Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 6 Issue 4

Finite element analysis of vibration of an isotropic thin rectangular plate subjected to different boundary conditions under point and uniformly distributed loadings 

Sobamowo MG,1 Agbelusi CT,1 Oladosu SA,2 Kuku RO2

1Department of Mechanical Engineering, University of Lagos, Nigeria
2Department of Mechanical Engineering, Lagos State University, Epe Campus, Lagos, Nigeria

Correspondence: Sobamowo MG, Department of Mechanical Engineering, University of Lagos, Nigeria

Received: November 20, 2022 | Published: December 29, 2022

Citation: Sobamowo MG, Agbelusi CT, Oladosu SA, et al. Finite element analysis of vibration of an isotropic thin rectangular plate subjected to different boundary conditions under point and uniformly distributed loadings. Aeron Aero Open Access J. 2022;6(4):196-205. DOI: 10.15406/aaoaj.2022.06.00162

Download PDF

Abstract

In this paper, finite element method is applied to structural analysis of rectangular plate subjected to different boundary conditions. The governing equation of motions for the static analysis of a rectangular plate are developed using Kirchhoff plate bending theory. The verification and the reliability of the finite element methods used is established by comparing the results of an in-house MATLAB code and that of commercial computational solid mechanics code using FLEXPDE as well as exact analytical method. The results of the exact analytical method, MATLAB finite element method and FLEX finite element method show excellent agreements. Also, it was observed that the boundary conditions and the dimensions of the plate have significant influence on the vibration of plates. The results showed that Clamped- Simply Supported - Simply Supported -Simply Supported (CSSS) mixed boundary condition gave the highest deflection for each thickness and loading type while the Clamped-Clamped- Clamped -Simply Supported (CCCS) mixed boundary condition provided the lowest deflection. The FEM algorithm developed in this project shows great agreement with commercial software results. It is inferred from the study that use of the developed finite element codes in MATLAB is an easier, cheaper and quicker approach for the analysis of free vibration of an isotropic rectangular plate.

Nomenclature

a, plate length; b, plate width; E, modulus of elasticity, h, plate thickness; M, Bending moment; P, exciting load per unit area; u in-plane displacements in x-axis; v in-plane displacements in y-axis; v, Poisson’s ratio; w, plate displacement; γxy, shear strain; εx, in-plane strains in x-axis; εy, in-plane strains in y-axis; σx, normal stress in x-axis; σy, normal stress in y-axis; τxy, shear stress; ρ, density

Keywords: structural analysis, rectangular plates, boundary conditions, loading conditions, finite element analysis

Introduction

The studies on static and dynamic behaviours of plates have been presented using various methods.1 However, vibrational behaviours of complicated shapes and structures with geometry and material nonlinearity as well as nonclassical loading and boundary conditions are very difficult to be accurately described by analytical solutions. Consequently, over the years, the static and dynamic analyses of such structures have been carried out with computational methods. With the aid of meshless Galerkin method, Liew et al.,2 numerically analyzed the vibration of corrugated Reissner Mindlin plates while differential quadrature method (DQM) was used by Lu et al.,3 for natural vibration of rectangular plates. Some other researchers have also demonstrated the used of different numerical methods for the free and forced vibrations of plates under differences boundary conditions and loadings. Moon and Choi4 adopted Transfer of Dynamic Stiffness Coefficient method for vibration Analysis frame structures. Finite Element-Transfer Stiffness Coefficient Method was utilized by Choi5 for the numerical investigations of free vibration of plate structures while Wu and Lu6,7 demonstrated the use of differential cubature method to investigate the free vibration of arbitrary shaped thick plates. Tanaka et al.,8 applied boundary element method to analysis the multi-dimensional structures. Natural vibration of shear deformable general triangular plates was explored by Karunasena and Kitipornchai.9 Safaei10 analyzed the frequency-dependent damped vibrations of multifunctional foam plates. The same author investigated the effect of embedding a porous core on the free vibration behaviour of laminated composite plates.11 Kumar et al.,12 applied dynamic stiffness method to analyze the free vibration of thin functionally graded rectangular plates. Pratap et al.,13 presented vibration analysis of a thin functionally graded plate having an out of plane material inhomogeneity resting on Winkler-Pasternak foundation subjected to different boundary conditions. Ramu and Mohanty14 studied the natural vibration analysis of rectangular plate structures using finite element method. Liu et al.,15 presented a unified modeling method for vibration analysis of reinforced functionally graded plate resting on elastic foundation with elastic boundary conditions. Fattahi and Safaei16 used different nonlocal plate models to study free vibration of graphene sheets in an elastic matrix. Gholami and Ansari17 explored the nonlinear stability and vibration of pre/post-buckled multilayer functionally graded rectangular plates. In author’s works,18–20 the same author presented nonlinear vibration of functionally graded graphene platelet-reinforced composite rectangular plates. In this work, finite element method is applied to structural analysis of rectangular plate subjected to different boundary conditions under point and uniformly distribution loads. The governing equation of motions for the static analysis of a rectangular plate are developed using Kirchhoff plate bending theory. The verification and the reliability of the finite element methods used is established by comparing the results of an in-house MATLAB code and that of commercial computational solid mechanics code using FLEXPDE as well as exact analytical method.

Model development

Considering a rectangular plate having thickness, mass density as illustrated in Figure 1. It is assumed that the plate is linearly elastic and the effects of shear deformation as well as that of rotary inertia are neglected. Moreover, the development of the vibration model is based on the Kirchhoff plate bending theory From the basic theory of stress-stress and displacement analysis, the in-plane displacements u (in x-axis) and v (in y-axis) can be expressed as

u=z w x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabg2 da9iabgkHiTiaadQhadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciIT caWG4baaaaaa@3EA7@   (1)

v=z w y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2 da9iabgkHiTiaadQhadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciIT caWG5baaaaaa@3EA9@   (2)

Figure 1 Free body diagram rectangular plate.

Since the transverse shear deformation is not considered, we can write the in-plane strains as

ε x =z 2 w x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadIhaaeqaaOGaeyypa0JaeyOeI0IaamOEamaalaaabaGa eyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam4DaaqaaiabgkGi2kaadI hadaahaaWcbeqaaiaaikdaaaaaaaaa@4263@   (3)

ε y =z 2 w y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMhaaeqaaOGaeyypa0JaeyOeI0IaamOEamaalaaabaGa eyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam4DaaqaaiabgkGi2kaadM hadaahaaWcbeqaaiaaikdaaaaaaaaa@4265@   (4)

γ xy =z 2 w xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadIhacaWG5baabeaakiabg2da9iabgkHiTiaadQhadaWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadEhaaeaacqGHci ITcaWG4bGaeyOaIyRaamyEaaaaaaa@44DC@   (5)

Assuming the plane stress condition for the plate, the constitutive equations for the stresses are given

σ x =z D x 2 w x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadIhaaeqaaOGaeyypa0JaeyOeI0IaamOEaiaadseadaWg aaWcbaGaamiEaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG OmaaaakiaadEhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaa aaaaaaa@447B@   (6)

σ y =z D y 2 w y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaOGaeyypa0JaeyOeI0IaamOEaiaadseadaWg aaWcbaGaamyEaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG OmaaaakiaadEhaaeaacqGHciITcaWG5bWaaWbaaSqabeaacaaIYaaa aaaaaaa@447E@   (7)

τ xy =z D xy 2 w xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadIhacaWG5baabeaakiabg2da9iabgkHiTiaadQhacaWG ebWaaSbaaSqaaiaadIhacaWG5baabeaakmaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaam4DaaqaaiabgkGi2kaadIhacqGHciIT caWG5baaaaaa@47F4@   (8)

Also, the moments as shown in Figure 1 are defined as

M x = h/2 h/2 σ x zdz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG4baabeaakiabg2da9maapedabaGaeq4Wdm3aaSbaaSqa aiaadIhaaeqaaOGaamOEaiaadsgacaWG6baaleaacqGHsislcaWGOb Gaai4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipaaaa@469C@   (9)

M y = h/2 h/2 σ y zdz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG5baabeaakiabg2da9maapedabaGaeq4Wdm3aaSbaaSqa aiaadMhaaeqaaOGaamOEaiaadsgacaWG6baaleaacqGHsislcaWGOb Gaai4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipaaaa@469E@   (10)

M xy = h/2 h/2 σ xy zdz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG4bGaamyEaaqabaGccqGH9aqpdaWdXaqaaiabeo8aZnaa BaaaleaacaWG4bGaamyEaaqabaGccaWG6bGaamizaiaadQhaaSqaai abgkHiTiaadIgacaGGVaGaaGOmaaqaaiaadIgacaGGVaGaaGOmaaqd cqGHRiI8aaaa@4898@   (11)

On substitution Eq. (6), (7) and (8) into Eqs. (9), (10) and (11), we have

M x = D x 2 w x 2 h/2 h/2 z 2 dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG4baabeaakiabg2da9iabgkHiTiaadseadaWgaaWcbaGa amiEaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki aadEhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakmaa pedabaGaamOEamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG6baale aacqGHsislcaWGObGaai4laiaaikdaaeaacaWGObGaai4laiaaikda a0Gaey4kIipaaaa@4E3D@   (12)

M y = D y 2 w y 2 h/2 h/2 z 2 dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG5baabeaakiabg2da9iabgkHiTiaadseadaWgaaWcbaGa amyEaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki aadEhaaeaacqGHciITcaWG5bWaaWbaaSqabeaacaaIYaaaaaaakmaa pedabaGaamOEamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG6baale aacqGHsislcaWGObGaai4laiaaikdaaeaacaWGObGaai4laiaaikda a0Gaey4kIipaaaa@4E40@   (13)

M xy = D xy 2 w xy h/2 h/2 z 2 dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG4bGaamyEaaqabaGccqGH9aqpcqGHsislcaWGebWaaSba aSqaaiaadIhacaWG5baabeaakmaalaaabaGaeyOaIy7aaWbaaSqabe aacaaIYaaaaOGaam4DaaqaaiabgkGi2kaadIhacqGHciITcaWG5baa amaapedabaGaamOEamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG6b aaleaacqGHsislcaWGObGaai4laiaaikdaaeaacaWGObGaai4laiaa ikdaa0Gaey4kIipaaaa@51AA@   (14)

Evaluation of Eqs. (12), (13) and (14) gives

M x = D x h 3 12 2 w x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG4baabeaakiabg2da9iabgkHiTiaadseadaWgaaWcbaGa amiEaaqabaGcdaWcaaqaaiaadIgadaahaaWcbeqaaiaaiodaaaaake aacaaIXaGaaGOmaaaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOm aaaakiaadEhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaa aaaaa@45F3@   (15)

M y = D y h 3 12 2 w y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG5baabeaakiabg2da9iabgkHiTiaadseadaWgaaWcbaGa amyEaaqabaGcdaWcaaqaaiaadIgadaahaaWcbeqaaiaaiodaaaaake aacaaIXaGaaGOmaaaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOm aaaakiaadEhaaeaacqGHciITcaWG5bWaaWbaaSqabeaacaaIYaaaaa aaaaa@45F6@   (16)

M xy = D xy h 3 12 2 w xy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG4bGaamyEaaqabaGccqGH9aqpcqGHsislcaWGebWaaSba aSqaaiaadIhacaWG5baabeaakmaalaaabaGaamiAamaaCaaaleqaba GaaG4maaaaaOqaaiaaigdacaaIYaaaamaalaaabaGaeyOaIy7aaWba aSqabeaacaaIYaaaaOGaam4DaaqaaiabgkGi2kaadIhacqGHciITca WG5baaaaaa@496A@   (17)

From the free body diagram in Figure 1, we can obtain the equilibrium equation. The moment equilibrium about y- and x-axes and force equilibrium about z-axes yield after neglecting higher order terms

M x x + M xy y Q x =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGnbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOaIyRaamiE aaaacqGHRaWkdaWcaaqaaiabgkGi2kaad2eadaWgaaWcbaGaamiEai aadMhaaeqaaaGcbaGaeyOaIyRaamyEaaaacqGHsislcaWGrbWaaSba aSqaaiaadIhaaeqaaOGaeyypa0JaaGimaaaa@4839@   (18)

M xy x + M y y Q y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGnbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiabgkGi 2kaadIhaaaGaey4kaSYaaSaaaeaacqGHciITcaWGnbWaaSbaaSqaai aadMhaaeqaaaGcbaGaeyOaIyRaamyEaaaacqGHsislcaWGrbWaaSba aSqaaiaadMhaaeqaaOGaeyypa0JaaGimaaaa@483B@   (19)

For a classical plate, the shear forces along x- and y-axes are related to the distributed pressure loading as

Q x x + Q y y +p( x,y )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGrbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOaIyRaamiE aaaacqGHRaWkdaWcaaqaaiabgkGi2kaadgfadaWgaaWcbaGaamyEaa qabaaakeaacqGHciITcaWG5baaaiabgUcaRiaadchadaqadaqaaiaa dIhacaGGSaGaamyEaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@4A59@   (20)

Differentiating Eqs. (18) and (19) with respect to x and y, respectively, we have

2 M x x 2 + 2 M xy xy = Q x x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGnbWaaSbaaSqaaiaadIha aeqaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccq GHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaad2ea daWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaeyOaIyRaamiEaiabgk Gi2kaadMhaaaGaeyypa0ZaaSaaaeaacqGHciITcaWGrbWaaSbaaSqa aiaadIhaaeqaaaGcbaGaeyOaIyRaamiEaaaaaaa@4FA7@   (21)

2 M xy xy + 2 M y y 2 = Q y y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGnbWaaSbaaSqaaiaadIha caWG5baabeaaaOqaaiabgkGi2kaadIhacqGHciITcaWG5baaaiabgU caRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamytamaa BaaaleaacaWG5baabeaaaOqaaiabgkGi2kaadMhadaahaaWcbeqaai aaikdaaaaaaOGaeyypa0ZaaSaaaeaacqGHciITcaWGrbWaaSbaaSqa aiaadMhaaeqaaaGcbaGaeyOaIyRaamyEaaaaaaa@4FAB@   (22)

Adding Eqs. (21) and (22), we have

2 M x x 2 +2 2 M xy xy + 2 M y y 2 = Q x x + Q y y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGnbWaaSbaaSqaaiaadIha aeqaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccq GHRaWkcaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWGnbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiabgkGi2kaadI hacqGHciITcaWG5baaaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamytamaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaa cqGHciITcaWGrbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOaIyRaam iEaaaacqGHRaWkdaWcaaqaaiabgkGi2kaadgfadaWgaaWcbaGaamyE aaqabaaakeaacqGHciITcaWG5baaaaaa@5FD1@   (23)

From Eq. (20)

Q x x + Q y y =p(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGrbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOaIyRaamiE aaaacqGHRaWkdaWcaaqaaiabgkGi2kaadgfadaWgaaWcbaGaamyEaa qabaaakeaacqGHciITcaWG5baaaiabg2da9iabgkHiTiaadchacaGG OaGaamiEaiaacYcacaWG5bGaaiykaaaa@497A@   (24)

Substitute Eq. (24) into Eq. (23), we have

2 M x x 2 +2 2 M xy xy + 2 M y y 2 =p(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGnbWaaSbaaSqaaiaadIha aeqaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccq GHRaWkcaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWGnbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiabgkGi2kaadI hacqGHciITcaWG5baaaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamytamaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaeyOeI0Ia amiCaiaacIcacaWG4bGaaiilaiaadMhacaGGPaaaaa@590F@   (25)

Eq. (3.25) can be written as

2 M x x 2 +2 2 M xy xy + 2 M y y 2 +p(x,y)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGnbWaaSbaaSqaaiaadIha aeqaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccq GHRaWkcaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWGnbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiabgkGi2kaadI hacqGHciITcaWG5baaaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamytamaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamiCaiaa cIcacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0JaaGimaaaa@59BE@   (26)

Now, we can substitute Eqs. (3.15), (3.16) and (3.17) into Eq. (3.26),

2 x 2 ( D x h 3 12 2 w x 2 )+2 2 xy ( D xy h 3 12 2 w xy )+ 2 y 2 ( D y h 3 12 2 w y 2 )+p(x,y)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bWaaWba aSqabeaacaaIYaaaaaaakmaabmaabaGaeyOeI0IaamiramaaBaaale aacaWG4baabeaakmaalaaabaGaamiAamaaCaaaleqabaGaaG4maaaa aOqaaiaaigdacaaIYaaaamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaam4DaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikda aaaaaaGccaGLOaGaayzkaaGaey4kaSIaaGOmamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEaiabgkGi2kaa dMhaaaWaaeWaaeaacqGHsislcaWGebWaaSbaaSqaaiaadIhacaWG5b aabeaakmaalaaabaGaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaa igdacaaIYaaaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO Gaam4DaaqaaiabgkGi2kaadIhacqGHciITcaWG5baaaaGaayjkaiaa wMcaaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaa GcbaGaeyOaIyRaamyEamaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqa aiabgkHiTiaadseadaWgaaWcbaGaamyEaaqabaGcdaWcaaqaaiaadI gadaahaaWcbeqaaiaaiodaaaaakeaacaaIXaGaaGOmaaaadaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadEhaaeaacqGHciITca WG5bWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgUca RiaadchacaGGOaGaamiEaiaacYcacaWG5bGaaiykaiabg2da9iaaic daaaa@80E0@   (27)

Evaluation of the above Eq. (27), provides

h 3 12 [ 2 x 2 ( D x 2 w x 2 )+2 2 xy ( D xy 2 w xy )+ 2 y 2 ( D y 2 w y 2 ) ]=p(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGObWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymaiaaikdaaaWaamWa aeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgk Gi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaacaWGebWa aSbaaSqaaiaadIhaaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOm aaaaaaaakiaawIcacaGLPaaacqGHRaWkcaaIYaWaaSaaaeaacqGHci ITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bGaeyOaIyRa amyEaaaadaqadaqaaiaadseadaWgaaWcbaGaamiEaiaadMhaaeqaaO WaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG3baabaGa eyOaIyRaamiEaiabgkGi2kaadMhaaaaacaGLOaGaayzkaaGaey4kaS YaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciIT caWG5bWaaWbaaSqabeaacaaIYaaaaaaakmaabmaabaGaamiramaaBa aaleaacaWG5baabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaam4DaaqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaa aaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0JaamiCaiaa cIcacaWG4bGaaiilaiaadMhacaGGPaaaaa@779F@   (28)

For a plate made of homogenous and isotropic material where Dx = Dy = Dz, we have

h 3 D 12 ( 4 w x 4 +2 4 w x 2 y 2 + 4 w y 4 )=p(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGObWaaWbaaSqabeaacaaIZaaaaOGaamiraaqaaiaaigdacaaIYaaa amaabmaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGcca WG3baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGinaaaaaaGccqGH RaWkcaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGcca WG3baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaakiabgkGi 2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacq GHciITdaahaaWcbeqaaiaaisdaaaGccaWG3baabaGaeyOaIyRaamyE amaaCaaaleqabaGaaGinaaaaaaaakiaawIcacaGLPaaacqGH9aqpca WGWbGaaiikaiaadIhacaGGSaGaamyEaiaacMcaaaa@5BB2@   (29)

where

D= E 1 ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maalaaabaGaamyraaqaaiaaigdacqGHsislcqaH9oGBdaahaaWc beqaaiaaikdaaaaaaaaa@3CD8@

Therefore, Eq. (29) can be written as

E h 3 12( 1 ν 2 ) ( 4 w x 4 +2 4 w x 2 y 2 + 4 w y 4 )=p(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGfbGaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaIYaWa aeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaa GccaGLOaGaayzkaaaaamaabmaabaWaaSaaaeaacqGHciITdaahaaWc beqaaiaaisdaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqaba GaaGinaaaaaaGccqGHRaWkcaaIYaWaaSaaaeaacqGHciITdaahaaWc beqaaiaaisdaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqaba GaaGOmaaaakiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGa ey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG3b aabaGaeyOaIyRaamyEamaaCaaaleqabaGaaGinaaaaaaaakiaawIca caGLPaaacqGH9aqpcaWGWbGaaiikaiaadIhacaGGSaGaamyEaiaacM caaaa@618F@   (30)

The expression E h 3 12( 1 ν 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGfbGaamiAamaaCaaaleqabaGaaG4maaaaaOqaaiaaigdacaaIYaWa aeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaa GccaGLOaGaayzkaaaaaaaa@3FF4@  refers to the flexural rigidity of the plate. On denoting D r = E h 3 12( 1 ν 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGYbaabeaakiabg2da9maalaaabaGaamyraiaadIgadaah aaWcbeqaaiaaiodaaaaakeaacaaIXaGaaGOmamaabmaabaGaaGymai abgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aaaaaaa@42F0@ , we have

D r ( 4 w(x,y) x 4 +2 4 w(x,y) x 2 y 2 + 4 w(x,y) y 4 )=p(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGYbaabeaakmaabmaabaWaaSaaaeaacqGHciITdaahaaWc beqaaiaaisdaaaGccaWG3bGaaiikaiaadIhacaGGSaGaamyEaiaacM caaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaI0aaaaaaakiabgUca RiaaikdadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGinaaaakiaadE hacaGGOaGaamiEaiaacYcacaWG5bGaaiykaaqaaiabgkGi2kaadIha daahaaWcbeqaaiaaikdaaaGccqGHciITcaWG5bWaaWbaaSqabeaaca aIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI 0aaaaOGaam4DaiaacIcacaWG4bGaaiilaiaadMhacaGGPaaabaGaey OaIyRaamyEamaaCaaaleqabaGaaGinaaaaaaaakiaawIcacaGLPaaa cqGH9aqpcaWGWbGaaiikaiaadIhacaGGSaGaamyEaiaacMcaaaa@6584@   (31)

The equation of motion for a plate made of homogenous and isotropic material is

4 w x 4 +2 4 w x 2 y 2 + 4 w y 4 = p(x,y) D r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaisdaaaGccaWG3baabaGaeyOaIyRaamiE amaaCaaaleqabaGaaGinaaaaaaGccqGHRaWkcaaIYaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaisdaaaGccaWG3baabaGaeyOaIyRaamiE amaaCaaaleqabaGaaGOmaaaakiabgkGi2kaadMhadaahaaWcbeqaai aaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaa isdaaaGccaWG3baabaGaeyOaIyRaamyEamaaCaaaleqabaGaaGinaa aaaaGccqGH9aqpdaWcaaqaaiaadchacaGGOaGaamiEaiaacYcacaWG 5bGaaiykaaqaaiaadseadaWgaaWcbaGaamOCaaqabaaaaaaa@57F4@   (32)

For free vibration, we have

4 w x 4 +2 4 w x 2 y 2 + 4 w y 4 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaisdaaaGccaWG3baabaGaeyOaIyRaamiE amaaCaaaleqabaGaaGinaaaaaaGccqGHRaWkcaaIYaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaisdaaaGccaWG3baabaGaeyOaIyRaamiE amaaCaaaleqabaGaaGOmaaaakiabgkGi2kaadMhadaahaaWcbeqaai aaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaa isdaaaGccaWG3baabaGaeyOaIyRaamyEamaaCaaaleqabaGaaGinaa aaaaGccqGH9aqpcaaIWaaaaa@51B9@   (33)

Alternatively, we can write

4 w=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaW baaSqabeaacaaI0aaaaOGaam4Daiabg2da9iaaicdaaaa@3B1D@   (34)

where the bi-harmonic operator

4 = 4 x 4 +2 4 x 2 y 2 + 4 y 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaW baaSqabeaacaaI0aaaaOGaeyypa0ZaaSaaaeaacqGHciITdaahaaWc beqaaiaaisdaaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacaaI0a aaaaaakiabgUcaRiaaikdadaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGinaaaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaGccq GHciITcaWG5bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaa baGaeyOaIy7aaWbaaSqabeaacaaI0aaaaaGcbaGaeyOaIyRaamyEam aaCaaaleqabaGaaGinaaaaaaaaaa@507C@   (35)

In the above equations, is the exciting load per unit area, E,h,ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaacY cacaWGObGaaiilaiabe27aUbaa@3AB6@ and ρ(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaai ikaiaadIhacaGGSaGaamyEaiaacMcaaaa@3BAB@ are the modulus of elasticity, plate thickness, the Poisson’s ratio, and density, respectively.

The boundary conditions for the static vibration are given

  1. Clamped-Clamped-Clamped-Simply Supported

w(0,y)= w(0,y) x =0,w(a,y)= w(a,y) x =0 w(x,0)= w(x,0) y =0,w(x,b)= 2 w(x,b) y 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG3b GaaiikaiaaicdacaGGSaGaamyEaiaacMcacqGH9aqpdaWcaaqaaiab gkGi2kaadEhacaGGOaGaaGimaiaacYcacaWG5bGaaiykaaqaaiabgk Gi2kaadIhaaaGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7 caaMc8Uaam4DaiaacIcacaWGHbGaaiilaiaadMhacaGGPaGaeyypa0 ZaaSaaaeaacqGHciITcaWG3bGaaiikaiaadggacaGGSaGaamyEaiaa cMcaaeaacqGHciITcaWG4baaaiabg2da9iaaicdaaeaacaWG3bGaai ikaiaadIhacaGGSaGaaGimaiaacMcacqGH9aqpdaWcaaqaaiabgkGi 2kaadEhacaGGOaGaamiEaiaacYcacaaIWaGaaiykaaqaaiabgkGi2k aadMhaaaGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7caaM c8Uaam4DaiaacIcacaWG4bGaaiilaiaadkgacaGGPaGaeyypa0ZaaS aaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG3bGaaiikaiaa dIhacaGGSaGaamOyaiaacMcaaeaacqGHciITcaWG5bWaaWbaaSqabe aacaaIYaaaaaaakiabg2da9iaaicdaaaaa@86AF@   (36)

  1. Clamped-Simply Supported-Clamped-Simply supported

w(0,y)= w(0,y) x =0,w(a,y)= 2 w(a,y) x 2 =0 w(x,0)= w(x,0) y =0,w(x,b)= 2 w(x,b) y 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG3b GaaiikaiaaicdacaGGSaGaamyEaiaacMcacqGH9aqpdaWcaaqaaiab gkGi2kaadEhacaGGOaGaaGimaiaacYcacaWG5bGaaiykaaqaaiabgk Gi2kaadIhaaaGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7 caaMc8Uaam4DaiaacIcacaWGHbGaaiilaiaadMhacaGGPaGaeyypa0 ZaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG3bGaaiik aiaadggacaGGSaGaamyEaiaacMcaaeaacqGHciITcaWG4bWaaWbaaS qabeaacaaIYaaaaaaakiabg2da9iaaicdaaeaacaWG3bGaaiikaiaa dIhacaGGSaGaaGimaiaacMcacqGH9aqpdaWcaaqaaiabgkGi2kaadE hacaGGOaGaamiEaiaacYcacaaIWaGaaiykaaqaaiabgkGi2kaadMha aaGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaam 4DaiaacIcacaWG4bGaaiilaiaadkgacaGGPaGaeyypa0ZaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG3bGaaiikaiaadIhaca GGSaGaamOyaiaacMcaaeaacqGHciITcaWG5bWaaWbaaSqabeaacaaI Yaaaaaaakiabg2da9iaaicdaaaaa@8895@   (37)

  1. Clamped-Clamped-Simply Supported-Simply Supported

w(0,y)= w(0,y) x =0,w(a,y)= w(a,y) x =0 w(x,0)= 2 w(x,0) y 2 =0,w(x,b)= 2 w(x,b) y 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG3b GaaiikaiaaicdacaGGSaGaamyEaiaacMcacqGH9aqpdaWcaaqaaiab gkGi2kaadEhacaGGOaGaaGimaiaacYcacaWG5bGaaiykaaqaaiabgk Gi2kaadIhaaaGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7 caaMc8Uaam4DaiaacIcacaWGHbGaaiilaiaadMhacaGGPaGaeyypa0 ZaaSaaaeaacqGHciITcaWG3bGaaiikaiaadggacaGGSaGaamyEaiaa cMcaaeaacqGHciITcaWG4baaaiabg2da9iaaicdaaeaacaWG3bGaai ikaiaadIhacaGGSaGaaGimaiaacMcacqGH9aqpdaWcaaqaaiabgkGi 2oaaCaaaleqabaGaaGOmaaaakiaadEhacaGGOaGaamiEaiaacYcaca aIWaGaaiykaaqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaa aOGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaam 4DaiaacIcacaWG4bGaaiilaiaadkgacaGGPaGaeyypa0ZaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG3bGaaiikaiaadIhaca GGSaGaamOyaiaacMcaaeaacqGHciITcaWG5bWaaWbaaSqabeaacaaI Yaaaaaaakiabg2da9iaaicdaaaaa@8895@   (38)

  1. Clamped-Simply Supported-Simply-Simply Supported

w(0,y)= w(0,y) x =0,w(a,y)= 2 w(a,y) x 2 =0 w(x,0)= 2 w(x,0) y 2 =0,w(x,b)= 2 w(x,b) y 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG3b GaaiikaiaaicdacaGGSaGaamyEaiaacMcacqGH9aqpdaWcaaqaaiab gkGi2kaadEhacaGGOaGaaGimaiaacYcacaWG5bGaaiykaaqaaiabgk Gi2kaadIhaaaGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7 caaMc8Uaam4DaiaacIcacaWGHbGaaiilaiaadMhacaGGPaGaeyypa0 ZaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG3bGaaiik aiaadggacaGGSaGaamyEaiaacMcaaeaacqGHciITcaWG4bWaaWbaaS qabeaacaaIYaaaaaaakiabg2da9iaaicdaaeaacaWG3bGaaiikaiaa dIhacaGGSaGaaGimaiaacMcacqGH9aqpdaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGOmaaaakiaadEhacaGGOaGaamiEaiaacYcacaaIWaGa aiykaaqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey ypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaam4Daiaa cIcacaWG4bGaaiilaiaadkgacaGGPaGaeyypa0ZaaSaaaeaacqGHci ITdaahaaWcbeqaaiaaikdaaaGccaWG3bGaaiikaiaadIhacaGGSaGa amOyaiaacMcaaeaacqGHciITcaWG5bWaaWbaaSqabeaacaaIYaaaaa aakiabg2da9iaaicdaaaaa@8A7B@   (39)

(Figures 2–5)

Figure 2 Clamped-clamped-clamped-simply supported (CCCS) under loading conditions.

Figure 3 Clamped-simply supported-clamped-simply supported (CSCS) under loading conditions.

Figure 4 Clamped-clamped-simply supported- supported-simply supported (CCSS) under loading conditions.

Figure 5 Clamped-simply supported-simply supported--supported-simply supported (CSSS) under loading conditions.

Finite element analysis to static analysis of rectangular plates

The approximate trial function for the fourth-order partial differential equation is given as

w(x,y)= v=1 4 N v (x,y) W v ,v=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaacI cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0ZaaabCaeaacaWGobWa aSbaaSqaaiaadAhaaeqaaOGaaiikaiaadIhacaGGSaGaamyEaiaacM cacaWGxbWaaSbaaSqaaiaadAhaaeqaaOGaaiilaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWG2bGaeyypa0JaaGymaiaa cYcacaaIYaGaaiilaiaaiodacaGGSaGaaGinaaWcbaGaamODaiabg2 da9iaaigdaaeaacaaI0aaaniabggHiLdaaaa@8146@    (40)

where the parametric trial function is taken as

N(x,y)= α 1 + α 2 x+ α 3 y+ α 4 x 2 + α 5 xy+ α 6 y 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaacI cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0JaeqySde2aaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaO GaamiEaiabgUcaRiabeg7aHnaaBaaaleaacaaIZaaabeaakiaadMha cqGHRaWkcqaHXoqydaWgaaWcbaGaaGinaaqabaGccaWG4bWaaWbaaS qabeaacaaIYaaaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaiwdaaeqa aOGaamiEaiaadMhacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOnaaqaba GccaWG5bWaaWbaaSqabeaacaaIYaaaaOGaaiilaaaa@5824@   (41)

The Galerkin weighted residual equation is given by.

Ω N v (x,y)[ D r ( 4 w x 4 +2 4 w x 2 y 2 + 4 w y 4 )p ] dxdy=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8quaeaaca WGobWaaSbaaSqaaiaadAhaaeqaaOGaaiikaiaadIhacaGGSaGaamyE aiaacMcadaWadaqaaiaadseadaWgaaWcbaGaamOCaaqabaGcdaqada qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI0aaaaOGaam4Daaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaisdaaaaaaOGaey4kaSIaaG OmamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI0aaaaOGaam4Daaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaGccqGHciITcaWG5b WaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7a aWbaaSqabeaacaaI0aaaaOGaam4DaaqaaiabgkGi2kaadMhadaahaa WcbeqaaiaaisdaaaaaaaGccaGLOaGaayzkaaGaeyOeI0IaamiCaaGa ay5waiaaw2faaaWcbaGaeuyQdCfabeqdcqGHRiI8aOGaamizaiaadI hacaWGKbGaamyEaiabg2da9iaaicdaaaa@66C4@   (42)

After the weak formulation, we have

A w D r [ N i 2 x 2 N j 2 x 2 +2 N i 2 x 2 N j 2 y 2 + N i 2 y 2 N j 2 y 2 ] [ s N i θ n ds+ M n N i n ds s M ns s + [ N i M ns ] s A N i pdA ]=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWdrb qaaiaadEhacaWGebWaaSbaaSqaaiaadkhaaeqaaOWaamWaaeaadaWc aaqaaiabgkGi2kaad6eadaqhaaWcbaGaamyAaaqaaiaaikdaaaaake aacqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakmaalaaabaGa eyOaIyRaamOtamaaDaaaleaacaWGQbaabaGaaGOmaaaaaOqaaiabgk Gi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGOmamaa laaabaGaeyOaIyRaamOtamaaDaaaleaacaWGPbaabaGaaGOmaaaaaO qaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaa cqGHciITcaWGobWaa0baaSqaaiaadQgaaeaacaaIYaaaaaGcbaGaey OaIyRaamyEamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqa aiabgkGi2kaad6eadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakeaacq GHciITcaWG5bWaaWbaaSqabeaacaaIYaaaaaaakmaalaaabaGaeyOa IyRaamOtamaaDaaaleaacaWGQbaabaGaaGOmaaaaaOqaaiabgkGi2k aadMhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaleaa caWGbbaabeqdcqGHRiI8aaGcbaGaeyOeI0YaamWaaeaadaWdrbqaai aad6eadaWgaaWcbaGaamyAaaqabaGccqaH4oqCdaWgaaWcbaGaamOB aaqabaGccaWGKbGaam4CaiabgUcaRmaapeaabaGaamytamaaBaaale aacaWGUbaabeaakmaalaaabaGaeyOaIyRaamOtamaaBaaaleaacaWG PbaabeaaaOqaaiabgkGi2kaad6gaaaGaamizaiaadohacqGHsislda WdrbqaamaalaaabaGaeyOaIyRaamytamaaBaaaleaacaWGUbGaam4C aaqabaaakeaacqGHciITcaWGZbaaaiabgUcaRmaadmaabaGaamOtam aaBaaaleaacaWGPbaabeaakiaad2eadaWgaaWcbaGaamOBaiaadoha aeqaaaGccaGLBbGaayzxaaWaaSbaaSqaaiaadohaaeqaaOGaeyOeI0 Yaa8quaeaacaWGobWaaSbaaSqaaiaadMgaaeqaaOGaamiCaiaadsga caWGbbaaleaacaWGbbaabeqdcqGHRiI8aaWcbaGaam4Caaqab0Gaey 4kIipaaSqabeqaniabgUIiYdaaleaacaWGZbaabeqdcqGHRiI8aaGc caGLBbGaayzxaaGaeyypa0JaaGimaiaacYcaaaaa@A5BD@   (43)

Which can be written in matrix form as

[ k ][ W ]={ F } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGRbaacaGLBbGaayzxaaWaamWaaeaacaWGxbaacaGLBbGaayzxaaGa eyypa0ZaaiWaaeaacaWGgbaacaGL7bGaayzFaaaaaa@3F98@   (44)

the local stiffness matrix

[ k ]= A w D r [ N i 2 x 2 N j 2 x 2 +2 N i 2 x 2 N j 2 y 2 + N i 2 y 2 N j 2 y 2 ] [ s N i θ n ds+ M n N i n ds s M ns s + [ N i M ns ] s ]=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWada qaaiaadUgaaiaawUfacaGLDbaacqGH9aqpdaWdrbqaaiaadEhacaWG ebWaaSbaaSqaaiaadkhaaeqaaOWaamWaaeaadaWcaaqaaiabgkGi2k aad6eadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakeaacqGHciITcaWG 4bWaaWbaaSqabeaacaaIYaaaaaaakmaalaaabaGaeyOaIyRaamOtam aaDaaaleaacaWGQbaabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaah aaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGOmamaalaaabaGaeyOaIy RaamOtamaaDaaaleaacaWGPbaabaGaaGOmaaaaaOqaaiabgkGi2kaa dIhadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacqGHciITcaWGob Waa0baaSqaaiaadQgaaeaacaaIYaaaaaGcbaGaeyOaIyRaamyEamaa CaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaad6 eadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakeaacqGHciITcaWG5bWa aWbaaSqabeaacaaIYaaaaaaakmaalaaabaGaeyOaIyRaamOtamaaDa aaleaacaWGQbaabaGaaGOmaaaaaOqaaiabgkGi2kaadMhadaahaaWc beqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaleaacaWGbbaabeqdcq GHRiI8aaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0YaamWaae aadaWdrbqaaiaad6eadaWgaaWcbaGaamyAaaqabaGccqaH4oqCdaWg aaWcbaGaamOBaaqabaGccaWGKbGaam4CaiabgUcaRmaapeaabaGaam ytamaaBaaaleaacaWGUbaabeaakmaalaaabaGaeyOaIyRaamOtamaa BaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaad6gaaaGaamizaiaado hacqGHsisldaWdrbqaamaalaaabaGaeyOaIyRaamytamaaBaaaleaa caWGUbGaam4CaaqabaaakeaacqGHciITcaWGZbaaaiabgUcaRmaadm aabaGaamOtamaaBaaaleaacaWGPbaabeaakiaad2eadaWgaaWcbaGa amOBaiaadohaaeqaaaGccaGLBbGaayzxaaWaaSbaaSqaaiaadohaae qaaaqaaiaadohaaeqaniabgUIiYdaaleqabeqdcqGHRiI8aaWcbaGa am4Caaqab0Gaey4kIipaaOGaay5waiaaw2faaiabg2da9iaaicdaca GGSaaaaaa@B37C@   (45)

and the local load matrix

{ F }= A N i pdA , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGgbaacaGL7bGaayzFaaGaeyypa0JaeyOeI0Yaa8quaeaacaWGobWa aSbaaSqaaiaadMgaaeqaaOGaamiCaiaadsgacaWGbbaaleaacaWGbb aabeqdcqGHRiI8aOGaaiilaaaa@433B@    (46)

Finite element solutions to the natural frequencies of the rectangular plates under different boundary conditions

From the governing equation in previous section, the finite element solution of the natural frequency of the rectangular plate can be expressed as

ω 2 = Ω N v (x,y)[ D r ( 4 w(x,y) x 4 +2 4 w(x,y) x 2 y 2 + 4 w(x,y) y 4 ) ] dxdy Ω ρh N v (x,y)w(x,y) dxdy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaadaWdrbqaaiaad6ea daWgaaWcbaGaamODaaqabaGccaGGOaGaamiEaiaacYcacaWG5bGaai ykamaadmaabaGaamiramaaBaaaleaacaWGYbaabeaakmaabmaabaWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG3bGaaiikai aadIhacaGGSaGaamyEaiaacMcaaeaacqGHciITcaWG4bWaaWbaaSqa beaacaaI0aaaaaaakiabgUcaRiaaikdadaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGinaaaakiaadEhacaGGOaGaamiEaiaacYcacaWG5bGa aiykaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaGccqGHci ITcaWG5bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGa eyOaIy7aaWbaaSqabeaacaaI0aaaaOGaam4DaiaacIcacaWG4bGaai ilaiaadMhacaGGPaaabaGaeyOaIyRaamyEamaaCaaaleqabaGaaGin aaaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaSqaaiabfM6axb qab0Gaey4kIipakiaadsgacaWG4bGaamizaiaadMhaaeaadaWdrbqa aiabeg8aYjaadIgacaWGobWaaSbaaSqaaiaadAhaaeqaaOGaaiikai aadIhacaGGSaGaamyEaiaacMcacaWG3bGaaiikaiaadIhacaGGSaGa amyEaiaacMcaaSqaaiabfM6axbqab0Gaey4kIipakiaadsgacaWG4b GaamizaiaadMhaaaaaaa@8868@   (48)

Which can be well written as

ω 2 = A N v (x,y)[ D r ( 4 w(x,y) x 4 +2 4 w(x,y) x 2 y 2 + 4 w(x,y) y 4 ) ]dxdy A ρh N v (x,y)w(x,y)dxdy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaadaWdsbqaaiaad6ea daWgaaWcbaGaamODaaqabaGccaGGOaGaamiEaiaacYcacaWG5bGaai ykamaadmaabaGaamiramaaBaaaleaacaWGYbaabeaakmaabmaabaWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG3bGaaiikai aadIhacaGGSaGaamyEaiaacMcaaeaacqGHciITcaWG4bWaaWbaaSqa beaacaaI0aaaaaaakiabgUcaRiaaikdadaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGinaaaakiaadEhacaGGOaGaamiEaiaacYcacaWG5bGa aiykaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaGccqGHci ITcaWG5bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGa eyOaIy7aaWbaaSqabeaacaaI0aaaaOGaam4DaiaacIcacaWG4bGaai ilaiaadMhacaGGPaaabaGaeyOaIyRaamyEamaaCaaaleqabaGaaGin aaaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaacaWGKbGaamiEai aadsgacaWG5baaleaacaWGbbaabeqdcqGHRiI8cqGHRiI8aaGcbaWa a8GuaeaacqaHbpGCcaWGObGaamOtamaaBaaaleaacaWG2baabeaaki aacIcacaWG4bGaaiilaiaadMhacaGGPaGaam4DaiaacIcacaWG4bGa aiilaiaadMhacaGGPaGaamizaiaadIhacaWGKbGaamyEaaWcbaGaam yqaaqab0Gaey4kIiVaey4kIipaaaaaaa@8A66@   (49)

If we substitute Eq. (42), we have

ω 2 = A N v (x,y)[ D r ( 4 x 4 ( v=1 4 N v (x,y) W v )+2 4 x 2 y 2 ( v=1 4 N v (x,y) W v )+ 4 y 4 ( v=1 4 N v (x,y) W v ) ) ]dxdy A ρh N v (x,y)w(x,y)dxdy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaadaWdsbqaaiaad6ea daWgaaWcbaGaamODaaqabaGccaGGOaGaamiEaiaacYcacaWG5bGaai ykamaadmaabaGaamiramaaBaaaleaacaWGYbaabeaakmaabmaabaWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaaakeaacqGHciITca WG4bWaaWbaaSqabeaacaaI0aaaaaaakmaabmaabaWaaabCaeaacaWG obWaaSbaaSqaaiaadAhaaeqaaOGaaiikaiaadIhacaGGSaGaamyEai aacMcacaWGxbWaaSbaaSqaaiaadAhaaeqaaaqaaiaadAhacqGH9aqp caaIXaaabaGaaGinaaqdcqGHris5aaGccaGLOaGaayzkaaGaey4kaS IaaGOmamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI0aaaaaGcbaGa eyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaakiabgkGi2kaadMhada ahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaadaaeWbqaaiaad6eadaWg aaWcbaGaamODaaqabaGccaGGOaGaamiEaiaacYcacaWG5bGaaiykai aadEfadaWgaaWcbaGaamODaaqabaaabaGaamODaiabg2da9iaaigda aeaacaaI0aaaniabggHiLdaakiaawIcacaGLPaaacqGHRaWkdaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGinaaaaaOqaaiabgkGi2kaadMha daahaaWcbeqaaiaaisdaaaaaaOWaaeWaaeaadaaeWbqaaiaad6eada WgaaWcbaGaamODaaqabaGccaGGOaGaamiEaiaacYcacaWG5bGaaiyk aiaadEfadaWgaaWcbaGaamODaaqabaaabaGaamODaiabg2da9iaaig daaeaacaaI0aaaniabggHiLdaakiaawIcacaGLPaaaaiaawIcacaGL PaaaaiaawUfacaGLDbaacaWGKbGaamiEaiaadsgacaWG5baaleaaca WGbbaabeqdcqGHRiI8cqGHRiI8aaGcbaWaa8GuaeaacqaHbpGCcaWG ObGaamOtamaaBaaaleaacaWG2baabeaakiaacIcacaWG4bGaaiilai aadMhacaGGPaGaam4DaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGa amizaiaadIhacaWGKbGaamyEaaWcbaGaamyqaaqab0Gaey4kIiVaey 4kIipaaaaaaa@A953@   (50)

Substituting the shape function in Eq. (41) and carrying out the integration, we have

  1. Clamped-clamped-clamped-simply supported

ω= π 2 D r ρh ( 5.1725 a 4 + 2.8050 a 2 b 2 + 2.4533 b 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaey ypa0JaeqiWda3aaWbaaSqabeaacaaIYaaaaOWaaOaaaeaadaWcaaqa aiaadseadaWgaaWcbaGaamOCaaqabaaakeaacqaHbpGCcaWGObaaam aabmaabaWaaSaaaeaacaaI1aGaaiOlaiaaigdacaaI3aGaaGOmaiaa iwdaaeaacaWGHbWaaWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaala aabaGaaGOmaiaac6cacaaI4aGaaGimaiaaiwdacaaIWaaabaGaamyy amaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaIYaGaaiOlaiaaisdacaaI1aGaaG4m aiaaiodaaeaacaWGIbWaaWbaaSqabeaacaaI0aaaaaaaaOGaayjkai aawMcaaaWcbeaaaaa@584F@   (51)

  1. Clamped-simply supported-clamped-simply supported

ω= π 2 D r ρh ( 1.0016 a 4 + 2.4316 a 2 b 2 + 5.1747 b 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaey ypa0JaeqiWda3aaWbaaSqabeaacaaIYaaaaOWaaOaaaeaadaWcaaqa aiaadseadaWgaaWcbaGaamOCaaqabaaakeaacqaHbpGCcaWGObaaam aabmaabaWaaSaaaeaacaaIXaGaaiOlaiaaicdacaaIWaGaaGymaiaa iAdaaeaacaWGHbWaaWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaala aabaGaaGOmaiaac6cacaaI0aGaaG4maiaaigdacaaI2aaabaGaamyy amaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaI1aGaaiOlaiaaigdacaaI3aGaaGin aiaaiEdaaeaacaWGIbWaaWbaaSqabeaacaaI0aaaaaaaaOGaayjkai aawMcaaaWcbeaaaaa@584B@   (52)

  1. Clamped-clamped-simply supported-simply supported

ω= π 2 D r ρh ( 2.4506 a 4 + 2.6536 a 2 b 2 + 2.4506 b 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaey ypa0JaeqiWda3aaWbaaSqabeaacaaIYaaaaOWaaOaaaeaadaWcaaqa aiaadseadaWgaaWcbaGaamOCaaqabaaakeaacqaHbpGCcaWGObaaam aabmaabaWaaSaaaeaacaaIYaGaaiOlaiaaisdacaaI1aGaaGimaiaa iAdaaeaacaWGHbWaaWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaala aabaGaaGOmaiaac6cacaaI2aGaaGynaiaaiodacaaI2aaabaGaamyy amaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaIYaGaaiOlaiaaisdacaaI1aGaaGim aiaaiAdaaeaacaWGIbWaaWbaaSqabeaacaaI0aaaaaaaaOGaayjkai aawMcaaaWcbeaaaaa@5853@   (53)

  1. Clamped-simply supported-simply-simply supported

ω= π 2 D r ρh ( 5.1747 a 4 + 2.9565 a 2 b 2 + 5.1747 b 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaey ypa0JaeqiWda3aaWbaaSqabeaacaaIYaaaaOWaaOaaaeaadaWcaaqa aiaadseadaWgaaWcbaGaamOCaaqabaaakeaacqaHbpGCcaWGObaaam aabmaabaWaaSaaaeaacaaI1aGaaiOlaiaaigdacaaI3aGaaGinaiaa iEdaaeaacaWGHbWaaWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaala aabaGaaGOmaiaac6cacaaI5aGaaGynaiaaiAdacaaI1aaabaGaamyy amaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaI1aGaaiOlaiaaigdacaaI3aGaaGin aiaaiEdaaeaacaWGIbWaaWbaaSqabeaacaaI0aaaaaaaaOGaayjkai aawMcaaaWcbeaaaaa@5866@   (54)

  1. Clamped- clamped-clamped-clamped-supported

ω= π 2 D r ρh ( 5.1747 a 4 + 2.9565 a 2 b 2 + 5.1747 b 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaey ypa0JaeqiWda3aaWbaaSqabeaacaaIYaaaaOWaaOaaaeaadaWcaaqa aiaadseadaWgaaWcbaGaamOCaaqabaaakeaacqaHbpGCcaWGObaaam aabmaabaWaaSaaaeaacaaI1aGaaiOlaiaaigdacaaI3aGaaGinaiaa iEdaaeaacaWGHbWaaWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaala aabaGaaGOmaiaac6cacaaI5aGaaGynaiaaiAdacaaI1aaabaGaamyy amaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaI1aGaaiOlaiaaigdacaaI3aGaaGin aiaaiEdaaeaacaWGIbWaaWbaaSqabeaacaaI0aaaaaaaaOGaayjkai aawMcaaaWcbeaaaaa@5866@   (55)

  1. Simply supported -simply supported-simply-simply supported

ω= π 2 D r ρh ( 1.0015 a 4 + 2.0008 a 2 b 2 + 1.0015 b 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaey ypa0JaeqiWda3aaWbaaSqabeaacaaIYaaaaOWaaOaaaeaadaWcaaqa aiaadseadaWgaaWcbaGaamOCaaqabaaakeaacqaHbpGCcaWGObaaam aabmaabaWaaSaaaeaacaaIXaGaaiOlaiaaicdacaaIWaGaaGymaiaa iwdaaeaacaWGHbWaaWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaala aabaGaaGOmaiaac6cacaaIWaGaaGimaiaaicdacaaI4aaabaGaamyy amaaCaaaleqabaGaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaa aaaOGaey4kaSYaaSaaaeaacaaIXaGaaiOlaiaaicdacaaIWaGaaGym aiaaiwdaaeaacaWGIbWaaWbaaSqabeaacaaI0aaaaaaaaOGaayjkai aawMcaaaWcbeaaaaa@5833@   (56)

For the sake of comparison of results, exact analytical solutions for the plate under different boundary conditions are developed. For example, for the Simply Supported -Simply Supported-Simply-Simply Supported plate with point load is given as

w( x,y )= m=1 n=1 4p( η,ξ ) ab sin( mπ a )sin( nπ b ) ω mn [ ( sin( mπx a )cos( mπ 2 )+cos( mπx a )sin( mπ 2 ) ) ×( sin( nπ b )cos( nπ 2 )+cos( nπy a )sin( nπ 2 ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Damaabm aabaGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyypa0ZaaabC aeaadaaeWbqaamaalaaabaGaaGinaiaadchadaqadaqaaiabeE7aOj aacYcacqaH+oaEaiaawIcacaGLPaaaaeaacaWGHbGaamOyaaaaaSqa aiaad6gacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdaaleaaca WGTbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aOWaaSaaaeaa caWGZbGaamyAaiaad6gadaqadaqaamaalaaabaGaamyBaiabec8aWb qaaiaadggaaaaacaGLOaGaayzkaaGaam4CaiaadMgacaWGUbWaaeWa aeaadaWcaaqaaiaad6gacqaHapaCaeaacaWGIbaaaaGaayjkaiaawM caaaqaaiabeM8a3naaBaaaleaacaWGTbGaamOBaaqabaaaaOWaamWa aqaabeqaamaabmaabaGaam4CaiaadMgacaWGUbWaaeWaaeaadaWcaa qaaiaad2gacqaHapaCcaWG4baabaGaamyyaaaaaiaawIcacaGLPaaa caWGJbGaam4BaiaadohadaqadaqaamaalaaabaGaamyBaiabec8aWb qaaiaaikdaaaaacaGLOaGaayzkaaGaey4kaSIaam4yaiaad+gacaWG ZbWaaeWaaeaadaWcaaqaaiaad2gacqaHapaCcaWG4baabaGaamyyaa aaaiaawIcacaGLPaaacaWGZbGaamyAaiaad6gadaqadaqaamaalaaa baGaamyBaiabec8aWbqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOa GaayzkaaaabaGaey41aq7aaeWaaeaacaWGZbGaamyAaiaad6gadaqa daqaamaalaaabaGaamOBaiabec8aWbqaaiaadkgaaaaacaGLOaGaay zkaaGaam4yaiaad+gacaWGZbWaaeWaaeaadaWcaaqaaiaad6gacqaH apaCaeaacaaIYaaaaaGaayjkaiaawMcaaiabgUcaRiaadogacaWGVb Gaam4CamaabmaabaWaaSaaaeaacaWGUbGaeqiWdaNaamyEaaqaaiaa dggaaaaacaGLOaGaayzkaaGaam4CaiaadMgacaWGUbWaaeWaaeaada Wcaaqaaiaad6gacqaHapaCaeaacaaIYaaaaaGaayjkaiaawMcaaaGa ayjkaiaawMcaaaaacaGLBbGaayzxaaaaaa@B193@   (57)

The exact analytical solution for the natural frequency is given as

ω mn = D r ρh [ ( mπ a ) 2 + ( nπ b ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaad2gacaWGUbaabeaakiabg2da9maakaaabaWaaSaaaeaa caWGebWaaSbaaSqaaiaadkhaaeqaaaGcbaGaeqyWdiNaamiAaaaaaS qabaGcdaWadaqaamaabmaabaWaaSaaaeaacaWGTbGaeqiWdahabaGa amyyaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRa WkdaqadaqaamaalaaabaGaamOBaiabec8aWbqaaiaadkgaaaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaaaaa@4EC5@   (58)

Parameter used for simulations

Case 1:

Plate dimension: 1m x 1m

Plate thickness: 0.025 m, 0.05 m and 0.075 m

Point load: 4500 N

Uniformly distributed load = 4.5 kN/m

The mechanical properties of the plate were E= 205GPa and ρ= 8050 kg/m3. The Poisson’s ratio is 0.3 as shown in Table 1a.

Material

Density kg/m3

Yield stress (Mpa)

Young's modulus (N/m2)

Poisson's ratio

Steel

8050

250

205x109

0.3

 

Table 1a Physical properties of the materials used for the simulationsp

Case 2:

Plate dimension: 700 mm x 700 mm

Plate thickness: 10 mm

Point load: 800 N

The mechanical properties of the plate were E= 205GPa and ρ= 8050 kg/m3. The Poisson’s ratio is 0.3 as shown in Table 1b.

Material

Density kg/m3

Yield stress (Mpa)

Young's modulus (N/m2)

Poisson's ratio

 

Aluminium

2700

276

70x109

0.3

 

Table 1b Physical properties of the materials used for the simulations

Result and discussion

The results of the numerical simulations using MATLAB and FlexPDE are presented in this section. Grid independence and sensitivity analyses are carried out. Figures 6–8 present the finite element discretization of the plate.

Figure 6 Discretisation of 1 m by 1 m Mild steel plate.

Figure 7 Triangular element mesh and refined mesh (MATLAB) for a rectangular plate of length = 500 mm, width = 200 mm and thickness = 12 mm.

Figure 8 Triangular element mesh and refined mesh (MATLAB) for a rectangular plate of length = 500 mm, width = 300 mm and thickness = 12 mm.

Grid independency test and code verification

A mesh sensitivity analysis was carried out to ensure grid independence. In order to choose the grid size, grid independency test is performed for different grid mesh of sizes. The number of grid size from which there is no appreciable change in the results and the accuracy is not affected even if the numbers of elements are increased by decreasing the size of the elements.

In order to verify and establish the reliability of the finite element methods used in this work, we made some comparisons of the results of an in-house MATLAB code and that of commercial computational solid mechanics code using FLEXPDE as well as exact analytical method. It is established that, the two finite element methods have been proven to be adequate and give accurate results for vibration problem presented in this project. The results show excellent agreement between the exact solution and the finite element solution.

Clamped-clamped-clamped-simply supported (CCCS) plate subjected to point load

Table 2 shows the effect of plate thickness on the deflection of the plate for the Clamped-Clamped-Clamped-Simply Supported (CCCS) boundary conditions subjected to point load of 4.5kN.

 

Maximum deflection of the plate (m)

 

S. No. Thickness

Exact analytical solution

FEM MATLAB

 FEM FLEXPDE

1 0.025

4.19×10-2

4.86×10-2

5.45×10-2

2 0.050

6.58×10-3

7.45×10-3

7.93×10-3

3 0.075

2.23×10-3

3.04×10-3

2.79×10-3

Table 2 Comparison of the deflection results for plate of length = 1 m, width = 1 m and Point load = 4500 N

Clamped-clamped-clamped-simply supported (CCCS) plate subjected to uniformly distributed load

While Table 3 shows the effect of plate thickness on the deflection of the plate for the same boundary conditions subjected to a uniformly distributed load of 4.5kN/m.

 

Maximum deflection of the plate (m)

 

S. No. Thickness

Exact analytical solution

FEM MATLAB

 FEM FLEXPDE

1 0.025

5.65×10-3

5.86×10-3

5.79×10-3

2 0.050

7.98×10-4

8.45×10-4

8.20×10-4

3 0.075

2.53×10-4

3.04×10-4

2.79×10-4

Table 3 Comparison of the deflection results for plate of length = 1 m, width = 1 m and uniformly distributed load = 4.5kN/m2

The results obtained for deflections from FLEXPDE give good agreement with the results obtained from FEM MATLAB with the FLEXPDE values slightly higher. However, the difference between the two values reduces from at thickness of the plate increases. Also, it was observed that the deflection of the plate decreases with increase in the thickness of the plate. This is because no shear deformation is considered in the analysis of thin plate. If the plate is thick the effect of shear deformation becomes significant and therefore the result obtained may vary. Therefore, to reduce deflection, the thickness of the plate should be increased.

Clamped-simply supported-clamped-simply supported (CSCS) plate subjected to point load

Table 4 shows the effect of plate thickness on the deflection of the plate for the Clamped- Clamped-Simply Supported -Clamped-Simply Supported (CSCS) boundary conditions subjected to point load of 4.5kN.

 

Maximum deflection of the plate (m)

 

S. No. Thickness

Exact analytical solution

FEM MATLAB

 FEM FLEXPDE

1 0.025

5.23×10-2

6.17×10-2

5.45×10-2

2 0.050

7.34×10-3

8.23×10-3

8.52×10-3

3 0.075

2.51×10-3

2.78×10-3

2.83×10-3

Table 4 Comparison of the deflection results for plate of length = 1 m, width = 1 m and Point load = 4500 N

Clamped-simply supported-clamped-simply supported (CSCS) plate subjected to uniformly distributed load

While Table 5 shows the effect of plate thickness on the deflection of the plate for the same boundary conditions subjected to a uniformly distributed load of 4.5kN/m.

 

Maximum deflection of the plate (m)

 

S. No. Thickness

Exact analytical solution

FEM MATLAB

 FEM FLEXPDE

1 0.025

7.65×10-3

7.55×10-3

8.69×10-3

2 0.050

1.22×10-3

1.12×10-3

1.15×10-3

3 0.075

3.46×10-4

3.44×10-4

3.56×10-4

Table 5 Comparison of the deflection results for plate of length = 1 m, width = 1 m and uniformly distributed load = 5kN/m2

The results obtained for deflections from FLEXPDE give good agreement with the results obtained from FEM MATLAB with the FLEXPDE values slightly higher. However, the difference between the two values reduces from at thickness of the plate increases. Also, it was observed that the deflection values reduce with increase in thickness.

Clamped -clamped- simply supported -simply supported (CCSS) plate subjected to point load

Table 6 shows the effect of plate thickness on the deflection of the plate for the Clamped- Clamped-Clamped-Simply Supported-Simply Supported (CCSS) boundary conditions subjected to point load of 4.5kN.

 

Maximum deflection of the plate (m)

 

S. No. Thickness

Exact analytical solution

FEM MATLAB

 FEM FLEXPDE

1 0.025

5.67×10-2

6.17×10-2

5.45×10-2

2 0.050

8.47×10-3

8.51×10-3

8.58×10-3

3 0.075

2.71×10-3

2.82×10-3

2.86×10-3

Table 6 Comparison of the deflection results for plate of length = 1 m, width = 1 m and Point load = 4500 N

Clamped -clamped-simply supported -simply supported (CCSS) plate subjected to uniformly distributed load

While Table 7 shows the effect of plate thickness on the deflection of the plate for the same boundary conditions subjected to a uniformly distributed load of 4.5kN/m.

 

Maximum deflection of the plate (m)

 

S. No. Thickness

Exact analytical solution

FEM MATLAB

 FEM FLEXPDE

1 0.025

8.27×10-3

9.55×10-3

9.71×10-3

2 0.050

1.15×10-3

1.24×10-3

1.26×10-3

3 0.075

3.52×10-4

3.61×10-4

3.70×10-4

Table 7 Comparison of the deflection results for plate of length = 1 m, width = 1 m and uniformly distributed load = 5kN/m2

The results obtained for deflections from FLEXPDE give good agreement with the results obtained from FEM MATLAB with the FLEXPDE values slightly higher. However, the difference between the two values reduces from at thickness of the plate increases. Also, it was observed that the deflection values reduce with increase in thickness.

Clamped -simply supported- simply supported -simply supported (CSSS) plate subjected to point load

Tables 8 shows the effect of plate thickness on the deflection of the plate for the Clamped -Simply Supported-Simply Supported -Simply Supported (CCSS) boundary conditions subjected to point load of 4.5kN.

 

Maximum deflection of the plate (m)

 

S. No. Thickness

Exact analytical solution

FEM MATLAB

 FEM FLEXPDE

1 0.025

7.25×10-2

6.89×10-2

6.85×10-2

2 0.050

1.02×10-2

9.47×10-3

9.49×10-3

3 0.075

3.15×10-3

3.13×10-3

3.14×10-3

Table 8 Comparison of the deflection results for plate of length = 1 m, width = 1 m and Point load = 4500 N

Clamped -simply supported- simply supported -simply supported (CSSS) plate subjected to uniformly distributed load

While Table 9 shows the effect of plate thickness on the deflection of the plate for the same boundary conditions subjected to a uniformly distributed load of 4.5kN/m.

 

Maximum deflection of the plate (m)

 

S. No. Thickness

Exact analytical solution

FEM MATLAB

 FEM FLEXPDE

1 0.025

1.07×10-2

1.15×10-3

1.15×10-3

2 0.050

1.45×10-3

1.50×10-3

1.50×10-3

3 0.075

4.31×10-4

4.71×10-4

4.70×10-4

Table 9 Comparison of the deflection results for plate of length = 1 m, width = 1 m and uniformly distributed load = 5kN/m2

The results obtained for deflections from FLEXPDE give good agreement with the results obtained from FEM MATLAB with the FLEXPDE values slightly higher. However, the difference between the two values reduces from at thickness of the plate increases. Also, it was observed that the deflection values reduce with increase in thickness.

Figures 9&10 shows the effects of plate thickness and boundary conditions on the deflection of the plate under point load. While Figures 11–16 presents the impacts of the plate thickness and boundary conditions on the deflection of the plate under uniformly distributed load. The figures show that the deflection of the plate decreases as the thickness of the plate increases. However, the higher the number of simply supported boundaries, the higher the deflection of the plate. This also connotes that the higher the number of clamped-supported boundaries, the lower the deflection of the plate. Figures 17–21 shows the three-dimensional view of the vibration of the plate using FLEXPDE.

Figure 9 Deflection versus dimension plot of point distributed load under CCCS boundary conditions.

Figure 10 Deflection versus dimension plot of point distributed load under CSCS boundary conditions.

Figure 11 Deflection versus dimension plot of uniformly distributed load under CCSS boundary conditions.

Figure 12 Deflection versus dimension plot of uniformly distributed load under CSSS boundary conditions.

Figure 13 Deflection versus dimension plot of uniformly distributed load under CCCS boundary conditions.

Figure 14 Deflection versus dimension plot of uniformly distributed load under CSCS boundary conditions.

Figure 15 Deflection versus dimension plot of uniformly distributed load under CCSS boundary conditions.

Figure 16 Deflection versus dimension plot of uniformly distributed load under CSSS boundary conditions.

Figure 17 Different modes of vibration (FLEXPDE FEM) for a rectangular plate of length = 1000 mm, width = 1000 mm and thickness = 75 mm.

Figure 18 Different modes of vibration (FLEXPDE FEM) for a rectangular plate of length = 200 mm, width = 100 mm and thickness = 12 mm.

Figure 19 Different modes of vibration (FLEXPDE FEM) for a rectangular plate of length = 500 mm, width = 100 mm and thickness = 12 mm.

Figure 20 Different modes of vibration (FLEXPDE FEM) for a rectangular plate of length = 500 mm, width = 100 mm and thickness = 12 mm.

Figure 21 Different modes of vibration (FLEXPDE FEM) for a rectangular plate of length = 700 mm, width = 700 mm and thickness = 10 mm.

The natural frequencies of plates are investigated versus modal numbers by varying the length and width of the plates with clamped-clamped-clamped - simply supported (CCCS), clamped-simply-clamped - simply supported (CSCS), clamped-clamped-simply - simply supported (CCSS), clamped-simply-simply- simply supported (CSSS) boundary conditions as presented in Table 10. The frequencies of the plates increase by increasing the modal number, and CCCS frequencies are greater than the frequencies of other boundary conditions. It is observed from the Table that the boundary conditions have a significant influence on the vibration of plates. Also, the obtained results clearly show that frequency parameters increase if more constraints are included. Simply supported at all edges have lower frequency than clamped edge due to clamping in all edges. This means that as the constraint on the edges increases the flexural rigidity of the plate increases and hence there is an increase in the frequency. Table 11 presents comparison of results of the first 6 natural frequencies and mode shapes of simply supported rectangular plates.

Modes

CCCS

CSCS

CCSS

CSSS

(1, 1)

54.34

38.45

41.84

10.56

(1, 2)

55.13

40.11

42.48

15.98

(2, 2)

56.06

42.97

44.25

27.53

(1, 3)

64.98

53.65

55.31

32.87

(2, 3)

68.75

57.85

59.02

39.21

(1, 4)

75.27

67.33

69.18

48.9

(3, 3)

82.81

74.72

76.89

57.42

Table 10 Effects of boundary conditions on the natural frequencies at different mode numbers

Mode number

6.25 mm

12.5 mm

25 mm

50 mm

1

136.9

272.2

535.3

1024

2

263.3

522.27

1019.8

1906.8

3

422.3

833.6

1634.9

3008.8

4

474.5

940.3

1823.1

3100.6

5

547.9

1083.3

2088.3

3316

6

758.1

1493.7

2847.7

3748.1

Table 11 Effects of plate thickness conditions on the natural frequencies at different mode numbers (SSSS)

The table shows that the results of the natural frequency in this work agree very well with the results of the natural frequencies of the exact analytical solution and those numerical solutions available in literature and with exact solutions. Also, it was established that accuracy in the finite element solution increases as the thickness of the rectangular plate increases.

Conclusion

In this work, finite element method is applied to structural analysis of rectangular plate subjected to different boundary conditions. The verification and the reliability of the finite element methods used in this work have been established by comparing the results of an in-house MATLAB code and that of commercial computational solid mechanics code using FLEXPDE as well as exact analytical method. The results of the exact analytical method, MATLAB finite element method and FLEX finite element method show excellent agreements. Also, it was observed that the boundary conditions and the dimensions of the plate have significant influence on the vibration of plates. The results showed that Clamped- Simply Supported - Simply Supported -Simply Supported (CSSS) mixed boundary condition gave the highest deflection for each thickness and loading type while the Clamped-Clamped- Clamped-Simply Supported (CCCS) mixed boundary condition provided the lowest deflection. The FEM algorithm developed in this project shows great agreement with commercial software results and can be used by any person who has the MATLAB code. Although, the processing time for MATLAB symbolic language is higher than if one uses numbers in the equations. However, the authors believe that using the first strategy is better for code learning as the code consists of a good way to learn the finite element method in its state-of-art. It could be inferred from the study that use of the developed finite element codes in MATLAB is an easier, cheaper and quicker approach for the analysis of free vibration of a thin isotropic rectangular plate.

Acknowledgments

We thank University of Lagos, Nigeria and Lagos State University, Nigeria for providing us conducive environment and essential materials to carry out this research.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Funding

None.

References

  1. Karunasena W, Kitipornchai S. Free vibrations of shear deformable general triangular plates. J Sound Vibration. 1997;199(5):595–613.
  2. Liew KM, Peng LX, Kitipornchai S. Vibration analysis of corrugated Reissner Mindlin plates using a mesh-free Galerkin method. Int J Mech Sci. 2009;51(9,10):642–652.
  3. Lu CF, Zhang ZC, Chen WQ. Free vibration of generally supported rectangular Kirchhoff plates: State-space-based differential quadrature method. Int J Numer Meth Engng. 2007;70:1430–1450.
  4. Moon DH, Choi MS. Vibration Analysis for Frame Structures Using Transfer of Dynamic Stiffness Coefficient. J Sound Vibration. 2000;234(5):725–736.
  5. Myung Soo Choi. Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method. KSME Int J. 2003;17(6):805–815.
  6. Petyt M. Introduction to Finite Element Vibration Analysis. Cambridge University, New York; 1990.
  7. Wu L, Liu J. Free vibration analysis of arbitrary shaped thick plates by differential cubature method. Int J Mech Sci. 2005;47:638.
  8. Tanaka M, Yamagiwa K, Miyazaki K, et al. Free vibration analysis of elastic plate structures by boundary element method. Eng Analysis. 1988;5(4):182–188.
  9. Karunasena W, Kitipornchai S. Free vibrations of shear deformable general triangular plates. J Sound Vibration. 1997;199(5):595613.
  10. Safaei B. Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces. Euro Phys J Plus. 2021;136(6):646.
  11. Safaei B. The effect of embedding a porous core on the free vibration behaviour of laminated composite plates. Steel Comp Struct. 2020;35(5):659–670.
  12. Kumar S, Vinayak Ranjan, Jana P. Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Comp Struct. 2018;197:39–53.
  13. Pratap Singh P, Azam MS, Ranjan Vinayak. Vibration analysis of a thin functionally graded plate having an out of plane material inhomogeneity resting on Winkler-Pasternak foundation under different combinations of boundary conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2018.
  14. Ramu I, Mohanty SC. Study on free vibration analysis of rectangular plate structures using finite element method. Procedia Engineering. 2012;38:2758–2766.
  15. Liu JC, Deng XW, Wang QS, et al. A unified modeling method for dynamic analysis of GPL-reinforced FGP plate resting on Winkler-Pasternak foundation with elastic boundary conditions. Comp Struct. 2020;244:112217.
  16. Fattahi AM, Safaei B. Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models. Mechanics. 2017;23(5):678–687.
  17. Gholami R, Ansari R. Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates. App Math Model. 2019;65:627–660.
  18. Gholami R, Ansari R. Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates. Eng Struct. 2018;156:197–209.
  19. Gholami R, Ansari R. Asymmetric nonlinear bending analysis of polymeric composite annular plates reinforced with graphene nano platelets. Int J Multi Comp Engg. 2017;17(1):45–63.
  20. Gholami R, Ansari R. On the nonlinear vibrations of polymer nano composite rectangular plates reinforced by graphene nano platelets: A unified higher-order shear deformable model. Iran J Sci Tech Tran Mech Engg. 2019;43(1):603–620.
Creative Commons Attribution License

©2022 Sobamowo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.