Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 5 Issue 2

Immersion and invariance based adaptive attitude control of asteroid-orbiting spacecraft using modified Rodrigues parameters

Sahjendra N Singh,2 Keum W Lee1

1Professor, Department of Electronic Engineering, Catholic Kwandong University, Republic of Korea
2Professor, Department of Electrical and Computer Engineering, University of Nevada Las Vegas, USA

Correspondence: Sahjendra N Singh, Professor, Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las, Vegas, NV 89154

Received: June 11, 2021 | Published: July 30, 2021

Citation: Lee KW, Singh SN. Immersion and invariance based adaptive attitude control of asteroid-orbiting spacecraft using modified Rodrigues parameters. Aeron Aero Open Access J. 2021;5(2):57-64. DOI: 10.15406/aaoaj.2021.05.00128

Download PDF

Abstract

The attitude control of an asteroid-orbiting spacecraft based on immersion and invariance (I&I) theory is the subject of this paper. It is assumed that the moment of inertia matrix and the gravitational parameters are not known. The objective is to attain nadir pointing attitude on an elliptic orbit. First, based on the I&I principle, an adaptive attitude control system using the Modified Rodrigues Parameters (MRPs) is derived. Through the Lyapunov stability analysis, the asymptotic convergence of the MRP trajectories to the origin is established. Interestingly, in contrast to traditional adaptive systems, the trajectories of the closed-loop system converge to an attractive manifold in an extended state space. Then, for the purpose of comparison, this MRPs-based control law and a quaternions-based control system (also designed using the I&I principle) are simulated for the attitude control of the spacecraft in eccentric orbits around asteroid 433 Eros. It is observed that while each I&I-based control law can accomplish precise attitude control, for identical design parameters in these two control systems, the MRPs-based control law requires smaller control magnitude and accomplishes smoother convergence of trajectories to the attractive manifold, but requires larger settling time for the attitude trajectories, compared with the quaternions-based adaptive control law.

Keywords: asteroid-orbiting spacecraft, adaptive attitude control, immersion and invariance, parameter identifier, gravitational potential, nonlinear system

Introduction

For scientific exploration, missions to small bodies in the solar system, such as asteroids and comets, are extremely important. There have been several successful missions, such as NEAR, Hayabusa I, and Rosetta, and future missions (DART, Lucy, and Psyche) have been planned. Transporting near-Earth asteroids to halo orbits in the Earth-Moon system is of special interest to NASA. Additionally, transmitters can be stationed on asteroids for interplanetary flights.

Asteroids have irregular shapes and non-uniform density, and their gravitational force varies with the spatial coordinates of orbiting spacecraft. Researchers have analyzed the effect of the non-uniform gravity field of asteroids on attitude dynamics.1-4 It has been found that certain combinations of orbital and asteroid rotational rates can cause pitch resonance.1,2 Based on the Poincare section, the attitude motion of spacecraft has been analyzed.3 The authors have analyzed orbit-attitude coupled dynamics around small bodies and obtained a natural Sun-synchronous orbit and Sun-tracking attitude.4 For a linear time-varying model, an inverse control law for the yaw, pitch, and roll angle control has been designed.2 A nonlinear attitude control law for spacecraft with a large captured object (asteroid) has been derived.5 Researchers have also designed control systems for position and attitude control of spacecraft operating in the vicinity of asteroids.6-11 The design proposed by authors7 yields a finite time control law. Also, an adaptive sliding mode controller,8 a robust adaptive system,9 and a nonlinear control law based on the Lyapunov theory10 for orbit and attitude control have been derived. Based on a Hamiltonian representation of the coupled orbit-attitude dynamics, a control law has been obtained.11

For the control of nonlinear uncertain systems, a design methodology based on the notion of immersion and invariance (I&I) has been developed by Astolfi and Ortega12 and Astolfi et al.13 This design method yields a noncertainty-equivalence adaptive (NCEA) control system. Unlike traditional certainty-equivalence adaptive (CEA) schemes,14 the I&I-based designed identifier provides a net parameter estimate as a sum of a signal derived from an integral adaptation rule and an algebraic function. The identifier of NCEA systems provides stronger stability properties in a closed-loop system. The original design methodology, developed by the authors,13,14 requires solution of a partial differential (matrix) inequality, which is not an easy task. Seo and Akella15 proposed use of the filtered signals to overcome this difficulty and designed a quaternion-based NCEA law for the attitude control of a rigid body. The solvability requirement of the partial differential inequality can also be avoided by using dynamic scaling.13 A dynamic scaling-based NCEA attitude control law has been developed.16 An NCEA law has been designed for the pose control of a 6-DOF Earth-orbiting spacecraft described by dual quaternion.17 Also, a filter-free NCEA attitude control system has been proposed, which yields faster responses, compared with a controller with filters.18 NCEA laws have also been considered for hovering and the orbit control in the vicinity of asteroids.19,20 Recently, I&I-based adaptive control systems for the regulation of the yaw, pitch, and roll angles21 and quaternion trajectory22 of asteroid-orbiting spacecraft have been developed. A supertwisting control system for the control of spacecraft orbiting around asteroid has been developed.23 In a recent paper, based on the immersion and invariance principle, a generalized composite adaptive control law for asteroid-orbiting spacecraft has been designed.24

The attitude parameterization using a quaternion vector of dimension four is often made. However, for simplicity, the modified Rodrigues parameter (MRP) vector consisting of only three elements can be used for attitude representation. But the modified Rodrigues parameters (MRPs) are limited to eigen-axis rotations in the interval [0; 360) degrees. Of course, this limitation can be overcome by the use of shadow MRP.25,26 The authors have proposed sliding mode, CEA, and passifying control systems for MRP attitude control.27-29 It appears from the literature that an MRP-based NCEA attitude control law has not been designed for asteroid-orbiting spacecraft. Because NCEA laws provide parameter estimators with stronger stability properties, it is of interest to design an MRP-based attitude control system for asteroid related missions.

In this paper, the development of an adaptive attitude control law for nadir pointing of spacecraft - orbiting in elliptic orbits around rotating asteroids-is considered. This is important for the continuous observation of specific region of asteroid. It is assumed that the moment of inertia matrix of the spacecraft and asteroid's gravity field parameters are unknown.

The contribution of this paper is three-fold. First, an I&I-based NCEA attitude control law for the spacecraft model-including kinematics described by the MRPs-is designed. For the derivation of control law, a backstepping design method is adopted. Second, the asymptotic regulation of the MRP trajectory to the origin using Lyapunov stability analysis is established. Interestingly, unlike classical CEA systems, closed-loop system's trajectories converge to a manifold ℳa (to be defined later) in an extended-state space. Third, numerical results are presented for the MRP trajectory regulation of a spacecraft orbiting in eccentric orbits around asteroid 433 Eros. The results show precise attitude control despite uncertainties in the model. Also, for the purpose of comparison, the closed-loop system including the I&I-based adaptive law22-designed for quaternion trajectory control-is simulated. The results show that for identical feedback gains in the two control systems, the MRP-based control law requires a smaller control magnitude and achieves smoother convergence of trajectories to the manifold ℳa compared with the quaternion-based controller, but the settling time for the attitude trajectories is larger.

Asteroid-orbiting satellite dynamics

The spacecraft orbiting in an equatorial orbit - around an irregularly-shaped asteroid-is shown in Figure 1. In the figure, (XI, YI, ZI), (X0, Y0, Z0), and (XB, YB, ZB) represent an inertial frame (with its origin at the center of mass of the asteroid), an orbital frame, and a body-fixed frame (both centered at the center of the mass of the satellite), respectively. The asteroid is rotating about ZI normal to the equatorial plane with a constant rate Ω. Another frame , fixed to the asteroid (not shown in the figure), is aligned with the three centroidal principal axes of the asteroid. The axis X0 is in the orbital plane and points in the transverse direction; Z0 is along the radial line pointing towards the asteroid's center of mass; and Y0 = Z0 X0 is normal to the orbit plane. For equatorial orbits, (X0, Y0, Z0) frame is obtained from (XI, YI, ZI) by a single rotation angle equal to the true anomaly η.

Figure 1 Asteroid-orbiting spacecraft.

For this study, the dynamical model of the spacecraft, developed by Reyhanoglu et al.10, is considered, but their model uses a four dimensional quaternion vector qa to represent the kinematic equations. In this paper, it is of interest to describe the attitude, using the MRP vector σ R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabgI GiolaadkfadaahaaWcbeqaaiaaiodaaaaaaa@3C16@ for simplicity. Therefore, certain modifications in the spacecraft dynamical model10 will be necessary. Now, the attitude of the spacecraft with respect to the orbital frame is described by the MRP vector σ= [ σ 1 , σ 2 , σ 3 ] T R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabg2 da9maadmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiab eo8aZnaaBaaaleaacaaIYaaabeaakiaacYcacqaHdpWCdaWgaaWcba GaaG4maaqabaaakiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGc cqGHiiIZcaWGsbWaaWbaaSqabeaacaaIZaaaaaaa@499D@ , which satisfies:

σ=tan( Φ 4 ) e ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabg2 da9iGacshacaGGHbGaaiOBamaabmaabaWaaSaaaeaacqqHMoGraeaa caaI0aaaaaGaayjkaiaawMcaaiqadwgagaqcaaaa@4173@   (1)

where e ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwgagaqcaa aa@3808@ and Φ are Euler's principal rotation axis and principal angle of rotation, respectively. Thus, Eq. (1) has singularity at Φ= ±360 [deg]. However, this limitation can be removed by switching σ to the shadow MRP σ S =σ ( σ T σ ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaCa aaleqabaGaam4uaaaakiabg2da9iabgkHiTiabeo8aZnaabmaabaGa eq4Wdm3aaWbaaSqabeaacaWGubaaaOGaeq4WdmhacaGLOaGaayzkaa WaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@458A@ , when σ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaafmaabaGaeq 4WdmhacaGLjWUaayPcSdGaeyyzImRaaGymaaaa@3E79@ .25,26 The direction cosine matrix C bo ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaahaa WcbeqaaiaadkgacaWGVbaaaOWaaeWaaeaacqaHdpWCaiaawIcacaGL Paaaaaa@3D34@ from the orbital frame to the frame (XB, YB, ZB) can be written in a compact form as:26

C bo ( σ )= I 3×3 + [ 8 S 2 ( σ )4( 1 σ 2 )S( σ ) ] ( 1+ σ 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaahaa WcbeqaaiaadkgacaWGVbaaaOWaaeWaaeaacqaHdpWCaiaawIcacaGL PaaacqGH9aqpcaWGjbWaaSbaaSqaaiaaiodacqGHxdaTcaaIZaaabe aakiabgUcaRmaalaaabaWaamWaaeaacaaI4aGaam4uamaaCaaaleqa baGaaGOmaaaakmaabmaabaGaeq4WdmhacaGLOaGaayzkaaGaeyOeI0 IaaGinamaabmaabaGaaGymaiabgkHiTmaafmaabaGaeq4WdmhacaGL jWUaayPcSdWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaam 4uamaabmaabaGaeq4WdmhacaGLOaGaayzkaaaacaGLBbGaayzxaaaa baWaaeWaaeaacaaIXaGaey4kaSYaauWaaeaacqaHdpWCaiaawMa7ca GLkWoadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaaaaaa@6455@   (2)

where σ = ( σ T σ ) ( 1/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaafmaabaGaeq 4WdmhacaGLjWUaayPcSdGaeyypa0ZaaeWaaeaacqaHdpWCdaahaaWc beqaaiaadsfaaaGccqaHdpWCaiaawIcacaGLPaaadaahaaWcbeqaam aabmaabaGaaGymaiaac+cacaaIYaaacaGLOaGaayzkaaaaaaaa@46FD@ , and for any vector ξ=[ ξ 1 , ξ 2 , ξ 3 ]T,S( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4jabg2 da9maadmaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiab e67a4naaBaaaleaacaaIYaaabeaakiaacYcacqaH+oaEdaWgaaWcba GaaG4maaqabaaakiaawUfacaGLDbaacaWGubGaaiilaiaaykW7caWG tbWaaeWaaeaacqaH+oaEaiaawIcacaGLPaaaaaa@4C80@ is the skew-symmetric matrix defined as:

S( ξ )=[ 0 ξ 3 ξ 2 ξ 3 0 ξ 1 ξ 2 ξ 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaqada qaaiabe67a4bGaayjkaiaawMcaaiabg2da9maadmaabaqbaeqabmWa aaqaaiaaicdaaeaacqGHsislcqaH+oaEdaWgaaWcbaGaaG4maaqaba aakeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaaakeaacqaH+oaEdaWg aaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaeyOeI0IaeqOVdG3aaS baaSqaaiaaigdaaeqaaaGcbaGaeyOeI0IaeqOVdG3aaSbaaSqaaiaa ikdaaeqaaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGcbaGaaG imaaaaaiaawUfacaGLDbaaaaa@5374@

The angular velocity of the orbital frame with respect to the inertial frame expressed in the orbital frame is ω o = [ 0, η ˙ ,0 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGVbaabeaakiabg2da9maadmaabaGaaGimaiaacYcacqGH sislcuaH3oaAgaGaaiaacYcacaaIWaaacaGLBbGaayzxaaWaaWbaaS qabeaacaWGubaaaaaa@4379@ , where η is the true anomaly. Let the angular velocity of the spacecraft with respect to the inertial frame (expressed in the body frame (XB, YB, ZB)) be ω R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabgI GiolaadkfadaahaaWcbeqaaiaaiodaaaaaaa@3C20@ . Also, denote the relative angular velocity of the spacecraft with respect to the orbital frame as ω bo R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGIbGaam4BaaqabaGccqGHiiIZcaWGsbWaaWbaaSqabeaa caaIZaaaaaaa@3E31@ . Then ω bo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGIbGaam4Baaqabaaaaa@3AE2@ can be written as:

ω bo =ω C bo ( σ ) ω o =ω+ η ˙ c 2 bo ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGIbGaam4BaaqabaGccqGH9aqpcqaHjpWDcqGHsislcaWG dbWaaWbaaSqabeaacaWGIbGaam4BaaaakmaabmaabaGaeq4Wdmhaca GLOaGaayzkaaGaeqyYdC3aaSbaaSqaaiaad+gaaeqaaOGaeyypa0Ja eqyYdCNaey4kaSIafq4TdGMbaiaacaWGJbWaa0baaSqaaiaaikdaae aacaWGIbGaam4BaaaakmaabmaabaGaeq4WdmhacaGLOaGaayzkaaaa aa@5435@   (3)

where C bo ( σ )=[ c 1 bo , c 2 bo , c 3 bo ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaahaa WcbeqaaiaadkgacaWGVbaaaOWaaeWaaeaacqaHdpWCaiaawIcacaGL PaaacqGH9aqpdaWadaqaaiaadogadaqhaaWcbaGaaGymaaqaaiaadk gacaWGVbaaaOGaaiilaiaadogadaqhaaWcbaGaaGOmaaqaaiaadkga caWGVbaaaOGaaiilaiaadogadaqhaaWcbaGaaG4maaqaaiaadkgaca WGVbaaaaGccaGLBbGaayzxaaaaaa@4CAE@ and c i bo ( σ ) R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqhaa WcbaGaamyAaaqaaiaadkgacaWGVbaaaOWaaeWaaeaacqaHdpWCaiaa wIcacaGLPaaacqGHiiIZcaWGsbWaaWbaaSqabeaacaaIZaaaaaaa@4187@ is the ith column of C bo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaahaa WcbeqaaiaadkgacaWGVbaaaaaa@39DE@ . (Often the arguments of functions and matrices are suppressed for simplicity.)

The MRP vector σ satisfies the following differential equation:26

σ ˙ = 1 4 B( σ ) ω bo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaca Gaeyypa0ZaaSaaaeaacaaIXaaabaGaaGinaaaacaWGcbWaaeWaaeaa cqaHdpWCaiaawIcacaGLPaaacqaHjpWDdaWgaaWcbaGaamOyaiaad+ gaaeqaaaaa@4350@   (4)

Where:

B( σ )=[ ( 1 σ 2 ) I 3×3 +2S( σ )+2σ σ T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqada qaaiabeo8aZbGaayjkaiaawMcaaiabg2da9maadmaabaWaaeWaaeaa caaIXaGaeyOeI0YaauWaaeaacqaHdpWCaiaawMa7caGLkWoadaahaa WcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWGjbWaaSbaaSqaaiaa iodacqGHxdaTcaaIZaaabeaakiabgUcaRiaaikdacaWGtbWaaeWaae aacqaHdpWCaiaawIcacaGLPaaacqGHRaWkcaaIYaGaeq4WdmNaeq4W dm3aaWbaaSqabeaacaWGubaaaaGccaGLBbGaayzxaaaaaa@57B2@   (5)

The rotational equations of motion of the spacecraft are:

J ω ˙ =S( ω )Jω+ M g ( σ )+u+d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeacuaHjp WDgaGaaiabg2da9iabgkHiTiaadofadaqadaqaaiabeM8a3bGaayjk aiaawMcaaiaadQeacqaHjpWDcqGHRaWkcaWGnbWaaSbaaSqaaiaadE gaaeqaaOWaaeWaaeaacqaHdpWCaiaawIcacaGLPaaacqGHRaWkcaWG 1bGaey4kaSIaamizaaaa@4C39@   (6)

where u = [u1, u2, u3]T, J = diag{J1, J2, J3}, Mg = [Mg1, Mg2, Mg3]T, and d R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacqGHii IZcaWGsbWaaWbaaSqabeaacaaIZaaaaaaa@3B3C@ are the control torque vector, principal inertia matrix, gravity gradient torque vector, and disturbance input, respectively.

For the computation of Mg, the following functions are introduced:10

ϕ=[ 1.5 C 20 +9 C 22 cos( 2 λ c ) ] ( r 0 / R c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMjabg2 da9maadmaabaGaeyOeI0IaaGymaiaac6cacaaI1aGaam4qamaaBaaa leaacaaIYaGaaGimaaqabaGccqGHRaWkcaaI5aGaam4qamaaBaaale aacaaIYaGaaGOmaaqabaGcciGGJbGaai4Baiaacohadaqadaqaaiaa ikdacqaH7oaBdaWgaaWcbaGaam4yaaqabaaakiaawIcacaGLPaaaai aawUfacaGLDbaadaqadaqaamaalyaabaGaamOCamaaBaaaleaacaaI WaaabeaaaOqaaiaadkfadaWgaaWcbaGaam4yaaqabaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@53C4@

χ=6 C 22 sin( 2 λ c ) ( r 0 / R c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJjabg2 da9iaaiAdacaWGdbWaaSbaaSqaaiaaikdacaaIYaaabeaakiGacoha caGGPbGaaiOBamaabmaabaGaaGOmaiabeU7aSnaaBaaaleaacaWGJb aabeaaaOGaayjkaiaawMcaamaabmaabaWaaSGbaeaacaWGYbWaaSba aSqaaiaaicdaaeqaaaGcbaGaamOuamaaBaaaleaacaWGJbaabeaaaa aakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@4B54@   (7)

where λc is longitude of the center of mass of the satellite, Rc is the radial distance between the centers of mass of the asteroid and the spacecraft, and r0 is the characteristic length. Here, only the most significant spherical harmonic coefficients C20 and C22 of the gravitational potential are considered.10 (Of course, the design method is applicable, if additional coefficients are used.) The gravitational parameter of the asteroid is μ = GMa, where G is the universal gravitational constant, and Ma is the mass of the asteroid. Here, the satellite's orbit in the equatorial plane is considered. For prograde orbits, one has λ c ( η,t )=( ηΩt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGJbaabeaakmaabmaabaGaeq4TdGMaaiilaiaadshaaiaa wIcacaGLPaaacqGH9aqpdaqadaqaaiabeE7aOjabgkHiTiabfM6axj aadshaaiaawIcacaGLPaaaaaa@466D@ , where is the asteroid's constant angular rate.

The gravity torque Mgi, (i = 1, 2, 3), derived by Reyhanoglu et al.10, are considered for design, but now, the MRP-dependent matrix C bo ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaahaa WcbeqaaiaadkgacaWGVbaaaOWaaeWaaeaacqaHdpWCaiaawIcacaGL Paaaaaa@3D34@ is used for computation. Thus, Mgi(σ); (i = 1, 2, 3) are given by:

M g1 ( σ )= μ R c 3 [ ( 3+5ϕ )( J 3 J 2 ) c 23 bo c 33 bo +2.5χ{ 0.4 J 1 c 12 bo ( J 1 + J 2 J 3 ) c 21 bo c 33 bo +( J 1 J 2 + J 3 ) c 23 bo c 31 bo } ] ψ a1 ( σ )p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4zaiaaigdaaeqaaOWaaeWaaeaacqaHdpWCaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiabeY7aTbqaaiaadkfadaqhaaWcbaGaam 4yaaqaaiaaiodaaaaaaOWaamWaaeaadaqadaqaaiaaiodacqGHRaWk caaI1aGaeqy1dygacaGLOaGaayzkaaWaaeWaaeaacaWGkbWaaSbaaS qaaiaaiodaaeqaaOGaeyOeI0IaamOsamaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaiaadogadaqhaaWcbaGaaGOmaiaaiodaaeaaca WGIbGaam4BaaaakiaadogadaqhaaWcbaGaaG4maiaaiodaaeaacaWG IbGaam4BaaaakiabgUcaRiaaikdacaGGUaGaaGynaiabeE8aJnaacm aabaGaeyOeI0IaaGimaiaac6cacaaI0aGaamOsamaaBaaaleaacaaI XaaabeaakiaadogadaqhaaWcbaGaaGymaiaaikdaaeaacaWGIbGaam 4BaaaakiabgkHiTmaabmaabaGaamOsamaaBaaaleaacaaIXaaabeaa kiabgUcaRiaadQeadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGkb WaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaam4yamaaDaaa leaacaaIYaGaaGymaaqaaiaadkgacaWGVbaaaOGaam4yamaaDaaale aacaaIZaGaaG4maaqaaiaadkgacaWGVbaaaOGaey4kaSYaaeWaaeaa caWGkbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOsamaaBaaale aacaaIYaaabeaakiabgUcaRiaadQeadaWgaaWcbaGaaG4maaqabaaa kiaawIcacaGLPaaacaWGJbWaa0baaSqaaiaaikdacaaIZaaabaGaam Oyaiaad+gaaaGccaWGJbWaa0baaSqaaiaaiodacaaIXaaabaGaamOy aiaad+gaaaaakiaawUhacaGL9baaaiaawUfacaGLDbaacqWIqjIqcq aHipqEdaWgaaWcbaGaamyyaiaaigdaaeqaaOWaaeWaaeaacqaHdpWC aiaawIcacaGLPaaacaWGWbaaaa@9742@   (8)

M g2 ( σ )= μ R c 3 [ ( 3+5ϕ )( J 1 J 3 ) c 13 bo c 33 bo +2.5χ{ 0.4 J 2 c 22 bo +( J 1 + J 2 J 3 ) c 11 bo c 33 bo ( J 2 + J 3 J 1 ) c 13 bo c 31 bo } ] ψ b1 ( σ )p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4zaiaaikdaaeqaaOWaaeWaaeaacqaHdpWCaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiabeY7aTbqaaiaadkfadaqhaaWcbaGaam 4yaaqaaiaaiodaaaaaaOWaamWaaeaadaqadaqaaiaaiodacqGHRaWk caaI1aGaeqy1dygacaGLOaGaayzkaaWaaeWaaeaacaWGkbWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0IaamOsamaaBaaaleaacaaIZaaabeaa aOGaayjkaiaawMcaaiaadogadaqhaaWcbaGaaGymaiaaiodaaeaaca WGIbGaam4BaaaakiaadogadaqhaaWcbaGaaG4maiaaiodaaeaacaWG IbGaam4BaaaakiabgUcaRiaaikdacaGGUaGaaGynaiabeE8aJnaacm aabaGaeyOeI0IaaGimaiaac6cacaaI0aGaamOsamaaBaaaleaacaaI YaaabeaakiaadogadaqhaaWcbaGaaGOmaiaaikdaaeaacaWGIbGaam 4BaaaakiabgUcaRmaabmaabaGaamOsamaaBaaaleaacaaIXaaabeaa kiabgUcaRiaadQeadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGkb WaaSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaam4yamaaDaaa leaacaaIXaGaaGymaaqaaiaadkgacaWGVbaaaOGaam4yamaaDaaale aacaaIZaGaaG4maaqaaiaadkgacaWGVbaaaOGaeyOeI0YaaeWaaeaa caWGkbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamOsamaaBaaale aacaaIZaaabeaakiabgkHiTiaadQeadaWgaaWcbaGaaGymaaqabaaa kiaawIcacaGLPaaacaWGJbWaa0baaSqaaiaaigdacaaIZaaabaGaam Oyaiaad+gaaaGccaWGJbWaa0baaSqaaiaaiodacaaIXaaabaGaamOy aiaad+gaaaaakiaawUhacaGL9baaaiaawUfacaGLDbaacqWIqjIqcq aHipqEdaWgaaWcbaGaamOyaiaaigdaaeqaaOWaaeWaaeaacqaHdpWC aiaawIcacaGLPaaacaWGWbaaaa@9742@   (9)

M g3 ( σ )= μ R c 3 [ ( 3+5ϕ )( J 2 J 1 ) c 13 bo c 23 bo +2.5χ{ 0.4 J 3 c 32 bo +( J 2 + J 3 J 1 ) c 13 bo c 21 bo ( J 1 J 2 + J 3 ) c 11 bo c 23 bo } ] ψ c1 ( σ )p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4zaiaaiodaaeqaaOWaaeWaaeaacqaHdpWCaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiabeY7aTbqaaiaadkfadaqhaaWcbaGaam 4yaaqaaiaaiodaaaaaaOWaamWaaeaadaqadaqaaiaaiodacqGHRaWk caaI1aGaeqy1dygacaGLOaGaayzkaaWaaeWaaeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaeyOeI0IaamOsamaaBaaaleaacaaIXaaabeaa aOGaayjkaiaawMcaaiaadogadaqhaaWcbaGaaGymaiaaiodaaeaaca WGIbGaam4BaaaakiaadogadaqhaaWcbaGaaGOmaiaaiodaaeaacaWG IbGaam4BaaaakiabgUcaRiaaikdacaGGUaGaaGynaiabeE8aJnaacm aabaGaeyOeI0IaaGimaiaac6cacaaI0aGaamOsamaaBaaaleaacaaI ZaaabeaakiaadogadaqhaaWcbaGaaG4maiaaikdaaeaacaWGIbGaam 4BaaaakiabgUcaRmaabmaabaGaamOsamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadQeadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWGkb WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaam4yamaaDaaa leaacaaIXaGaaG4maaqaaiaadkgacaWGVbaaaOGaam4yamaaDaaale aacaaIYaGaaGymaaqaaiaadkgacaWGVbaaaOGaeyOeI0YaaeWaaeaa caWGkbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOsamaaBaaale aacaaIYaaabeaakiabgUcaRiaadQeadaWgaaWcbaGaaG4maaqabaaa kiaawIcacaGLPaaacaWGJbWaa0baaSqaaiaaigdacaaIXaaabaGaam Oyaiaad+gaaaGccaWGJbWaa0baaSqaaiaaikdacaaIZaaabaGaamOy aiaad+gaaaaakiaawUhacaGL9baaaiaawUfacaGLDbaacqWIqjIqcq aHipqEdaWgaaWcbaGaam4yaiaaigdaaeqaaOWaaeWaaeaacqaHdpWC aiaawIcacaGLPaaacaWGWbaaaa@9742@   (10)

where c ij bo ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqhaa WcbaGaamyAaiaadQgaaeaacaWGIbGaam4BaaaakmaabmaabaGaeq4W dmhacaGLOaGaayzkaaaaaa@3F31@ is the ijth element of matrix C bo ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaahaa WcbeqaaiaadkgacaWGVbaaaOWaaeWaaeaacqaHdpWCaiaawIcacaGL Paaaaaa@3D34@ , and:

p= [ J 1 , J 2 , J 3 , C 20 J 1 , C 20 J 2 , C 20 J 3 , C 22 J 1 , C 22 J 2 , C 22 J 3 ] T R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGH9a qpdaWadaqaaiaadQeadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOs amaaBaaaleaacaaIYaaabeaakiaacYcacaWGkbWaaSbaaSqaaiaaio daaeqaaOGaaiilaiaadoeadaWgaaWcbaGaaGOmaiaaicdaaeqaaOGa amOsamaaBaaaleaacaaIXaaabeaakiaacYcacaWGdbWaaSbaaSqaai aaikdacaaIWaaabeaakiaadQeadaWgaaWcbaGaaGOmaaqabaGccaGG SaGaam4qamaaBaaaleaacaaIYaGaaGimaaqabaGccaWGkbWaaSbaaS qaaiaaiodaaeqaaOGaaiilaiaadoeadaWgaaWcbaGaaGOmaiaaikda aeqaaOGaamOsamaaBaaaleaacaaIXaaabeaakiaacYcacaWGdbWaaS baaSqaaiaaikdacaaIYaaabeaakiaadQeadaWgaaWcbaGaaGOmaaqa baGccaGGSaGaam4qamaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGkb WaaSbaaSqaaiaaiodaaeqaaaGccaGLBbGaayzxaaWaaWbaaSqabeaa caWGubaaaOGaeyicI4SaamOuamaaCaaaleqabaGaaG4maaaaaaa@6357@

is assumed to be an unknown parameter vector. Define a regressor matrix ψ 1 ( σ )= [ ψ a1 T , ψ b1 T , ψ c1 T ] T R 3×9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5naaBa aaleaacaaIXaaabeaakmaabmaabaGaeq4WdmhacaGLOaGaayzkaaGa eyypa0ZaamWaaeaacqaHipqEdaqhaaWcbaGaamyyaiaaigdaaeaaca WGubaaaOGaaiilaiabeI8a5naaDaaaleaacaWGIbGaaGymaaqaaiaa dsfaaaGccaGGSaGaeqiYdK3aa0baaSqaaiaadogacaaIXaaabaGaam ivaaaaaOGaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiabgIGi olaadkfadaahaaWcbeqaaiaaiodacqGHxdaTcaaI5aaaaaaa@5620@ . Then, the gravity torque takes a compact form as:

M g ( σ )= ψ 1 ( σ )p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4zaaqabaGcdaqadaqaaiabeo8aZbGaayjkaiaawMcaaiab g2da9iabeI8a5naaBaaaleaacaaIXaaabeaakmaabmaabaGaeq4Wdm hacaGLOaGaayzkaaGaamiCaaaa@4454@   (11)

Substituting Eq. (11) in (6) and assuming that disturbance input d is zero, one obtains:

J ω ˙ =S( ω )Jω+ ψ 1 ( σ )p+u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeacuaHjp WDgaGaaiabg2da9iabgkHiTiaadofadaqadaqaaiabeM8a3bGaayjk aiaawMcaaiaadQeacqaHjpWDcqGHRaWkcqaHipqEdaWgaaWcbaGaaG ymaaqabaGcdaqadaqaaiabeo8aZbGaayjkaiaawMcaaiaadchacqGH RaWkcaWG1baaaa@4C2E@   (12)

The objective is to design a control law for the system (4) and (12) such that ( σ T , ω bo T ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4Wdm3aaWbaaSqabeaacaWGubaaaOGaaiilaiabeM8a3naaDaaaleaa caWGIbGaam4BaaqaaiaadsfaaaaakiaawIcacaGLPaaadaahaaWcbe qaaiaadsfaaaaaaa@41D8@ asymptotically converges to zero, despite uncertainties in the parameter vector p. Then, it follows that the spacecraft will attain a nadir pointing attitude.

MRP trajectory control system design

The design is based on a backstepping method. For the design, it is assumed that the disturbance torque d(t) is zero. (Later, robustness of control law will be examined by simulation for d ≠ 0).

Step 1

With an objective to regulate σ to zero, consider a Lyapunov function:

W 1 ( σ )=2ln[ 1+ σ T σ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiabeo8aZbGaayjkaiaawMcaaiab g2da9iaaikdaciGGSbGaaiOBamaadmaabaGaaGymaiabgUcaRiabeo 8aZnaaCaaaleqabaGaamivaaaakiabeo8aZbGaay5waiaaw2faaaaa @47F2@   (13)

Its derivative along the solution of Eq. (4) is:

W ˙ 1 =4[ 1 1+ σ T σ ] σ T [ 1 4 ]B( σ ) ω bo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEfagaGaam aaBaaaleaacaaIXaaabeaakiabg2da9iaaisdadaWadaqaamaalaaa baGaaGymaaqaaiaaigdacqGHRaWkcqaHdpWCdaahaaWcbeqaaiaads faaaGccqaHdpWCaaaacaGLBbGaayzxaaGaeq4Wdm3aaWbaaSqabeaa caWGubaaaOWaamWaaeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaGaay 5waiaaw2faaiaadkeadaqadaqaaiabeo8aZbGaayjkaiaawMcaaiab eM8a3naaBaaaleaacaWGIbGaam4Baaqabaaaaa@51CD@   (14)

Using B from Eq. (5), one can verify that:

σ T B( σ )=( 1+ σ 2 ) σ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaCa aaleqabaGaamivaaaakiaadkeadaqadaqaaiabeo8aZbGaayjkaiaa wMcaaiabg2da9maabmaabaGaaGymaiabgUcaRmaafmaabaGaeq4Wdm hacaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzk aaGaeq4Wdm3aaWbaaSqabeaacaWGubaaaaaa@4AC6@   (15)

Let ω v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG2baabeaaaaa@3A02@ be a virtual stabilizing signal, and define the error ω e = ω bo ω v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGLbaabeaakiabg2da9iabeM8a3naaBaaaleaacaWGIbGa am4BaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaamODaaqabaaaaa@42C0@ . Then, using Eq. (15), Eq. (14) gives:

W ˙ 1 = σ T [ ω e + ω v ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEfagaGaam aaBaaaleaacaaIXaaabeaakiabg2da9iabeo8aZnaaCaaaleqabaGa amivaaaakmaadmaabaGaeqyYdC3aaSbaaSqaaiaadwgaaeqaaOGaey 4kaSIaeqyYdC3aaSbaaSqaaiaadAhaaeqaaaGccaGLBbGaayzxaaaa aa@457C@   (16)

Selecting ω v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG2baabeaaaaa@3A02@ as:

ω v = k 1 σ, k 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG2baabeaakiabg2da9iabgkHiTiaadUgadaWgaaWcbaGa aGymaaqabaGccqaHdpWCcaGGSaGaam4AamaaBaaaleaacaaIXaaabe aakiabg6da+iaaicdaaaa@43F6@   (17)

and then, substituting Eq. (17) in Eq. (16) gives

W ˙ 1 = k 1 σ 2 + σ T ω e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEfagaGaam aaBaaaleaacaaIXaaabeaakiabg2da9iabgkHiTiaadUgadaWgaaWc baGaaGymaaqabaGcdaqbdaqaaiabeo8aZbGaayzcSlaawQa7amaaCa aaleqabaGaaGOmaaaakiabgUcaRiabeo8aZnaaCaaaleqabaGaamiv aaaakiabeM8a3naaBaaaleaacaWGLbaabeaaaaa@492D@   (18)

Step 2

Now, it is essential to regulate the error

ω e = ω bo ω v =ω+ η ˙ c 2 bo ( σ )+ k 1 σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGLbaabeaakiabg2da9iabeM8a3naaBaaaleaacaWGIbGa am4BaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaamODaaqabaGccq GH9aqpcqaHjpWDcqGHRaWkcuaH3oaAgaGaaiaadogadaqhaaWcbaGa aGOmaaqaaiaadkgacaWGVbaaaOWaaeWaaeaacqaHdpWCaiaawIcaca GLPaaacqGHRaWkcaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaeq4Wdmha aa@53BC@   (19)

to zero. Noting that C ˙ bo ( σ )=S( ω bo ) C bo ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadoeagaGaam aaCaaaleqabaGaamOyaiaad+gaaaGcdaqadaqaaiabeo8aZbGaayjk aiaawMcaaiabg2da9iabgkHiTiaadofadaqadaqaaiabeM8a3naaBa aaleaacaWGIbGaam4BaaqabaaakiaawIcacaGLPaaacaWGdbWaaWba aSqabeaacaWGIbGaam4BaaaakmaabmaabaGaeq4WdmhacaGLOaGaay zkaaaaaa@4B95@ , the derivative of c 2 bo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqhaa WcbaGaaGOmaaqaaiaadkgacaWGVbaaaaaa@3ABA@ can be written as:

c ˙ 2 bo ( σ )=S( ω bo ) c 2 bo ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaGaam aaDaaaleaacaaIYaaabaGaamOyaiaad+gaaaGcdaqadaqaaiabeo8a ZbGaayjkaiaawMcaaiabg2da9iabgkHiTiaadofadaqadaqaaiabeM 8a3naaBaaaleaacaWGIbGaam4BaaqabaaakiaawIcacaGLPaaacaWG JbWaa0baaSqaaiaaikdaaeaacaWGIbGaam4BaaaakmaabmaabaGaeq 4WdmhacaGLOaGaayzkaaaaaa@4D4D@   (20)

Next, differentiating and using Eq. (12) gives:

J ω ˙ e =S( ω )Jω+ ψ 1 ( σ )p+u+J[ η ¨ c 2 bo η ˙ S( ω bo ) c 2 bo + k 1 σ ˙ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeacuaHjp WDgaGaamaaBaaaleaacaWGLbaabeaakiabg2da9iabgkHiTiaadofa daqadaqaaiabeM8a3bGaayjkaiaawMcaaiaadQeacqaHjpWDcqGHRa WkcqaHipqEdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiabeo8aZbGa ayjkaiaawMcaaiaadchacqGHRaWkcaWG1bGaey4kaSIaamOsamaadm aabaGafq4TdGMbamaacaWGJbWaa0baaSqaaiaaikdaaeaacaWGIbGa am4BaaaakiabgkHiTiqbeE7aOzaacaGaam4uamaabmaabaGaeqyYdC 3aaSbaaSqaaiaadkgacaWGVbaabeaaaOGaayjkaiaawMcaaiaadoga daqhaaWcbaGaaGOmaaqaaiaadkgacaWGVbaaaOGaey4kaSIaam4Aam aaBaaaleaacaaIXaaabeaakiqbeo8aZzaacaaacaGLBbGaayzxaaaa aa@6783@   (21)

where  σ ˙ =0.25B( σ ) ω bo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaca Gaeyypa0JaaGimaiaac6cacaaIYaGaaGynaiaadkeadaqadaqaaiab eo8aZbGaayjkaiaawMcaaiabeM8a3naaBaaaleaacaWGIbGaam4Baa qabaaaaa@44AE@

The remaining part of the derivation of the control law is similar to Lee and Singh,22 in which quaternions have been used as attitude parameters. Of course, differences arise in the computation of the regressor matrix by the use of MRP. Therefore, the derivation will be presented briefly.

Let s be the Laplace variable or a differential operator. By adding and subtracting J[ k 2 ω e + k 3 ( s+α )σ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeadaWada qaaiaadUgadaWgaaWcbaGaaGOmaaqabaGccqaHjpWDdaWgaaWcbaGa amyzaaqabaGccqGHRaWkcaWGRbWaaSbaaSqaaiaaiodaaeqaaOWaae WaaeaacaWGZbGaey4kaSIaeqySdegacaGLOaGaayzkaaGaeq4Wdmha caGLBbGaayzxaaaaaa@4828@ in Eq. (21), and defining:

Ψ 2p =S( ω )Jω+J[ η ¨ c 2 bo η ˙ S( ω r ) c 2 + k 1 σ ˙ + k 2 ω e + k 3 ( s+α )σ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6aznaaBa aaleaacaaIYaGaamiCaaqabaGccqGH9aqpcqGHsislcaWGtbWaaeWa aeaacqaHjpWDaiaawIcacaGLPaaacaWGkbGaeqyYdCNaey4kaSIaam OsamaadmaabaGafq4TdGMbamaacaWGJbWaa0baaSqaaiaaikdaaeaa caWGIbGaam4BaaaakiabgkHiTiqbeE7aOzaacaGaam4uamaabmaaba GaeqyYdC3aaSbaaSqaaiaadkhaaeqaaaGccaGLOaGaayzkaaGaam4y amaaBaaaleaacaaIYaaabeaakiabgUcaRiaadUgadaWgaaWcbaGaaG ymaaqabaGccuaHdpWCgaGaaiabgUcaRiaadUgadaWgaaWcbaGaaGOm aaqabaGccqaHjpWDdaWgaaWcbaGaamyzaaqabaGccqGHRaWkcaWGRb WaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaacaWGZbGaey4kaSIaeqyS degacaGLOaGaayzkaaGaeq4WdmhacaGLBbGaayzxaaaaaa@69F1@

and Ψ= Ψ 1 + Ψ 2 R 3×9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6azjabg2 da9iabfI6aznaaBaaaleaacaaIXaaabeaakiabgUcaRiabfI6aznaa BaaaleaacaaIYaaabeaakiabgIGiolaadkfadaahaaWcbeqaaiaaio dacqGHxdaTcaaI5aaaaaaa@45A5@ , one obtains:

ω ˙ e = J 1 [ Ψp+u ] k 2 ω e k 3 ( s+α )σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaaca WaaSbaaSqaaiaadwgaaeqaaOGaeyypa0JaamOsamaaCaaaleqabaGa eyOeI0IaaGymaaaakmaadmaabaGaeuiQdKLaamiCaiabgUcaRiaadw haaiaawUfacaGLDbaacqGHsislcaWGRbWaaSbaaSqaaiaaikdaaeqa aOGaeqyYdC3aaSbaaSqaaiaadwgaaeqaaOGaeyOeI0Iaam4AamaaBa aaleaacaaIZaaabeaakmaabmaabaGaam4CaiabgUcaRiabeg7aHbGa ayjkaiaawMcaaiabeo8aZbaa@535B@   (22)

where α, k2, and k3 are positive design parameters.

For the design of control input, a filtered version of Eq. (22), using a transfer function H(s)= ( s+α ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaGGOa Gaam4CaiaacMcacqGH9aqpdaqadaqaaiaadohacqGHRaWkcqaHXoqy aiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@4209@ , is considered. The filtered signals satisfy the following equations:

Ψ ˙ f =α Ψ f +Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfI6azzaaca WaaSbaaSqaaiaadAgaaeqaaOGaeyypa0JaeyOeI0IaeqySdeMaeuiQ dK1aaSbaaSqaaiaadAgaaeqaaOGaey4kaSIaeuiQdKfaaa@427A@   (23)

ω ˙ ef =α ω ef + ω e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaaca WaaSbaaSqaaiaadwgacaWGMbaabeaakiabg2da9iabgkHiTiabeg7a HjabeM8a3naaBaaaleaacaWGLbGaamOzaaqabaGccqGHRaWkcqaHjp WDdaWgaaWcbaGaamyzaaqabaaaaa@461E@   (24)

u ˙ f =α u f +u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwhagaGaam aaBaaaleaacaWGMbaabeaakiabg2da9iabgkHiTiabeg7aHjaadwha daWgaaWcbaGaamOzaaqabaGccqGHRaWkcaWG1baaaa@40BB@   (25)

Then, filtering both sides of Eq. (22) with H(s), gives:

ω ˙ ef = J 1 [ Ψ fp + u f ] k 2 ω ef k 3 σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaaca WaaSbaaSqaaiaadwgacaWGMbaabeaakiabg2da9iaadQeadaahaaWc beqaaiabgkHiTiaaigdaaaGcdaWadaqaaiabfI6aznaaBaaaleaaca WGMbGaamiCaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaadAgaaeqa aaGccaGLBbGaayzxaaGaeyOeI0Iaam4AamaaBaaaleaacaaIYaaabe aakiabeM8a3naaBaaaleaacaWGLbGaamOzaaqabaGccqGHsislcaWG RbWaaSbaaSqaaiaaiodaaeqaaOGaeq4Wdmhaaa@5271@   (26)

Now, in view of Eq. (26), uf is chosen as:

u f = Ψ f ( p ^ +β( ω ef , Ψ f ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaamOzaaqabaGccqGH9aqpcqGHsislcqqHOoqwdaWgaaWcbaGa amOzaaqabaGcdaqadaqaaiqadchagaqcaiabgUcaRiabek7aInaabm aabaGaeqyYdC3aaSbaaSqaaiaadwgacaWGMbaabeaakiaacYcacqqH OoqwdaWgaaWcbaGaamOzaaqabaaakiaawIcacaGLPaaaaiaawIcaca GLPaaaaaa@4B9E@   (27)

where p ^ +β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadchagaqcai abgUcaRiabek7aIbaa@3A96@ is the net estimate of the unknown parameter vector p. The component β is an algebraic vector function, and is the partial estimate of p. This choice of full estimate ( p ^ +β) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaceWGWb GbaKaacqGHRaWkcqaHYoGycaGGPaaaaa@3BEF@ differs from the parameter estimate of CEA systems. In CEA systems, β is zero. The use of an algebraic function in the net estimate provides stronger stability properties in the closed-loop system.

Define the parameter error as z= p ^ +βp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhacqGH9a qpceWGWbGbaKaacqGHRaWkcqaHYoGycqGHsislcaWGWbaaaa@3E7D@ . Then, substituting the control signal in Eq. (26) gives:

ω ˙ ef = J 1 Ψ f z k 2 ω ef k 3 σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaaca WaaSbaaSqaaiaadwgacaWGMbaabeaakiabg2da9iabgkHiTiaadQea daahaaWcbeqaaiabgkHiTiaaigdaaaGccqqHOoqwdaWgaaWcbaGaam OzaaqabaGccaWG6bGaeyOeI0Iaam4AamaaBaaaleaacaaIYaaabeaa kiabeM8a3naaBaaaleaacaWGLbGaamOzaaqabaGccqGHsislcaWGRb WaaSbaaSqaaiaaiodaaeqaaOGaeq4Wdmhaaa@4E79@   (28)

For stability analysis, consider a Lyapunov function:

W s = W 1 +[ ω ef T ω ef /2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaam4CaaqabaGccqGH9aqpcaWGxbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSYaamWaaeaacqaHjpWDdaqhaaWcbaGaamyzaiaadAgaae aacaWGubaaaOGaeqyYdC3aaSbaaSqaaiaadwgacaWGMbaabeaakiaa c+cacaaIYaaacaGLBbGaayzxaaaaaa@48B8@

With the choice of k 3 + k 2 α=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaG4maaqabaGccqGHRaWkcaWGRbWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaeqySdeMaeyypa0JaaGimaaaa@4001@ , after some manipulations, one can show that22:

W ˙ s 1 2 [ ( k 1 +2 k 3 ) σ 2 + k 2 ω ef 2 ]+( k 1 + k 2 2 k 1 k 2 ) J 1 Ψ f z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEfagaGaam aaBaaaleaacaWGZbaabeaakiabgsMiJkabgkHiTmaalaaabaGaaGym aaqaaiaaikdaaaWaamWaaeaadaqadaqaaiaadUgadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaaIYaGaam4AamaaBaaaleaacaaIZaaabeaa aOGaayjkaiaawMcaamaafmaabaGaeq4WdmhacaGLjWUaayPcSdWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaam4AamaaBaaaleaacaaIYaaa beaakmaafmaabaGaeqyYdC3aaSbaaSqaaiaadwgacaWGMbaabeaaaO GaayzcSlaawQa7amaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2fa aiabgUcaRmaabmaabaWaaSaaaeaacaWGRbWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaam4AamaaBaaaleaacaaIYaaabeaaaOqaaiaaikda caWGRbWaaSbaaSqaaiaaigdaaeqaaOGaam4AamaaBaaaleaacaaIYa aabeaaaaaakiaawIcacaGLPaaadaqbdaqaaiaadQeadaahaaWcbeqa aiabgkHiTiaaigdaaaGccqqHOoqwdaWgaaWcbaGaamOzaaqabaGcca WG6baacaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaaaa@6CC6@   (29)

Parameter estimation

Now, the derivation of parameter estimate is considered. The algebraic component β is chosen as:

β=γ Ψ f T ω ef ,γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iabeo7aNjabfI6aznaaDaaaleaacaWGMbaabaGaamivaaaakiab eM8a3naaBaaaleaacaWGLbGaamOzaaqabaGccaGGSaGaeq4SdCMaey Opa4JaaGimaaaa@46D7@   (30)

For the derivation of an update law for p ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadchagaqcaa aa@3813@ , consider the dynamics of the parameter error z= p ^ +βp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhacqGH9a qpceWGWbGbaKaacqGHRaWkcqaHYoGycqGHsislcaWGWbaaaa@3E7D@ . Its derivative using Eq. (28) takes the form:

z ˙ = p ^ ˙ +γ Ψ f T ω ef +γ Ψ f T [ J 1 Ψ f z k 2 ω ef k 3 σ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadQhagaGaai abg2da9iqadchagaqcgaGaaiabgUcaRiabeo7aNjabfI6aznaaDaaa leaacaWGMbaabaGaamivaaaakiabeM8a3naaBaaaleaacaWGLbGaam OzaaqabaGccqGHRaWkcqaHZoWzcqqHOoqwdaqhaaWcbaGaamOzaaqa aiaadsfaaaGcdaWadaqaaiabgkHiTiaadQeadaahaaWcbeqaaiabgk HiTiaaigdaaaGccqqHOoqwdaWgaaWcbaGaamOzaaqabaGccaWG6bGa eyOeI0Iaam4AamaaBaaaleaacaaIYaaabeaakiabeM8a3naaBaaale aacaWGLbGaamOzaaqabaGccqGHsislcaWGRbWaaSbaaSqaaiaaioda aeqaaOGaeq4WdmhacaGLBbGaayzxaaaaaa@5E9D@   (31)

where one has Ψ ˙ f =α Ψ f +Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfI6azzaaca WaaSbaaSqaaiaadAgaaeqaaOGaeyypa0JaeyOeI0IaeqySdeMaeuiQ dK1aaSbaaSqaaiaadAgaaeqaaOGaey4kaSIaeuiQdKfaaa@427A@ from Eq. (23). Now, an update law is selected as:

p ^ ˙ =γ Ψ ˙ f T ω ef γ Ψ f T [ k 2 ω ef k 3 σ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadchagaqcga Gaaiabg2da9iabgkHiTiabeo7aNjqbfI6azzaacaWaa0baaSqaaiaa dAgaaeaacaWGubaaaOGaeqyYdC3aaSbaaSqaaiaadwgacaWGMbaabe aakiabgkHiTiabeo7aNjabfI6aznaaDaaaleaacaWGMbaabaGaamiv aaaakmaadmaabaGaeyOeI0Iaam4AamaaBaaaleaacaaIYaaabeaaki abeM8a3naaBaaaleaacaWGLbGaamOzaaqabaGccqGHsislcaWGRbWa aSbaaSqaaiaaiodaaeqaaOGaeq4WdmhacaGLBbGaayzxaaaaaa@566A@   (32)

Next, substituting Eq. (32) in (31) gives:

z ˙ =γ Ψ f T J 1 Ψ f z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadQhagaGaai abg2da9iabgkHiTiabeo7aNjabfI6aznaaDaaaleaacaWGMbaabaGa amivaaaakiaadQeadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqqHOo qwdaWgaaWcbaGaamOzaaqabaGccaWG6baaaa@4597@   (33)

To examine the stability of the estimator, consider a Lyapunov function W e =v γ 1 z T z/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaamyzaaqabaGccqGH9aqpcaWG2bGaeq4SdC2aaWbaaSqabeaa cqGHsislcaaIXaaaaOGaamOEamaaCaaaleqabaGaamivaaaakiaadQ hacaGGVaGaaGOmaaaa@430E@ with v > 0. Its derivative is:

W e =v z T Ψ f T J 1 Ψ f zv λ min ( J 1 ) Ψ f z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaamyzaaqabaGccqGH9aqpcqGHsislcaWG2bGaamOEamaaCaaa leqabaGaamivaaaakiabfI6aznaaDaaaleaacaWGMbaabaGaamivaa aakiaadQeadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqqHOoqwdaWg aaWcbaGaamOzaaqabaGccaWG6bGaeyizImQaeyOeI0IaamODaiabeU 7aSnaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaOWaaeWaaeaacaWG kbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaWaau WaaeaacqqHOoqwdaWgaaWcbaGaamOzaaqabaGccaWG6baacaGLjWUa ayPcSdWaaWbaaSqabeaacaaIYaaaaaaa@5C3D@   (34)

where λ min ( J 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaaciGGTbGaaiyAaiaac6gaaeqaaOWaaeWaaeaacaWGkbWaaWba aSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaaaa@4001@ and λ max ( J 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaaciGGTbGaaiyyaiaacIhaaeqaaOWaaeWaaeaacaWGkbWaaWba aSqabeaacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaaaa@4003@ denote minimum and maximum eigenvalues of J 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeadaahaa WcbeqaaiabgkHiTiaaigdaaaaaaa@39B2@ , respectively. Since W ˙ e 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEfagaGaam aaBaaaleaacaWGLbaabeaakiabgsMiJkaaicdaaaa@3B82@ , it follows that z is bounded.

Closed-loop system stability

Now, the stability of the closed-loop system is examined. For this purpose, consider a composite Lyapunov function:

W( q, ω ef ,z )= W s ( q, ω ef )+ W e ( z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaqada qaaiaadghacaGGSaGaeqyYdC3aaSbaaSqaaiaadwgacaWGMbaabeaa kiaacYcacaWG6baacaGLOaGaayzkaaGaeyypa0Jaam4vamaaBaaale aacaWGZbaabeaakmaabmaabaGaamyCaiaacYcacqaHjpWDdaWgaaWc baGaamyzaiaadAgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaam4vam aaBaaaleaacaWGLbaabeaakmaabmaabaGaamOEaaGaayjkaiaawMca aaaa@501D@   (35)

Using Eqs.(29) and (34), after some simplification, the derivative of W takes the form:

W ˙ ( q, ω ef ,z ) 1 2 [ ( k 1 +2 k 3 ) σ 2 + k 2 ω ef 2 ]+[ k 1 + k 2 2 k 1 k 2 λ max 2 ( J 1 )v λ min ( J 1 ) ] Ψ f z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEfagaGaam aabmaabaGaamyCaiaacYcacqaHjpWDdaWgaaWcbaGaamyzaiaadAga aeqaaOGaaiilaiaadQhaaiaawIcacaGLPaaacqGHKjYOcqGHsislda WcaaqaaiaaigdaaeaacaaIYaaaamaadmaabaWaaeWaaeaacaWGRbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaiaadUgadaWgaaWcba GaaG4maaqabaaakiaawIcacaGLPaaadaqbdaqaaiabeo8aZbGaayzc SlaawQa7amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadUgadaWgaa WcbaGaaGOmaaqabaGcdaqbdaqaaiabeM8a3naaBaaaleaacaWGLbGa amOzaaqabaaakiaawMa7caGLkWoadaahaaWcbeqaaiaaikdaaaaaki aawUfacaGLDbaacqGHRaWkdaWadaqaamaalaaabaGaam4AamaaBaaa leaacaaIXaaabeaakiabgUcaRiaadUgadaWgaaWcbaGaaGOmaaqaba aakeaacaaIYaGaam4AamaaBaaaleaacaaIXaaabeaakiaadUgadaWg aaWcbaGaaGOmaaqabaaaaOGaeq4UdW2aa0baaSqaaiGac2gacaGGHb GaaiiEaaqaaiaaikdaaaGcdaqadaqaaiaadQeadaahaaWcbeqaaiab gkHiTiaaigdaaaaakiaawIcacaGLPaaacqGHsislcaWG2bGaeq4UdW 2aaSbaaSqaaiGac2gacaGGPbGaaiOBaaqabaGcdaqadaqaaiaadQea daahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaiaawU facaGLDbaadaqbdaqaaiabfI6aznaaBaaaleaacaWGMbaabeaakiaa dQhaaiaawMa7caGLkWoadaahaaWcbeqaaiaaikdaaaaaaa@8696@   (36)

Note that v is a free parameter. Thus, for a sufficiently large v, there exists l* > 0 such that:

W ˙ 1 2 [ ( k 1 +2 k 3 ) σ 2 + k 2 ω ef 2 ]+ l Ψ f z 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEfagaGaai abgsMiJkabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaamWaaeaa daqadaqaaiaadUgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIYa Gaam4AamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMcaamaafmaa baGaeq4WdmhacaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaam4AamaaBaaaleaacaaIYaaabeaakmaafmaabaGaeqyYdC3a aSbaaSqaaiaadwgacaWGMbaabeaaaOGaayzcSlaawQa7amaaCaaale qabaGaaGOmaaaaaOGaay5waiaaw2faaiabgUcaRiabgkHiTiaadYga daahaaWcbeqaaiabgEHiQaaakmaafmaabaGaeuiQdK1aaSbaaSqaai aadAgaaeqaaOGaamOEaaGaayzcSlaawQa7amaaCaaaleqabaGaaGOm aaaakiabgsMiJkaaicdaaaa@63AA@   (37)

Because W is positive definite and W ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEfagaGaai abgsMiJkaaicdaaaa@3A62@ , the signals σ, ω v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG2baabeaaaaa@3A02@ , z, and ω ef MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGLbGaamOzaaqabaaaaa@3ADC@ are bounded. Of course, the boundedness of the filtered signal ω ef MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGLbGaamOzaaqabaaaaa@3ADC@ implies that the input ω e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGLbaabeaaaaa@39F1@ is bounded. This also implies the boundedness of ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@38DB@ . Thus, all the signals in the closed-loop system are bounded. Now, based on the boundedness of the derivatives of the signals, using Barbalat's lemma, one can prove that ( σ, ω ef , Ψ f z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4WdmNaaiilaiabeM8a3naaBaaaleaacaWGLbGaamOzaaqabaGccaGG SaGaeuiQdK1aaSbaaSqaaiaadAgaaeqaaOGaamOEaaGaayjkaiaawM caaaaa@4341@ converge to zero. Furthermore, using arguments similar to those of Lee and Singh,22 one shows that σ and ω bo =ω C bo ( σ ) ω o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGIbGaam4BaaqabaGccqGH9aqpcqaHjpWDcqGHsislcaWG dbWaaWbaaSqabeaacaWGIbGaam4BaaaakmaabmaabaGaeq4Wdmhaca GLOaGaayzkaaGaeqyYdC3aaSbaaSqaaiaad+gaaeqaaaaa@47BF@ asymptotically converge to zero. Thus, the controller accomplishes nadir pointing control.

Remark 1: It is interesting to note that in the closed-loop system, the trajectories converge to a manifold ℳa defined as:

M a ={ ( Ψ f ,z ): Ψ f z=0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamyyaaqabaGccqGH9aqpdaGadaqaamaabmaabaGaeuiQdK1a aSbaaSqaaiaadAgaaeqaaOGaaiilaiaadQhaaiaawIcacaGLPaaaca GG6aGaeuiQdK1aaSbaaSqaaiaadAgaaeqaaOGaamOEaiabg2da9iaa icdaaiaawUhacaGL9baaaaa@4848@   (38)

This property of the NCEA system is not possible in CEA systems using the classical update law.

Now, for the implementation of the controller, computation of u from uf is considered. Using Eqs. (25) and (27) gives:

u= u ˙ f +α u f = Ψ ˙ f ( p ^ +β ) Ψ f ( p ^ ˙ + β ˙ )α Ψ f ( p ^ +β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpceWG1bGbaiaadaWgaaWcbaGaamOzaaqabaGccqGHRaWkcqaHXoqy caWG1bWaaSbaaSqaaiaadAgaaeqaaOGaeyypa0JaeyOeI0IafuiQdK LbaiaadaWgaaWcbaGaamOzaaqabaGcdaqadaqaaiqadchagaqcaiab gUcaRiabek7aIbGaayjkaiaawMcaaiabgkHiTiabfI6aznaaBaaale aacaWGMbaabeaakmaabmaabaGabmiCayaajyaacaGaey4kaSIafqOS diMbaiaaaiaawIcacaGLPaaacqGHsislcqaHXoqycqqHOoqwdaWgaa WcbaGaamOzaaqabaGcdaqadaqaaiqadchagaqcaiabgUcaRiabek7a IbGaayjkaiaawMcaaaaa@5C97@   (39)

Computing the derivative of β given in Eq. (30) and using Eqs. (23) and (32) in (39) gives the control law:

u=Ψ( p ^ +β )γ Ψ f Ψ f T { ( k 2 α ) ω ef + k 3 σ+ ω e } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpcqGHsislcqqHOoqwdaqadaqaaiqadchagaqcaiabgUcaRiabek7a IbGaayjkaiaawMcaaiabgkHiTiabeo7aNjabfI6aznaaBaaaleaaca WGMbaabeaakiabfI6aznaaDaaaleaacaWGMbaabaGaamivaaaakmaa cmaabaWaaeWaaeaacaWGRbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0 IaeqySdegacaGLOaGaayzkaaGaeqyYdC3aaSbaaSqaaiaadwgacaWG MbaabeaakiabgUcaRiaadUgadaWgaaWcbaGaaG4maaqabaGccqaHdp WCcqGHRaWkcqaHjpWDdaWgaaWcbaGaamyzaaqabaaakiaawUhacaGL 9baaaaa@5DC0@   (40)

This completes the design of the controller based on MRP attitude parameters.

Simulation results

This section presents the results of simulation. It is assumed that the satellite is in an equatorial elliptic orbit around asteroid 433 Eros. Simulation is done using the MRP control law as well as the I&I-based adaptive control law of Ref.22–designed for quaternion vector ( q a = ( q T , q 4 ) T R 4 ,q= ( q 1 , q 2 , q 3 ) T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yCamaaBaaaleaacaWGHbaabeaakiabg2da9maabmaabaGaamyCamaa CaaaleqabaGaamivaaaakiaacYcacaWGXbWaaSbaaSqaaiaaisdaae qaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGaeyicI4Sa amOuamaaCaaaleqabaGaaGinaaaakiaacYcacaWGXbGaeyypa0Zaae WaaeaacaWGXbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadghadaWg aaWcbaGaaGOmaaqabaGccaGGSaGaamyCamaaBaaaleaacaaIZaaabe aaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaaaOGaayjkaiaa wMcaaaaa@5295@ control. The quaternions satisfy:26

q=sin( Φ/2 ) e ^ ; q 4 =cos( Φ/2 ); q a T q a =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghacqGH9a qpciGGZbGaaiyAaiaac6gadaqadaqaamaalyaabaGaeuOPdyeabaGa aGOmaaaaaiaawIcacaGLPaaaceWGLbGbaKaacaGG7aGaamyCamaaBa aaleaacaaI0aaabeaakiabg2da9iGacogacaGGVbGaai4Camaabmaa baWaaSGbaeaacqqHMoGraeaacaaIYaaaaaGaayjkaiaawMcaaiaacU dacaGGXbWaa0baaSqaaiaadggaaeaacaWGubaaaOGaamyCamaaBaaa leaacaWGHbaabeaakiabg2da9iaaigdaaaa@5285@

The MRP vector σ is defined in terms of quaternions as follows:

σ i = q i ( 1+ q 4 ) 1 ,i=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaWGPbaabeaakiabg2da9iaadghadaWgaaWcbaGaamyAaaqa baGcdaqadaqaaiaaigdacqGHRaWkcaWGXbWaaSbaaSqaaiaaisdaae qaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa aiilaiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maa aa@4A3C@

It is assumed that (J1, J2, J3) = (33, 33, 50) [Kg.m2], and the mass of the spacecraft is 600 [kg]. The remaining parameters of the model are: r0 = 9:933 [km], C20 = -0.0878, and C22 = 0.0439.22 The gravitational parameter of 433 Eros and its rotation rate used for simulation are μ = 4.4650×10-4 [km3/s2] and Ω = 3:312×10-4[rad/s], respectively. The radial distance Rc and the orbital rate are:

R c ( η )= a( 1 e 2 ) 1+ecosη ; η ˙ =( μ p h 3 ) ( 1+ecosη ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaam4yaaqabaGcdaqadaqaaiabeE7aObGaayjkaiaawMcaaiab g2da9maalaaabaGaamyyamaabmaabaGaaGymaiabgkHiTiaadwgada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacaaIXaGaey4k aSIaamyzaiGacogacaGGVbGaai4CaiabeE7aObaacaGG7aGafq4TdG MbaiaacqGH9aqpdaqadaqaamaakaaabaWaaSaaaeaacqaH8oqBaeaa caWGWbWaa0baaSqaaiaadIgaaeaacaaIZaaaaaaaaeqaaaGccaGLOa GaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyzaiGacogacaGGVbGa ai4CaiabeE7aObGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa a@5D6F@

where a is the semi-major axis, e is the eccentricity, and p h =a(1 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaamiAaaqabaGccqGH9aqpcaWGHbGaaiikaiaaigdacqGHsisl caWGLbWaaWbaaSqabeaacaaIYaaaaOGaaiykaaaa@3FF0@ is the semilatus rectum. The initial conditions are qi(0) = 0.5, (i = 1, .., 4) and ω(0) = (0.0004, 0.0004, 0.0004)T [rad/s]. Thus, one has σi(0) = 0.5/1.5, (i = 1, 2, 3).

The selected feedback gains are k1 = 0.1, k2 = 0.3; k3 = 0.2, and the filter parameter α is 0.5. The adaptation gain is set as γ = 5500. The initial value of the parameter estimate is arbitrarily set as p ^ (0)= 0 9×1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqacchagaqcai aacIcacaaIWaGaaiykaiabg2da9iaaicdadaWgaaWcbaGaaGyoaiab gEna0kaaigdaaeqaaaaa@3FA6@ . The filter initial values are ω ef (0)= 0 3×1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGLbGaamOzaaqabaGccaGGOaGaaGimaiaacMcacqGH9aqp caaIWaWaaSbaaSqaaiaaiodacqGHxdaTcaaIXaaabeaaaaa@4274@ and Ψ f (0)= 0 3×9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6aznaaBa aaleaacaWGMbaabeaakiaacIcacaaIWaGaaiykaiabg2da9iaaicda daWgaaWcbaGaaG4maiabgEna0kaaiMdaaeqaaaaa@4154@ .

It is assumed that the spacecraft is in a prograde elliptic orbit. The semi-major axis is 40 [km] and eccentricity is 0.3 or 0.4. It should be noted that for the purpose of comparison, the design parameters of this controller have been set equal to those of Ref.22, which was designed for quaternion control.

Case A. Adaptive MRP and quaternion control of spacecraft in prograde elliptic orbits: e = 0.3, 0.4, a = 40 [km], d = 0

The simulated responses of the closed-loop systems for MRP (left column) and quaternions (right column) control for (a = 40 [km], e = 0.3, d(t) = 0) are shown in Figure 2. It is observed that σ and q converge to zero in about 30 and 20 [sec], respectively. Also, q4 converges to one. The maximum magnitudes (umax, ωmax) of (u, ω) are ([1.2369, 1.2012, 1.5021]T [Nm], [5.1234, 4.6384, 4.7175]T [deg/s]) for σ control, and ([2.6971, 2.5942, 3.3546]T [Nm], [8.0291, 7.4175, 7.6238]T [deg/s]) for qa control, respectively.

Figure 2 Adaptive control of spacecraft in prograde elliptic orbit (Rc = 40 [km], e = 0.3; d = 0): (a) MRP control (b) Quaternion control.

Simulation was also done for larger eccentricity (e = 0.4). The responses are shown in Figure 3. One observes that despite large eccentricity, responses are somewhat similar to those of Figure 2. It is seen in Figures 2 & 3 that for both eccentricities, compared with the quaternion-based control law, the MRP-based control system achieves attitude control with smaller control magnitude, but requires larger settling time. Additionally, the convergence of trajectories to the manifold ℳa for σ control is smoother (see the plots for Ψ f z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaafmaabaGaeu iQdK1aaSbaaSqaaiaadAgaaeqaaOGaamOEaaGaayzcSlaawQa7aaaa @3DE4@  in Figures 2 and 3).

Figure 3 Adaptive control of spacecraft in prograde elliptic orbit (Rc = 40 [km], e = 0.4; d = 0): (a) MRP control (b) Quaternion control.

Case B. Adaptive MRP and quaternion control in prograde elliptic orbit: e = 0.4, a = 40 [km], d ≠ 0

For simulation, random signals di, (i = 1, 2, 3), were generated by passing white noise through a filter transfer function 5× 10 4 s 2 +0.6s+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ynaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI0aaa aaGcbaGaam4CamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaicdaca GGUaGaaGOnaiaadohacqGHRaWkcaaIXaaaaaaa@44D9@ . The mean value and the variance of the white noise were assumed to be 0 and 1, respectively. The signals di, (i = 1, 2, 3), are shown in Figure 4. (Disturbance torque caused by solar radiation pressure can be expected to be of similar order (10-3) [Nm] or even smaller.4) Simulated responses for (a = 40 [km], e = 0.4) are shown in Figure 4. It is observed that σ and q converge to zero despite the parametric uncertainties and random disturbance torque.

Figure 4 Adaptive control of spacecraft in prograde elliptic orbit (Rc = 40 [km], e = 0.4; d ≠ 0): (a) MRP control (b) Quaternion control.

Conclusion

In this paper, an I&I-based adaptive controller was designed for the attitude control of spacecraft orbiting around asteroid. For the representation of attitude, the modified Rodrigues parameters were used. The inertia matrix and the gravity field parameters were assumed to be unknown. By the Lyapunov analysis, the convergence of the MRPs and system's trajectories to the origin and to the manifold ℳa, respectively, was accomplished. Also, for the purpose of comparison, the quaternion-based NCEA law22 was simulated. The responses showed that with identical design parameters in these two control laws, the MRP-based control law required smaller control magnitude and accomplished smoother convergence of trajectories to the manifold ℳa, but required larger settling time for the attitude trajectories.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

  1. Misra AK, Panchenko Y. Attitude dynamics of satellites orbiting an asteroid. Journal of the Astronautical Sciences. 2006;(54)(3-4):369‒381.
  2. Kumar KD. Attitude dynamics and control of satellites orbiting rotating asteroids. Acta Mechanica. 2008;198(1-2):99‒118.
  3. Wang Y, Xu S. Analysis of the attitude dynamics of a spacecraft on a stationary orbit around an asteroid via Poincare section. Aerospace Science and Technology. 2014;39:538‒545.
  4. Kikuchi S, Howell KC, Tsuda Y, et al. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with sun-tracking attitude motion. Acta Astronautica. 2017;140:34‒48.
  5. Bandyopadhyay S, Chung SJ, Hadaegh FY. Nonlinear attitude control of spacecraft with a large captured object. J Guid Control Dyn. 2016;39(4):754‒769.
  6. Lee D, Sanyal AK, Butcher EA, et al. Almost global asymptotic tracking control for spacecraft body-fixed hovering over an asteroid. Aerospace Science and Technology. 2014;38:105‒115.
  7. Lee D, Sanyal AK, Butcher EA, et al. Finite-time control for spacecraft body-fixed hovering over an asteroid. IEEE Trans Aerosp Electronic Systems. 2015;51(1):506‒520.
  8. Lee D, Vukovich, G. Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid. Aerospace Science and Technology. 2015;46:471‒483.
  9. Vukovich G, Gui H. Robust adaptive tracking of rigid-body motion with application to asteroid proximity operations. IEEE Trans on Aerospace and Electronic Systems. 2017;53(1):419‒430.
  10. Reyhanoglu M, Kamran N, Takahiro K. Orbital and attitude control of a spacecraft around an asteroid. 12th International Conference on Control, Automation and Systems: Jeju Island, South Korea; 2012.
  11. Wang Y, Xu S. Body-fixed orbit-attitude hovering control over an asteroid using non-canonical Hamiltonian structure. Acta Astronautica. 2015;117:450‒468.
  12. Astolfi A, Ortega R. Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans Autom Control. 2003;48(4):590‒606.
  13. Astolfi A, Karagiannis D, Ortega R. Nonlinear and adaptive control with applications. Springer-Verlag: London; 2008.
  14. Ioannou P, Sun J. Robust adaptive control. Prentice-Hall: Englewood Cliffs, NJ; 2013.
  15. Seo D, Akella MR. High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design. J Guid Control Dyn. 2008;31(4):884‒891.
  16. Yang S, Akella MR, Mazenc F. Dynamically scaled immersion and invariance adaptive control for Euler-Lagrange mechanical system. J Guid Control Dyn. 2017;40(11):2844‒2856.
  17. Seo D. Fast adaptive pose tracking control for satellites via dual quaternion upon non-certainty equivalence principle. Acta Astronautica. 2015;115:32‒39.
  18. Wen H, Yue X, Li P, et al. Fast spacecraft adaptive attitude tracking control through immersion and invariance design. Acta Astronautica. 2017;139:77‒84.
  19. Zhang B, Cai Y. Immersion and invariance vased adaptive backstepping control for body-fixed hovering over an asteroid. IEEE Access. 2019;7:34850‒34861.
  20. Lee KW, Singh SN. Immersion-and invariance-based adaptive control of asteroidorbiting and - hovering spacecraft. J Astronaut Sci. 2019;66:537‒553.
  21. Lee KW, Singh SN. Noncertainty-equivalence adaptive attitude control of satellite orbiting around an asteroid. Acta Astronautica. 2019;161:24‒39.
  22. Lee KW, Singh SN. Quaternion-based adaptive attitude control of asteroid-orbiting spacecraft via immersion and invariance. Acta Astronautica. 2020;167:164‒180.
  23. Lee KW, Singh SN. Adaptive and Super-Twisting Adaptive Spacecraft Orbit Control Around Asteroids. ASCE Journal of Aerospace Engineering. 2019;32(4):04019042.
  24. Lee KW, Singh SN. Generalized Composite Noncertainty-Equivalence Adaptive Control of Orbiting Spacecraft in Vicinity of Asteroid. The Journal of the Astronautical Sciences. 2020;67(3):1021‒1043.
  25. Schaub H, Junkins JL. Stereographic orientation parameters for attitude dynamics: A generalization of the Rodrigues parameters. Journal of Astronautical Sciences. 1996;44(1):1‒19.
  26. Schaub H, Junkins JL. Analytical mechanics of space systems. 3rd ed. AIAA Education Series: Reston, VA; 2014.
  27. Crassidis JL, Markley FL. Sliding mode control using modified Rodrigues parameters. Journal of Guidance, Control, and Dynamics. 1996;19(6):1381‒1383.
  28. Schaub H, Akella MR, Junkins JL. Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. Journal of Guidance, Control, and Dynamics. 2001;24(1):95‒100.
  29. Tsiotras P. Further passivity results for the attitude control problem. Journal of Guidance, Control, and Dynamics. 1998;43(11):1597‒1600.
Creative Commons Attribution License

©2021 Lee, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.