Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Short Communication Volume 8 Issue 4

Landau vs Einstein: mathematics represents the universe

Ricardo Gobato,3 Victoria Alexandrovna Kuzmicheva,1 Valery Borisovich Morozov2

11 Russian University of Transport, Russia
2Technopark “Strogino”, Russia
33 Green Land Landscaping and Gardening, Seedling Growth Laboratory, Brazil

Correspondence: Ricardo Gobato, Green Land Landscaping and Gardening, Seedling Growth Laboratory, 86130-000, Parana, Brazil

Received: October 05, 2024 | Published: October 18, 2024

Citation: Kuzmicheva VA, Morozov VB, Gobato R. Landau vs Einstein: mathematics represents the universe. Aeron Aero Open Access J. 2024;8(4):195-196. DOI: 10.15406/aaoaj.2024.08.00209

Download PDF

Abstract

The modern theory of gravity is the Einstein space theory, which is described by mathematical methods of tensor analysis of Riemannian geometry. Einstein built on this basis one of the most successful and amazing theories. Complexity theories often lead to the extraction of foundations and, as is customary in theory, to obtaining meaningless results. Now the entire intellectual power of numerous researchers is directed at alternative theories, often based on erroneous ideas about Einstein's theory. An example of this is the catastrophic error in the definition of the coordinate transformation in the top manual on theoretical physics by L. D. Landau and E. M. Lifshitz.

Keywords: Landau, Lifshitz, Einstein, coordinate transformation, covariant tensor, transformations

Introduction

In 19141 Einstein defines a covariant 4-vector A i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@3A40@ , or a first-order covariant tensor, if for an arbitrarily chosen line element x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWG4bWcdaahaaqabeaacaWGPbaaaaaa@3C1E@ the sum

A i x i =Φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqaaiaadMgaaeqaaKqzGeGaeyOaIyRaamiEaSWaaWbaaeqa baGaamyAaaaajugibiabg2da9iabfA6agbaa@419D@                (1)

is an invariant (scalar).

The law of transformation of coordinates of a 4-vector follows from this definition

A i = x 'k x i A ' k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqaaiaadMgaaeqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGa eyOaIyRaamiEaSWaaWbaaeqabaGaai4jaiaadUgaaaaakeaajugibi abgkGi2kaadIhalmaaCaaabeqaaiaadMgaaaaaaKqzGeGaamyqaSWa aWbaaeqabaGaai4jaaaadaWgaaqaaiaadUgaaeqaaaaa@483E@            (2)

Einstein drew attention to the obvious linearity of coordinate transformations of tensors.1

Then, despite the arbitrariness of the coordinates, the transformations themselves are not arbitrary. Nonlinear transformations should be excluded from consideration.

However, the meaning of this transformation was not explained then. In the modern interpretation, in the general case, a linear transformation of a differential is written

d x i = x 'k x i d x ' k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb GaamiEaSWaaWbaaeqabaGaamyAaaaajugibiabg2da9OWaaSaaaeaa jugibiabgkGi2kaadIhalmaaCaaabeqaaiaacEcacaWGRbaaaaGcba qcLbsacqGHciITcaWG4bWcdaahaaqabeaacaWGPbaaaaaajugibiaa dsgacaWG4bWcdaahaaqabeaacaGGNaaaamaaBaaabaGaam4Aaaqaba aaaa@4A7F@         (3)

That is, differentials are preserved under linear transformation, and therefore the fundamental metric tensor in the new coordinates is preserved.

d s 2 = g ij d x i d x j = g ij d u i d u j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaSWaaWbaaeqabaGaaGOmaaaajugibiabg2da9iaadEgakmaa BaaaleaacaWGPbGaamOAaaqabaqcLbsacaWGKbGaamiEaSWaaWbaae qabaGaamyAaaaajugibiaadsgacaWG4bWcdaahaaqabeaacaWGQbaa aKqzGeGaeyypa0Jaam4zaSWaaSbaaeaacaWGPbGaamOAaaqabaqcLb sacaWGKbGaamyDaSWaaWbaaeqabaGaamyAaaaajugibiaadsgacaWG 1bWcdaahaaqabeaacaWGQbaaaaaa@52C4@     (4)

From a physical point of view, such a coordinate transformation does not change the reference system. This property makes the linear coordinate transformation indispensable when studying the reference system in different coordinate systems. On the other hand, a nonlinear transformation cannot be implemented using the Jacobian matrix, even if such a matrix exists.2

1 To my surprise, non-mathematicians are often simply not familiar with the concept of "linearity". Let me remind you that the operator A is linear if two equalities always hold: a) A(x+y)=A(x)+A(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb GaaiikaiaadIhacqGHRaWkcaWG5bGaaiykaiabg2da9iaadgeacaGG OaGaamiEaiaacMcacqGHRaWkcaWGbbGaaiikaiaadMhacaGGPaaaaa@45BD@ ; b) A(λx)=λA(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb GaaiikaiabeU7aSjaadIhacaGGPaGaeyypa0Jaeq4UdWMaamyqaiaa cIcacaWG4bGaaiykaaaa@4346@ for any λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBaaa@3A54@ .

Erroneous extension of coordinate transformations

The coordinate transformation (2) is linear, despite the arbitrariness of the linear element x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITcaWG4bWcdaahaaqabeaacaWGPbaaaaaa@3C1E@ .

However, the authors of the well-known work3 "extend" the definition of transformation as arbitrary, including nonlinear. We read in § 83. Curvilinear coordinates:

"Let us consider the transformation of one coordinate system x 0 , x 1 , x 2 , x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqabeaacaaIWaaaaKqzGeGaaiilaiaadIhalmaaCaaabeqa aiaaigdaaaqcLbsacaGGSaGaamiEaSWaaWbaaeqabaGaaGOmaaaaju gibiaacYcacaWG4bWcdaahaaqabeaacaaIZaaaaaaa@43F3@ into another x '0 , x '1 , x '2 , x '3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqabeaacaGGNaGaaGimaaaajugibiaacYcacaWG4bWcdaah aaqabeaacaGGNaGaaGymaaaajugibiaacYcacaWG4bWcdaahaaqabe aacaGGNaGaaGOmaaaajugibiaacYcacaWG4bWcdaahaaqabeaacaGG NaGaaG4maaaaaaa@469F@ :

, x i = f i ( x '0 , x '1 , x '2 , x '3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqabeaacaWGPbaaaKqzGeGaeyypa0JaamOzaSWaaWbaaeqa baGaamyAaaaakmaabmaabaqcLbsacaWG4bWcdaahaaqabeaacaGGNa GaaGimaaaajugibiaacYcacaWG4bWcdaahaaqabeaacaGGNaGaaGym aaaajugibiaacYcacaWG4bWcdaahaaqabeaacaGGNaGaaGOmaaaaju gibiaacYcacaWG4bWcdaahaaqabeaacaGGNaGaaG4maaaaaOGaayjk aiaawMcaaaaa@4E7E@

where f i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb WcdaahaaqabeaacaWGPbaaaaaa@3AA6@ are some functions".

This transformation is generally nonlinear and has nothing in common with Einstein's definition of a linear transformation. Unlike Einstein's definition of a linear coordinate transformation, the "generalized" definition of the authors3 through an arbitrary function allows the transformation of an arbitrary tensor into any other, making the coordinate transformation meaningless. Indeed, all metrics cannot be equivalent reference frames at the same time. For example, there is no linear transformation of Cartesian space into spherical space.2

The given definition is not a random slip of the tongue; the authors repeatedly give examples of arbitrary transformations and repeatedly repeat the thesis about the admissibility of an arbitrary transformation.3 (§ 100. Centrally symmetric gravitational field):

“But, due to the arbitrariness of the choice of the reference system in the general theory of relativity, we can still subject the coordinates to any transformation that does not violate the central symmetry d s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaSWaaWbaaeqabaGaaGOmaaaaaaa@3B6A@ this means that we can transform the coordinates r and t by means of the formulas

r= f 1 ( r ' , t ' ),t= f 2 ( r ' , t ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb Gaeyypa0JaamOzaSWaaSbaaeaacaaIXaaabeaajugibiaacIcacaWG YbWcdaahaaqabeaacaGGNaaaaKqzGeGaaiilaiaadshalmaaCaaabe qaaiaacEcaaaqcLbsacaGGPaGaaiilaiaadshacqGH9aqpcaWGMbWc daWgaaqaaiaaikdaaeqaaKqzGeGaaiikaiaadkhalmaaCaaabeqaai aacEcaaaqcLbsacaGGSaGaamiDaSWaaWbaaeqabaGaai4jaaaajugi biaacMcaaaa@4F9D@ ,

where f 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb WcdaWgaaqaaiaaigdaaeqaaaaa@3A72@ and f 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb WcdaWgaaqaaiaaikdaaeqaaaaa@3A73@ are any functions of the new coordinates r ' , t ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaahaaqabeaacaGGNaaaaKqzGeGaaiilaiaadshalmaaCaaabeqa aiaacEcaaaaaaa@3D7F@ ”.

Of course, such statements are incorrect, because only linear coordinate transformations that do not change the reference system are permissible. It is not surprising that sometimes certain people apply such "rules", especially when this confirms their absurd statements. Unfortunately, this is not the only example of such an error by the authors.3 Perhaps the authors, considering a finite region of curvilinear space, noticed that as the size of the region decreases, the image of curved lines begins to resemble straight lines. Based on this visual effect, the authors could make the strange conclusion3 that some local transformation of the system with a gravitational field into an inertial system takes place. Read3 § 85. Covariant differentiation (snapshot):

Formula (85.15) enables us to prove easily the assertion made above that it is always possible under condition (85.16) to choose a coordinate system in which all the Γ kl i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHto WrlmaaDaaabaGaam4AaiaadYgaaeaacaWGPbaaaaaa@3D04@ become zero at a previously assigned point (such a system is said to be locally-inertial or locally-geodesic (see §87)).

In fact, let the given point be chosen as the origin of coordinates, and let the values of the Γ kl i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHto WrlmaaDaaabaGaam4AaiaadYgaaeaacaWGPbaaaaaa@3D04@ at it be initially (in the coordinates x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqabeaacaWGPbaaaaaa@3AB8@ ) equal to​ ( Γ kl i ) 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiabfo5ahTWaa0baaeaacaWGRbGaamiBaaqaaiaadMgaaaaakiaa wIcacaGLPaaalmaaBaaabaGaaGimaaqabaaaaa@3F7D@ . In the neighbourhood of this point, we now make the transformation

x 'i = x i + 1 2 ( Γ kl i ) 0 x k x l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqabeaacaGGNaGaamyAaaaajugibiabg2da9iaadIhalmaa CaaabeqaaiaadMgaaaqcLbsacqGHRaWkkmaalaaabaqcLbsacaaIXa aakeaajugibiaaikdaaaGcdaqadaqaaKqzGeGaeu4KdC0cdaqhaaqa aiaadUgacaWGSbaabaGaamyAaaaaaOGaayjkaiaawMcaaSWaaSbaae aacaaIWaaabeaajugibiaadIhalmaaCaaabeqaaiaadUgaaaqcLbsa caWG4bWcdaahaaqabeaacaWGSbaaaaaa@5003@ . (85.18)

In fact, the curvature at a point is not related to the size of the region surrounding it. In addition, the proposed transformation (85.18) is a nonlinear operation of replacing coordinates with their differentials and, therefore, is not an admissible coordinate transformation.

In the well-known work of C. Møller,4 clearly under the influence of work,3 a "local transformation" is introduced, or more precisely, replacing coordinates with their differentials.5,6

Conclusion

Of course, a nonlinear local transformation is not a coordinate transformation in the general theory of relativity. One can only speak of the local equivalence of a system with gravity and an inertial system.2 Thus, the Minkowski tangent space to the Riemann spaces in a small neighbourhood of the tangent point is equivalent to this Riemann space.

All this, to our great regret, casts a shadow on the best publication devoted to theoretical physics. It should be noted that despite this, there are apparently researchers who understand that coordinate transformations in the general theory of relativity must be linear. "Generalization" of this principle leads to catastrophic errors.

All this, to our great regret, casts a shadow on the best publication devoted to theoretical physics. It is difficult to estimate the number of works and reviews that used erroneous transformations or a “local inertial coordinate system”. It should be noted that despite this, there are researchers who understand that coordinate transformations must be linear.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

Creative Commons Attribution License

©2024 Kuzmicheva, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.