Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Mini Review Volume 2 Issue 2

Mathematical modeling of hydraulic resistance in pipes with rough walls

Lobanov Igor Evgenjevich

Moscow Air Institute, State Technical University, Russia

Correspondence: Lobanov Igor Evgenjevich, Moscow Air Institute, State Technical University, Volikolamskoe street 4, Moscow, Russia, Tel 7-495-489-17-58

Received: November 14, 2017 | Published: March 23, 2018

Citation: Evgenjevich LI. Mathematical modeling of hydraulic resistance in pipes with rough walls. Aeron Aero Open Access J. 2018;2(2):67–73. DOI: 10.15406/aaoaj.2018.02.00032

Download PDF

Abstract

In recent years, the numbers of patents have been devoted to the development of rough pipes. The technique theoretical settlement determine of factor of hydraulic resistance for round pipes with rough walls is developed on the basis of a principle of a superposition of complete viscosity in turbulent a layer mainly distinguished from the existing theories. The received results of account for the extended range of determining parameters much distinguished from appropriate given for round pipes with turbulizers, specify a level and intensification of heat exchange.

Keywords: roughness, hydro resistance, modeling, turbulent, intensification, heat transfer

Introduction

Study patterns of flow in pipes with rough walls can be considered relevant, as the use of rough surfaces is a method of heat transfer. In the theoretical study of heat transfer processes in heat exchangers and devices used in various fields of technology, it is very important to know the basic laws of flow in rough pipes in turbulent regime. Flow patterns for rough pipes differs from the behavior for tubes with turbulence, as indicated by both experimental1 and theoretical2,3 studies. Theoretical studies of flow in rough pipes, both experimental and theoretical, are based on the use of a logarithmic velocity profile, which to some extent simplify the mathematical model, which is especially important for large relative (relative to pipe diameter) roughness. Conditions for large roughness can be implemented, for example, in small diameter pipes. It can be compared with the conditions for pipes of small diameters with turbulence.4 Theoretical studies of pipes with rough surfaces are not numerous, sufficiently comprehensive list of studies found, for example, in,5–7 the analysis of which indicates that the theory did not come out of the logarithmic velocity profile. Generated in this study, the theory provides a more complex pattern for the coefficient of hydraulic resistance for rough pipes than existing ones, which provided him with a greater value of validity, a higher accuracy and a wider range of characteristic parameters. It should be noted that more complex patterns have occurred in the study of tubes with turbulence,2–4 which also received a more complex mathematical decision on the coefficient of hydraulic resistance, than those based on a logarithmic velocity profile. Ismagilovich et al.8 discussed the procedure to reduce the hydraulic resistance in turbulent flow comprising to introduce the anti-turbulent admixture to generate Toms effect.

Mathematical modeling

It should be noted that numerous studies rough pipes from Nikuradse studies show that at relatively high roughness turbulent flow is essentially different from the flow in smooth pipes. In US8538738, processes have been described to provide for prediction of the transition from laminar to turbulent flow on the surface.9 Rajnarayan and Sturdza9 disclosed the methods, systems and devices for estimating conversion from laminar to turbulent flow on the surface manipulating mode shape parameters. In his stratification takes place four flow regimes: laminar (for small Reynolds numbers, regardless of the roughness that occurs in law Poiseuille) turbulent flow (for intermediate Reynolds numbers, the law of hydraulic resistance for smooth tubes) turbulent flow (for intermediate numbers Reynolds by hydraulic resistance, which is a function of the relative roughness h ¯ = h R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadIgapaGbaebapeGaeyypa0tcfa4aaSaaaOWdaeaajugi b8qacaWGObaak8aabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLb mapeGaaGimaaWcpaqabaaaaaaa@3F7D@ (the ratio of the average height of the roughness to the radius of the tube; D = 2R0 - а larger internal diameter of the pipe) and the Reynolds number) for self (at high Reynolds numbers by a factor of hydraulic resistance, which is a function only of the relative roughness). At sufficiently high relative roughness is eliminated the turbulent regime with regularity characteristic for smooth pipes. A similar situation occurs for tubes with turbulence.1–4 Liu10 discussed the anti-drag protecting agents move the turbulent heat transfer property of the pipeline to laminar flow heat transfer property.

For tubes with a relatively low surface roughness height of the projection asymptotic behavior of the flow resistance described by the known empirical relation Nikuradse:

ξ= 1 { 1,74+2lg[ 1 ( h R 0 ) ] } 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabe67a4jabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGym aaGcpaqaaKqba+qadaGadaGcpaqaaKqzGeWdbiaaigdacaGGSaGaaG 4naiaaisdacqGHRaWkcaaIYaGaaeiBaiaabEgajuaGdaWadaGcpaqa aKqba+qadaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajuaGpeWaae WaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qacaWGObaak8aabaqc LbsapeGaamOuaKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqaba aaaaGcpeGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaiaawUhacaGL 9baajuaGpaWaaWbaaSqabeaajugWa8qacaaIYaaaaaaaaaa@562F@        (1)

The dependence of the hydraulic resistance for rough pipes, not only on the relative roughness, and the Reynolds number ξ=f( h R 0 ;Re ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbsaqa aaaaaaaaWdbiab=57a4jabg2da9iaadAgajuaGdaqadaGcpaqaaKqb a+qadaWcaaGcpaqaaKqzGeWdbiaadIgaaOWdaeaajugib8qacaWGsb qcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaaqcLbsapeGa ai4oaiaabkfacaqGLbaakiaawIcacaGLPaaaaaa@4671@ , described by the empirical formula is the best way Colebrook, which can be written as follows:

1 ξ =1,742lg( 18,7 Re ξ + h R 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajuaGpeWaaOaa aOWdaeaaiiaajugib8qacqWF+oaEaSqabaaaaKqzGeGaeyypa0JaaG ymaiaacYcacaaI3aGaaGinaiabgkHiTiaaikdacaqGSbGaae4zaKqb aoaabmaak8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaaGymaiaaiI dacaGGSaGaaG4naaGcpaqaaKqzGeWdbiaabkfacaqGLbqcfa4aaOaa aOWdaeaajugib8qacqWF+oaEaSqabaaaaKqzGeGaey4kaSscfa4aaS aaaOWdaeaajugib8qacaWGObaak8aabaqcLbsapeGaamOuaKqba+aa daWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaaaaGcpeGaayjkaiaawM caaaaa@57CB@     (2)

Thus, in the empirical correlations for the coefficient of hydraulic resistance of flow in rough pipes a logarithmic velocity profile.

Hydraulic resistance coefficient for flow in straight circular tubes is determined as follows:

ξ=Δp d L 2 ϱ w ¯ x 2 =8 ( w * w ¯ x ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbsaqa aaaaaaaaWdbiab=57a4jabg2da9iab=r5aejaadchajuaGdaWcaaGc paqaaKqzGeWdbiaadsgaaOWdaeaajugib8qacaWGmbaaaKqbaoaala aak8aabaqcLbsapeGaaGOmaaGcpaqaamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiqcLbsapeGae4x8deVabm4Da8aagaqeaK qbaoaaDaaaleaajugWa8qacaWG4baal8aabaqcLbmapeGaaGOmaaaa aaqcLbsacqGH9aqpcaaI4aqcfa4aaeWaaOWdaeaajuaGpeWaaSaaaO Wdaeaajugib8qacaWG3bqcfa4damaaBaaaleaajugWa8qacaGGQaaa l8aabeaaaOqaaKqzGeWdbiqadEhapaGbaebajuaGdaWgaaWcbaqcLb mapeGaamiEaaWcpaqabaaaaaGcpeGaayjkaiaawMcaaKqba+aadaah aaWcbeqaaKqzadWdbiaaikdaaaaaaa@65ED@        (3)

where Δp MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadchaaaa@3901@ - pressure drop; d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsgaaaa@378F@ - diameter;L - length of pipe; ρ  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYjaacckaaaa@398A@ - density of coolant; w ¯ x   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadEhapaGbaebajuaGdaWgaaWcbaqcLbmapeGaamiEaaWc paqabaGcpeGaaiiOaaaa@3C16@ - average expenditure speed; w * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGpaWaaSbaaSqaaKqzadWdbiaacQcaaSWdaeqa aaaa@3A71@ - friction velocity.

For a straight circular pipe value speed is determined by the following integral equation:

w ¯ x =2 0 1 ( 1 y ¯ ) w x dy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadEhapaGbaebajuaGdaWgaaWcbaqcLbmapeGaamiEaaWc paqabaqcLbsapeGaeyypa0JaaGOmaOWaa8qCaeaajuaGdaqadaGcpa qaaKqzGeWdbiaaigdacqGHsislceWG5bWdayaaraaak8qacaGLOaGa ayzkaaqcLbsacaWG3bqcfa4damaaBaaaleaajugWa8qacaWG4baal8 aabeaajugib8qacaWGKbGaamyEaaWcbaGaaGimaaqaaiaaigdaa0Ga ey4kIipaaaa@4E06@      (4)

where y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadMhapaGbaebaaaa@37CA@ - relative transverse coordinate ( y ¯ = y R 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqzGeWdbiqadMhapaGbaebapeGaeyypa0tc fa4aaSaaaOWdaeaajugib8qacaWG5baak8aabaqcLbsapeGaamOuaK qba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaaaaGcpeGaayjk aiaawMcaaaaa@41F9@ .

The integration is performed for two sites: from zero to the boundary of the viscous sublayer δ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbsaqa aaaaaaaaWdbiab=r7aKLqba+aadaWgaaWcbaqcLbmapeGaaGimaaWc paqabaaaaa@3B2B@ and for the core flow:  ( δ ¯ = δ 0 R 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckajuaGdaqadaGcpaqaaGGaaKqzGeWdbiqb=r7aK9aa gaqea8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiab=r7aKLqba+ aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaakeaajugib8qacaWG sbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaaaak8qaca GLOaGaayzkaaaaaa@47C6@

w ¯ x =2[ 0 δ ¯ ( 1 y ¯ ) w x d y ¯ + δ ¯ 1 ( 1 y ¯ ) w x d y ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadEhapaGbaebajuaGdaWgaaWcbaqcLbmapeGaamiEaaWc paqabaqcLbsapeGaeyypa0JaaGOmaKqbaoaadmaak8aabaqcfa4dbm aapehabaWaaeWaa8aabaqcLbsapeGaaGymaiabgkHiTiqadMhapaGb aebaaKqba+qacaGLOaGaayzkaaqcLbsacaWG3bqcfa4damaaBaaaba qcLbmapeGaamiEaaqcfa4daeqaaKqzGeWdbiaadsgaceWG5bWdayaa raaajuaGpeqaaKqzadGaaGimaaqcfayaaGGaaKqzadGaf8hTdq2day aaraaajugib8qacqGHRiI8aiabgUcaRKqbaoaapehabaWaaeWaa8aa baqcLbsapeGaaGymaiabgkHiTiqadMhapaGbaebaaKqba+qacaGLOa GaayzkaaqcLbsacaWG3bqcfa4damaaBaaabaqcLbmapeGaamiEaaqc fa4daeqaaKqzGeWdbiaadsgaceWG5bWdayaaraaajuaGpeqaaKqzad Gaf8hTdq2dayaaraaajuaGpeqaaKqzadGaaGymaaqcLbsacqGHRiI8 aaGccaGLBbGaayzxaaaaaa@6EC6@     (5)

or

Consequently, for the integration of the last expression is necessary to determine the velocity profiles ( w x w ¯ x )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadEha juaGpaWaaSbaaSqaaKqzadWdbiaadIhaaSWdaeqaaaGcbaqcLbsape Gabm4Da8aagaqeaKqbaoaaBaaaleaajugWa8qacaWG4baal8aabeaa aaaak8qacaGLOaGaayzkaaqcLbsacaGGGcGaaiiOaaaa@4592@ for each of the sub-layers. The boundary of the viscous sublayer can be determined by the following:

where δ=7,8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabs7acqGH9aqpcaaI3aGaaiilaiaaiIdaaaa@3B18@ - constant.11,12

The equation of motion in a straight circular pipe roughness can be written as follows:

i ν i d w x dy = τ 0 ρ ( 1 y ¯ )= w * 2 ( 1 y ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaaeqaqaaKqzGeGaeqyVd4wcfa4damaaBaaabaqcLbmapeGa amyAaaqcfa4daeqaaaWdbeaajugWaiaadMgaaKqbagqajugibiabgg HiLdqcfa4aaSaaaOWdaeaajugib8qacaWGKbGaam4DaKqba+aadaWg aaWcbaqcLbmapeGaamiEaaWcpaqabaaakeaajugib8qacaWGKbGaam yEaaaacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaabs8ajuaGpaWa aSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaGcbaqcLbsapeGaaeyWda aajuaGdaqadaGcpaqaaKqzGeWdbiaaigdacqGHsislceWG5bWdayaa raaak8qacaGLOaGaayzkaaqcLbsacqGH9aqpcaWG3bqcfa4damaaBa aaleaajugWa8qacaGGQaaal8aabeaajuaGdaahaaWcbeqaaKqzadWd biaaikdaaaqcfa4aaeWaaOWdaeaajugib8qacaaIXaGaeyOeI0Iabm yEa8aagaqeaaGcpeGaayjkaiaawMcaaaaa@6661@     (8)

where i ν i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaaeqaGcbaqcLbsacqaH9oGBjuaGpaWaaSbaaSqaaKqzadWd biaadMgaaSWdaeqaaaWdbeaajugWaiaadMgaaSqabKqzGeGaeyyeIu oaaaa@4095@ - full kinematic viscosity; τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabs8ajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqa aaaa@3ACA@ - shear stress at the wall.

Full kinematic viscosity based on the superposition principle is the sum of molecular viscosity; the turbulent viscosity is independent of roughness and depends on the distance from the wall, the turbulent viscosity, depending on the roughness. We must now derive formulas for the total of determining the coefficient of kinematic viscosity. The molecular kinematic viscosity is determined by the properties of the coolant and is ν. The turbulent kinematic eddy viscosity in a circular tube, which is independent of the roughness can be postulated as a function of distance from the wall of the tube follows. Turbulent kinematic viscosity  determined as the product of the mixing l the characteristic speed-dynamic speed on the current radius: w *l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGdaWgaaqaaKqzadGaaiOkaiaadYgaaKqbagqa aaaa@3BAC@

ν Τl =l w *l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaab27ajuaGdaWgaaWcbaqcLbmacqqHKoavcaWGSbaaleqa aKqzGeGaeyypa0JaamiBaiabgwSixlaadEhajuaGdaWgaaqaaKqzad GaaiOkaiaadYgaaKqbagqaaaaa@4629@    (9)

The mixing l can be postulated as follows:

l=a( y δ 0 ) 1 k 0 2 y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYgacqGH9aqpcaWGHbqcfa4aaeWaaOWdaeaajugib8qa caWG5bGaeyOeI0IaaeiTdKqba+aadaWgaaWcbaqcLbmapeGaaGimaa Wcpaqabaaak8qacaGLOaGaayzkaaqcfa4aaOaaaOWdaeaajugib8qa caaIXaGaeyOeI0Iaam4AaKqba+aadaqhaaWcbaqcLbmapeGaaGimaa WcpaqaaKqzadWdbiaaikdaaaqcLbsaceWG5bWdayaaraaal8qabeaa aaa@4CFF@      (10)

where a=0,39 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGH9aqpcaaIWaGaaiilaiaaiodacaaI5aaaaa@3B7C@ and- k 0 =0,97 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqa aKqzGeWdbiabg2da9iaaicdacaGGSaGaaGyoaiaaiEdaaaa@3F04@ constants.11,12

Next, we have to express the dynamic speed of the current  w *l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGdaWgaaqaaKqzadGaaiOkaiaadYgaaKqbagqa aaaa@3BAC@ radiusthrough dynamic speed on the tube wall w * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGpaWaaSbaaSqaaKqzadWdbiaacQcaaSWdaeqa aaaa@3A71@ :

w *l 2 = w * 2 ( 1 y ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGdaWgaaqaaKqzadGaaiOkaiaadYgaaKqbagqa a8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsacqGH9aqpcaWG3b qcfa4damaaBaaaleaajugWa8qacaGGQaaal8aabeaajuaGdaahaaWc beqaaKqzadWdbiaaikdaaaqcfa4aaeWaaOWdaeaajugib8qacaaIXa GaeyOeI0IabmyEa8aagaqeaaGcpeGaayjkaiaawMcaaaaa@4BAD@     (11)

therefore:

w *l = w * 1 y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGdaWgaaWcbaqcLbmacaGGQaGaamiBaaWcbeaa jugibiabg2da9iaadEhajuaGpaWaaSbaaSqaaKqzadWdbiaacQcaaS WdaeqaaKqba+qadaGcaaGcpaqaaKqzGeWdbiaaigdacqGHsislceWG 5bWdayaaraaal8qabeaaaaa@44E2@        (12)

or

w * = w *l 1 y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGpaWaaSbaaSqaaKqzadWdbiaacQcaaSWdaeqa aKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaam4DaKqbao aaBaaaleaajugWaiaacQcacaWGSbaaleqaaaGcpaqaaKqba+qadaGc aaGcpaqaaKqzGeWdbiaaigdacqGHsislceWG5bWdayaaraaal8qabe aaaaaaaa@4661@     (13)

Given the relationship, we obtain the final expression for the turbulent kinematic viscosity ν Τl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaab27ajuaGdaWgaaWcbaqcLbmacqqHKoavcaWGSbaaleqa aaaa@3C53@ , which is independent of roughness:

ν Τl =a 1 k 0 2 y ¯ ( y δ 0 ) w * 1 y ¯ = w * a( y δ 0 ) ( 1 y ¯ )( 1 k 0 2 y ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaab27ajuaGdaWgaaWcbaqcLbmacqqHKoavcaWGSbaaleqa aKqzGeGaeyypa0JaamyyaKqbaoaakaaak8aabaqcLbsapeGaaGymai abgkHiTiaadUgajuaGpaWaa0baaSqaaKqzadWdbiaaicdaaSWdaeaa jugWa8qacaaIYaaaaKqzGeGabmyEa8aagaqeaaWcpeqabaqcfa4aae WaaOWdaeaajugib8qacaWG5bGaeyOeI0IaaeiTdKqba+aadaWgaaWc baqcLbmapeGaaGimaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsaca WG3bqcfa4damaaBaaaleaajugWa8qacaGGQaaal8aabeaajuaGpeWa aOaaaOWdaeaajugib8qacaaIXaGaeyOeI0IabmyEa8aagaqeaaWcpe qabaqcLbsacqGH9aqpcaWG3bqcfa4damaaBaaaleaajugWa8qacaGG Qaaal8aabeaajugib8qacaWGHbqcfa4aaeWaaOWdaeaajugib8qaca WG5bGaeyOeI0IaaeiTdKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWc paqabaaak8qacaGLOaGaayzkaaqcfa4aaOaaaOWdaeaajuaGpeWaae WaaOWdaeaajugib8qacaaIXaGaeyOeI0IabmyEa8aagaqeaaGcpeGa ayjkaiaawMcaaKqbaoaabmaak8aabaqcLbsapeGaaGymaiabgkHiTi aadUgajuaGpaWaa0baaSqaaKqzadWdbiaaicdaaSWdaeaajugWa8qa caaIYaaaaKqzGeGabmyEa8aagaqeaaGcpeGaayjkaiaawMcaaaWcbe aaaaa@7D52@     (14)

The turbulent kinematic viscosity   ν Τh  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacaqG9oqcfa4aaSbaaSqaaKqzadGaeuiPdqLaaeiA aiaacckaaSqabaaaaa@3E94@ , depending on the roughness is determined by the product of the characteristic length L the characteristic speed - dynamic speed w *l MathType@MTEF@5@5@+= feaagKart1ev2aq atCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGdaWgaaqaaKqzadGaaiOkaiaadYgaaKqbagqa aaaa@3BAC@ at the current radius:

ν Τh =L w *l   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaab27ajuaGdaWgaaWcbaqcLbmacqqHKoavcaqGObaaleqa aKqzGeGaeyypa0JaamitaiabgwSixlaadEhajuaGdaWgaaWcbaqcLb macaGGQaGaamiBaaWcbeaajugibiaacckaaaa@473D@      (15)

Under this theory focuses mostly pipe roughness equal height h. In fact, there is a certain roughness height variation. Experiments show that with small dispersion σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae baaaa@37D1@ (standard deviation of the average) roughness height holds a rather abrupt transition from the smooth pipes to the regime of rough tubes, with large dispersion will be a smooth transition, since there will be a gradual withdrawal of the roughness of the viscous sublayer in the thickness of the wall layer. The characteristic length L for the kinematic eddy viscosity, which depends on the roughness for roughness height, is equal to:

L=a( h δ 0 ) 1 k 0 2 y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeacqGH9aqpcaWGHbqcfa4aaeWaaOWdaeaajugib8qa caWGObGaeyOeI0IaaeiTdKqba+aadaWgaaWcbaqcLbmapeGaaGimaa Wcpaqabaaak8qacaGLOaGaayzkaaqcfa4aaOaaaOWdaeaajugib8qa caaIXaGaeyOeI0Iaam4AaKqba+aadaqhaaWcbaqcLbmapeGaaGimaa WcpaqaaKqzadWdbiaaikdaaaqcLbsaceWG5bWdayaaraaal8qabeaa aaa@4CCD@    (16)

The final expression for the turbulent kinematic viscosity, which depends on the roughness:

ν Τh = w * a( h δ 0 ) ( 1 y ¯ )( 1 k 0 2 y ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaab27ajuaGdaWgaaqaaKqzadGaeuiPdqLaaeiAaaqcfaya baqcLbsacqGH9aqpcaWG3bqcfa4damaaBaaaleaajugWa8qacaGGQa aal8aabeaajugib8qacaWGHbqcfa4aaeWaaOWdaeaajugib8qacaWG ObGaeyOeI0IaaeiTdKqba+aadaWgaaWcbaqcLbmapeGaaGimaaWcpa qabaaak8qacaGLOaGaayzkaaqcfa4aaOaaaOWdaeaajuaGpeWaaeWa aOWdaeaajugib8qacaaIXaGaeyOeI0IabmyEa8aagaqeaaGcpeGaay jkaiaawMcaaKqbaoaabmaak8aabaqcLbsapeGaaGymaiabgkHiTiaa dUgajuaGpaWaa0baaSqaaKqzadWdbiaaicdaaSWdaeaajugWa8qaca aIYaaaaKqzGeGabmyEa8aagaqeaaGcpeGaayjkaiaawMcaaaWcbeaa aaa@5F14@     (17)

Hence, the equation of motion in a straight circular pipe roughness (8) becomes (18)

( ν+ w * a( y δ 0 ) ( 1 y ¯ )( 1 k 0 2 y ¯ ) + w * a( h δ 0 ) ( 1 y ¯ )( 1 k 0 2 y ¯ ) ) d w x dy = w * 2 ( 1 y ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqzGeWdbiaab27acqGHRaWkcaWG3bqcfa4d amaaBaaaleaajugWa8qacaGGQaaal8aabeaajugib8qacaWGHbqcfa 4aaeWaaOWdaeaajugib8qacaWG5bGaeyOeI0IaaeiTdKqba+aadaWg aaWcbaqcLbmapeGaaGimaaWcpaqabaaak8qacaGLOaGaayzkaaqcfa 4aaOaaaOWdaeaajuaGpeWaaeWaaOWdaeaajugib8qacaaIXaGaeyOe I0IabmyEa8aagaqeaaGcpeGaayjkaiaawMcaaKqbaoaabmaak8aaba qcLbsapeGaaGymaiabgkHiTiaadUgajuaGpaWaa0baaSqaaKqzadWd biaaicdaaSWdaeaajugWa8qacaaIYaaaaKqzGeGabmyEa8aagaqeaa GcpeGaayjkaiaawMcaaaWcbeaajugibiabgUcaRiaadEhajuaGpaWa aSbaaSqaaKqzadWdbiaacQcaaSWdaeqaaKqzGeWdbiaadggajuaGda qadaGcpaqaaKqzGeWdbiaadIgacqGHsislcaqG0oqcfa4damaaBaaa leaajugWa8qacaaIWaaal8aabeaaaOWdbiaawIcacaGLPaaajuaGda GcaaGcpaqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaaigdacqGHsisl ceWG5bWdayaaraaak8qacaGLOaGaayzkaaqcfa4aaeWaaOWdaeaaju gib8qacaaIXaGaeyOeI0Iaam4AaKqba+aadaqhaaWcbaqcLbmapeGa aGimaaWcpaqaaKqzadWdbiaaikdaaaqcLbsaceWG5bWdayaaraaak8 qacaGLOaGaayzkaaaaleqaaaGccaGLOaGaayzkaaqcfa4aaSaaaOWd aeaajugib8qacaWGKbGaam4DaKqba+aadaWgaaWcbaqcLbmapeGaam iEaaWcpaqabaaakeaajugib8qacaWGKbGaamyEaaaacqGH9aqpcaWG 3bqcfa4damaaDaaaleaajugWa8qacaGGQaaal8aabaqcLbmapeGaaG OmaaaajuaGdaqadaGcpaqaaKqzGeWdbiaaigdacqGHsislceWG5bWd ayaaraaak8qacaGLOaGaayzkaaaaaa@9377@    (18)

In the future, should write (18) in the dimensionless form:

The desired velocity profiles ( w x w * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadEha juaGpaWaaSbaaSqaaKqzadWdbiaadIhaaSWdaeqaaaGcbaqcLbsape Gaam4DaKqba+aadaWgaaWcbaqcLbmapeGaaiOkaaWcpaqabaaaaaGc peGaayjkaiaawMcaaaaa@4254@ obtained by integration of (20) provided a smooth closing of the borders sub layers under the following conditions:

ν w * 1 R 0 = 4 Re 2 ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaab27aaOWdaeaajugib8qacaWG 3bqcfa4damaaBaaaleaajugWa8qacaGGQaaal8aabeaaaaqcfa4dbm aalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaadkfajuaG paWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaaaajugib8qacqGH9a qpjuaGdaWcaaGcpaqaaKqzGeWdbiaaisdaaOWdaeaajugib8qacaqG sbGaaeyzaaaajuaGdaGcaaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGe WdbiaaikdaaOWdaeaajugib8qacaqG+oaaaaWcbeaaaaa@4ECB@      (21)

w * = w ¯ x ξ 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEhajuaGpaWaaSbaaSqaaKqzadWdbiaacQcaaSWdaeqa aKqzGeWdbiabg2da9iqadEhapaGbaebajuaGdaWgaaWcbaqcLbmape GaamiEaaWcpaqabaqcfa4dbmaakaaak8aabaqcfa4dbmaalaaak8aa baqcLbsapeGaaeOVdaGcpaqaaKqzGeWdbiaaiIdaaaaaleqaaaaa@453D@    (22)

Integration is performed for the two sub-layers: 0 to the boundary of the viscous sublayer δ  ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeaeaaaaaaaaa8qacaqG0oGaaeiOaaaaaaa@39AB@ , for which a constant a0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGHHjIUcaaIWaaaaa@3A0E@ and from the above limits δ  ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeaeaaaaaaaaa8qacaqG0oGaaeiOaaaaaaa@39AB@ to 1, where a=0,39   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGH9aqpcaaIWaGaaiilaiaaiodacaaI5aGaaiiO aiaacckaaaa@3DC3@ on the boundary condition soft closing w x w * =δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadEhajuaGpaWaaSbaaSqaaKqz adWdbiaadIhaaSWdaeqaaaGcbaqcLbsapeGaam4DaKqba+aadaWgaa WcbaqcLbmapeGaaiOkaaWcpaqabaaaaKqzGeWdbiabg2da9iaabs7a aaa@42D9@ .

Hence, the equation for the coefficient of hydraulic resistance in rough tubes can be written as follows:

1=2[ 0 δ ¯ ( 0 y ¯ ( 1 y ¯ 4 Re 2 ξ +a ( 1 y ¯ )( 1 k 0 2 y ¯ ) ( y ¯ + h ¯ 2 δ ¯ ) )| a0 d y ¯ ) ξ 8 ( 1 y ¯ )d y ¯ + δ ¯ 1 ( δ ¯ y ¯ ( 1 y ¯ 4 Re 2 ξ +a ( 1 y ¯ )( 1 k 0 2 y ¯ ) ( y ¯ + h ¯ 2 δ ¯ ) )| a0 d y ¯ +δ ) ξ 8 ( 1 y ¯ )d y ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa Gaeyypa0JaaGOmaKqbaoaadmaakeaajuaGdaWdXbGcbaqcfa4aaeWa aOqaaKqbaoaapehakeaajuaGdaabcaGcbaqcfa4aaeWaaOqaaKqbao aalaaakeaajugibiaaigdacqGHsisljuaGdaqdaaGcbaqcLbsacaWG 5baaaaGcbaqcfa4aaSaaaOqaaKqzGeGaaGinaaGcbaqcLbsaciGGsb GaaiyzaaaajuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaaGOmaaGc baqcLbsacqaH+oaEaaaaleqaaKqzGeGaey4kaSIaamyyaKqbaoaaka aakeaajuaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0scfa4aa0aaaOqa aKqzGeGaamyEaaaaaOGaayjkaiaawMcaaKqbaoaabmaakeaajugibi aaigdacqGHsislcaWGRbqcfa4aa0baaSqaaKqzGeGaaGimaaWcbaqc LbsacaaIYaaaaKqbaoaanaaakeaajugibiaadMhaaaaakiaawIcaca GLPaaaaSqabaqcfa4aaeWaaOqaaKqbaoaanaaakeaajugibiaadMha aaGaey4kaSscfa4aa0aaaOqaaKqzGeGaamiAaaaacqGHsislcaaIYa qcfa4aa0aaaOqaaKqzGeGaeqiTdqgaaaGccaGLOaGaayzkaaaaaaGa ayjkaiaawMcaaaGaayjcSdqcfa4aaSbaaSqaaKqzadGaamyyaiabgg Mi6kaaicdaaSqabaqcLbsacaWGKbqcfa4aa0aaaOqaaKqzGeGaamyE aaaaaSqaaKqzadGaaGimaaWcbaWaa0aaaeaajugWaiaadMhaaaaaju gibiabgUIiYdaakiaawIcacaGLPaaajuaGdaGcaaGcbaqcfa4aaSaa aOqaaKqzGeGaeqOVdGhakeaajugibiaaiIdaaaaaleqaaKqbaoaabm aakeaajugibiaaigdacqGHsisljuaGdaqdaaGcbaqcLbsacaWG5baa aaGccaGLOaGaayzkaaqcLbsacaWGKbqcfa4aa0aaaOqaaKqzGeGaam yEaaaacqGHRaWkjuaGdaWdXbGcbaqcfa4aaeWaaOqaaKqbaoaapeha keaajuaGdaabcaGcbaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibi aaigdacqGHsisljuaGdaqdaaGcbaqcLbsacaWG5baaaaGcbaqcfa4a aSaaaOqaaKqzGeGaaGinaaGcbaqcLbsaciGGsbGaaiyzaaaajuaGda GcaaGcbaqcfa4aaSaaaOqaaKqzGeGaaGOmaaGcbaqcLbsacqaH+oaE aaaaleqaaKqzGeGaey4kaSIaamyyaKqbaoaakaaakeaajuaGdaqada GcbaqcLbsacaaIXaGaeyOeI0scfa4aa0aaaOqaaKqzGeGaamyEaaaa aOGaayjkaiaawMcaaKqbaoaabmaakeaajugibiaaigdacqGHsislca WGRbqcfa4aa0baaSqaaKqzadGaaGimaaWcbaqcLbmacaaIYaaaaKqb aoaanaaakeaajugibiaadMhaaaaakiaawIcacaGLPaaaaSqabaqcfa 4aaeWaaOqaaKqbaoaanaaakeaajugibiaadMhaaaGaey4kaSscfa4a a0aaaOqaaKqzGeGaamiAaaaacqGHsislcaaIYaqcfa4aa0aaaOqaaK qzGeGaeqiTdqgaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaGa ayjcSdqcfa4aaSbaaSqaaKqzadGaamyyaiabgcMi5kaaicdaaSqaba qcLbsacaWGKbqcfa4aa0aaaOqaaKqzGeGaamyEaaaacqGHRaWkcqaH 0oazaSqaamaanaaabaqcLbmacqaH0oazaaaaleaadaqdaaqaaKqzad GaamyEaaaaaKqzGeGaey4kIipaaOGaayjkaiaawMcaaKqbaoaakaaa keaajuaGdaWcaaGcbaqcLbsacqaH+oaEaOqaaKqzGeGaaGioaaaaaS qabaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTKqbaoaanaaakeaa jugibiaadMhaaaaakiaawIcacaGLPaaajugibiaadsgajuaGdaqdaa GcbaqcLbsacaWG5baaaaWcbaWaa0aaaeaajugWaiabes7aKbaaaSqa aKqzadGaaGymaaqcLbsacqGHRiI8aaWcbaqcLbmacaaIWaaaleaada qdaaqaaKqzadGaeqiTdqgaaaqcLbsacqGHRiI8aaGccaGLBbGaayzx aaaaaa@FCBA@     (23)

After the integration and mathematical calculations, we obtain the final equation for the transcendental of determining the coefficient of hydraulic resistance for round rough pipes:

1= δ Re 3 ξ ( 16 δ 3 2δ Re 2 ξ+ ξ ξ 2 2 Re 3 )+ ξ 2 ( δ 4 Re 2 ξ ) 1 ( δ 4 Re 2 ξ ) y ¯ ( 1 y ¯ ) 4 Re 2 ξ +a ( 1 y ¯ )( 1 k 0 2 y ¯ ) ( y ¯ + h ¯ δ 8 Re 2 ξ ) d y ¯ ( 1 y ¯ )d y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaeqiTdqgakeaajugibiGackfa caGGLbqcfa4aaWbaaSqabeaajugWaiaaiodaaaqcLbsacqaH+oaEaa qcfa4aaeWaaOqaaKqzGeGaaGymaiaaiAdacqaH0oazjuaGdaahaaWc beqaaKqzadGaaG4maaaajugibiabgkHiTiaaikdacqaH0oazciGGsb GaaiyzaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeqOVdGNa ey4kaSscfa4aaSaaaOqaaKqzGeGaeqOVdGxcfa4aaOaaaOqaaKqzGe GaeqOVdGhaleqaaaGcbaqcLbsacaaIYaqcfa4aaOaaaOqaaKqzGeGa aGOmaaWcbeaaaaqcLbsaciGGsbGaaiyzaKqbaoaaCaaaleqabaqcLb macaaIZaaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkjuaGdaGcaaGc baqcfa4aaSaaaOqaaKqzGeGaeqOVdGhakeaajugibiaaikdaaaaale qaaKqbaoaapehakeaajuaGdaWdXbqaamaalaaabaWaaeWaaeaajugi biaaigdacqGHsisljuaGdaqdaaqaaKqzGeGaamyEaaaaaKqbakaawI cacaGLPaaaaeaadaWcaaqaaKqzGeGaaGinaaqcfayaaKqzGeGaciOu aiaacwgaaaqcfa4aaOaaaeaadaWcaaqaaKqzGeGaaGOmaaqcfayaaK qzGeGaeqOVdGhaaaqcfayabaqcLbsacqGHRaWkcaWGHbqcfa4aaOaa aeaadaqadaqaaKqzGeGaaGymaiabgkHiTKqbaoaanaaabaqcLbsaca WG5baaaaqcfaOaayjkaiaawMcaamaabmaabaqcLbsacaaIXaGaeyOe I0Iaam4AaKqbaoaaDaaabaqcLbmacaaIWaaajuaGbaqcLbmacaaIYa aaaKqbaoaanaaabaqcLbsacaWG5baaaaqcfaOaayjkaiaawMcaaaqa baWaaeWaaeaadaqdaaqaaKqzGeGaamyEaaaacqGHRaWkjuaGdaqdaa qaaKqzGeGaamiAaaaacqGHsislcqaH0oazjuaGdaWcaaqaaKqzGeGa aGioaaqcfayaaKqzGeGaciOuaiaacwgaaaqcfa4aaOaaaeaadaWcaa qaaKqzGeGaaGOmaaqcfayaaKqzGeGaeqOVdGhaaaqcfayabaaacaGL OaGaayzkaaaaaaqaaSWaaeWaaKqbagaajugWaiabes7aKTWaaSaaaK qbagaajugWaiaaisdaaKqbagaajugWaiGackfacaGGLbaaaSWaaOaa aKqbagaalmaalaaajuaGbaqcLbmacaaIYaaajuaGbaqcLbmacqaH+o aEaaaajuaGbeaaaiaawIcacaGLPaaaaeaalmaanaaajuaGbaqcLbma caWG5baaaaqcLbsacqGHRiI8aaWcbaWaaeWaaeaajugWaiabes7aKT WaaSaaaeaajugWaiaaisdaaSqaaKqzadGaciOuaiaacwgaaaWcdaGc aaqaamaalaaabaqcLbmacaaIYaaaleaajugWaiabe67a4baaaWqaba aaliaawIcacaGLPaaaaeaajugWaiaaigdaaKqzGeGaey4kIipacaWG Kbqcfa4aa0aaaOqaaKqzGeGaamyEaaaajuaGdaqadaGcbaqcLbsaca aIXaGaeyOeI0scfa4aa0aaaOqaaKqzGeGaamyEaaaaaOGaayjkaiaa wMcaaKqzGeGaamizaKqbaoaanaaakeaajugibiaadMhaaaaaaa@DE0F@    (24)

The double integral in (24) cannot be expressed in a class of elementary functions. The form of the transcendental equation (24) indicates that, in calculating the hydraulic resistance in the round rough pipes is used in more complex and accurate ratio than current based (somehow) on the logarithmic velocity profile. The solution of equation (24) is best to produce numerically. As noted earlier, in this paper are modeled mostly pipe roughness with projections of equal heights. However, with the help of the model the possibility of similar modeling and when there is some deviation of the roughness height of their average value. If the variance of the mean values of roughness height σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae baaaa@37D1@ is different from zero, the average height of the roughness can determine this (thus determined diffuse boundaries “roughness-viscous sublayer”):

Figure 5 Reported bird strikes and parts mostly hit(* FAA wildlife strike data base).

where h ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadIgapaGbaebajuaGdaWgaaWcbaqcLbmapeGaamiCaaWc paqabaaaaa@3AC1@ - values of the relative roughness height with a probability density p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchaaaa@379B@ .

Therefore, to calculate the average height of the roughness h ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadIgapaGbaebajuaGdaWgaaWcbaqcLbmapeGaamiCaaWc paqabaaaaa@3AC1@ , beyond the limits of the viscous sublayer σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae baaaa@37D1@ , need to know the probability law roughness height distribution in the pipe. For example, for a normal distribution of roughness heights transcendental equation for the pressure drop in a round of rough pipe is as follows:

1= δ Re 3 ξ ( 16 δ 3 2δ Re 2 ξ+ ξ ξ 2 2 Re 3 )+ ξ 2 ( δ 4 Re 2 ξ ) 1 ( δ 4 Re 2 ξ ) y ¯ ( 1 y ¯ )d y ¯ 4 Re 2 ξ +a ( 1 y ¯ )( 1 k 0 2 y ¯ ) ( y ¯ + h ¯ δ 8 Re 2 ξ + σ ¯ 2 π exp[ 1 2 ( δ ¯ h ¯ σ ¯ ) 2 ] 1erf[ δ ¯ h ¯ 2 σ ¯ ] ) ( 1 y ¯ )d y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaeqiTdqgakeaajugibiGackfa caGGLbqcfa4aaWbaaSqabeaajugWaiaaiodaaaqcLbsacqaH+oaEaa qcfa4aaeWaaOqaaKqzGeGaaGymaiaaiAdacqaH0oazjuaGdaahaaWc beqaaKqzadGaaG4maaaajugibiabgkHiTiaaikdacqaH0oazciGGsb GaaiyzaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeqOVdGNa ey4kaSscfa4aaSaaaOqaaKqzGeGaeqOVdGxcfa4aaOaaaOqaaKqzGe GaeqOVdGhaleqaaaGcbaqcLbsacaaIYaqcfa4aaOaaaOqaaKqzGeGa aGOmaaWcbeaaaaqcLbsaciGGsbGaaiyzaKqbaoaaCaaaleqabaqcLb macaaIZaaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkjuaGdaGcaaGc baqcfa4aaSaaaOqaaKqzGeGaeqOVdGhakeaajugibiaaikdaaaaale qaaKqbaoaapehakeaajuaGdaWdXbqaamaalaaabaWaaeWaaeaacaaI XaGaeyOeI0Yaa0aaaeaacaWG5baaaaGaayjkaiaawMcaaiaadsgada qdaaqaaiaadMhaaaaabaWaaSaaaeaajugibiaaisdaaKqbagaajugi biGackfacaGGLbaaaKqbaoaakaaabaWaaSaaaeaajugibiaaikdaaK qbagaajugibiabe67a4baaaKqbagqaaKqzGeGaey4kaSIaamyyaKqb aoaakaaabaWaaeWaaeaajugibiaaigdacqGHsisljuaGdaqdaaqaaK qzGeGaamyEaaaaaKqbakaawIcacaGLPaaadaqadaqaaKqzGeGaaGym aiabgkHiTiaadUgajuaGdaqhaaqaaKqzadGaaGimaaqcfayaaKqzad GaaGOmaaaajuaGdaqdaaqaaKqzGeGaamyEaaaaaKqbakaawIcacaGL PaaaaeqaamaabmaabaWaa0aaaeaajugibiaadMhaaaGaey4kaSscfa 4aa0aaaeaajugibiaadIgaaaGaeyOeI0IaeqiTdqwcfa4aaSaaaeaa jugibiaaiIdaaKqbagaajugibiGackfacaGGLbaaaKqbaoaakaaaba WaaSaaaeaajugibiaaikdaaKqbagaajugibiabe67a4baaaKqbagqa aKqzGeGaey4kaSscfa4aa0aaaeaajugibiabeo8aZbaajuaGdaGcaa qaamaalaaabaqcLbsacaaIYaaajuaGbaqcLbsacqaHapaCaaaajuaG beaadaWcaaqaaKqzGeGaciyzaiaacIhacaGGWbqcfa4aamWaaeaaju gibiabgkHiTKqbaoaalaaabaqcLbsacaaIXaaajuaGbaqcLbsacaaI YaaaaKqbaoaabmaabaWaaSaaaeaadaqdaaqaaKqzGeGaeqiTdqgaai abgkHiTKqbaoaanaaabaqcLbsacaWGObaaaaqcfayaamaanaaabaqc LbsacqaHdpWCaaaaaaqcfaOaayjkaiaawMcaamaaCaaabeqaaKqzad GaaGOmaaaaaKqbakaawUfacaGLDbaaaeaajugibiaaigdacqGHsisl caWGLbGaamOCaiaadAgajuaGdaWadaqaamaalaaabaWaa0aaaeaaju gibiabes7aKbaacqGHsisljuaGdaqdaaqaaKqzGeGaamiAaaaaaKqb agaadaqdaaqaamaakaaabaqcLbsacaaIYaaajuaGbeaajugibiabeo 8aZbaaaaaajuaGcaGLBbGaayzxaaaaaaGaayjkaiaawMcaaaaaaeaa lmaabmaajuaGbaqcLbmacqaH0oazlmaalaaajuaGbaqcLbmacaaI0a aajuaGbaqcLbmaciGGsbGaaiyzaaaalmaakaaajuaGbaWcdaWcaaqc fayaaKqzadGaaGOmaaqcfayaaKqzadGaeqOVdGhaaaqcfayabaaaca GLOaGaayzkaaaabaWcdaqdaaqcfayaaKqzadGaamyEaaaaaKqbakab gUIiYdaaleaadaqadaqaaKqzadGaeqiTdq2cdaWcaaqaaKqzadGaaG inaaWcbaqcLbmaciGGsbGaaiyzaaaalmaakaaabaWaaSaaaeaajugW aiaaikdaaSqaaKqzadGaeqOVdGhaaaadbeaaaSGaayjkaiaawMcaaa qaaKqzadGaaGymaaqcLbsacqGHRiI8aKqbaoaabmaakeaajugibiaa igdacqGHsisljuaGdaqdaaGcbaqcLbsacaWG5baaaaGccaGLOaGaay zkaaqcLbsacaWGKbqcfa4aa0aaaOqaaKqzGeGaamyEaaaaaaa@0F7C@     (26)

Where erf( u ) = def 2 π 0 u exp( u 2 )du MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabwgacaqGYbGaaeOzaKqbaoaabmaak8aabaqcLbsapeGa amyDaaGccaGLOaGaayzkaaqcfa4aaCbiaeaacqGH9aqpaeqabaqcLb macaWGKbGaamyzaiaadAgaaaqcfa4aaSaaaOWdaeaajugib8qacaaI Yaaak8aabaqcfa4dbmaakaaak8aabaqcLbsapeGaaeiWdaWcbeaaaa GcdaWdXbqaaKqzGeGaaeyzaiaabIhacaqGWbqcfa4aaeWaaOWdaeaa jugib8qacqGHsislcaWG1bqcfa4damaaCaaaleqabaqcLbmapeGaaG OmaaaaaOGaayjkaiaawMcaaKqzGeGaamizaiaadwhaaSqaaiaaicda aeaacaWG1baaniabgUIiYdaaaa@5960@ -Gaussian error function (integral probabilities).

In the future, should make calculations of hydraulic resistance for pipes with rough walls on received in the solution (24) for different heights of roughness and Reynolds number. This compares to bring the calculated values obtained by formula Colebrook and data for tubes with turbulators other things being equal (equal to the Reynolds number and the relative roughness height and turbulence). It should be noted that the above recent data have significant limitations on the height of vortex generator, while the equation obtained in this work, we have to great heights of roughness. Table 1 shows the calculated data for the hydraulic resistance in straight round rough tubes, obtained from the solution of the transcendental equation (24) for the relative heights of the turbulators h R 0 = 1 70 =1,43 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadIgaaOWdaeaajugib8qacaWG sbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaaqcLbsape Gaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsa peGaaG4naiaaicdaaaGaeyypa0JaaGymaiaacYcacaaI0aGaaG4mai abgwSixlaaigdacaaIWaWcpaWaaWbaaeqabaqcLbmapeGaeyOeI0Ia aGOmaaaaaaa@4D7B@ and h R 0 = 1 50 =2 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadIgaaOWdaeaajugib8qacaWG sbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaaqcLbsape Gaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsa peGaaGynaiaaicdaaaGaeyypa0JaaGOmaiabgwSixlaaigdacaaIWa WcpaWaaWbaaeqabaqcLbmapeGaeyOeI0IaaGOmaaaaaaa@4B4F@ .

For comparison, the similar values obtained by formula Colebrook and values for a smooth tube, obtained from the dependence Filonenko. From the data in Table 1, it is clear that the theoretical solutions are close to the formula of Colebrook for the relatively low heights of roughness. For a much wider range of heights roughness values of hydraulic resistance for round rough pipes are given in Table 2 and Table 3, in which, for comparison, the only similar relevant data, calculated by the empirical relationship Colebrook and values of hydraulic resistance for a smooth pipe from the empirical formula Filonenko. For clarity of presentation in Table 2 values of hydraulic resistance for rough pipes are given in the form of  lg( 100ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabckacaqGSbGaae4zaKqbaoaabmaak8aabaqcLbsapeGa aGymaiaaicdacaaIWaGaeyyXICTaaeOVdaGccaGLOaGaayzkaaaaaa@4238@ according to lg( Re ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiGacYgacaGGNbqcfa4aaeWaaOWdaeaajugib8qacaqGsbGa aeyzaaGccaGLOaGaayzkaaaaaa@3D19@ for h R 0 = 1 15 ; 1 30,6 ; 1 60 ; 1 126 ; 1 252 ; 1 507  . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadIgaaOWdaeaajugib8qacaWG sbqcfa4damaaBaaaleaajugWa8qacaaIWaaal8aabeaaaaqcLbsape Gaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsa peGaaGymaiaaiwdaaaGaai4oaKqbaoaalaaak8aabaqcLbsapeGaaG ymaaGcpaqaaKqzGeWdbiaaiodacaaIWaGaaiilaiaaiAdaaaGaai4o aKqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaiA dacaaIWaaaaiaacUdajuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWd aeaajugib8qacaaIXaGaaGOmaiaaiAdaaaGaai4oaKqbaoaalaaak8 aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdacaaI1aGaaGOm aaaacaGG7aqcfa4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLb sapeGaaGynaiaaicdacaaI3aaaaiaacckacaGGUaaaaa@6133@

Table 3 similar data are given in absolute units. As shown in Table 2 & Table 3, at relatively low altitudes of roughness at high Reynolds numbers (about 106) hydraulic resistance values for rough pipes, calculated on the developed theory, approximately coincide with those values calculated by the formula Colebrook, for medium Reynolds numbers (about 105) calculation formula Colebrook gives higher values.

When compared to the average roughness height theoretical values of hydraulic resistance in rough pipes are approximately equal empirical values obtained from the dependence of Colebrook, at medium and high Reynolds numbers, at low Reynolds numbers (about 104) Colebrook empirical formula gives higher values. For tubes with relatively large roughness height calculated from the empirical formula Colebrook provides even inflated data on hydraulic resistance has in the entire range of Reynolds numbers. Therefore, on the basis of the data presented, we conclude that empirical correlations have a significant disadvantage compared with dependencies developed in this study, for large values of the relative roughness height h/R0. The disadvantage of the existing theoretical and empirical relationships should be recognized that they are limited by the relative roughness height: they do not allow determine the hydraulic resistance for pipes with very high altitudes turbulence, which can be characterized, for example, rough pipes of small diameters. In the future should bring estimates of the hydraulic resistance in rough tubes, obtained by the developed dependencies, for very large values of the relative roughness height: h/R0=0.15¸0.30. Table 4 shows the calculated values of hydraulic resistance for rough pipes are very large relative roughness height (h/R0=0.15¸0.30) for the typical range of Reynolds numbers (Re = 104¸106); for comparison, the corresponding values of hydraulic resistance for smooth pipe ξSM (h/R0=0).

The data presented indicate that the pressure drop in rough tubes great height roughness increases at low Reynolds numbers from about 2.4 to 2.9 times compared to the smooth tube with increasing height roughness with h/R0 =0.15 tо h/R0 =0.30, for medium Reynolds numbers, this increase is already about 4.1 and 4.9 раз respectively, for the big-about 6.3 tо 7.6. When the Reynolds number increases with 104 tо 106 hydraulic resistance of rough pipes compared to a smooth tube increases by about 2.6 times for the considered range of relative roughness height, with an increase in the relative roughness height twice (about h/R0=0.15 tо h/R0=0.30) corresponding increase in the relative pressure drop of about 1.2 times. Consequently, the increase in the height of roughness and an increase in the Reynolds number is a significant increase in pressure drop in rough tubes to the smooth tube. The discrepancy between the solution for the hydraulic resistance for rough pipes, obtained in this study, with the decision based on a logarithmic velocity profile is of the order (10¸15)% for the relatively high roughness height at low Reynolds numbers, with a decrease in the height of roughness and an increase Reynolds discrepancy disappears.

In the future, it is necessary to conduct a comparative analysis of the estimated values ​​of hydraulic resistance for rough pipes and tubes with turbulators other things being equal (equal heights roughness h/R0 and turbulence, the equality of the Reynolds number Re). Table 5 the values ​​of hydraulic resistance for round rough pipes, calculated as on the developed theory and the empirical formula Colebrook, which are compared with experimental data for pipes with periodic transverse in turbulence flow in circular pipes1 provided h/R0=idem and Re = idem (h/R0=0.01¸0,13; t/D=0.25¸1.00; Re = 104¸2*105); for comparison the hydraulic resistance for a smooth tube, calculated from the empirical formula Filonenko. Comparative analysis of the hydraulic resistance in rough pipes and tubes with turbulence presented in Table 5 show that for small relative roughness height  ( h R 0 = 1 100 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckajuaGdaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqz GeWdbiaadIgaaOWdaeaajugib8qacaWGsbqcfa4damaaBaaaleaaju gWa8qacaaIWaaal8aabeaaaaqcLbsapeGaeyypa0tcfa4aaSaaaOWd aeaajugib8qacaaIXaaak8aabaqcLbsapeGaaGymaiaaicdacaaIWa aaaaGccaGLOaGaayzkaaaaaa@475E@ pressure drop in rough tubes at low Reynolds numbers is about the same as in the tubes with turbulators equal altitudes throughout the range considered the relative pitches between turbulence and at high Reynolds numbers-about twice as much.

At an average altitude of relative roughness ( h R 0 = 1 20 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadIga aOWdaeaajugib8qacaWGsbqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaaaaqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qa caaIXaaak8aabaqcLbsapeGaaGOmaiaaicdaaaaakiaawIcacaGLPa aaaaa@44F2@ pressure drop in rough tubes approximates hydraulic resistance in the pipes with turbulence: a small step between turbulence ( t D = 1 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadsha aOWdaeaajugib8qacaWGebaaaiabg2da9Kqbaoaalaaak8aabaqcLb sapeGaaGymaaGcpaqaaKqzGeWdbiaaisdaaaaakiaawIcacaGLPaaa aaa@40BE@ at high Reynolds numbers, the average step ( t D = 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadsha aOWdaeaajugib8qacaWGebaaaiabg2da9Kqbaoaalaaak8aabaqcLb sapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaa aaa@40BC@ -at medium Reynolds numbers, a large step ( t D =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadsha aOWdaeaajugib8qacaWGebaaaiabg2da9iaaigdaaOGaayjkaiaawM caaaaa@3DF2@ - at low Reynolds numbers.

At high altitudes, the relative roughness ( h R 0 = 1 10 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadIga aOWdaeaajugib8qacaWGsbqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaaaaqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qa caaIXaaak8aabaqcLbsapeGaaGymaiaaicdaaaaakiaawIcacaGLPa aaaaa@44F1@ hydraulic resistance of rough tubes approximately the hydraulic resistance in the tubes with turbulators with a big step between turbulence at high Reynolds numbers.

Hydraulic resistance of rough tubes with large relative roughness height for the remaining cases-for small, medium and large steps between turbulence at low and medium Reynolds numbers, as well as small and medium-sized steps between turbulence at high Reynolds numbers-always much lower than for pipes with turbulence, other things being equal, (h/R0 = idem and Re = idem). For very high roughness height ( h R 0 > 1 10   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadIga aOWdaeaajugib8qacaWGsbqcfa4damaaBaaaleaajugWa8qacaaIWa aal8aabeaaaaqcLbsapeGaeyOpa4tcfa4aaSaaaOWdaeaajugib8qa caaIXaaak8aabaqcLbsapeGaaGymaiaaicdaaaGaaiiOaaGccaGLOa Gaayzkaaaaaa@4617@ hydraulic resistance of rough pipes is much lower than for tubes with turbulators other things being equal for all the considered range of geometrical parameters of turbulence and flow regimes coolants (h/R0=0, 11¸0,13; t/D=0.25¸1.00; Re =104¸2*105).

The data in Table 5 to hydraulic resistance data for rough pipes for very high Reynolds numbers ( Re 10 6   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqzGeWdbiaabkfacaqGLbGaeyyzImRaaGym aiaaicdajuaGpaWaaWbaaSqabeaajugWa8qacaaI2aaaaKqzGeGaai iOaaGccaGLOaGaayzkaaaaaa@4263@ indicate that, for low and medium heights roughness theoretical solution obtained in this work, and the empirical formula of Colebrook give approximately equal results, and for high and very high heights roughness dependence Colebrook clearly gives higher values​​.Hence, it is proved that the theory has generated over the existing empirical formulas distinct advantage in the high and very high relative roughness height and very high Reynolds numbers  (h/R0>0.10; ReÎ[106¸109]).

h/R0 ↓

ξ ↓

Re→ 4×104

6×104

8×104

105

106

107

formula Filonenko

0,02204

0,02008

0,01885

0,01797

0,01161

0,00812

1/70=1,43×10-2

theoretical solution

0,03226

0,03328

0,03374

0,03400

0,03486

0,03494

formula Colebrook

0,03571

0,03528

0,03484

0,03466

0,03398

0,03392

1/50=2,00×10-2

theoretical solution

0,03705

0,03769

0,03798

0,03816

0,03874

0,03879

formula Colebrook

0,03935

0,03887

0,03863

0,03848

0,03794

0,03789

Table 1 Hydraulic resistance in round rough pipes, calculated from the solution of the transcendental equation (24) for the relative heights of the turbulators h/R0=1/70 and 1/50

h/R0

lg(100. ξ)

lg(Re)

4,0

4,2

4,4

4,6

4,8

5,0

5,2

5,4

5,6

5,8

6,0

1,97×10–3

theory

0,242

0,270

0,284

0,291

Colebrook

0,316

0,308

0,302

0,298

3,97×10–3

theory

0,341

0,359

0,368

0,374

0,377

Colebrook

0,389

0,382

0,377

0,374

0,372

7,94×10–3

theory

0,440

0,451

0,457

0,461

0,463

0,465

Colebrook

0,469

0,463

0,459

0,457

0,455

0,454

1,67×10–2

theory

0,537

0,548

0,555

0,558

0,560

0,562

0,563

0,563

Colebrook

0,572

0,565

0,560

0,557

0,555

0,554

0,553

0,553

3,27×10–2

theory

0,632

0,643

0,648

0,652

0,654

0,655

0,655

0,656

0,656

0,656

Colebrook

0,679

0,670

0,664

0,660

0,658

0,656

0,655

0,655

0,654

0,654

6,67×10–2

heory

0,754

0,755

0,756

0,756

0,756

0,756

0,756

0,756

0,756

0,756

0,756

Colebrook

0,796

0,789

0,784

0,781

0,779

0,778

0,777

0,777

0,777

0,776

0,776

0

Filonenko

0,497

0,443

0,392

0,344

0,298

0,255

0,213

0,174

0,136

0,100

0,065

Table 2 Hydraulic resistance (in the form of log (100 ξ)) in round rough pipes, depending on the Reynolds number (in the form lg(Re)), calculated from the solution of the transcendental equation (24) for a wide range of turbulence heights h/R0=1/15÷1/507

h/R0

ξ

Re

104

1,58×104

2,51×104

3,98×104

6,31×104

105

1,58×105

2,51×105

3,98×105

6,31×105

106

1,97×10–3

theory

0,01745

0,01861

0,01921

0,01956

Colebrook

0,02072

0,02032

0,02005

0,01987

3,97×10–3

theory

0,02195

0,02285

0,02335

0,02365

0,02383

Colebrook

0,02448

0,02408

0,02383

0,02366

0,02355

7,94×10–3

theory

0,02752

0,02824

0,02866

0,02891

0,02906

0,02916

Colebrook

0,02943

0,02904

0,02879

0,02862

0,02852

0,02845

1,67×10–2

theory

0,03443

0,03533

0,03585

0,03616

0,03635

0,03646

0,03653

0,03658

Colebrook

0,03730

0,03671

0,03633

0,03608

0,03592

0,03582

0,03576

0,03572

3,27×10–2

theory

0,04289

0,04395

0,04451

0,04484

0,04503

0,04515

0,04523

0,04527

0,04530

0,04532

Colebrook

0,04770

0,04676

0,04615

0,04575

0,04549

0,04533

0,04523

0,04516

0,04512

0,04509

6,67×10–2

theory

0,05673

0,05690

0,05697

0,05700

0,05701

0,05702

0,05702

0,05702

0,05702

0,05702

0,05702

Colebrook

0,06251

0,06150

0,06085

0,06044

0,06017

0,06001

0,05990

0,05983

0,05979

0,05976

0,05974

0

Filonenko

0,03144

0,02774

0,02466

0,02207

0,01986

0,01797

0,01634

0,01492

0,01367

0,01258

0,01161

Table 3 Hydraulic resistance in round rough pipes, depending on the Reynolds number, calculated from the solution of the transcendental equation (24) for a wide range of relative heights of turbulators

h/R0

Re

104

5×104

105

5×105

106

0,15

0,07511

0,07358

0,07338

0,07323

0,07321

0,20

0,08177

0,07988

0,07964

0,07945

0,07943

0,25

0,08691

0,08480

0,08454

0,08433

0,08430

0,30

0,09104

0,08879

0,08851

0,08828

0,08826

0

0,03144

0,02093

0,01797

0,01311

0,01161

Table 4 Hydraulic resistance in round rough pipes, calculated from the solution of the transcendental equation (24) for very high relative roughness heights (h/R0=0.15÷0.30), depending on the Reynolds number

h/R0

t/D

ξ

Re

104

2×104

4×104

105

2×105

4×105

106

107

109

0,01

0,25

Kalinin

0,04588

0,03618

0,02953

0,02135

0,01795

0,01472

0,50

Kalinin

0,04240

0,02980

0,02595

0,02135

0,01795

0,01359

1,00

Kalinin

0,03322

0,02847

0,02416

0,01975

0,01601

0,01359

theory

0,02709

0,02997

0,03071

0,03106

0,03125

0,03137

0,03138

Colebrook

0,03765

0,03448

0,03258

0,03130

0,03083

0,03059

0,03045

0,03036

0,03035

0,05

0,25

Kalinin

0,10378

0,08780

0,07495

0,05907

0,05087

0,04403

0,50

Kalinin

0,09176

0,07716

0,06801

0,05427

0,04818

0,03737

1,00

Kalinin

0,04430

0,03884

0,04072

0,03594

0,03292

0,02453

theory

0,05039

0,05134

0,05170

0,05189

0,05194

0,05197

0,05199

0,05199

0,05200

Colebrook

0,05629

0,05471

0,05389

0,05338

0,05321

0,05313

0,05308

0,05304

0,05304

0,10

0,25

Kalinin

0,18351

0,16762

0,16019

0,14625

0,13166

0,11424

0,50

Kalinin

0,19933

0,19156

0,16287

0,15230

0,12164

0,10442

1,00

Kalinin

0,14301

0,12771

0,12305

0,09964

0,07122

0,05133

theory

0,06580

0,06531

0,06505

0,06489

0,06484

0,06481

0,06479

0,06478

0,06478

Colebrook

0,07376

0,07264

0,07207

0,07172

0,07161

0,07155

0,07152

0,07149

0,07149

0,11

0,25

Kalinin

0,19996

0,18890

0,18122

0,16369

0,15410

0,13286

theory

0,06797

0,06735

0,06703

0,06684

0,06677

0,06674

0,06671

0,06671

0,06671

Colebrook

0,07692

0,07586

0,07531

0,07499

0,07188

0,07482

0,07479

0,07477

0,07477

0,12

0,50

Kalinin

0,26894

0,24557

0,22597

0,20461

0,15710

0,14594

theory

0,06996

0,06924

0,06887

0,06865

0,06857

0,06853

0,06851

0,06850

0,06850

Colebrook

0,08002

0,07900

0,07848

0,07816

0,07806

0,07801

0,07797

0,07796

0,07795

0,13

1,00

Kalinin

0,31640

0,26473

0,22373

0,17792

0,14214

0,11323

theory

0,07180

0,07099

0,07058

0,07033

0,07025

0,07020

0,07018

0,07017

0,07016

Colebrook

0,08306

0,08207

0,08157

0,08127

0,08117

0,08112

0,08109

0,08107

0,08107

0

Filonenko

0,03144

0,02612

0,02204

0,01797

0,01559

0,01366

0,01161

0,00812

0,00460

Table 5 Comparative analysis of hydraulic resistance values for round rough pipes calculated according to the developed theory, according to the empirical Colebrook formula and experimental data for pipes with periodic transversely located turbulators in round tubes for h/R0 =0.01÷0.13; t / D=0.25÷1.00; Re=104÷4.105

Conclusion

  1. The technique of determining the theoretical calculation of the coefficient of hydraulic resistance for round tubes with rough walls, based on the principle of superposition full viscosity in the turbulent layer, mainly differs from existing theories.
  2. Resulting in a more accurate solution for the flow resistance in rough pipes has a notable advantage over existing solutions and it should be used in the calculation, although certainly higher complexity.
  3. For small and medium roughness height theoretical values of hydraulic resistance in rough tubes approximately correspond to empirical values-with a further increase of the relative roughness height mainly theoretical values differ from the empirical values, including, at very high Reynolds numbers .
  4. Theoretical solutions obtained in this study showed that the increase in the relative values of the transactional hydraulic resistance /SM for tubes with very high values of the relative roughness makes a significant contribution to the increase in the height of roughness h/R0, and an increase in the Reynolds number Re.
  5. Comparative analysis of the calculated values of hydraulic resistance in rough tubes with similar experimental values for tubes with periodic transverse in turbulence flow showed that the rough is very large relative roughness height hydraulic resistance is always lower than for tubes with turbulators other things being equal, a small, medium and large heights found the limits of their approximate match other things being equal: the smaller the Reynolds number Re, the greater should be the relative spacing between the turbulence h/R0 .
  6. The main advantage of the solutions obtained by the theory developed in comparison with empirical dependencies is that they allow you to calculate the pressure drop in rough tubes for large and very large relative roughness height including for large Reynolds numbers, which is typical, for example, for small diameter pipes.
  7. Result of the calculation of hydraulic resistance for round rough pipes for an extended range of characteristic parameters that are significantly different from the corresponding data for round tubes with turbulence, indirectly indicate the level of heat transfer through the use of rough tubes instead of smooth.

Acknowledgement

None.

Conflicts of Interest

The author confirms that this article content has no conflict of interest.

References

  1. Kalinin EK, Dreytzer GА, Kopp IZ et al. Effective surfaces of heat exchange. Energoatomizdat: Moscow; 1998;408p.
  2. Lobanov IЕ. Heat transfer in turbulent flow in a plane channel with evenly spaced surface unilateral-lateral turbulence flow. Bulletin of Mechanical Engineering. 2012;8:13–17.
  3. Lobanov IE. Mathematical modeling of intensified-ion heat transfer in turbulent flow in pipes with turbulization-congestion based on the equation of balance of turbulent fluctuating energy. Sectoral Aspects of Engineering. 2012;12:24–34.
  4. Lobanov IE. Modeling the Structure of Vortex Zones between Periodic Superficially Located Energizers of the Flow of a Rectangular Cross Section. Mathematical Models and Computer Simulations. 2013;5(1):63–74.
  5. Parakram P, James H, Manhar D, et al. Numerical modeling of turbulence and its effect on ocean current turbines. International Journal of Marine Energy. 2017;17:84–97.
  6. Ljahov VK. Method of relative conformity at accounts turbulent parietal of flows. Publishing house of the Saratov University: Russia; 1975. 123p.
  7. Ljahov VK, Мigalin VK. Effect thermal, or diffusive, roughness. Publishing house of the Saratov University: Russia; 1989. 176p.
  8. Ismagilovich RS, Janovich GAG, Mukhutdinovich GM,et al. Method of reducing hydraulic resistance in turbulent flow. EMT Research AS: USA; 2006. 
  9. Rajnarayan Dev, Sturdza P. Predicting transition from laminar to turbulent flow over a surface using mode-shape parameters. Aerion Technologies Corp: USA; 2013.
  10. Liu L. Oil and gas pipeline drag reducing and heat preservation method. Xi'an Jiaotong University: China; 2012.
  11. Мilliontshikov МD. Turbulent of current in a boundary layer and in pipes. Nuclear Energy. 1970;28(3):207–214.
  12. Мilliontshikov МD. Turbulent is warm and mass exchange in pipes with smooth and rough walls. Nuclear Energy. 1971;31(3):199–204.
Creative Commons Attribution License

©2018 Evgenjevich. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.