLbsapeGaamyyaKqba+aadaWgaaWcbaqcLbmapeGaaG OmaaWcpaqabaqcLbsapeGaeqyWdixcfa4damaaBaaaleaajugWa8qa caaIYaaal8aabeaajugib8qacaWGXbqcfa4damaaBaaaleaajugWa8 qacaaIYaaal8aabeaaaaaaaa@51ED@         (15)

ρ= a 2 ( ρ 2 ' ρ 2 ) ρ 2 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYjabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamyy aKqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaqcfa4dbmaabm aak8aabaqcLbsapeGaeqyWdixcfa4damaaDaaaleaajugWa8qacaaI Yaaal8aabaqcLbsapeGaai4jaaaacqGHsislcqaHbpGCjuaGpaWaaS baaSqaaKqzadWdbiaaikdaaSWdaeqaaaGcpeGaayjkaiaawMcaaaWd aeaajugib8qacqaHbpGCjuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaS WdaeqaaKqzGeWdbiaadghajuaGpaWaaSbaaSqaaKqzadWdbiaaikda aSWdaeqaaaaaaaa@56AD@

u= u 2 q 2 cosα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadwha juaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaGcbaqcLbsape GaamyCaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaqcLbsa peGaci4yaiaac+gacaGGZbGaeqySdegaaaaa@4760@

v= V 2 q 2 cosα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAhacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadAfa juaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaGcbaqcLbsape GaamyCaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaqcLbsa peGaci4yaiaac+gacaGGZbGaeqySdegaaaaa@4742@

w= W 2 q 2 sinα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhacqGH9aqpcqGHsisljuaGdaWcaaGcpaqaaKqzGeWd biaadEfajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaGcba qcLbsapeGaamyCaKqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqa baqcLbsapeGaci4CaiaacMgacaGGUbGaeqySdegaaaaa@4836@

( x x +y y +1 )( x p x +y p y )= 2 p x 2 + 2 p y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqzGeWdbiaadIhajuaGdaWcaaGcpaqaaKqz GeWdbiabgkGi2cGcpaqaaKqzGeWdbiabgkGi2kaadIhaaaGaey4kaS IaamyEaKqbaoaalaaak8aabaqcLbsapeGaeyOaIylak8aabaqcLbsa peGaeyOaIyRaamyEaaaacqGHRaWkcaaIXaaakiaawIcacaGLPaaaju aGdaqadaGcpaqaaKqzGeWdbiaadIhajuaGdaWcaaGcpaqaaKqzGeWd biabgkGi2kaadchaaOWdaeaajugib8qacqGHciITcaWG4baaaiabgU caRiaadMhajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadchaaOWd aeaajugib8qacqGHciITcaWG5baaaaGccaGLOaGaayzkaaqcLbsacq GH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2Mqba+aadaahaaWc beqaaKqzadWdbiaaikdaaaqcLbsacaWGWbaak8aabaqcLbsapeGaey OaIyRaamiEaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaaaaKqz GeGaey4kaSscfa4aaSaaaOWdaeaajugib8qacqGHciITjuaGpaWaaW baaSqabeaajugWa8qacaaIYaaaaKqzGeGaamiCaaGcpaqaaKqzGeWd biabgkGi2kaadMhajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaa aaaaa@7935@    (16)

The characteristics of equation (16) are tangents to the unit circle x 2 + y 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqz GeGaey4kaSIaamyEaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaa qcLbsacqGH9aqpcaaIXaaaaa@41EA@ which in 0x'y'z' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacaWG4bGaai4jaiaadMhacaGGNaGaamOEaiaacEca aaa@3C5B@ axes becomes the cone x ' 2 +y ' 2 =z ' 2 tan 2 α. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhacaGGNaqcfa4damaaCaaaleqabaqcLbmapeGaaGOm aaaajugibiabgUcaRiaadMhacaGGNaqcfa4damaaCaaaleqabaqcLb mapeGaaGOmaaaajugibiabg2da9iaadQhacaGGNaqcfa4damaaCaaa leqabaqcLbmapeGaaGOmaaaajugibiaabshacaqGHbGaaeOBaKqba+ aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaHXoqycaGGUaaa aa@4FF2@ The region of disturbance will therefore be bounded by cone of disturbance, the shock front and the wall of the wedge (Figure 3).

The position of the shock line referred to ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqzGeWdbiaadIhacaGGSaGaamyEaaGccaGL OaGaayzkaaaaaa@3B9B@ system is vand it will lie inside on the cone of disturbance and outside the cone of disturbance according as

tanμ tanα 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiGacshacaGGHbGaaiOBaiabeY7a TbGcpaqaaKqzGeWdbiGacshacaGGHbGaaiOBaiabeg7aHbaacqGHKj YOcaaIXaaaaa@438C@    (17)

and tanμ tanα >1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiGacshacaGGHbGaaiOBaiabeY7a TbGcpaqaaKqzGeWdbiGacshacaGGHbGaaiOBaiabeg7aHbaacqGH+a GpcaaIXaaaaa@42DF@     (18)

Following Chopra & Srivastava,7 the undisturbed part of the reflected shock lies in the plane

x=kycot α 2 secμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhacqGH9aqpcaWGRbGaeyOeI0IaamyEaiGacogacaGG VbGaaiiDaiabeg7aHLqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpa qabaqcLbsapeGaci4CaiaacwgacaGGJbGaeqiVd0gaaa@47F1@ , k= tanμ tanα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiGacsha caGGHbGaaiOBaiabeY7aTbGcpaqaaKqzGeWdbiGacshacaGGHbGaai OBaiabeg7aHbaaaaa@43A1@  (19)

The equation of the reflected diffracted shock may therefore be written as

xtanα=tanμycot α 2 secμtanα+f( y )secμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhaciGG0bGaaiyyaiaac6gacqaHXoqycqGH9aqpciGG 0bGaaiyyaiaac6gacqaH8oqBcqGHsislcaWG5bGaci4yaiaac+gaca GG0bGaeqySdewcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaa jugib8qaciGGZbGaaiyzaiaacogacqaH8oqBciGG0bGaaiyyaiaac6 gacqaHXoqycqGHRaWkcaWGMbqcfa4aaeWaaOWdaeaajugib8qacaWG 5baakiaawIcacaGLPaaajugibiGacohacaGGLbGaai4yaiabeY7aTb aa@5F1A@      (20)

where f( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgajuaGdaqadaGcpaqaaKqzGeWdbiaadMhaaOGaayjk aiaawMcaaaaa@3B68@ is small

 

The radius of curvature κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRbaa@3858@ is given by

κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRbaa@3858@     (21)

Using equation (20), we obtain

κ= f ( y )cot α 2 cotα sec 2 μ ( 1+ cot 2 α 2 sec 2 μ ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRjabg2da9Kqbaoaalaaak8aabaqcLbsapeGabmOz a8aagaGbaKqba+qadaqadaGcpaqaaKqzGeWdbiaadMhaaOGaayjkai aawMcaaKqzGeGaci4yaiaac+gacaGG0bGaeqySdewcfa4damaaBaaa leaajugWa8qacaaIYaaal8aabeaajugib8qaciGGJbGaai4Baiaacs hacqaHXoqycaqGZbGaaeyzaiaabogajuaGpaWaaWbaaSqabeaajugW a8qacaaIYaaaaKqzGeGaeqiVd0gak8aabaqcfa4dbmaabmaak8aaba qcLbsapeGaaGymaiabgUcaRiGacogacaGGVbGaaiiDaKqba+aadaah aaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaHXoqyjuaGpaWaaSbaaS qaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiaabohacaqGLbGaae4y aKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaH8oqBaO GaayjkaiaawMcaaKqba+aadaahaaWcbeqaa8qadaWccaWdaeaajugW a8qacaaIZaaal8aabaqcLbmapeGaaGOmaaaaaaaaaaaa@7118@     (22)

Following Srivastava,7 we have

κ= f ( y )cot α 2 cotα sec 2 μ ( 1+ cot 2 α 2 sec 2 μ ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRjabg2da9Kqbaoaalaaak8aabaqcLbsapeGabmOz a8aagaGbaKqba+qadaqadaGcpaqaaKqzGeWdbiaadMhaaOGaayjkai aawMcaaKqzGeGaci4yaiaac+gacaGG0bGaeqySdewcfa4damaaBaaa leaajugWa8qacaaIYaaal8aabeaajugib8qaciGGJbGaai4Baiaacs hacqaHXoqycaqGZbGaaeyzaiaabogajuaGpaWaaWbaaSqabeaajugW a8qacaaIYaaaaKqzGeGaeqiVd0gak8aabaqcfa4dbmaabmaak8aaba qcLbsapeGaaGymaiabgUcaRiGacogacaGGVbGaaiiDaKqba+aadaah aaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaHXoqyjuaGpaWaaSbaaS qaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiaabohacaqGLbGaae4y aKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaH8oqBaO GaayjkaiaawMcaaKqba+aadaahaaWcbeqaa8qadaWccaWdaeaajugW a8qacaaIZaaal8aabaqcLbmapeGaaGOmaaaaaaaaaaaa@7118@     (23)

Equation (23) gives

f ''( y ) = v y . 1 ( C 1 B 1 y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgajuaGpaWaaWbaaSqabeaajugib8qacaGGNaGaai4j aKqbaoaabmaal8aabaqcLbsapeGaamyEaaWccaGLOaGaayzkaaaaaK qzGeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqGHciITcaWG2baa k8aabaqcLbsapeGaeyOaIyRaamyEaaaacaGGUaqcfa4aaSaaaOWdae aajugib8qacaaIXaaak8aabaqcfa4dbmaabmaak8aabaqcLbsapeGa am4qaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaqcLbsape GaeyOeI0IaamOqaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqa baqcLbsapeGaamyEaaGccaGLOaGaayzkaaaaaaaa@56C6@    (24)

Combining (22) and (24) we have

κ= v y 1 ( C 1 B 1 y ) × sec 2 μcotαcot α 2 ( 1+ cot 2 α 2 sec 2 μ ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRjabg2da9Kqbaoaalaaak8aabaqcLbsapeGaeyOa IyRaamODaaGcpaqaaKqzGeWdbiabgkGi2kaadMhaaaGaeyyXICDcfa 4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcfa4dbmaabmaak8aa baqcLbsapeGaam4qaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpa qabaqcLbsapeGaeyOeI0IaamOqaKqba+aadaWgaaWcbaqcLbmapeGa aGymaaWcpaqabaqcLbsapeGaamyEaaGccaGLOaGaayzkaaaaaKqzGe Gaey41aqBcfa4aaSaaaOWdaeaajugib8qacaqGZbGaaeyzaiaaboga juaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaeqiVd0Maci 4yaiaac+gacaGG0bGaeqySdeMaci4yaiaac+gacaGG0bGaeqySdewc fa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaOqaaKqba+qada qadaGcpaqaaKqzGeWdbiaaigdacqGHRaWkciGGJbGaai4Baiaacsha juaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaeqySdewcfa 4damaaBaaaleaajugWa8qacaaIYaaal8aabeaajugib8qacaqGZbGa aeyzaiaabogajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGe GaeqiVd0gakiaawIcacaGLPaaajuaGpaWaaWbaaSqabeaapeWaaSGa a8aabaqcLbmapeGaaG4maaWcpaqaaKqzadWdbiaaikdaaaaaaaaaaa a@8633@    (25)

Following Srivastava2 and Srivastava & Chopra3 we have

v y = C 1 B 1 y C 3 B 3 y p y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadAhaaOWdaeaajugi b8qacqGHciITcaWG5baaaiabg2da9Kqbaoaalaaak8aabaqcLbsape Gaam4qaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaqcLbsa peGaeyOeI0IaamOqaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpa qabaqcLbsapeGaamyEaaGcpaqaaKqzGeWdbiaadoeajuaGpaWaaSba aSqaaKqzadWdbiaaiodaaSWdaeqaaKqzGeWdbiabgkHiTiaadkeaju aGpaWaaSbaaSqaaKqzadWdbiaaiodaaSWdaeqaaKqzGeWdbiaadMha aaGaeyyXICDcfa4aaSaaaOWdaeaajugib8qacqGHciITcaWGWbaak8 aabaqcLbsapeGaeyOaIyRaamyEaaaaaaa@5DF9@     (26)

From (25) and (26) we have

κ= 1 C 3 B 3 y   p y sec 2 μcotαcot α 2 ( 1+ cot 2 α 2 sec 2 μ ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRjabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGym aaGcpaqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzadWdbiaaio daaSWdaeqaaKqzGeWdbiabgkHiTiaadkeajuaGpaWaaSbaaSqaaKqz adWdbiaaiodaaSWdaeqaaKqzGeWdbiaadMhaaaGaaiiOaKqbaoaala aak8aabaqcLbsapeGaeyOaIyRaamiCaaGcpaqaaKqzGeWdbiabgkGi 2kaadMhaaaGaeyyXICDcfa4aaSaaaOWdaeaajugib8qacaqGZbGaae yzaiaabogajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGa eqiVd0Maci4yaiaac+gacaGG0bGaeqySdeMaci4yaiaac+gacaGG0b GaeqySdewcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaaaOqa aKqba+qadaqadaGcpaqaaKqzGeWdbiaaigdacqGHRaWkciGGJbGaai 4BaiaacshajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGa eqySdewcfa4damaaBaaaleaajugWa8qacaaIYaaal8aabeaajugib8 qacaqGZbGaaeyzaiaabogajuaGpaWaaWbaaSqabeaajugWa8qacaaI YaaaaKqzGeGaeqiVd0gakiaawIcacaGLPaaajuaGpaWaaWbaaSqabe aapeWaaSGaa8aabaqcLbmapeGaaG4maaWcpaqaaKqzadWdbiaaikda aaaaaaaaaaa@8265@      (27)

We have the relation

y=κ{ cosϕ+sinϕtanθ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhacqGH9aqpcqaH6oWAjuaGdaGadaGcpaqaaKqzGeWd biGacogacaGGVbGaai4Caiabew9aMjabgUcaRiGacohacaGGPbGaai OBaiabew9aMjGacshacaGGHbGaaiOBaiabeI7aXbGccaGL7bGaayzF aaaaaa@4C81@ , κ= U q 2 a 2 sin α 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRjabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamyv aiabgkHiTiaadghajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdae qaaaGcbaqcLbsapeGaamyyaKqba+aadaWgaaWcbaqcLbmapeGaaGOm aaWcpaqabaaaaKqzGeWdbiabgwSixlGacohacaGGPbGaaiOBaiabeg 7aHLqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaaaaa@4EF7@    (28)

and cotϕ=cot α 2 secμ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiGacogacaGGVbGaaiiDaiabew9aMjabg2da9iGacogacaGG VbGaaiiDaiabeg7aHLqba+aadaWgaaWcbaqcLbmapeGaaGOmaaWcpa qabaqcLbsacqGHflY1peGaci4CaiaacwgacaGGJbGaeqiVd0gaaa@4B00@

tanθ= κ κ ( Z 2 1 ) ( Z 2 +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiGacshacaGGHbGaaiOBaiabeI7aXjabg2da9Kqbaoaalaaa k8aabaqcLbsapeGafqOUdS2dayaafaaakeaajugib8qacqaH6oWAaa qcfa4aaSaaaOWdaeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGAbqc fa4damaaCaaaleqabaqcLbmapeGaaGOmaaaajugibiabgkHiTiaaig daaOGaayjkaiaawMcaaaWdaeaajuaGpeWaaeWaaOWdaeaajugib8qa caWGAbqcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaajugibiabgU caRiaaigdaaOGaayjkaiaawMcaaaaaaaa@53F2@ , κ = 1 κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqbeQ7aR9aagaqba8qacqGH9aqpjuaGdaGcaaGcpaqaaKqz GeWdbiaaigdacqGHsislcqaH6oWAjuaGpaWaaWbaaSqabeaajugWa8 qacaaIYaaaaaWcbeaaaaa@4108@     (29)

 

Following Chopra10 and Srivastava11 the relation between Z and z 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aaaa@3A81@ is given by

z 1 = 1 2 [ ( bz+1 bz1 ) π λ + ( bz+1 bz1 ) π λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpa qaaKqzGeWdbiaaikdaaaqcfa4aamWaaOWdaeaajuaGpeWaaeWaaOWd aeaajuaGpeWaaSaaaOWdaeaajugib8qacaWGIbGaamOEaiabgUcaRi aaigdaaOWdaeaajugib8qacaWGIbGaamOEaiabgkHiTiaaigdaaaaa kiaawIcacaGLPaaal8aadaahaaqabeaapeWaaSGaa8aabaqcLbmape GaeqiWdahal8aabaqcLbmapeGaeq4UdWgaaaaajugibiabgUcaRKqb aoaabmaak8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaamOyaiaadQ hacqGHRaWkcaaIXaaak8aabaqcLbsapeGaamOyaiaadQhacqGHsisl caaIXaaaaaGccaGLOaGaayzkaaWcpaWaaWbaaeqabaqcLbmapeGaey OeI0YcdaWccaWdaeaajugWa8qacqaHapaCaSWdaeaajugWa8qacqaH 7oaBaaaaaaGccaGLBbGaayzxaaaaaa@69AE@     (30)

where b= ( κ sinϕ+κcosϕ κ sinϕκcosϕ ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkgacqGH9aqpjuaGdaqadaGcpaqaaKqba+qadaWcaaGc paqaaKqzGeWdbiqbeQ7aR9aagaqba8qaciGGZbGaaiyAaiaac6gacq aHvpGzcqGHRaWkcqaH6oWAciGGJbGaai4BaiaacohacqaHvpGzaOWd aeaajugib8qacuaH6oWApaGbauaapeGaci4CaiaacMgacaGGUbGaeq y1dyMaeyOeI0IaeqOUdSMaci4yaiaac+gacaGGZbGaeqy1dygaaaGc caGLOaGaayzkaaWcpaWaaWbaaeqabaWdbmaaliaapaqaaKqzadWdbi aaigdaaSWdaeaajugWa8qacaaIYaaaaaaaaaa@5CC8@

and λ= cot 1 ( cotϕ ( sin 2 ϕ κ 2 ) 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeU7aSjabg2da9iGacogacaGGVbGaaiiDaKqba+aadaah aaWcbeqaaKqzadWdbiabgkHiTiaaigdaaaqcfa4aaeWaaOWdaeaaju aGpeWaaSaaaOWdaeaajugib8qaciGGJbGaai4BaiaacshacqaHvpGz aOWdaeaajuaGpeWaaeWaaOWdaeaajugib8qaciGGZbGaaiyAaiaac6 gajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaeqy1dyMa eyOeI0IaeqOUdSwcfa4damaaCaaaleqabaqcLbmapeGaaGOmaaaaaO GaayjkaiaawMcaaKqba+aadaahaaWcbeqaa8qadaWccaWdaeaajugW a8qacaaIXaaal8aabaqcLbmapeGaaGOmaaaaaaaaaaGccaGLOaGaay zkaaaaaa@5D80@

From (30) we obtain

z= 1 b { 1+ ( z 1 + z 1 2 1 ) λ π } { 1 ( z 1 + z 1 2 1 ) λ π } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhacqGH9aqpcqGHsisljuaGdaWcaaGcpaqaaKqzGeWd biaaigdaaOWdaeaajugib8qacaWGIbaaaKqbaoaalaaak8aabaqcfa 4dbmaacmaak8aabaqcLbsapeGaaGymaiabgUcaRKqbaoaabmaak8aa baqcLbsapeGaamOEaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpa qabaqcLbsapeGaey4kaSscfa4aaOaaaOWdaeaajugib8qacaWG6bqc fa4damaaDaaaleaajugWa8qacaaIXaaal8aabaqcLbmapeGaaGOmaa aajugibiabgkHiTiaaigdaaSqabaaakiaawIcacaGLPaaajuaGpaWa aWbaaSqabeaapeWaaSGaa8aabaqcLbmapeGaeq4UdWgal8aabaqcLb mapeGaeqiWdahaaaaaaOGaay5Eaiaaw2haaaWdaeaajuaGpeWaaiWa aOWdaeaajugib8qacaaIXaGaeyOeI0scfa4aaeWaaOWdaeaajugib8 qacaWG6bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8aabeaajugi b8qacqGHRaWkjuaGdaGcaaGcpaqaaKqzGeWdbiaadQhajuaGpaWaa0 baaSqaaKqzadWdbiaaigdaaSWdaeaajugWa8qacaaIYaaaaKqzGeGa eyOeI0IaaGymaaWcbeaaaOGaayjkaiaawMcaaKqba+aadaahaaWcbe qaa8qadaWccaWdaeaajugWa8qacqaH7oaBaSWdaeaajugWa8qacqaH apaCaaaaaaGccaGL7bGaayzFaaaaaaaa@79BF@      (31)

In (28) z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhaaaa@37A5@ is substituted in terms of z 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aaaa@3A81@ actually in terms of x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaSbaaSqaaKqzadaeaaaaaaaaa8qacaaIXaaal8aabeaaaaa@3A60@ as on the real axis y 1 =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaaicdacaGGSaaaaa@3D8F@ , z 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aaaa@3A81@ being equal to z 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aaaa@3A81@ , we will then obtain dy d x 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadsgacaWG5baak8aabaqcLbsa peGaamizaiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdae qaaaaajugib8qacaGGUaaaaa@401F@

The numerical values for the calculation are

p 0 p 1 =0,    α 0 = 39.97 0 ,    χ= 40 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadchajuaGpaWaaSbaaSqaaKqz adWdbiaaicdaaSWdaeqaaaGcbaqcLbsapeGaamiCaKqba+aadaWgaa WcbaqcLbmapeGaaGymaaWcpaqabaaaaKqzGeWdbiabg2da9iaaicda caGGSaGaaiiOaiaacckacaGGGcGaeqySdewcfa4damaaBaaaleaaju gWa8qacaaIWaaal8aabeaajugib8qacqGH9aqpcaaIZaGaaGyoaiaa c6cacaaI5aGaaG4naKqba+aadaahaaWcbeqaaKqzadWdbiaaicdaaa qcLbsacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiabeE8aJjabg2da 9iaaisdacaaIWaqcfa4damaaCaaaleqabaqcLbmapeGaaGimaaaaaa a@5F8F@

These data provide U q 2 a 2 =0.94699 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadwfacqGHsislcaWGXbqcfa4d amaaBaaakeaajugWa8qacaaIYaaal8aabeaaaOqaaKqzGeWdbiaadg gajuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaaajugib8qa cqGH9aqpcaaIWaGaaiOlaiaaiMdacaaI0aGaaGOnaiaaiMdacaaI5a aaaa@484A@ (subsonic)

The solution of the problem is obtained by the introduction of the complex function

ω( z 1 )= p x 1 i p y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqbaoaabmaak8aabaqcLbsapeGaamOEaKqba+aa daWgaaWcbaqcLbmapeGaaGymaaWcpaqabaaak8qacaGLOaGaayzkaa qcLbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadcha aOWdaeaajugib8qacqGHciITcaWG4bqcfa4damaaBaaaleaajugWa8 qacaaIXaaal8aabeaaaaqcLbsapeGaeyOeI0IaamyAaKqbaoaalaaa k8aabaqcLbsapeGaeyOaIyRaamiCaaGcpaqaaKqzGeWdbiabgkGi2k aadMhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaaaaaaa@5697@    (32)

ω( z 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqbaoaabmaak8aabaqcLbsapeGaamOEaKqba+aa daWgaaWcbaqcLbmapeGaaGymaaWcpaqabaaak8qacaGLOaGaayzkaa aaaa@3F37@ is given by Chopra10

ω( z 1 )= Gδ[ H( z 1 x 0 )1 ]cosχsecα ( z 1 x 0 ) ( z 1 2 1 ) 1 2 ( z 1 1 ) β π    e ϕ+iβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqbaoaabmaak8aabaqcLbsapeGaamOEaKqba+aa daWgaaWcbaqcLbmapeGaaGymaaWcpaqabaaak8qacaGLOaGaayzkaa qcLbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadEeacqaH0oaz juaGdaWadaGcpaqaaKqzGeWdbiaadIeajuaGdaqadaGcpaqaaKqzGe WdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaKqz GeWdbiabgkHiTiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaS WdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaeyOeI0IaaGymaaGccaGL BbGaayzxaaqcLbsaciGGJbGaai4BaiaacohacqaHhpWyciGGZbGaai yzaiaacogacqaHXoqyaOWdaeaajuaGpeWaaeWaaOWdaeaajugib8qa caWG6bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8aabeaajugib8 qacqGHsislcaWG4bqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aa beaaaOWdbiaawIcacaGLPaaajuaGdaqadaGcpaqaaKqzGeWdbiaadQ hajuaGpaWaa0baaSqaaKqzadWdbiaaigdaaSWdaeaajugWa8qacaaI YaaaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcfa4damaaCa aaleqabaWdbmaaliaapaqaaKqzadWdbiaaigdaaSWdaeaajugWa8qa caaIYaaaaaaaaaqcfa4aaeWaaOWdaeaajugib8qacaWG6bqcfa4dam aaBaaaleaajugWa8qacaaIXaaal8aabeaajugib8qacqGHsislcaaI XaaakiaawIcacaGLPaaal8aadaahaaqabeaapeWaaSGaa8aabaqcLb mapeGaeqOSdigal8aabaqcLbmapeGaeqiWdahaaaaajugibiaaccka caGGGcGaamyzaSWdamaaCaaabeqaaKqzadWdbiabew9aMjabgUcaRi aadMgacqaHYoGyaaaaaa@9690@     (33)

where

ϕ= z 1 12π [ 1.51716β 1 + 4( 0.00505β ) ( 10.25 z 1 ) + 2( 0.10311β ) ( 10.50 z 1 ) + 4( 0.22845β ) ( 10.75 z 1 ) + ( 1.57080β ) ( 1 z 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew9aMjabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamOE aKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaaakeaajugib8 qacaaIXaGaaGOmaiabec8aWbaajuaGdaWadaGcpaqaaKqba+qadaWc aaGcpaqaaKqzGeWdbiaaigdacaGGUaGaaGynaiaaigdacaaI3aGaaG ymaiaaiAdacqGHsislcqaHYoGyaOWdaeaajugib8qacaaIXaaaaiab gUcaRKqbaoaalaaak8aabaqcLbsapeGaaGinaKqbaoaabmaak8aaba qcLbsapeGaaGimaiaac6cacaaIWaGaaGimaiaaiwdacaaIWaGaaGyn aiabgkHiTiabek7aIbGccaGLOaGaayzkaaaapaqaaKqba+qadaqada GcpaqaaKqzGeWdbiaaigdacqGHsislcaaIWaGaaiOlaiaaikdacaaI 1aGaamOEaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaaak8 qacaGLOaGaayzkaaaaaKqzGeGaey4kaSscfa4aaSaaaOWdaeaajugi b8qacaaIYaqcfa4aaeWaaOWdaeaajugib8qacqGHsislcaaIWaGaai OlaiaaigdacaaIWaGaaG4maiaaigdacaaIXaGaeyOeI0IaeqOSdiga kiaawIcacaGLPaaaa8aabaqcfa4dbmaabmaak8aabaqcLbsapeGaaG ymaiabgkHiTiaaicdacaGGUaGaaGynaiaaicdacaWG6bqcfa4damaa BaaaleaajugWa8qacaaIXaaal8aabeaaaOWdbiaawIcacaGLPaaaaa qcLbsacqGHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiaaisdajuaGdaqa daGcpaqaaKqzGeWdbiabgkHiTiaaicdacaGGUaGaaGOmaiaaikdaca aI4aGaaGinaiaaiwdacqGHsislcqaHYoGyaOGaayjkaiaawMcaaaWd aeaajuaGpeWaaeWaaOWdaeaajugib8qacaaIXaGaeyOeI0IaaGimai aac6cacaaI3aGaaGynaiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaa igdaaSWdaeqaaaGcpeGaayjkaiaawMcaaaaajugibiabgUcaRKqbao aalaaak8aabaqcfa4dbmaabmaak8aabaqcLbsapeGaeyOeI0IaaGym aiaac6cacaaI1aGaaG4naiaaicdacaaI4aGaaGimaiabgkHiTiabek 7aIbGccaGLOaGaayzkaaaapaqaaKqba+qadaqadaGcpaqaaKqzGeWd biaaigdacqGHsislcaWG6bqcfa4damaaBaaaleaajugWa8qacaaIXa aal8aabeaaaOWdbiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaaaa@B394@    (34)

β= tan 1 { ( p y 1 ) ( p x 1 ) } x 1 =t= 1 x = z 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aIjabg2da9iGacshacaGGHbGaaiOBaKqba+aadaah aaWcbeqaaKqzadWdbiabgkHiTiaaigdaaaqcfa4aaiWaaOWdaeaaju gib8qacqGHsisljuaGdaWccaGcpaqaaKqba+qadaqadaGcpaqaaKqb a+qadaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadchaaOWdaeaajugib8 qacqGHciITcaWG5bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8aa beaaaaaak8qacaGLOaGaayzkaaaapaqaaKqba+qadaqadaGcpaqaaK qba+qadaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadchaaOWdaeaajugi b8qacqGHciITcaWG4bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8 aabeaaaaaak8qacaGLOaGaayzkaaaaaaGaay5Eaiaaw2haaKqba+aa daWgaaWcbaqcLbsapeGaamiEaKqba+aadaWgaaadbaqcLbmapeGaaG ymaaadpaqabaqcLbsapeGaeyypa0JaamiDaiabg2da9Kqbaoaalaaa l8aabaqcLbsapeGaaGymaaWcpaqaaKqzGeWdbiaadIhaaaGaeyypa0 JaamOEaKqba+aadaWgaaadbaqcLbmapeGaaGymaaadpaqabaaaleqa aaaa@6EBC@  (35)

( p y 1 ) ( p x 1 ) = 0.169310.09429tanθ0.05812 tan 2 θ+0.02859 tan 3 θ ( 0.756070.24393 tan 2 θ ) 1 2 ×( 0.36323+0.11275tanθ0.06569 tan 2 θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWccaGcpaqaaKqba+qadaqadaGcpaqaaKqba+qadaWcaaGc paqaaKqzGeWdbiabgkGi2kaadchaaOWdaeaajugib8qacqGHciITca WG5bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8aabeaaaaaak8qa caGLOaGaayzkaaaapaqaaKqba+qadaqadaGcpaqaaKqba+qadaWcaa GcpaqaaKqzGeWdbiabgkGi2kaadchaaOWdaeaajugib8qacqGHciIT caWG4bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8aabeaaaaaak8 qacaGLOaGaayzkaaaaaKqzGeGaeyypa0tcfa4aaSaaaOWdaeaajugi b8qacaaIWaGaaiOlaiaaigdacaaI2aGaaGyoaiaaiodacaaIXaGaey OeI0IaaGimaiaac6cacaaIWaGaaGyoaiaaisdacaaIYaGaaGyoaiGa cshacaGGHbGaaiOBaiabeI7aXjabgkHiTiaaicdacaGGUaGaaGimai aaiwdacaaI4aGaaGymaiaaikdaciGG0bGaaiyyaiaac6gajuaGpaWa aWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGaeqiUdeNaey4kaSIaaG imaiaac6cacaaIWaGaaGOmaiaaiIdacaaI1aGaaGyoaiGacshacaGG HbGaaiOBaKqba+aadaahaaWcbeqaaKqzadWdbiaaiodaaaqcLbsacq aH4oqCaOWdaeaajuaGpeWaaeWaaOWdaeaajugib8qacaaIWaGaaiOl aiaaiEdacaaI1aGaaGOnaiaaicdacaaI3aGaeyOeI0IaaGimaiaac6 cacaaIYaGaaGinaiaaiodacaaI5aGaaG4maiGacshacaGGHbGaaiOB aKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqaH4oqCaO GaayjkaiaawMcaaKqba+aadaahaaWcbeqaa8qadaWccaWdaeaajugW a8qacaaIXaaal8aabaqcLbmapeGaaGOmaaaaaaqcLbsacqGHxdaTju aGdaqadaGcpaqaaKqzGeWdbiaaicdacaGGUaGaaG4maiaaiAdacaaI ZaGaaGOmaiaaiodacqGHRaWkcaaIWaGaaiOlaiaaigdacaaIXaGaaG OmaiaaiEdacaaI1aGaciiDaiaacggacaGGUbGaeqiUdeNaeyOeI0Ia aGimaiaac6cacaaIWaGaaGOnaiaaiwdacaaI2aGaaGyoaiGacshaca GGHbGaaiOBaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsa cqaH4oqCaOGaayjkaiaawMcaaaaaaaa@BBA2@    (36)

The curvature κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRbaa@3858@ from (27) can be put in the form

κ= 1 C 3 B 3 y p x 1 x 1 y sec 2 μcotαcot α 2 ( 1+ cot 2 α 2 sec 2 μ ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRjabg2da9iabgkHiTKqbaoaalaaak8aabaqcLbsa peGaaGymaaGcpaqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzad WdbiaaiodaaSWdaeqaaKqzGeWdbiabgkHiTiaadkeajuaGpaWaaSba aSqaaKqzadWdbiaaiodaaSWdaeqaaKqzGeWdbiaadMhaaaGaeyyXIC Dcfa4aaSaaaOWdaeaajugib8qacqGHciITcaWGWbaak8aabaqcLbsa peGaeyOaIyRaamiEaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpa qabaaaaKqzGeWdbiabgwSixNqbaoaalaaak8aabaqcLbsapeGaeyOa IyRaamiEaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaaake aajugib8qacqGHciITcaWG5baaaiabgwSixNqbaoaalaaak8aabaqc LbsapeGaci4CaiaacwgacaGGJbqcfa4damaaCaaaleqabaqcLbmape GaaGOmaaaajugibiabeY7aTjGacogacaGGVbGaaiiDaiabeg7aHjGa cogacaGGVbGaaiiDaiabeg7aHLqba+aadaWgaaWcbaqcLbmapeGaaG OmaaWcpaqabaaakeaajuaGpeWaaeWaaOWdaeaajugib8qacaaIXaGa ey4kaSIaci4yaiaac+gacaGG0bqcfa4damaaCaaaleqabaqcLbmape GaaGOmaaaajugibiabeg7aHLqba+aadaWgaaWcbaqcLbmapeGaaGOm aaWcpaqabaqcLbsapeGaci4CaiaacwgacaGGJbqcfa4damaaCaaale qabaqcLbmapeGaaGOmaaaajugibiabeY7aTbGccaGLOaGaayzkaaWc paWaaWbaaeqabaWdbmaaliaapaqaaKqzadWdbiaaiodaaSWdaeaaju gWa8qacaaIYaaaaaaaaaaaaa@935A@    (37)

On the shock from z 1 = x 1 +i y 1 = x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaig daaSWdaeqaaKqzGeWdbiabgUcaRiaadMgacaWG5bqcfa4damaaBaaa leaajugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaWG4bqcfa 4damaaBaaaleaajugWa8qacaaIXaaal8aabeaaaaa@4BC6@ ( z 1 = x 1 +i y 1 = x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaig daaSWdaeqaaKqzGeWdbiabgUcaRiaadMgacaWG5bqcfa4damaaBaaa leaajugWa8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaWG4bqcfa 4damaaBaaaleaajugWa8qacaaIXaaal8aabeaaaaa@4BC6@ being zero) and varies from x 1 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaaigdaaaa@3CDF@ to x 1 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iabg6HiLcaa@3D95@ .

The real part on the right hand side of 33 with z 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aaaa@3A81@ replaced by x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqWcjugibi aadIhajuaGdaWgaaWcbaqcLbmaqaaaaaaaaaWdbiaaigdaaSWdaeqa aaaa@3A72@ gives the value of p x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadchaaOWdaeaajugi b8qacqGHciITcaWG4bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8 aabeaaaaaaaa@3FBF@ .

As mentioned earlier dy d x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadsgacaWG5baak8aabaqcLbsa peGaamizaiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdae qaaaaaaaa@3ECE@ is obtained from (28). Now that p x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadchaaOWdaeaajugi b8qacqGHciITcaWG4bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8 aabeaaaaaaaa@3FBF@ is known and dy d x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadsgacaWG5baak8aabaqcLbsa peGaamizaiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdae qaaaaaaaa@3ECE@ is known then from (37) κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRbaa@3858@ is known. We therefore have obtained final expression for κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRbaa@3858@ .

We have the relation tanθ= κ κ   ( z 2 1 ) ( z 2 +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiGacshacaGGHbGaaiOBaiabeI7aXjabg2da9Kqbaoaalaaa k8aabaqcLbsapeGafqOUdS2dayaafaaakeaajugib8qacqaH6oWAaa GaaiiOaKqbaoaalaaak8aabaqcfa4dbmaabmaak8aabaqcLbsapeGa amOEaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqGHsi slcaaIXaaakiaawIcacaGLPaaaa8aabaqcfa4dbmaabmaak8aabaqc LbsapeGaamOEaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLb sacqGHRaWkcaaIXaaakiaawIcacaGLPaaaaaaaaa@5556@ when z,  tanθ= κ κ   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhacqGHsgIRcqGHEisPcaGGSaGaaiiOaiaacckaciGG 0bGaaiyyaiaac6gacqaH4oqCcqGH9aqpjuaGdaWcaaGcpaqaaKqzGe WdbiqbeQ7aR9aagaqbaaGcbaqcLbsapeGaeqOUdSgaaiaacckaaaa@4A2A@ .

So from the relation (28) y=κ( cosϕ+sinϕ κ κ   )=κcosϕ+ κ sinϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhacqGH9aqpcqaH6oWAjuaGdaqadaGcpaqaaKqzGeWd biGacogacaGGVbGaai4Caiabew9aMjabgUcaRiGacohacaGGPbGaai OBaiabew9aMLqbaoaalaaak8aabaqcLbsapeGafqOUdS2dayaafaaa keaajugib8qacqaH6oWAaaGaaiiOaaGccaGLOaGaayzkaaqcLbsacq GH9aqpcqaH6oWAciGGJbGaai4BaiaacohacqaHvpGzcqGHRaWkcuaH 6oWApaGbauaapeGaci4CaiaacMgacaGGUbGaeqy1dygaaa@5D35@

So y ( κcosϕ+sinϕ  κ ' ) =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadMhaaOWdaeaajuaGpeWaaeWa aOWdaeaajugib8qacqaH6oWAciGGJbGaai4BaiaacohacqaHvpGzcq GHRaWkciGGZbGaaiyAaiaac6gacqaHvpGzcaGGGcGaeqOUdSwcfa4d amaaCaaaleqabaqcLbsapeGaai4jaaaaaOGaayjkaiaawMcaaaaaju gibiabg2da9iaaigdaaaa@4E76@

when y ( κcosϕ+sinϕ  κ ' ) =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadMhaaOWdaeaajuaGpeWaaeWa aOWdaeaajugib8qacqaH6oWAciGGJbGaai4BaiaacohacqaHvpGzcq GHRaWkciGGZbGaaiyAaiaac6gacqaHvpGzcaGGGcGaeqOUdSwcfa4d amaaCaaaleqabaqcLbsapeGaai4jaaaaaOGaayjkaiaawMcaaaaaju gibiabg2da9iaaigdaaaa@4E76@ , then we have

tanθ= κ κ    ( 1 b 2 ) ( 1+ b 2 ) =cotϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiGacshacaGGHbGaaiOBaiabeI7aXjabg2da9Kqbaoaalaaa k8aabaqcLbsapeGafqOUdS2dayaafaaakeaajugib8qacqaH6oWAaa GaaiiOaiaacckajuaGdaWcaaGcpaqaaKqba+qadaqadaGcpaqaaKqz GeWdbiaaigdacqGHsislcaWGIbqcfa4damaaCaaaleqabaqcLbmape GaaGOmaaaaaOGaayjkaiaawMcaaaWdaeaajuaGpeWaaeWaaOWdaeaa jugib8qacaaIXaGaey4kaSIaamOyaKqba+aadaahaaWcbeqaaKqzad WdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsacqGH9aqpcqGHsisl ciGGJbGaai4BaiaacshacqaHvpGzaaa@5C4A@

We have then y=κ{ cosϕ+sinϕ( cotϕ ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhacqGH9aqpcqaH6oWAjuaGdaGadaGcpaqaaKqzGeWd biGacogacaGGVbGaai4Caiabew9aMjabgUcaRiGacohacaGGPbGaai OBaiabew9aMLqbaoaabmaak8aabaqcLbsapeGaeyOeI0Iaci4yaiaa c+gacaGG0bGaeqy1dygakiaawIcacaGLPaaaaiaawUhacaGL9baaju gibiabg2da9iaaicdaaaa@52A1@

or y ( κcosϕ+sinϕ  κ ' ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadMhaaOWdaeaajuaGpeWaaeWa aOWdaeaajugib8qacqaH6oWAciGGJbGaai4BaiaacohacqaHvpGzcq GHRaWkciGGZbGaaiyAaiaac6gacqaHvpGzcaGGGcGaeqOUdSwcfa4d amaaCaaaleqabaqcLbsapeGaai4jaaaaaOGaayjkaiaawMcaaaaaju gibiabg2da9iaaicdaaaa@4E75@  

So in the final analysis z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhacqGHsgIRcqGHEisPaaa@3B03@ ( z 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b qcfa4aaSbaaSqaaKqzadaeaaaaaaaaa8qacaaIXaaal8aabeaajugi b8qacqGHsgIRcaaIXaaaaa@3DA9@ i.e. x 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaSbaaSqaaKqzadaeaaaaaaaaa8qacaaIXaaal8aabeaajugi b8qacqGHsgIRcaaIXaaaaa@3DA7@ )

y ( κcosϕ+  κ ' sinϕ ) =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadMhaaOWdaeaajuaGpeWaaeWa aOWdaeaajugib8qacqaH6oWAciGGJbGaai4BaiaacohacqaHvpGzcq GHRaWkcaGGGcGaeqOUdSwcfa4damaaCaaaleqabaqcLbsapeGaai4j aaaaciGGZbGaaiyAaiaac6gacqaHvpGzaOGaayjkaiaawMcaaaaaju gibiabg2da9iaaigdaaaa@4E76@   

and z 1 1 b  ( z 1 ,    x 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabgkziUMqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpa qaaKqzGeWdbiaadkgaaaGaaiiOaKqbaoaabmaak8aabaqcLbsapeGa amOEaKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaqcLbsape GaeyOKH4QaeyOhIuQaaiilaiaacckacaGGGcGaaiiOaiaadIhajuaG paWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiabgkziUk abg6HiLcGccaGLOaGaayzkaaaaaa@5884@    

y ( κcosα+  κ ' sinϕ ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadMhaaOWdaeaajuaGpeWaaeWa aOWdaeaajugib8qacqaH6oWAciGGJbGaai4BaiaacohacqaHXoqycq GHRaWkcaGGGcGaeqOUdSwcfa4damaaCaaaleqabaqcLbsapeGaai4j aaaaciGGZbGaaiyAaiaac6gacqaHvpGzaOGaayjkaiaawMcaaaaaju gibiabg2da9iaaicdaaaa@4E4C@  

Figure 1 Oblique shock configuration.

Figure 2 Configuration after interaction in the x′-z′ plane

Figure 3 Flow picture in a plane perpendicular to the axis of the cone of disturbance.

Numerical analysis

Taking p x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadchaaOWdaeaajugi b8qacqGHciITcaWG4bqcfa4damaaBaaaleaajugWa8qacaaIXaaal8 aabeaaaaaaaa@3FBF@ into consideration from equation (33) it could be seen that κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRbaa@3858@ is zero at x 1 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaaigdaaaa@3CDF@  (see equation 38) i.e. at the point of intersection of shock and Mach Cone. This is physically consistent. Also at x 1 , κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabgkziUkabg6HiLkaacYcacaGGGcGaeqOUdSgaaa@4202@ tends to MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabg6HiLcaa@3817@ i.e. at the point of intersection of wall surface of the wedge and shock front intersection.

Referring to equation (33) we see that the point of inflexion over the curvature of the reflected diffracted shock is given by when

H( x 1 x 0 )1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeajuaGdaqadaGcpaqaaKqzGeWdbiaadIhajuaGpaWa aSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiabgkHiTiaadI hajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcpeGaayjk aiaawMcaaKqzGeGaeyOeI0IaaGymaiabg2da9iaaicdaaaa@478F@      (38)

i.e. when

x 1 = x 0 + 1 H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaic daaSWdaeqaaKqzGeWdbiabgUcaRKqbaoaalaaak8aabaqcLbsapeGa aGymaaGcpaqaaKqzGeWdbiaadIeaaaaaaa@4513@     (39)

From the calculation we have (Chopra10)

x 0 =0.75595 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqa aKqzGeWdbiabg2da9iaaicdacaGGUaGaaG4naiaaiwdacaaI1aGaaG yoaiaaiwdaaaa@4150@  and H=0.51062 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeacqGH9aqpcaaIWaGaaiOlaiaaiwdacaaIXaGaaGim aiaaiAdacaaIYaaaaa@3D95@

with these values of x 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqa aaaa@3A7E@ and H we obtain from (39)

x 1 =2.71935 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaaikdacaGGUaGaaG4naiaaigdacaaI5aGaaG 4maiaaiwdaaaa@414D@

This indicates that at x 1 =2.71935 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeWdbiabg2da9iaaikdacaGGUaGaaG4naiaaigdacaaI5aGaaG 4maiaaiwdaaaa@414D@ , we find that there is a point of inflexion over the reflected diffracted shock. The curvature has infinite value, then it passes through point of inflexion and finally it becomes zero. This is the qualitative estimate of the curvature.

Conclusion

The results obtained here give more general results as intersection is considered with yawed wedges. The results when there is no yaw in the wedge will reduce to the results of paper (2). The results are general and could be used in aeronautics depending on the situations that arise.

Acknowledgement

None.

Conflicts of Interest

The authors declare that there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Srivastava, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.