Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 2 Issue 5

Finite element analysis of flow and heat transfer of dissipative Casson-Carreau nanofluid over a stretching sheet embedded in a porous medium

MG Sobamowo, AA Yinusa, AA Oluwo, SI Alozie

Department of Mechanical Engineering, University of Lagos, Nigeria

Correspondence: MG Sobamowo, Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria, Tel 2347034717417

Received: September 18, 2018 | Published: October 8, 2018

Citation: Sobamowo MG, Yinusa AA, OluwoAA, et al. Finite element analysis of flow and heat transfer of dissipative Casson-Carreau nanofluid over a stretching sheet embedded in a porous medium. Aeron Aero Open Access J. 2018;2(5):294-308. DOI: 10.15406/aaoaj.2018.02.00064

Download PDF

Abstract

In this paper, combined influences of thermal radiation, inclined magnetic field and temperature-dependent internal heat generation on unsteady two-dimensional flow and heat transfer analysis of dissipative Casson-Carreau nanofluid over a stretching sheet embedded in a porous medium is investigated. Similarity transformations are used to reduce the developed systems of governing partial differential equations to nonlinear third and second orders ordinary differential equations which are solved using finite element method. In the study, kerosene is used as the base fluid which is embedded with the silver (Ag) and copper (Cu) nanoparticles. Also, effects of other pertinent parameters on the flow and heat transfer characteristics of the Casson-Carreau nanofluids are investigated and discussed. From the results, it is established temperature field and the thermal boundary layers of Ag-Kerosene nanofluid are highly effective when compared with the Cu-Kerosene nanofluid. Heat transfer rate is enhanced by increasing in power-law index and unsteadiness parameter. Skin friction coefficient and local Nusselt number can be reduced by magnetic field parameter and they can be enhanced by increasing the aligned angle. Friction factor is depreciated and the rate of heat transfer increases by increasing the Weissenberg number. A very good agreement is established between the results of the present study and the previous results. The results of present analysis can help in expanding the understanding of the thermo-fluidic behaviour of the Casson-Carreau nanofluid over a stretching sheet as applied in manufacturing industries and production engineering.

Keywords: MHD, nanofluid, non-uniform heat source/sink, Carreau fluid, thermal radiation and free convection, finite element method

Introduction

The recent studies in the past few decades have shown that the study of Non-Newtonian have attracted tremendous attractions in the study of fluid dynamics. The flow applications of non-Newtonian fluids are evident in polymer devolatization and processing, wire and fiber coating, heat exchangers, extrusion process, chemical processing equipment, etc. Also, combining heat transfer with the concept of stretching flow is vital in the afore-mentioned areas of applications. Such processes have great affinity for cooling rates and stretching simultaneously.1 Consequently, in the past few years, research efforts have been directed towards the analysis of this very important phenomenon of wide areas of applications. Moreover, the promising significance of magnetohydrodynamics (MHD) fluid behavior in concerned applications such as in blood flow still provokes the continuous studies and interests of researchers. Additionally, the incorporation of radiation through thermal analysis is vital in technology involving solar energy, space vehicles, systems with propulsion, plasma physics in the flow structure of atomic plants, combustion processes, internal combustion engines, ship compressors, solar radiations and in chemical processes and space ship with high temperature level re-entry aerodynamics. Furthermore, there are various engineering and industrial applications of magnetohydrodynamics (MHD) fluid behavior such as in the study of the growth of crystals, blood flow etc. Therefore, the influences of external factors such as thermal radiation and magnetic field on the thermofluid problem concerning Newtonian and Non-Newtonian fluid have been widely analyzed in recent times.

In an early study, MHD fluid flow over a surface that is susceptible to stretching was critically studied by Anderson et al.2,3 In their studies, effect of transient variables on the film size2 and magnetic influence on the fluid flow characteristics were explored numerically.3 Few years later, Chen4 investigated the fluid film that obeys power-law flow of unsteady thermal-stretching sheet while Dandapat5,6 focused on the effect of changing viscosity as well as thermo-capillarity on the heat transfer rate of film flow over a sheet susceptible to stretching. Meanwhile, Wang7 developed an analytical or close form solution for momentum and energy (heat transfer) of film flow over a surface susceptible to stretching. Also, Chen8 and Sajid et al.9 investigated the motion characteristics involving non-Newtonian thin film over a transient stretching surface considering viscous dissipation using HAM and HPM. After a year, Dandapat et al.,10 presented the analysis using a two-dimensional flow over a transient sheet that is capable of stretching while in the same year, impact of power-law index was carried out by Abbasbandy et al.11 Santra & Dandapat12 numerically investigated the same considering a transient horizontal elongating sheet. A numerical approach was also used by Sajid et al.13 to analyze the micropolar film flow over an inclined plate, moving belt and vertical cylinder. A year later, Noor & Hashim14 investigated the influence of magnetic parameter and thermocapillarity on an unsteady liquid film flow over similar sheet while Dandapat & Chakraborty15 and Dandapat & Singh16 presented the thin film flow analysis over a non-linear stretching surface with the effect of transverse magnetic field. Heat transfer characteristics of the thin film flows considering the different channels have also been analyzed by Abdel-Rahman,17 Khan et al.18 Liu et al.19 and Vajaravelu et al.20 Meanwhile, Liu & Megahad21 used HPM to analyze the thermofluidic effect of thin film with internal heat generation and changing heat flux while Seddeek as well as other recent works22-35 investigated the impacts of thermal radiation and changing viscosity on magnetohydrodynamics in unforced convection fluid flow over a flat plate that is semi-infinite.

Other researchers went on to present their view on the interesting topic by adapting nanofluid into the generic three dimensional fluid model with radiation effect.36-48 Makinde & Animasaun49 investigated the effect of cross diffusion on MHD bioconvection flow over a horizontal surface. In another study, Makinde & Animasaun50 presented the MHD nanofluid on bioconvection flow of a paraboloid revolution with nonlinear thermal radiation and chemical reaction while Sandeep,51 Reddy et al.52 and Ali et al.53 studied the heat transfer behaviour of MHD flows. Maity et al.54 analyzed thermocapillary flow of a thin Nanoliquid film over an unsteady stretching sheet. Furthermore, different studies on the flow and heat transfer behaviour as well as entropy generation for different non-Newtonian fluids under difference internal and external conditions.55-72 The above reviewed studies have been the consequent of the various industrial and engineering applications of non-Newtonian fluids. Among the classes of non-Newtonian fluids, Carreau fluid which its rheological expressions were first introduced by Carreau,73 is one of the non-Newtonian fluids that its model is substantial for gooey, high and low shear rates.74 On account of this headway, it has profited in numerous innovative and assembling streams.74-87 Owing to these applications, different studies have been carried out to explore the characteristics of Carreau liquid in flow under different conditions. Kumar et al.40 applied numerical scheme to analyze the thermofluidic behaviour of a liquid film capable of conducting electricity. The fluid is based on the structure of liquid phase and interactive behaviour of solid of a two-phase suspension. It is able to capture complex rheological properties of a fluid, unlike other simplified models like the power law88 and second, third or fourth-grade models.89,90

Casson fluids are Jelly, honey, protein, Human blood and fruit juices. Concentrated fluids like sauces, honey, juices, blood, and printing inks can be well described using this model. The effect of magnetohydrodynamic Casson fluid flow on a laterally positioned elongating sheet was explained by Nadeem et al.91 The review studies have been analyzed using approximate analytical, semi-analytical and numerical methods. Among the numerical methods, the numerical solutions of FEM represent efficient ways of obtaining solutions to nonlinear problems even with complexities in the boundary conditions and geometries.92-94 Therefore, using FEM, this work presents numerical investigations of the combined influences of thermal radiation, inclined magnetic field and internal heat generation that is temperature-dependent on unsteady two-dimensional flow and heat transfer analysis of dissipative Casson-Carreau nanofluid over a stretching sheet embedded in a porous medium. Using kerosene as the base fluid embedded with the silver (Ag) and copper (Cu) nanoparticles, the effects of other pertinent parameters on flow and heat transfer characteristics of the nanofluids are investigated and discussed. The analysis of the stretched flows with heat transfer is very significant in controlling the qualities of the end products in manufacturing and metal forming processes. Such processes have great dependences on the stretching and cooling rates. The results of present analysis can help in expanding the understanding of the thermo-fluidic behaviour of the Casson-Carreau nanofluid over a stretching sheet as applied in manufacturing industries and production engineering.

Problem formulation

From the transient, two-dimensional boundary layer fluid flow of a conducting and heat generating Casson and Carreau nanofluids over a sheet susceptible to stretching extreme by liquid film of uniform size (thickness) h(t) as represented schematically in Figure 1. The stretching velocity along x-axis is U(x,t) and y–axis is perpendicular to it with dissipation and volume fraction considered.

Figure 1 Flow geometry of the problem.

Using [85],

τ= τ 0 +μ σ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiXdq Naeyypa0JaeqiXdqxcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugi biabgUcaRiabeY7aTjqbeo8aZzaacaaaaa@42AA@           (1)

or

τ={ 2( μ B + p y 2π ) e ij ,  π> π c }    ={ 2( μ B + p y 2 π c ) e ij ,   π c <π } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsacq aHepaDcqGH9aqpjuaGdaGadaGcbaqcLbsacaaIYaqcfa4aaeWaaOqa aKqzGeGaeqiVd0wcfa4aaSbaaSqaaKqzadGaamOqaaWcbeaajugibi abgUcaRKqbaoaalaaakeaajugibiaadchajuaGdaWgaaWcbaqcLbma caWG5baaleqaaaGcbaqcfa4aaOaaaOqaaKqzGeGaaGOmaiabec8aWb WcbeaaaaaakiaawIcacaGLPaaajugibiaadwgajuaGdaWgaaWcbaqc LbmacaWGPbGaamOAaaWcbeaajugibiaacYcacaqGGaGaaeiiaiabec 8aWjaab6dacqaHapaCjuaGdaWgaaWcbaqcLbmacaWGJbaaleqaaaGc caGL7bGaayzFaaaabaqcLbsacaqGGaGaaeiiaiaabccacaqG9aqcfa 4aaiWaaOqaaKqzGeGaaGOmaKqbaoaabmaakeaajugibiabeY7aTLqb aoaaBaaaleaajugWaiaadkeaaSqabaqcLbsacqGHRaWkjuaGdaWcaa GcbaqcLbsacaWGWbqcfa4aaSbaaSqaaKqzadGaamyEaaWcbeaaaOqa aKqbaoaakaaakeaajugibiaaikdacqaHapaCjuaGdaWgaaWcbaqcLb macaWGJbaaleqaaaqabaaaaaGccaGLOaGaayzkaaqcLbsacaWGLbqc fa4aaSbaaSqaaKqzadGaamyAaiaadQgaaSqabaqcLbsacaGGSaGaae iiaiaabccacqaHapaCjuaGdaWgaaWcbaqcLbmacaWGJbaaleqaaKqz GeGaeyipaWJaeqiWdahakiaawUhacaGL9baaaaaa@8924@     (2)

Also employing the tensor given as95

τ ¯ ij = η 0 [ 1+ ( n1 ) 2 ( Γ γ ˙ ¯ ) 2 γ ¯ ij ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafqiXdq NbaebajuaGdaWgaaWcbaqcLbmacaWGPbGaamOAaaWcbeaajugibiab g2da9iabeE7aOLqbaoaaBaaaleaajugWaiaaicdaaSqabaqcfa4aam WaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaalaaakeaajuaGdaqadaGc baqcLbsacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaaabaqcLb sacaaIYaaaaKqbaoaabmaakeaajugibiabfo5ahjqbeo7aNzaacyaa raaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaju gibiqbeo7aNzaaraqcfa4aaSbaaSqaaKqzadGaamyAaiaadQgaaSqa baaakiaawUfacaGLDbaaaaa@5CC9@           (3)

τ ¯ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafqiXdq NbaebajuaGdaWgaaWcbaqcLbmacaWGPbGaamOAaaWcbeaaaaa@3C27@ is the extra tensor, ηo is the zero shear rate viscosity, Γ is the time constant, n is the power-law index and γ ˙ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafq4SdC MbaiGbaebaaaa@3841@  is defined as

γ ˙ ¯ = 1 2 i j γ ˙ ¯ ij γ ˙ ¯ ji = 1 2 Π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafq4SdC MbaiGbaebacqGH9aqpjuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGa aGymaaGcbaqcLbsacaaIYaaaaKqbaoaaqabakeaajuaGdaaeqaGcba qcLbsacuaHZoWzgaGagaqeaKqbaoaaBaaaleaajugWaiaadMgacaWG QbaaleqaaKqzGeGafq4SdCMbaiGbaebajuaGdaWgaaWcbaqcLbmaca WGQbGaamyAaaWcbeaaaeaajugWaiaadQgaaSqabKqzGeGaeyyeIuoa aSqaaKqzadGaamyAaaWcbeqcLbsacqGHris5aaWcbeaajugibiabg2 da9KqbaoaakaaakeaajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugi biaaikdaaaaaleqaaKqzGeGaeuiOdafaaa@5B67@

where Π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiOda faaa@37F8@  is the second invariant strain tensor.

Following the assumptions, the equations for continuity and motion for the flow analysis of Carreau and Casson fluids are

u x + v y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadwhaaOqaaKqzGeGaeyOaIyRaamiEaaaacqGH RaWkjuaGdaWcaaGcbaqcLbsacqGHciITcaWG2baakeaajugibiabgk Gi2kaadMhaaaGaeyypa0JaaGimaaaa@45B5@          (4)

ρ nf ( u t +u u x +v u y )= μ nf ( 1+ 1 β )( 1+ 3( n1 ) Γ 2 2 ( u y ) 2 ) 2 u y 2 σ B o 2 uco s 2 γ μ nf u K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaauFqcLbsacq aHbpGCjuaGdaWgaaWcbaqcLbmacaWGUbGaamOzaaWcbeaajuaGdaqa daGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamyDaaGcbaqcLbsacq GHciITcaWG0baaaiabgUcaRiaadwhajuaGdaWcaaGcbaqcLbsacqGH ciITcaWG1baakeaajugibiabgkGi2kaadIhaaaGaey4kaSIaamODaK qbaoaalaaakeaajugibiabgkGi2kaadwhaaOqaaKqzGeGaeyOaIyRa amyEaaaaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaeqiVd0wcfa4aaS baaSqaaKqzadGaamOBaiaadAgaaSqabaqcfa4aaeWaaOqaaKqzGeGa aGymaiabgUcaRKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaeq OSdigaaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGaaGymaiab gUcaRKqbaoaalaaakeaajugibiaaiodajuaGdaqadaGcbaqcLbsaca WGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacqqHtoWrjuaG daahaaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGOmaaaajuaGda qadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamyDaaGcbaqcLbsa cqGHciITcaWG5baaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabeaaju gWaiaaikdaaaaakiaawIcacaGLPaaajuaGdaWcaaGcbaqcLbsacqGH ciITjuaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiaadwhaaOqaaK qzGeGaeyOaIyRaamyEaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaaaa jugibiabgkHiTiabeo8aZjaadkeajuaGdaqhaaWcbaqcLbmacaWGVb aaleaajugWaiaaikdaaaqcLbsacaWG1bGaam4yaiaad+gacaWGZbqc fa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqaHZoWzcqGHsislju aGdaWcaaGcbaqcLbsacqaH8oqBjuaGdaWgaaWcbaqcLbmacaWGUbGa amOzaaWcbeaajugibiaadwhaaOqaaKqzGeGaam4saaaaaaa@AC31@       (5)

( ρ C p ) nf ( u t +u T x +v T y )= k nf 2 T y 2 + μ nf ( u y ) 2 + q q r y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaauFqcfa4aae WaaOqaaKqzGeGaeqyWdiNaam4qaKqbaoaaBaaaleaajugWaiaadcha aSqabaaakiaawIcacaGLPaaajuaGdaWgaaWcbaqcLbmacaWGUbGaam OzaaWcbeaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRa amyDaaGcbaqcLbsacqGHciITcaWG0baaaiabgUcaRiaadwhajuaGda WcaaGcbaqcLbsacqGHciITcaWGubaakeaajugibiabgkGi2kaadIha aaGaey4kaSIaamODaKqbaoaalaaakeaajugibiabgkGi2kaadsfaaO qaaKqzGeGaeyOaIyRaamyEaaaaaOGaayjkaiaawMcaaKqzGeGaeyyp a0Jaam4AaKqbaoaaBaaaleaajugWaiaad6gacaWGMbaaleqaaKqbao aalaaakeaajugibiabgkGi2MqbaoaaCaaaleqabaqcLbmacaaIYaaa aKqzGeGaamivaaGcbaqcLbsacqGHciITcaWG5bqcfa4aaWbaaSqabe aajugWaiaaikdaaaaaaKqzGeGaey4kaSIaeqiVd0wcfa4aaSbaaSqa aKqzadGaamOBaiaadAgaaSqabaqcfa4aaeWaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadwhaaOqaaKqzGeGaeyOaIyRaamyEaaaaaOGa ayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaey 4kaSIabmyCayaasaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaeyOaIyRa amyCaKqbaoaaBaaaleaajugWaiaadkhaaSqabaaakeaajugibiabgk Gi2kaadMhaaaaaaa@8E01@                 (6)

where

ρ nf = ρ f ( 1ϕ )+ ρ s ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyWdi xcfa4aaSbaaSqaaKqzadGaamOBaiaadAgaaSqabaqcLbsacqGH9aqp cqaHbpGCjuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaKqbaoaabmaake aajugibiaaigdacqGHsislcqaHvpGzaOGaayjkaiaawMcaaKqzGeGa ey4kaSIaeqyWdixcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaajugibi abew9aMbaa@50DB@       (7a)

( ρ C p ) nf = ( ρ C p ) f ( 1ϕ )+( ρ C p )ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibiabeg8aYjaadoeajuaGdaWgaaWcbaqcLbmacaWGWbaaleqa aaGccaGLOaGaayzkaaqcfa4aaSbaaSqaaKqzadGaamOBaiaadAgaaS qabaqcLbsacqGH9aqpjuaGdaqadaGcbaqcLbsacqaHbpGCcaWGdbqc fa4aaSbaaSqaaKqzadGaamiCaaWcbeaaaOGaayjkaiaawMcaaKqbao aaBaaaleaajugWaiaadAgaaSqabaqcfa4aaeWaaOqaaKqzGeGaaGym aiabgkHiTiabew9aMbGccaGLOaGaayzkaaqcLbsacqGHRaWkjuaGda qadaGcbaqcLbsacqaHbpGCcaWGdbqcfa4aaSbaaSqaaKqzadGaamiC aaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeqy1dygaaa@609F@               (7b)

σ nf = σ f [ 1+ 3{ σ s σ f 1 }ϕ { σ s σ f +2 }ϕ{ σ s σ f 1 }ϕ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4Wdm xcfa4aaSbaaSqaaKqzadGaamOBaiaadAgaaSqabaqcLbsacqGH9aqp cqaHdpWCjuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaKqbaoaadmaake aajugibiaaigdacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIZaqcfa4a aiWaaOqaaKqbaoaalaaakeaajugibiabeo8aZLqbaoaaBaaaleaaju gWaiaadohaaSqabaaakeaajugibiabeo8aZLqbaoaaBaaaleaajugW aiaadAgaaSqabaaaaKqzGeGaeyOeI0IaaGymaaGccaGL7bGaayzFaa qcLbsacqaHvpGzaOqaaKqbaoaacmaakeaajuaGdaWcaaGcbaqcLbsa cqaHdpWCjuaGdaWgaaWcbaqcLbmacaWGZbaaleqaaaGcbaqcLbsacq aHdpWCjuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaaaajugibiabgUca RiaaikdaaOGaay5Eaiaaw2haaKqzGeGaeqy1dyMaeyOeI0scfa4aai WaaOqaaKqbaoaalaaakeaajugibiabeo8aZLqbaoaaBaaaleaajugW aiaadohaaSqabaaakeaajugibiabeo8aZLqbaoaaBaaaleaajugWai aadAgaaSqabaaaaKqzGeGaeyOeI0IaaGymaaGccaGL7bGaayzFaaqc LbsacqaHvpGzaaaakiaawUfacaGLDbaaaaa@8165@       (7c)

μ nf = μ f ( 1ϕ ) 2.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiVd0 wcfa4aaSbaaSqaaKqzadGaamOBaiaadAgaaSqabaqcLbsacqGH9aqp juaGdaWcaaGcbaqcLbsacqaH8oqBjuaGdaWgaaWcbaqcLbmacaWGMb aaleqaaaGcbaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTiabew9a MbGccaGLOaGaayzkaaqcfa4aaWbaaSqabeaajugWaiaaikdacaGGUa GaaGynaaaaaaaaaa@4DAB@    (8)

k nf = k f [ k s +2 k f 2ϕ( k f k s ) k s +2 k f +ϕ( k f k s ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaK qbaoaaBaaaleaajugWaiaad6gacaWGMbaaleqaaKqzGeGaeyypa0Ja am4AaKqbaoaaBaaaleaajugWaiaadAgaaSqabaqcfa4aamWaaOqaaK qbaoaalaaakeaajugibiaadUgajuaGdaWgaaWcbaqcLbmacaWGZbaa leqaaKqzGeGaey4kaSIaaGOmaiaadUgajuaGdaWgaaWcbaqcLbmaca WGMbaaleqaaKqzGeGaeyOeI0IaaGOmaiabew9aMLqbaoaabmaakeaa jugibiaadUgajuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaKqzGeGaey OeI0Iaam4AaKqbaoaaBaaaleaajugWaiaadohaaSqabaaakiaawIca caGLPaaaaeaajugibiaadUgajuaGdaWgaaWcbaqcLbmacaWGZbaale qaaKqzGeGaey4kaSIaaGOmaiaadUgajuaGdaWgaaWcbaqcLbmacaWG MbaaleqaaKqzGeGaey4kaSIaeqy1dywcfa4aaeWaaOqaaKqzGeGaam 4AaKqbaoaaBaaaleaajugWaiaadAgaaSqabaqcLbsacqGHsislcaWG Rbqcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaaaOGaayjkaiaawMcaaa aaaiaawUfacaGLDbaaaaa@7791@   (9)

q r y = 4 σ 3 k T 4 y 16 σ T s 3 3 k 2 T y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadghajuaGdaWgaaWcbaqcLbmacaWGYbaaleqa aaGcbaqcLbsacqGHciITcaWG5baaaiabg2da9iabgkHiTKqbaoaala aakeaajugibiaaisdacqaHdpWCjuaGdaahaaWcbeqaaKqzadGaey4f IOcaaaGcbaqcLbsacaaIZaGaam4AaKqbaoaaCaaaleqabaqcLbmacq GHxiIkaaaaaKqbaoaalaaakeaajugibiabgkGi2kaadsfajuaGdaah aaWcbeqaaKqzadGaaGinaaaaaOqaaKqzGeGaeyOaIyRaamyEaaaacq GHfjcqcqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaGaaGOnaiabeo8a ZLqbaoaaCaaaleqabaqcLbmacqGHxiIkaaqcLbsacaWGubqcfa4aa0 baaSqaaKqzadGaam4CaaWcbaqcLbmacaaIZaaaaaGcbaqcLbsacaaI ZaGaam4AaKqbaoaaCaaaleqabaqcLbmacqGHxiIkaaaaaKqbaoaala aakeaajugibiabgkGi2MqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqz GeGaamivaaGcbaqcLbsacqGHciITcaWG5bqcfa4aaWbaaSqabeaaju gWaiaaikdaaaaaaaaa@7736@ (using Roseland’s approximation) (10)
Assuming no slip condition, the appropriate boundary conditions are given as

u= U w ,v=0,T= T s aty=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGjbVl aadwhacqGH9aqpcaWGvbqcfa4aaSbaaSqaaKqzadGaam4DaaWcbeaa jugibiaacYcacaaMf8UaamODaiabg2da9iaaicdacaGGSaGaaGjbVl aaywW7caWGubGaeyypa0JaamivaKqbaoaaBaaaleaajugWaiaadoha aSqabaqcLbsacaaMf8UaamyyaiaadshacaaMf8UaamyEaiabg2da9i aaicdacaaMf8oaaa@569C@          (11a)

u y =0, T y =0,y=h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadwhaaOqaaKqzGeGaeyOaIyRaamyEaaaacqGH 9aqpcaaIWaGaaiilaiaaywW7juaGdaWcaaGcbaqcLbsacqGHciITca WGubaakeaajugibiabgkGi2kaadMhaaaGaeyypa0JaaGimaiaacYca caaMf8UaamyEaiabg2da9iaadIgaaaa@4DDF@    (11b)

It should be stated at this juncture that the formulated mathematical model is implicitly in the domain x≥0. In other to annul discontinuities as a result of surface effects, a further assumption of smooth surface is made. Likewise, the effect of shear due to the interfacial quiescent atmosphere i.e. is removed. The shear stress based on the Newton’s law of viscosity τ=μ u y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiXdq Naeyypa0JaeqiVd0wcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamyDaaGc baqcLbsacqGHciITcaWG5baaaaaa@418F@  as well as the heat flux q ˙ =k( T y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyCay aagyaacaGaeyypa0JaeyOeI0Iaam4AaKqbaoaabmaakeaajuaGdaWc aaGcbaqcLbsacqGHciITcaWGubaakeaajugibiabgkGi2kaadMhaaa aakiaawIcacaGLPaaaaaa@4306@ disappear when the adiabatic free surface condition is considered (at y=h).

It should be noted that

v= dh dt = αβ 2 ( v f b( 1αt ) ) 1 2 ,y=h(t)= { αβ 2 ( v f b( 1αt ) ) 1 2 }dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamODai abg2da9KqbaoaalaaakeaajugibiaadsgacaWGObaakeaajugibiaa dsgacaWG0baaaiabg2da9iabgkHiTKqbaoaalaaakeaajugibiabeg 7aHjabek7aIbGcbaqcLbsacaaIYaaaaKqbaoaabmaakeaajuaGdaWc aaGcbaqcLbsacaWG2bqcfa4aaSbaaSqaaKqzGeGaamOzaaWcbeaaaO qaaKqzGeGaamOyaKqbaoaabmaakeaajugibiaaigdacqGHsislcqaH XoqycaWG0baakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaqcfa4aaW baaSqabeaadaWcaaqaaKqzadGaaGymaaWcbaqcLbmacaaIYaaaaaaa jugibiaacYcacaaMf8UaamyEaiabg2da9iaadIgacaGGOaGaamiDai aacMcacqGH9aqpcqGHsisljuaGdaWdbaGcbaqcfa4aaiWaaOqaaKqb aoaalaaakeaajugibiabeg7aHjabek7aIbGcbaqcLbsacaaIYaaaaK qbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWG2bqcfa4aaSbaaSqa aKqzGeGaamOzaaWcbeaaaOqaaKqzGeGaamOyaKqbaoaabmaakeaaju gibiaaigdacqGHsislcqaHXoqycaWG0baakiaawIcacaGLPaaaaaaa caGLOaGaayzkaaqcfa4aaWbaaSqabeaadaWcaaqaaKqzadGaaGymaa WcbaqcLbmacaaIYaaaaaaaaOGaay5Eaiaaw2haaKqzGeGaamizaiaa dshaaSqabeqajugibiabgUIiYdaaaa@8554@         (12)

The above boundary conditions are in line with the works of Kumar et al.,56 and Abel et al.,76

The non-uniform heat generation/absorption q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyCay aasaaaaa@3789@  is taken as

q = k f U w x ν f [ A ( T s T o )f'+ B ( T s T o ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyCay aasaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaam4AaKqbaoaaBaaaleaa jugWaiaadAgaaSqabaqcLbsacaWGvbqcfa4aaSbaaSqaaKqzadGaam 4DaaWcbeaaaOqaaKqzGeGaamiEaiabe27aULqbaoaaBaaaleaajugW aiaadAgaaSqabaaaaKqbaoaadmaakeaajugibiaadgeajuaGdaahaa WcbeqaaKqzadGaey4fIOcaaKqbaoaabmaakeaajugibiaadsfajuaG daWgaaWcbaqcLbmacaWGZbaaleqaaKqzGeGaeyOeI0IaamivaKqbao aaBaaaleaajugWaiaad+gaaSqabaaakiaawIcacaGLPaaajugibiaa dAgacaGGNaGaey4kaSIaamOqaKqbaoaaCaaaleqabaqcLbmacqGHxi Ikaaqcfa4aaeWaaOqaaKqzGeGaamivaKqbaoaaBaaaleaajugWaiaa dohaaSqabaqcLbsacqGHsislcaWGubqcfa4aaSbaaSqaaKqzadGaam 4BaaWcbeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@6CE9@      (13)

where To is the ambient temperature and the surface temperature Ts of the stretching sheet varies with respect to distance x-from the slit as

T s = T o T ref ( b x 2 2 v f ( 1at ) 3 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaK qbaoaaBaaaleaajugWaiaadohaaSqabaqcLbsacqGH9aqpcaWGubqc fa4aaSbaaSqaaKqzadGaam4BaaWcbeaajugibiabgkHiTiaadsfaju aGdaWgaaWcbaqcLbmacaWGYbGaamyzaiaadAgaaSqabaqcfa4aaeWa aOqaaKqbaoaalaaakeaajugibiaadkgacaWG4bqcfa4aaWbaaSqabe aajugWaiaaikdaaaaakeaajugibiaaikdacaWG2bqcfa4aaSbaaSqa aKqzadGaamOzaaWcbeaajuaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0 IaamyyaiaadshaaOGaayjkaiaawMcaaKqbaoaaCaaaleqabaWaaSaa aeaajugWaiaaiodaaSqaaKqzadGaaGOmaaaaaaaaaaGccaGLOaGaay zkaaaaaa@5EAC@             (14)

And the stretching velocity varies with respect to x as

U= bx ( 1at ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvai abg2da9KqbaoaalaaakeaajugibiaadkgacaWG4baakeaajuaGdaqa daGcbaqcLbsacaaIXaGaeyOeI0IaamyyaiaadshaaOGaayjkaiaawM caaaaaaaa@41C0@         (15)

On introducing the following stream functions

u= ψ y ,v= ψ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyDai abg2da9KqbaoaalaaakeaajugibiabgkGi2kabeI8a5bGcbaqcLbsa cqGHciITcaWG5baaaiaacYcacaaMf8UaamODaiabg2da9Kqbaoaala aakeaajugibiabgkGi2kabeI8a5bGcbaqcLbsacqGHciITcaWG4baa aaaa@4B88@               (16)

And the similarity variables

u= bx ( 1at ) f ( η,t ),v= ( b ν f ) 1 2 ( 1at ) 1 2 f( η,t ), η= ( b/ ν f ) 1 2 ( 1at ) 1 2 y,T= T o T ref ( b x 2 /2 v f ) ( 1at ) 3 2 θ( η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WG1bGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOyaiaadIhaaOqaaKqb aoaabmaakeaajugibiaaigdacqGHsislcaWGHbGaamiDaaGccaGLOa GaayzkaaaaaKqzGeGabmOzayaafaqcfa4aaeWaaOqaaKqzGeGaeq4T dGMaaiilaiaadshaaOGaayjkaiaawMcaaKqzGeGaaiilaiaaywW7ca WG2bGaeyypa0JaeyOeI0scfa4aaeWaaOqaaKqzGeGaamOyaiabe27a ULqbaoaaBaaaleaajugWaiaadAgaaSqabaaakiaawIcacaGLPaaaju aGdaahaaWcbeqaaKqzadGaeyOeI0YcdaWcaaqaaKqzadGaaGymaaWc baqcLbmacaaIYaaaaaaajuaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0 IaamyyaiaadshaaOGaayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbma cqGHsisllmaalaaabaqcLbmacaaIXaaaleaajugWaiaaikdaaaaaaK qzGeGaamOzaKqbaoaabmaakeaajugibiabeE7aOjaacYcacaWG0baa kiaawIcacaGLPaaajugibiaacYcaaOqaaKqzGeGaeq4TdGMaeyypa0 tcfa4aaeWaaOqaaKqzGeGaamOyaiaac+cacqaH9oGBjuaGdaWgaaWc baqcLbmacaWGMbaaleqaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabe aadaWcaaqaaKqzadGaaGymaaWcbaqcLbmacaaIYaaaaaaajuaGdaqa daGcbaqcLbsacaaIXaGaeyOeI0IaamyyaiaadshaaOGaayjkaiaawM caaKqbaoaaCaaaleqabaqcLbmacqGHsisllmaalaaabaqcLbmacaaI XaaaleaajugWaiaaikdaaaaaaKqzGeGaamyEaiaacYcacaaMf8Uaam ivaiabg2da9iaadsfajuaGdaWgaaWcbaqcLbmacaWGVbaaleqaaKqz GeGaeyOeI0IaamivaKqbaoaaBaaaleaajugWaiaadkhacaWGLbGaam OzaaWcbeaajuaGdaqadaGcbaqcLbsacaWGIbGaamiEaKqbaoaaCaaa leqabaqcLbmacaaIYaaaaKqzGeGaai4laiaaikdacaWG2bqcfa4aaS baaSqaaKqzadGaamOzaaWcbeaaaOGaayjkaiaawMcaaKqbaoaabmaa keaajugibiaaigdacqGHsislcaWGHbGaamiDaaGccaGLOaGaayzkaa qcfa4aaWbaaSqabeaajugWaiabgkHiTSWaaSaaaeaajugWaiaaioda aSqaaKqzadGaaGOmaaaaaaqcLbsacqaH4oqCjuaGdaqadaGcbaqcLb sacqaH3oaAaOGaayjkaiaawMcaaaaaaa@C358@          (17)

Substituting Eq. (16) and (17) into Eq. (5), (6) and (7), we have a partially coupled third and second orders ordinary differential equation

( 1+ 1 β ) f { 1+ 3( n1 )We ( f ) 2 2 }+ B 1 { B 2 ( S( f + η 2 f )+f f ( f ) 2 ) } H a 2 f co s 2 γ 1 Da f =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaeqOSdigaaaGccaGLOaGaayzkaaqcLbsaceWGMbGbai bajuaGdaGadaGcbaqcLbsacaaIXaGaey4kaSscfa4aaSaaaOqaaKqz GeGaaG4maKqbaoaabmaakeaajugibiaad6gacqGHsislcaaIXaaaki aawIcacaGLPaaajugibiaadEfacaWGLbqcfa4aaeWaaOqaaKqzGeGa bmOzayaagaaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzadGaaG OmaaaaaOqaaKqzGeGaaGOmaaaaaOGaay5Eaiaaw2haaKqzGeGaey4k aSIaamOqaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcfa4aaiWaaO qaaKqzGeGaamOqaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcfa4a aeWaaOqaaKqzGeGaam4uaKqbaoaabmaakeaajugibiqadAgagaqbai abgUcaRKqbaoaalaaakeaajugibiabeE7aObGcbaqcLbsacaaIYaaa aiqadAgagaGbaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGMbGabm OzayaagaGaeyOeI0scfa4aaeWaaOqaaKqzGeGabmOzayaafaaakiaa wIcacaGLPaaajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaaOGaayjkai aawMcaaaGaay5Eaiaaw2haaaqaaKqzGeGaeyOeI0Iaamisaiaadgga juaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiqadAgagaqbaiaado gacaWGVbGaam4CaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGa eq4SdCMaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsaca WGebGaamyyaaaaceWGMbGbauaacqGH9aqpcaaIWaaaaaa@90D8@         (18a)

B 3 ( 1+ 4 3 R ) θ + EcPr B 1 ( f ) 2 +( A f + B θ ) B 4 Pr{ S 2 ( ( η θ +3θ )+2 f θf θ ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOqaK qbaoaaBaaaleaajugWaiaaiodaaSqabaqcfa4aaeWaaOqaaKqzGeGa aGymaiabgUcaRKqbaoaalaaakeaajugibiaaisdaaOqaaKqzGeGaaG 4maaaacaWGsbaakiaawIcacaGLPaaajugibiqbeI7aXzaagaGaey4k aSscfa4aaSaaaOqaaKqzGeGaamyraiaadogacaWGqbGaamOCaaGcba qcLbsacaWGcbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaqcfa4a aeWaaOqaaKqzGeGabmOzayaagaaakiaawIcacaGLPaaajuaGdaahaa WcbeqaaKqzadGaaGOmaaaajugibiabgUcaRKqbaoaabmaakeaajugi biaadgeajuaGdaahaaWcbeqaaKqzadGaey4fIOcaaKqzGeGabmOzay aafaGaey4kaSIaamOqaKqbaoaaCaaaleqabaqcLbmacqGHxiIkaaqc LbsacqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeyOeI0IaamOqaKqbao aaBaaaleaajugWaiaaisdaaSqabaqcLbsacaWGqbGaamOCaKqbaoaa cmaakeaajuaGdaWcaaGcbaqcLbsacaWGtbaakeaajugibiaaikdaaa qcfa4aaeWaaOqaaKqbaoaabmaakeaajugibiabeE7aOjqbeI7aXzaa faGaey4kaSIaaG4maiabeI7aXbGccaGLOaGaayzkaaqcLbsacqGHRa WkcaaIYaGabmOzayaafaGaeqiUdeNaeyOeI0IaamOzaiqbeI7aXzaa faaakiaawIcacaGLPaaaaiaawUhacaGL9baajugibiabg2da9iaaic daaaa@88B4@ (18b)

where

W e 2 = b 3 x 2 Γ 2 v f ( 1at ) 3 ,Pr= μ c p k f ,H a 2 = σ nf B o 2 ρ f b ,Ec= U w 2 c p ( T s T 0 ) ,S= α b ,R= 4 σ T 0 3 k k f B 1 = ( 1ϕ ) 2.5 , B 2 =1ϕ+ϕ ρ s ρ f , B 3 = k nf k f , B 4 =1ϕ+ϕ ( ρ c p ) s ( ρ c p ) f ,Da= K h o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGxbGaamyzaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeyyp a0tcfa4aaSaaaOqaaKqzGeGaamOyaKqbaoaaCaaaleqabaqcLbmaca aIZaaaaKqzGeGaamiEaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqz GeGaeu4KdCucfa4aaWbaaSqabeaajugWaiaaikdaaaaakeaajugibi aadAhajuaGdaWgaaWcbaqcLbmacaWGMbaaleqaaKqbaoaabmaakeaa jugibiaaigdacqGHsislcaWGHbGaamiDaaGccaGLOaGaayzkaaqcfa 4aaWbaaSqabeaajugWaiaaiodaaaaaaKqzGeGaaiilaiaaywW7caWG qbGaamOCaiabg2da9KqbaoaalaaakeaajugibiabeY7aTjaadogaju aGdaWgaaWcbaqcLbmacaWGWbaaleqaaaGcbaqcLbsacaWGRbqcfa4a aSbaaSqaaKqzadGaamOzaaWcbeaaaaqcLbsacaGGSaGaaGzbVlaadI eacaWGHbqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGH9aqp juaGdaWcaaGcbaqcLbsacqaHdpWCjuaGdaWgaaWcbaqcLbmacaWGUb GaamOzaaWcbeaajugibiaadkeajuaGdaqhaaWcbaqcLbmacaWGVbaa leaajugWaiaaikdaaaaakeaajugibiabeg8aYLqbaoaaBaaaleaaju gWaiaadAgaaSqabaqcLbsacaWGIbaaaiaacYcacaaMf8Uaamyraiaa dogacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGvbqcfa4aa0baaSqaaK qzadGaam4DaaWcbaqcLbmacaaIYaaaaaGcbaqcLbsacaWGJbqcfa4a aSbaaSqaaKqzadGaamiCaaWcbeaajuaGdaqadaGcbaqcLbsacaWGub qcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaajugibiabgkHiTiaadsfa juaGdaWgaaWcbaqcLbmacaaIWaaaleqaaaGccaGLOaGaayzkaaaaaK qzGeGaaiilaiaaywW7caWGtbGaeyypa0tcfa4aaSaaaOqaaKqzGeGa eqySdegakeaajugibiaadkgaaaGaaiilaiaaywW7caWGsbGaeyypa0 tcfa4aaSaaaOqaaKqzGeGaaGinaiabeo8aZLqbaoaaCaaaleqabaqc LbmacqGHxiIkaaqcLbsacaWGubqcfa4aa0baaSqaaKqzadGaaGimaa WcbaqcLbmacaaIZaaaaaGcbaqcLbsacaWGRbqcfa4aaWbaaSqabeaa jugWaiabgEHiQaaajugibiaadUgajuaGdaWgaaWcbaqcLbmacaWGMb aaleqaaaaaaOqaaKqzGeGaamOqaKqbaoaaBaaaleaajugWaiaaigda aSqabaqcLbsacqGH9aqpjuaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0 Iaeqy1dygakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzadGaaGOm aiaac6cacaaI1aaaaKqzGeGaaiilaiaaywW7caWGcbqcfa4aaSbaaS qaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaaigdacqGHsislcqaH vpGzcqGHRaWkcqaHvpGzjuaGdaWcaaGcbaqcLbsacqaHbpGCjuaGda WgaaWcbaqcLbmacaWGZbaaleqaaaGcbaqcLbsacqaHbpGCjuaGdaWg aaWcbaqcLbmacaWGMbaaleqaaaaajugibiaacYcacaaMf8UaamOqaK qbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacqGH9aqpjuaGdaWc aaGcbaqcLbsacaWGRbqcfa4aaSbaaSqaaKqzadGaamOBaiaadAgaaS qabaaakeaajugibiaadUgajuaGdaWgaaWcbaqcLbmacaWGMbaaleqa aaaajugibiaacYcacaaMf8UaamOqaKqbaoaaBaaaleaajugWaiaais daaSqabaqcLbsacqGH9aqpcaaIXaGaeyOeI0Iaeqy1dyMaey4kaSIa eqy1dywcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiabeg8aYjaado gajuaGdaWgaaWcbaqcLbmacaWGWbaaleqaaaGccaGLOaGaayzkaaqc fa4aaSbaaSqaaKqzadGaam4CaaWcbeaaaOqaaKqbaoaabmaakeaaju gibiabeg8aYjaadogajuaGdaWgaaWcbaqcLbmacaWGWbaaleqaaaGc caGLOaGaayzkaaqcfa4aaSbaaSqaaKqzadGaamOzaaWcbeaaaaqcLb sacaGGSaGaaGzbVlaadseacaWGHbGaeyypa0tcfa4aaSaaaOqaaKqz GeGaam4saaGcbaqcLbsacaWGObqcfa4aaSbaaSqaaKqzadGaam4Baa Wcbeaaaaaaaaa@2EDC@ (19)

And the boundary conditions become

η=0,f=0, f =1,θ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGjbVl abeE7aOjabg2da9iaaicdacaGGSaGaaGzbVlaadAgacqGH9aqpcaaI WaGaaiilaiaaywW7ceWGMbGbauaacqGH9aqpcaaIXaGaaiilaiaayw W7cqaH4oqCcqGH9aqpcaaIWaGaaGzbVdaa@4C94@

η=β,f= Sβ 2 , f =0, θ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4TdG Maeyypa0JaeqOSdiMaaiilaiaaywW7caWGMbGaeyypa0tcfa4aaSaa aOqaaKqzGeGaam4uaiabek7aIbGcbaqcLbsacaaIYaaaaiaacYcaca aMf8UabmOzayaagaGaeyypa0JaaGimaiaacYcacaaMf8UafqiUdeNb auaacqGH9aqpcaaIWaGaaGzbVlaaywW7caaMe8oaaa@5360@          (20)

Method of solution: finite element method

Equations (18a) and (18b) are systems of coupled non-linear ordinary differential equations which are to be solved along side with boundary conditions in Eq. (20). The exact analytical solutions for these non-linear equations are not possible. Therefore, in order to solve the equations, recourse is made to a numerical method. In this work, finite element method is applied to analyze the systems of the coupled nonlinear equations. The variational and the finite element formulation of Eqs. (18a) and (18b) are given as follows:

In order to reduce the system of the nonlinear equation, we let

g= f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4zai abg2da9iqadAgagaqbaiaaywW7caaMe8oaaa@3C7E@ (21)

The system of equation (18a) and (18b) thus reduces to

( 1+ 1 β ){ 1+ 3( n1 )We ( g ) 2 2 } g + B 1 { B 2 ( S( g+ η 2 g )+f g ( g ) 2 ) } H a 2 gco s 2 γ 1 Da f =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaeqOSdigaaaGccaGLOaGaayzkaaqcfa4aaiWaaOqaaK qzGeGaaGymaiabgUcaRKqbaoaalaaakeaajugibiaaiodajuaGdaqa daGcbaqcLbsacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLb sacaWGxbGaamyzaKqbaoaabmaakeaajugibiqadEgagaqbaaGccaGL OaGaayzkaaqcfa4aaWbaaSqabeaajugWaiaaikdaaaaakeaajugibi aaikdaaaaakiaawUhacaGL9baajugibiqadEgagaGbaiabgUcaRiaa dkeajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqbaoaacmaakeaaju gibiaadkeajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqbaoaabmaa keaajugibiaadofajuaGdaqadaGcbaqcLbsacaWGNbGaey4kaSscfa 4aaSaaaOqaaKqzGeGaeq4TdGgakeaajugibiaaikdaaaGabm4zayaa faaakiaawIcacaGLPaaajugibiabgUcaRiaadAgaceWGNbGbauaacq GHsisljuaGdaqadaGcbaqcLbsacaWGNbaakiaawIcacaGLPaaajuaG daahaaWcbeqaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5Eai aaw2haaaqaaKqzGeGaeyOeI0IaamisaiaadggajuaGdaahaaWcbeqa aKqzadGaaGOmaaaajugibiaadEgacaWGJbGaam4BaiaadohajuaGda ahaaWcbeqaaKqzadGaaGOmaaaajugibiabeo7aNjabgkHiTKqbaoaa laaakeaajugibiaaigdaaOqaaKqzGeGaamiraiaadggaaaGabmOzay aafaGaeyypa0JaaGimaaaaaa@901D@               (22a)

  B 3 ( 1+ 4 3 R ) θ + EcPr B 1 ( g ) 2 +( A g+ B θ ) B 4 Pr{ S 2 ( ( η θ +3θ )+2gθf θ ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOqaK qbaoaaBaaaleaajugWaiaaiodaaSqabaqcfa4aaeWaaOqaaKqzGeGa aGymaiabgUcaRKqbaoaalaaakeaajugibiaaisdaaOqaaKqzGeGaaG 4maaaacaWGsbaakiaawIcacaGLPaaajugibiqbeI7aXzaagaGaey4k aSscfa4aaSaaaOqaaKqzGeGaamyraiaadogacaWGqbGaamOCaaGcba qcLbsacaWGcbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaqcfa4a aeWaaOqaaKqzGeGabm4zayaafaaakiaawIcacaGLPaaajuaGdaahaa WcbeqaaKqzadGaaGOmaaaajugibiabgUcaRKqbaoaabmaakeaajugi biaadgeajuaGdaahaaWcbeqaaKqzadGaey4fIOcaaKqzGeGaam4zai abgUcaRiaadkeajuaGdaahaaWcbeqaaKqzadGaey4fIOcaaKqzGeGa eqiUdehakiaawIcacaGLPaaajugibiabgkHiTiaadkeajuaGdaWgaa WcbaqcLbmacaaI0aaaleqaaKqzGeGaamiuaiaadkhajuaGdaGadaGc baqcfa4aaSaaaOqaaKqzGeGaam4uaaGcbaqcLbsacaaIYaaaaKqbao aabmaakeaajuaGdaqadaGcbaqcLbsacqaH3oaAcuaH4oqCgaqbaiab gUcaRiaaiodacqaH4oqCaOGaayjkaiaawMcaaKqzGeGaey4kaSIaaG OmaiaadEgacqaH4oqCcqGHsislcaWGMbGafqiUdeNbauaaaOGaayjk aiaawMcaaaGaay5Eaiaaw2haaKqzGeGaeyypa0JaaGimaaaa@889E@ (22b)

And the corresponding boundary conditions become

η=0,f=0,g=1,θ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGjbVl abeE7aOjabg2da9iaaicdacaGGSaGaaGzbVlaadAgacqGH9aqpcaaI WaGaaiilaiaaywW7caWGNbGaeyypa0JaaGymaiaacYcacaaMf8Uaeq iUdeNaeyypa0JaaGimaiaaywW7aaa@4C89@

η=β,f= Sβ 2 , g =0, θ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4TdG Maeyypa0JaeqOSdiMaaiilaiaaywW7caWGMbGaeyypa0tcfa4aaSaa aOqaaKqzGeGaam4uaiabek7aIbGcbaqcLbsacaaIYaaaaiaacYcaca aMf8Uabm4zayaafaGaeyypa0JaaGimaiaacYcacaaMf8UafqiUdeNb auaacqGH9aqpcaaIWaGaaGzbVlaaywW7caaMe8oaaa@5360@           (23)

The variation forms associated with the Eqs. (21), (22a) and (22b) over a typical two-nodal linear element ( η e , η e+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibiabeE7aOLqbaoaaBaaaleaajugWaiaadwgaaSqabaqcLbsa caGGSaGaaGjbVlaaysW7cqaH3oaAjuaGdaWgaaWcbaqcLbmacaWGLb Gaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaaaa@47AD@  are given as follows:

η e η e+1 w 1 [ f g ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedake aajugibiaadEhajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqbaoaa dmaakeaajugibiqadAgagaqbaiabgkHiTiaadEgaaOGaay5waiaaw2 faaKqzGeGaamizaiabeE7aOjabg2da9iaaicdaaSqaaKqzadGaeq4T dG2cdaWgaaadbaqcLbmacaWGLbaameqaaaWcbaqcLbmacqaH3oaAlm aaBaaameaajugWaiaadwgacqGHRaWkcaaIXaaameqaaaqcLbsacqGH RiI8aiaaywW7caaMe8oaaa@576D@     (24)

η e η e+1 w 2 [ ( 1+ 1 β ){ 1+ 3( n1 )We ( g ) 2 2 } g + B 1 { B 2 ( S( g+ η 2 g )+f g ( g ) 2 ) } H a 2 gco s 2 γ 1 Da g ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedake aajugibiaadEhajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqbaoaa dmaajugibqaabeGcbaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaeqOSdigaaaGccaGL OaGaayzkaaqcfa4aaiWaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaala aakeaajugibiaaiodajuaGdaqadaGcbaqcLbsacaWGUbGaeyOeI0Ia aGymaaGccaGLOaGaayzkaaqcLbsacaWGxbGaamyzaKqbaoaabmaake aajugibiqadEgagaqbaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabeaa jugWaiaaikdaaaaakeaajugibiaaikdaaaaakiaawUhacaGL9baaju gibiqadEgagaGbaiabgUcaRiaadkeajuaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqbaoaacmaakeaajugibiaadkeajuaGdaWgaaWcbaqcLb macaaIYaaaleqaaKqbaoaabmaakeaajugibiaadofajuaGdaqadaGc baqcLbsacaWGNbGaey4kaSscfa4aaSaaaOqaaKqzGeGaeq4TdGgake aajugibiaaikdaaaGabm4zayaafaaakiaawIcacaGLPaaajugibiab gUcaRiaadAgaceWGNbGbauaacqGHsisljuaGdaqadaGcbaqcLbsaca WGNbaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzadGaaGOmaaaa aOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaKqzGeGaeyOeI0Iaam isaiaadggajuaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiaadEga caWGJbGaam4BaiaadohajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaju gibiabeo7aNjabgkHiTKqbaoaalaaakeaajugibiaaigdaaOqaaKqz GeGaamiraiaadggaaaGaam4zaaaakiaawUfacaGLDbaajugibiaads gacqaH3oaAcqGH9aqpcaaIWaaaleaajugWaiabeE7aOTWaaSbaaWqa aKqzadGaamyzaaadbeaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLb macaWGLbGaey4kaSIaaGymaaadbeaaaKqzGeGaey4kIipaaaa@A9EA@ (25)

η e η e+1 w 3 [ B 3 ( 1+ 4 3 R ) θ + EcPr B 1 ( g ) 2 +( A g+ B θ ) B 4 Pr( S 2 ( ( η θ +3θ )+2gθf θ ) ) ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedake aajugibiaadEhajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaKqbaoaa dmaakeaajugibiaadkeajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaK qbaoaabmaakeaajugibiaaigdacqGHRaWkjuaGdaWcaaGcbaqcLbsa caaI0aaakeaajugibiaaiodaaaGaamOuaaGccaGLOaGaayzkaaqcLb sacuaH4oqCgaGbaiabgUcaRKqbaoaalaaakeaajugibiaadweacaWG JbGaamiuaiaadkhaaOqaaKqzGeGaamOqaKqbaoaaBaaaleaajugWai aaigdaaSqabaaaaKqbaoaabmaakeaajugibiqadEgagaqbaaGccaGL OaGaayzkaaqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRa WkjuaGdaqadaGcbaqcLbsacaWGbbqcfa4aaWbaaSqabeaajugWaiab gEHiQaaajugibiaadEgacqGHRaWkcaWGcbqcfa4aaWbaaSqabeaaju gWaiabgEHiQaaajugibiabeI7aXbGccaGLOaGaayzkaaqcLbsacqGH sislcaWGcbqcfa4aaSbaaSqaaKqzadGaaGinaaWcbeaajugibiaadc facaWGYbqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadofaaOqa aKqzGeGaaGOmaaaajuaGdaqadaGcbaqcfa4aaeWaaOqaaKqzGeGaeq 4TdGMafqiUdeNbauaacqGHRaWkcaaIZaGaeqiUdehakiaawIcacaGL PaaajugibiabgUcaRiaaikdacaWGNbGaeqiUdeNaeyOeI0IaamOzai qbeI7aXzaafaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUfa caGLDbaajugibiaadsgacqaH3oaAcqGH9aqpcaaIWaaaleaajugWai abeE7aOTWaaSbaaWqaaKqzadGaamyzaaadbeaaaSqaaKqzadGaeq4T dG2cdaWgaaadbaqcLbmacaWGLbGaey4kaSIaaGymaaadbeaaaKqzGe Gaey4kIipaaaa@A0A7@ (26)

where w1, wsub>2 and wsub>3 are the weight functions or variational in f, g and θ, respectively.

The Galerkin finite element formulation may be obtained from Eq. (24)-(25) by substituting the finite element approximations of the form:

f= j=1 2 N j f j ,g= j=1 2 N j g j ,θ= j=1 2 N j θ j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai abg2da9Kqbaoaaqahakeaajugibiaad6eajuaGdaWgaaWcbaqcLbma caWGQbaaleqaaaqaaKqzadGaamOAaiabg2da9iaaigdaaSqaaKqzad GaaGOmaaqcLbsacqGHris5aiaadAgajuaGdaWgaaWcbaqcLbmacaWG QbaaleqaaKqzGeGaaiilaiaaysW7caaMf8Uaam4zaiabg2da9Kqbao aaqahakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGQbaaleqa aaqaaKqzadGaamOAaiabg2da9iaaigdaaSqaaKqzadGaaGOmaaqcLb sacqGHris5aiaadEgajuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaKqz GeGaaiilaiaaywW7cqaH4oqCcqGH9aqpjuaGdaaeWbGcbaqcLbsaca WGobqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaeaajugWaiaadQga cqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoacqaH4o qCjuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaKqzGeGaaiOlaaaa@79EC@     (27)

For the Galerkin finite element formulation, the weight function is equal to the basis/shape/interpolation function. Therefore, w1=w2=w3=Ni(i=1,2), where Ni are the basis/shape/interpolation functions when considering the linear element ( η e , η e+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibiabeE7aOLqbaoaaBaaaleaajugWaiaadwgaaSqabaqcLbsa caGGSaGaaGjbVlaaysW7cqaH3oaAjuaGdaWgaaWcbaqcLbmacaWGLb Gaey4kaSIaaGymaaWcbeaaaOGaayjkaiaawMcaaaaa@47AD@ which are defined as follows:

N 1 = η e+1 η η e+1 η e , N 2 = η η e η e+1 η e , η e η η e+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOtaK qbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGH9aqpjuaGdaWc aaGcbaqcLbsacqaH3oaAjuaGdaWgaaWcbaqcLbmacaWGLbGaey4kaS IaaGymaaWcbeaajugibiabgkHiTiaaysW7cqaH3oaAaOqaaKqzGeGa eq4TdGwcfa4aaSbaaSqaaKqzadGaamyzaiabgUcaRiaaigdaaSqaba qcLbsacqGHsislcaaMe8Uaeq4TdGwcfa4aaSbaaSqaaKqzadGaamyz aaWcbeaaaaqcLbsacaGGSaGaaGzbVlaad6eajuaGdaWgaaWcbaqcLb macaaIYaaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeq4T dGMaeyOeI0Iaeq4TdGwcfa4aaSbaaSqaaKqzadGaamyzaaWcbeaaaO qaaKqzGeGaeq4TdGwcfa4aaSbaaSqaaKqzadGaamyzaiabgUcaRiaa igdaaSqabaqcLbsacqGHsislcaaMe8Uaeq4TdGwcfa4aaSbaaSqaaK qzadGaamyzaaWcbeaaaaqcLbsacaGGSaGaaGzbVlabeE7aOLqbaoaa BaaaleaajugWaiaadwgaaSqabaqcLbsacqGHKjYOcqaH3oaAcqGHKj YOcqaH3oaAjuaGdaWgaaWcbaqcLbmacaWGLbGaey4kaSIaaGymaaWc beaaaaa@87A2@           (28)

Therefore, the equivalent Galerkin finite element formulations of Eqs. (24)-(26) are

η e η e+1 N i [ f g ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedake aajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqbaoaa dmaakeaajugibiqadAgagaqbaiabgkHiTiaadEgaaOGaay5waiaaw2 faaKqzGeGaamizaiabeE7aOjabg2da9iaaicdaaSqaaKqzadGaeq4T dG2cdaWgaaadbaqcLbmacaWGLbaameqaaaWcbaqcLbmacqaH3oaAlm aaBaaameaajugWaiaadwgacqGHRaWkcaaIXaaameqaaaqcLbsacqGH RiI8aiaaywW7caaMe8oaaa@5777@    (29)

η e η e+1 N i [ ( 1+ 1 β ){ 1+ 3( n1 )We ( g ) 2 2 } g + B 1 { B 2 ( S( g+ η 2 g )+f g ( g ) 2 ) } H a 2 gco s 2 γ 1 Da g ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedake aajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqbaoaa dmaajugibqaabeGcbaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaeqOSdigaaaGccaGL OaGaayzkaaqcfa4aaiWaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaala aakeaajugibiaaiodajuaGdaqadaGcbaqcLbsacaWGUbGaeyOeI0Ia aGymaaGccaGLOaGaayzkaaqcLbsacaWGxbGaamyzaKqbaoaabmaake aajugibiqadEgagaqbaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabeaa jugWaiaaikdaaaaakeaajugibiaaikdaaaaakiaawUhacaGL9baaju gibiqadEgagaGbaiabgUcaRiaadkeajuaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqbaoaacmaakeaajugibiaadkeajuaGdaWgaaWcbaqcLb macaaIYaaaleqaaKqbaoaabmaakeaajugibiaadofajuaGdaqadaGc baqcLbsacaWGNbGaey4kaSscfa4aaSaaaOqaaKqzGeGaeq4TdGgake aajugibiaaikdaaaGabm4zayaafaaakiaawIcacaGLPaaajugibiab gUcaRiaadAgaceWGNbGbauaacqGHsisljuaGdaqadaGcbaqcLbsaca WGNbaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzadGaaGOmaaaa aOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaKqzGeGaeyOeI0Iaam isaiaadggajuaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiaadEga caWGJbGaam4BaiaadohajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaju gibiabeo7aNjabgkHiTKqbaoaalaaakeaajugibiaaigdaaOqaaKqz GeGaamiraiaadggaaaGaam4zaaaakiaawUfacaGLDbaajugibiaads gacqaH3oaAcqGH9aqpcaaIWaaaleaajugWaiabeE7aOTWaaSbaaWqa aKqzadGaamyzaaadbeaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLb macaWGLbGaey4kaSIaaGymaaadbeaaaKqzGeGaey4kIipaaaa@A9F3@ (30)

η e η e+1 N i [ B 3 ( 1+ 4 3 R ) θ + EcPr B 1 ( g ) 2 +( A g+ B θ ) B 4 Pr( S 2 ( ( η θ +3θ )+2gθf θ ) ) ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedake aajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqbaoaa dmaakeaajugibiaadkeajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaK qbaoaabmaakeaajugibiaaigdacqGHRaWkjuaGdaWcaaGcbaqcLbsa caaI0aaakeaajugibiaaiodaaaGaamOuaaGccaGLOaGaayzkaaqcLb sacuaH4oqCgaGbaiabgUcaRKqbaoaalaaakeaajugibiaadweacaWG JbGaamiuaiaadkhaaOqaaKqzGeGaamOqaKqbaoaaBaaaleaajugWai aaigdaaSqabaaaaKqbaoaabmaakeaajugibiqadEgagaqbaaGccaGL OaGaayzkaaqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRa WkjuaGdaqadaGcbaqcLbsacaWGbbqcfa4aaWbaaSqabeaajugWaiab gEHiQaaajugibiaadEgacqGHRaWkcaWGcbqcfa4aaWbaaSqabeaaju gWaiabgEHiQaaajugibiabeI7aXbGccaGLOaGaayzkaaqcLbsacqGH sislcaWGcbqcfa4aaSbaaSqaaKqzadGaaGinaaWcbeaajugibiaadc facaWGYbqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadofaaOqa aKqzGeGaaGOmaaaajuaGdaqadaGcbaqcfa4aaeWaaOqaaKqzGeGaeq 4TdGMafqiUdeNbauaacqGHRaWkcaaIZaGaeqiUdehakiaawIcacaGL PaaajugibiabgUcaRiaaikdacaWGNbGaeqiUdeNaeyOeI0IaamOzai qbeI7aXzaafaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUfa caGLDbaajugibiaadsgacqaH3oaAcqGH9aqpcaaIWaaaleaajugWai abeE7aOTWaaSbaaWqaaKqzadGaamyzaaadbeaaaSqaaKqzadGaeq4T dG2cdaWgaaadbaqcLbmacaWGLbGaey4kaSIaaGymaaadbeaaaKqzGe Gaey4kIipaaaa@A0AF@ (31)

Incorporating the boundary conditions directly in the strong forms as presented Eqs. (30) and (32) is a daunting task. Also, the requirement on continuity of field variables is much stronger in its present strong forms. In order to overcome the difficulties, weak formulations are preferred. Indisputably, the weak formulations help to reduce the order of continuity needed for elements selected i.e. it will reduce the continuity requirements on the approximation (or basis functions) functions thereby allowing the use of easy-to-construct and implement polynomials. Moreover, weak formulation automatically enforces natural boundary conditions.

The weak formulations of Eqs. (30) and (31) are

( 1+ 1 β ){ N i g | η e η e+1 η e η e+1 g N dη + ( n1 )We 2 [ N i ( g ) 3 | η e η e+1 η e η e+1 ( g ) 3 N dη ] } + η e η e+1 N i [ B 1 { B 2 ( S( g+ η 2 g )+f g ( g ) 2 ) }H a 2 gco s 2 γ 1 Da g ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaeqOSdigaaaGccaGLOaGaayzkaaqcfa4aaiWaaOqaaK qbaoaaeiaakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaa leqaaKqzGeGabm4zayaafaaakiaawIa7aKqbaoaaDaaaleaajugWai abeE7aOTWaaSbaaWqaaKqzadGaamyzaaadbeaaaSqaaKqzadGaeq4T dG2cdaWgaaadbaqcLbmacaWGLbGaey4kaSIaaGymaaadbeaaaaqcLb sacqGHsisljuaGdaWdXaGcbaqcLbsaceWGNbGbauaaceWGobGbauaa caWGKbGaeq4TdGgaleaajugWaiabeE7aOTWaaSbaaWqaaKqzadGaam yzaaadbeaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGa ey4kaSIaaGymaaadbeaaaKqzGeGaey4kIipacqGHRaWkjuaGdaWcaa Gcbaqcfa4aaeWaaOqaaKqzGeGaamOBaiabgkHiTiaaigdaaOGaayjk aiaawMcaaKqzGeGaam4vaiaadwgaaOqaaKqzGeGaaGOmaaaajuaGda WadaGcbaqcfa4aaqGaaOqaaKqzGeGaamOtaKqbaoaaBaaaleaajugW aiaadMgaaSqabaqcfa4aaeWaaOqaaKqzGeGabm4zayaafaaakiaawI cacaGLPaaajuaGdaahaaWcbeqaaKqzGeGaaG4maaaaaOGaayjcSdqc fa4aa0baaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbaame qaaaWcbaqcLbmacqaH3oaAlmaaBaaameaajugWaiaadwgacqGHRaWk caaIXaaameqaaaaajugibiabgkHiTKqbaoaapedakeaajuaGdaqada GcbaqcLbsaceWGNbGbauaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqa baqcLbmacaaIZaaaaKqzGeGabmOtayaafaGaamizaiabeE7aObWcba qcLbmacqaH3oaAlmaaBaaameaajugWaiaadwgaaWqabaaaleaajugW aiabeE7aOTWaaSbaaWqaaKqzadGaamyzaiabgUcaRiaaigdaaWqaba aajugibiabgUIiYdaakiaawUfacaGLDbaaaiaawUhacaGL9baaaeaa jugibiabgUcaRKqbaoaapedakeaajugibiaad6eajuaGdaWgaaWcba qcLbmacaWGPbaaleqaaKqbaoaadmaakeaajugibiaadkeajuaGdaWg aaWcbaqcLbmacaaIXaaaleqaaKqbaoaacmaakeaajugibiaadkeaju aGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqbaoaabmaakeaajugibiaa dofajuaGdaqadaGcbaqcLbsacaWGNbGaey4kaSscfa4aaSaaaOqaaK qzGeGaeq4TdGgakeaajugibiaaikdaaaGabm4zayaafaaakiaawIca caGLPaaajugibiabgUcaRiaadAgaceWGNbGbauaacqGHsisljuaGda qadaGcbaqcLbsacaWGNbaakiaawIcacaGLPaaajuaGdaahaaWcbeqa aKqzadGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaKqzGe GaeyOeI0IaamisaiaadggajuaGdaahaaWcbeqaaKqzadGaaGOmaaaa jugibiaadEgacaWGJbGaam4BaiaadohajuaGdaahaaWcbeqaaKqzad GaaGOmaaaajugibiabeo7aNjabgkHiTKqbaoaalaaakeaajugibiaa igdaaOqaaKqzGeGaamiraiaadggaaaGaam4zaaGccaGLBbGaayzxaa qcLbsacaWGKbGaeq4TdGMaeyypa0JaaGimaaWcbaqcLbmacqaH3oaA lmaaBaaameaajugWaiaadwgaaWqabaaaleaajugWaiabeE7aOTWaaS baaWqaaKqzadGaamyzaiabgUcaRiaaigdaaWqabaaajugibiabgUIi YdGaaGzbVlaaysW7aaaa@0482@       (32)

B 3 ( 1+ 4 3 R )[ N i θ | η e η e+1 η e η e+1 θ N dη ]+ η e η e+1 N i [ EcPr B 1 ( g ) 2 +( A g+ B θ ) B 4 Pr( S 2 ( ( η θ +3θ )+2gθf θ ) ) ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOqaK qbaoaaBaaaleaajugWaiaaiodaaSqabaqcfa4aaeWaaOqaaKqzGeGa aGymaiabgUcaRKqbaoaalaaakeaajugibiaaisdaaOqaaKqzGeGaaG 4maaaacaWGsbaakiaawIcacaGLPaaajuaGdaWadaGcbaqcfa4aaqGa aOqaaKqzGeGaamOtaKqbaoaaBaaaleaajugWaiaadMgaaSqabaqcLb sacuaH4oqCgaqbaaGccaGLiWoajuaGdaqhaaWcbaqcLbmacqaH3oaA lmaaBaaameaajugWaiaadwgaaWqabaaaleaajugWaiabeE7aOTWaaS baaWqaaKqzadGaamyzaiabgUcaRiaaigdaaWqabaaaaKqzGeGaeyOe I0scfa4aa8qmaOqaaKqzGeGafqiUdeNbauaaceWGobGbauaacaWGKb Gaeq4TdGgaleaajugWaiabeE7aOTWaaSbaaWqaaKqzadGaamyzaaad beaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGaey4kaS IaaGymaaadbeaaaKqzGeGaey4kIipaaOGaay5waiaaw2faaKqzGeGa ey4kaSscfa4aa8qmaOqaaKqzGeGaamOtaKqbaoaaBaaaleaajugWai aadMgaaSqabaqcfa4aamWaaKqzGeabaeqakeaajuaGdaWcaaGcbaqc LbsacaWGfbGaam4yaiaadcfacaWGYbaakeaajugibiaadkeajuaGda WgaaWcbaqcLbmacaaIXaaaleqaaaaajuaGdaqadaGcbaqcLbsaceWG NbGbauaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbmacaaIYa aaaKqzGeGaey4kaSscfa4aaeWaaOqaaKqzGeGaamyqaKqbaoaaCaaa leqabaqcLbmacqGHxiIkaaqcLbsacaWGNbGaey4kaSIaamOqaKqbao aaCaaaleqabaqcLbmacqGHxiIkaaqcLbsacqaH4oqCaOGaayjkaiaa wMcaaaqaaKqzGeGaeyOeI0IaamOqaKqbaoaaBaaaleaajugWaiaais daaSqabaqcLbsacaWGqbGaamOCaKqbaoaabmaakeaajuaGdaWcaaGc baqcLbsacaWGtbaakeaajugibiaaikdaaaqcfa4aaeWaaOqaaKqbao aabmaakeaajugibiabeE7aOjqbeI7aXzaafaGaey4kaSIaaG4maiab eI7aXbGccaGLOaGaayzkaaqcLbsacqGHRaWkcaaIYaGaam4zaiabeI 7aXjabgkHiTiaadAgacuaH4oqCgaqbaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaaaiaawUfacaGLDbaajugibiaadsgacqaH3oaAcqGH9a qpcaaIWaaaleaajugWaiabeE7aOTWaaSbaaWqaaKqzadGaamyzaaad beaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGaey4kaS IaaGymaaadbeaaaKqzGeGaey4kIipaaaa@CE49@ (33)

Note that Eq. (29) has already been expressed in a weak form.

Substituting Eq. (27) into Eqs. (24), (32) and (33), we have

η e η e+1 N i [ i=1 2 N j ' f j j=1 2 N j g j ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapedake aajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqbaoaa dmaakeaajuaGdaaeWbGcbaqcLbsacaWGobqcfa4aa0baaSqaaKqzad GaamOAaaWcbaqcLbsacaGGNaaaaaWcbaqcLbmacaWGPbGaeyypa0Ja aGymaaWcbaqcLbmacaaIYaaajugibiabggHiLdGaamOzaKqbaoaaBa aaleaajugWaiaadQgaaSqabaqcLbsacqGHsisljuaGdaaeWbGcbaqc LbsacaWGobqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaeaajugWai aadQgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoa caWGNbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaOGaay5waiaaw2 faaKqzGeGaamizaiabeE7aOjabg2da9iaaicdaaSqaaKqzadGaeq4T dG2cdaWgaaadbaqcLbmacaWGLbaameqaaaWcbaqcLbmacqaH3oaAlm aaBaaameaajugWaiaadwgacqGHRaWkcaaIXaaameqaaaqcLbsacqGH RiI8aiaaywW7caaMe8oaaa@7944@              (34)

( 1+ 1 β ){ N i i=1 2 N j ' g j | η e η e+1 η e η e+1 i=1 2 N j ' g j N i ' dη +( ( n1 )We 2 )[ N i ( i=1 2 N j ' g j ) 3 | η e η e+1 η e η e+1 ( i=1 2 N j ' g j ) 3 N i ' dη ] } + η e η e+1 N i [ B 1 { B 2 ( S( i=1 2 N j g j + η 2 i=1 2 N j ' g j ) +( i=1 2 N j f j i=1 2 N j ' g j ) ( i=1 2 N j g j ) 2 ) }H a 2 i=1 2 N j g j co s 2 γ 1 Da i=1 2 N j g j ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaeqOSdigaaaGccaGLOaGaayzkaaqcfa4aaiWaaOqaaK qbaoaaeiaakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaa leqaaKqbaoaaqahakeaajugibiaad6eajuaGdaqhaaWcbaqcLbmaca WGQbaaleaajugibiaacEcaaaaaleaajugWaiaadMgacqGH9aqpcaaI XaaakeaajugWaiaaikdaaKqzGeGaeyyeIuoacaWGNbqcfa4aaSbaaS qaaKqzadGaamOAaaWcbeaaaOGaayjcSdqcfa4aa0baaSqaaKqzadGa eq4TdG2cdaWgaaadbaqcLbmacaWGLbaameqaaaWcbaqcLbmacqaH3o aAlmaaBaaameaajugWaiaadwgacqGHRaWkcaaIXaaameqaaaaajugi biabgkHiTKqbaoaapedakeaajuaGdaaeWbGcbaqcLbsacaWGobqcfa 4aa0baaSqaaKqzadGaamOAaaWcbaqcLbsacaGGNaaaaaWcbaqcLbma caWGPbGaeyypa0JaaGymaaWcbaqcLbmacaaIYaaajugibiabggHiLd Gaam4zaKqbaoaaBaaaleaajugWaiaadQgaaSqabaqcLbsacaWGobqc fa4aa0baaSqaaKqzadGaamyAaaWcbaqcLbsacaGGNaaaaiaadsgacq aH3oaAaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbaameqa aaWcbaqcLbmacqaH3oaAlmaaBaaameaajugWaiaadwgacqGHRaWkca aIXaaameqaaaqcLbsacqGHRiI8aiabgUcaRKqbaoaabmaakeaajuaG daWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamOBaiabgkHiTiaaigdaaO GaayjkaiaawMcaaKqzGeGaam4vaiaadwgaaOqaaKqzGeGaaGOmaaaa aOGaayjkaiaawMcaaKqbaoaadmaakeaajuaGdaabcaGcbaqcLbsaca WGobqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaajuaGdaqadaGcbaqc fa4aaabCaOqaaKqzGeGaamOtaKqbaoaaDaaaleaajugWaiaadQgaaS qaaKqzGeGaai4jaaaaaSqaaKqzadGaamyAaiabg2da9iaaigdaaSqa aKqzadGaaGOmaaqcLbsacqGHris5aiaadEgajuaGdaWgaaWcbaqcLb macaWGQbaaleqaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabeaajugW aiaaiodaaaaakiaawIa7aKqbaoaaDaaaleaajugWaiabeE7aOTWaaS baaWqaaKqzadGaamyzaaadbeaaaSqaaKqzadGaeq4TdG2cdaWgaaad baqcLbmacaWGLbGaey4kaSIaaGymaaadbeaaaaqcLbsacqGHsislju aGdaWdXaGcbaqcfa4aaeWaaOqaaKqbaoaaqahakeaajugibiaad6ea juaGdaqhaaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaaaaleaaju gWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyye IuoacaWGNbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaOGaayjkai aawMcaaKqbaoaaCaaaleqabaqcLbmacaaIZaaaaKqzGeGaamOtaKqb aoaaDaaaleaajugWaiaadMgaaSqaaKqzGeGaai4jaaaacaWGKbGaeq 4TdGgaleaajugWaiabeE7aOTWaaSbaaWqaaKqzadGaamyzaaadbeaa aSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGaey4kaSIaaG ymaaadbeaaaKqzGeGaey4kIipaaOGaay5waiaaw2faaaGaay5Eaiaa w2haaaqaaKqzGeGaey4kaSscfa4aa8qmaOqaaKqzGeGaamOtaKqbao aaBaaaleaajugWaiaadMgaaSqabaqcfa4aamWaaOqaaKqzGeGaamOq aKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcfa4aaiWaaOqaaKqzGe GaamOqaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcfa4aaeWaaKqz GeabaeqakeaajugibiaadofajuaGdaqadaGcbaqcfa4aaabCaOqaaK qzGeGaamOtaKqbaoaaBaaaleaajugWaiaadQgaaSqabaaabaqcLbma caWGPbGaeyypa0JaaGymaaWcbaqcLbmacaaIYaaajugibiabggHiLd Gaam4zaKqbaoaaBaaaleaajugWaiaadQgaaSqabaqcLbsacqGHRaWk juaGdaWcaaGcbaqcLbsacqaH3oaAaOqaaKqzGeGaaGOmaaaajuaGda aeWbGcbaqcLbsacaWGobqcfa4aa0baaSqaaKqzadGaamOAaaWcbaqc LbsacaGGNaaaaaWcbaqcLbmacaWGPbGaeyypa0JaaGymaaWcbaqcLb macaaIYaaajugibiabggHiLdGaam4zaKqbaoaaBaaaleaajugWaiaa dQgaaSqabaaakiaawIcacaGLPaaaaeaajugibiabgUcaRKqbaoaabm aakeaajuaGdaaeWbGcbaqcLbsacaWGobqcfa4aaSbaaSqaaKqzadGa amOAaaWcbeaaaeaajugWaiaadMgacqGH9aqpcaaIXaaaleaajugWai aaikdaaKqzGeGaeyyeIuoacaWGMbqcfa4aaSbaaSqaaKqzadGaamOA aaWcbeaajugibiabgwSixNqbaoaaqahakeaajugibiaad6eajuaGda qhaaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaaaaleaajugWaiaa dMgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoaca WGNbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaOGaayjkaiaawMca aKqzGeGaeyOeI0scfa4aaeWaaOqaaKqbaoaaqahakeaajugibiaad6 eajuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaaqaaKqzadGaamyAaiab g2da9iaaigdaaSqaaKqzadGaaGOmaaqcLbsacqGHris5aiaadEgaju aGdaWgaaWcbaqcLbmacaWGQbaaleqaaaGccaGLOaGaayzkaaqcfa4a aWbaaSqabeaajugWaiaaikdaaaaaaOGaayjkaiaawMcaaaGaay5Eai aaw2haaKqzGeGaeyOeI0IaamisaiaadggajuaGdaahaaWcbeqaaKqz adGaaGOmaaaajuaGdaaeWbGcbaqcLbsacaWGobqcfa4aaSbaaSqaaK qzadGaamOAaaWcbeaaaeaajugWaiaadMgacqGH9aqpcaaIXaaaleaa jugWaiaaikdaaKqzGeGaeyyeIuoacaWGNbqcfa4aaSbaaSqaaKqzad GaamOAaaWcbeaajugibiaadogacaWGVbGaam4CaKqbaoaaCaaaleqa baqcLbmacaaIYaaaaKqzGeGaeq4SdCMaeyOeI0scfa4aaSaaaOqaaK qzGeGaaGymaaGcbaqcLbsacaWGebGaamyyaaaajuaGdaaeWbGcbaqc LbsacaWGobqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaeaajugWai aadMgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoa caWGNbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaOGaay5waiaaw2 faaKqzGeGaamizaiabeE7aOjabg2da9iaaicdaaSqaaKqzadGaeq4T dG2cdaWgaaadbaqcLbmacaWGLbaameqaaaWcbaqcLbmacqaH3oaAlm aaBaaameaajugWaiaadwgacqGHRaWkcaaIXaaameqaaaqcLbsacqGH RiI8aiaaywW7caaMe8oaaaa@CDD7@              (35)

B 3 ( 1+ 4 3 R ){ [ N i j=1 2 N j ' θ j ' | η e η e+1 η e η e+1 i=1 2 N j ' θ j N i ' dη ] } + η e η e+1 N i [ EcPr B 1 ( i=1 2 N j ' g j ) 2 +( A ( i=1 2 N j g j )+ B j=1 2 N j θ j ) B 4 Pr( S 2 ( ( η j=1 2 N j ' θ j +3 j=1 2 N j θ j )+2( i=1 2 N j g j j=1 2 N j θ j ) f j j=1 2 N j ' θ j ) ) ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGcbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajuaGdaqadaGcbaqc LbsacaaIXaGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGinaaGcbaqcLb sacaaIZaaaaiaadkfaaOGaayjkaiaawMcaaKqbaoaacmaakeaajuaG daWadaGcbaqcfa4aaqGaaOqaaKqzGeGaamOtaKqbaoaaBaaaleaaju gWaiaadMgaaSqabaqcfa4aaabCaOqaaKqzGeGaamOtaKqbaoaaDaaa leaajugWaiaadQgaaSqaaKqzGeGaai4jaaaaaSqaaKqzadGaamOAai abg2da9iaaigdaaSqaaKqzadGaaGOmaaqcLbsacqGHris5aiabeI7a XLqbaoaaDaaaleaajugWaiaadQgaaSqaaKqzGeGaai4jaaaaaOGaay jcSdqcfa4aa0baaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWG LbaameqaaaWcbaqcLbmacqaH3oaAlmaaBaaameaajugWaiaadwgacq GHRaWkcaaIXaaameqaaaaajugibiabgkHiTKqbaoaapedakeaajuaG daaeWbGcbaqcLbsacaWGobqcfa4aa0baaSqaaKqzadGaamOAaaWcba qcLbsacaGGNaaaaaWcbaqcLbmacaWGPbGaeyypa0JaaGymaaWcbaqc LbmacaaIYaaajugibiabggHiLdGaeqiUdexcfa4aaSbaaSqaaKqzad GaamOAaaWcbeaajugibiaad6eajuaGdaqhaaWcbaqcLbmacaWGPbaa leaajugibiaacEcaaaGaamizaiabeE7aObWcbaqcLbmacqaH3oaAlm aaBaaameaajugWaiaadwgaaWqabaaaleaajugWaiabeE7aOTWaaSba aWqaaKqzadGaamyzaiabgUcaRiaaigdaaWqabaaajugibiabgUIiYd aakiaawUfacaGLDbaaaiaawUhacaGL9baaaeaajugibiabgUcaRKqb aoaapedakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaale qaaKqbaoaadmaajugibqaabeGcbaqcfa4aaSaaaOqaaKqzGeGaamyr aiaadogacaWGqbGaamOCaaGcbaqcLbsacaWGcbqcfa4aaSbaaSqaaK qzadGaaGymaaWcbeaaaaqcfa4aaeWaaOqaaKqbaoaaqahakeaajugi biaad6eajuaGdaqhaaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaa aaleaajugWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqz GeGaeyyeIuoacaWGNbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaO GaayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGa ey4kaSscfa4aaeWaaOqaaKqzGeGaamyqaKqbaoaaCaaaleqabaqcLb macqGHxiIkaaqcfa4aaeWaaOqaaKqbaoaaqahakeaajugibiaad6ea juaGdaWgaaWcbaqcLbmacaWGQbaaleqaaaqaaKqzadGaamyAaiabg2 da9iaaigdaaSqaaKqzadGaaGOmaaqcLbsacqGHris5aiaadEgajuaG daWgaaWcbaqcLbmacaWGQbaaleqaaaGccaGLOaGaayzkaaqcLbsacq GHRaWkcaWGcbqcfa4aaWbaaSqabeaajugWaiabgEHiQaaajuaGdaae WbGcbaqcLbsacaWGobqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaae aajugWaiaadQgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGa eyyeIuoacqaH4oqCjuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaaGcca GLOaGaayzkaaaabaqcLbsacqGHsislcaWGcbqcfa4aaSbaaSqaaKqz adGaaGinaaWcbeaajugibiaadcfacaWGYbqcfa4aaeWaaOqaaKqbao aalaaakeaajugibiaadofaaOqaaKqzGeGaaGOmaaaajuaGdaqadaqc LbsaeaqabOqaaKqbaoaabmaakeaajugibiabeE7aOLqbaoaaqahake aajugibiaad6eajuaGdaqhaaWcbaqcLbmacaWGQbaaleaajugibiaa cEcaaaaaleaajugWaiaadQgacqGH9aqpcaaIXaaaleaajugWaiaaik daaKqzGeGaeyyeIuoacqaH4oqCjuaGdaWgaaWcbaqcLbmacaWGQbaa leqaaKqzGeGaey4kaSIaaG4maKqbaoaaqahakeaajugibiaad6eaju aGdaWgaaWcbaqcLbmacaWGQbaaleqaaaqaaKqzadGaamOAaiabg2da 9iaaigdaaSqaaKqzadGaaGOmaaqcLbsacqGHris5aiabeI7aXLqbao aaBaaaleaajugWaiaadQgaaSqabaaakiaawIcacaGLPaaajugibiab gUcaRiaaikdajuaGdaqadaGcbaqcfa4aaabCaOqaaKqzGeGaamOtaK qbaoaaBaaaleaajugWaiaadQgaaSqabaaabaqcLbmacaWGPbGaeyyp a0JaaGymaaWcbaqcLbmacaaIYaaajugibiabggHiLdGaam4zaKqbao aaBaaaleaajugWaiaadQgaaSqabaqcLbsacqGHflY1juaGdaaeWbGc baqcLbsacaWGobqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaeaaju gWaiaadQgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyye IuoacqaH4oqCjuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaaGccaGLOa GaayzkaaaabaqcLbsacqGHsislcaWGMbqcfa4aaSbaaSqaaKqzadGa amOAaaWcbeaajuaGdaaeWbGcbaqcLbsacaWGobqcfa4aa0baaSqaaK qzadGaamOAaaWcbaqcLbsacaGGNaaaaaWcbaqcLbmacaWGQbGaeyyp a0JaaGymaaWcbaqcLbmacaaIYaaajugibiabggHiLdGaeqiUdexcfa 4aaSbaaSqaaKqzadGaamOAaaWcbeaaaaGccaGLOaGaayzkaaaacaGL OaGaayzkaaaaaiaawUfacaGLDbaajugibiaadsgacqaH3oaAcqGH9a qpcaaIWaaaleaajugWaiabeE7aOTWaaSbaaWqaaKqzadGaamyzaaad beaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGaey4kaS IaaGymaaadbeaaaKqzGeGaey4kIipaaaaa@897E@ (36)

A linearized analysis of the above equations can be performed if Eqs .(35) and (36) are linearized by incorporating the functions f ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOzay aaraaaaa@377D@ and g ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9 pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaq aafaaakeaadaqdaaqaaiaabEgaaaaaaa@3DDE@ , which are assumed to be known. Therefore, we arrived at

( 1+ 1 β ){ N i i=1 2 N j ' g j | η e η e+1 η e η e+1 i=1 2 N j ' g j N i ' dη+ ( ( n1 )We 2 )[ N i g ¯ 2 i=1 2 N j ' g j | η e η e+1 η e η e+1 N i ' g ¯ 2 i=1 2 N j ' g j dη ] } + η e η e+1 N i [ B 1 { B 2 ( S( i=1 2 N j g j + η 2 i=1 2 N j ' g j ) +( f ¯ j i=1 2 N j ' g j ) g ¯ i=1 2 N j g j ) }H a 2 i=1 2 N j g j co s 2 γ 1 Da i=1 2 N j g j ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaeqOSdigaaaGccaGLOaGaayzkaaqcfa4aaiWaaOqaaK qbaoaaeiaakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaa leqaaKqbaoaaqahakeaajugibiaad6eajuaGdaqhaaWcbaqcLbmaca WGQbaaleaajugibiaacEcaaaaaleaajugWaiaadMgacqGH9aqpcaaI XaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoacaWGNbqcfa4aaSbaaS qaaKqzadGaamOAaaWcbeaaaOGaayjcSdqcfa4aa0baaSqaaKqzadGa eq4TdG2cdaWgaaadbaqcLbmacaWGLbaameqaaaWcbaqcLbmacqaH3o aAlmaaBaaameaajugWaiaadwgacqGHRaWkcaaIXaaameqaaaaajugi biabgkHiTKqbaoaapedakeaajuaGdaaeWbGcbaqcLbsacaWGobqcfa 4aa0baaSqaaKqzadGaamOAaaWcbaqcLbsacaGGNaaaaaWcbaqcLbma caWGPbGaeyypa0JaaGymaaWcbaqcLbmacaaIYaaajugibiabggHiLd Gaam4zaKqbaoaaBaaaleaajugWaiaadQgaaSqabaqcLbsacaWGobqc fa4aa0baaSqaaKqzadGaamyAaaWcbaqcLbsacaGGNaaaaiaadsgacq aH3oaAcqGHRaWkaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWG LbaameqaaaWcbaqcLbmacqaH3oaAlmaaBaaameaajugWaiaadwgacq GHRaWkcaaIXaaameqaaaqcLbsacqGHRiI8aKqbaoaabmaakeaajuaG daWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamOBaiabgkHiTiaaigdaaO GaayjkaiaawMcaaKqzGeGaam4vaiaadwgaaOqaaKqzGeGaaGOmaaaa aOGaayjkaiaawMcaaKqbaoaadmaakeaajuaGdaabcaGcbaqcLbsaca WGobqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaajugibiqadEgagaqe aKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqbaoaaqahakeaajugibi aad6eajuaGdaqhaaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaaaa leaajugWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGe GaeyyeIuoacaWGNbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaOGa ayjcSdqcfa4aa0baaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmaca WGLbaameqaaaWcbaqcLbmacqaH3oaAlmaaBaaameaajugWaiaadwga cqGHRaWkcaaIXaaameqaaaaajugibiabgkHiTKqbaoaapedakeaaju gibiaad6eajuaGdaqhaaWcbaqcLbmacaWGPbaaleaajugibiaacEca aaGabm4zayaaraqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcfa4aaa bCaOqaaKqzGeGaamOtaKqbaoaaDaaaleaajugWaiaadQgaaSqaaKqz GeGaai4jaaaaaSqaaKqzadGaamyAaiabg2da9iaaigdaaSqaaKqzad GaaGOmaaqcLbsacqGHris5aiaadEgajuaGdaWgaaWcbaqcLbmacaWG QbaaleqaaKqzGeGaamizaiabeE7aObWcbaqcLbmacqaH3oaAlmaaBa aameaajugWaiaadwgaaWqabaaaleaajugWaiabeE7aOTWaaSbaaWqa aKqzadGaamyzaiabgUcaRiaaigdaaWqabaaajugibiabgUIiYdaaki aawUfacaGLDbaaaiaawUhacaGL9baaaeaajugibiabgUcaRKqbaoaa pedakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaK qbaoaadmaakeaajugibiaadkeajuaGdaWgaaWcbaqcLbmacaaIXaaa leqaaKqbaoaacmaakeaajugibiaadkeajuaGdaWgaaWcbaqcLbmaca aIYaaaleqaaKqbaoaabmaajugibqaabeGcbaqcLbsacaWGtbqcfa4a aeWaaOqaaKqbaoaaqahakeaajugibiaad6eajuaGdaWgaaWcbaqcLb macaWGQbaaleqaaaqaaKqzadGaamyAaiabg2da9iaaigdaaSqaaKqz adGaaGOmaaqcLbsacqGHris5aiaadEgajuaGdaWgaaWcbaqcLbmaca WGQbaaleqaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaeq4TdGga keaajugibiaaikdaaaqcfa4aaabCaOqaaKqzGeGaamOtaKqbaoaaDa aaleaajugWaiaadQgaaSqaaKqzGeGaai4jaaaaaSqaaKqzadGaamyA aiabg2da9iaaigdaaSqaaKqzadGaaGOmaaqcLbsacqGHris5aiaadE gajuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaaGccaGLOaGaayzkaaaa baqcLbsacqGHRaWkjuaGdaqadaGcbaqcLbsaceWGMbGbaebajuaGda WgaaWcbaqcLbmacaWGQbaaleqaaKqbaoaaqahakeaajugibiaad6ea juaGdaqhaaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaaaaleaaju gWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyye IuoacaWGNbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaOGaayjkai aawMcaaKqzGeGaeyOeI0Iabm4zayaaraqcfa4aaabCaOqaaKqzGeGa amOtaKqbaoaaBaaaleaajugWaiaadQgaaSqabaaabaqcLbmacaWGPb Gaeyypa0JaaGymaaWcbaqcLbmacaaIYaaajugibiabggHiLdGaam4z aKqbaoaaBaaaleaajugWaiaadQgaaSqabaaaaOGaayjkaiaawMcaaa Gaay5Eaiaaw2haaKqzGeGaeyOeI0IaamisaiaadggajuaGdaahaaWc beqaaKqzadGaaGOmaaaajuaGdaaeWbGcbaqcLbsacaWGobqcfa4aaS baaSqaaKqzadGaamOAaaWcbeaaaeaajugWaiaadMgacqGH9aqpcaaI XaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoacaWGNbqcfa4aaSbaaS qaaKqzadGaamOAaaWcbeaajugibiaadogacaWGVbGaam4CaKqbaoaa CaaaleqabaqcLbmacaaIYaaaaKqzGeGaeq4SdCMaeyOeI0scfa4aaS aaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGebGaamyyaaaajuaGdaae WbGcbaqcLbsacaWGobqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaae aajugWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGa eyyeIuoacaWGNbqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaOGaay 5waiaaw2faaKqzGeGaamizaiabeE7aOjabg2da9iaaicdaaSqaaKqz adGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbaameqaaaWcbaqcLbmacq aH3oaAlmaaBaaameaajugWaiaadwgacqGHRaWkcaaIXaaameqaaaqc LbsacqGHRiI8aaaaaa@B626@ (37)

B 3 ( 1+ 4 3 R )[ N i j=1 2 N j ' θ j ' | η e η e+1 η e η e+1 i=1 2 N j ' θ j N i ' dη ] + η e η e+1 N i [ EcPr B 1 g ¯ i=1 2 N j ' g j +( A ( i=1 2 N j g j )+ B j=1 2 N j θ j ) B 4 Pr( S 2 ( ( η j=1 2 N j ' θ j +3 j=1 2 N j θ j )+2( g ¯ j j=1 2 N j θ j ) f ¯ j j=1 2 N j ' θ j ) ) ]dη=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGcbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajuaGdaqadaGcbaqc LbsacaaIXaGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGinaaGcbaqcLb sacaaIZaaaaiaadkfaaOGaayjkaiaawMcaaKqbaoaadmaakeaajuaG daabcaGcbaqcLbsacaWGobqcfa4aaSbaaSqaaKqzadGaamyAaaWcbe aajuaGdaaeWbGcbaqcLbsacaWGobqcfa4aa0baaSqaaKqzadGaamOA aaWcbaqcLbsacaGGNaaaaaWcbaqcLbmacaWGQbGaeyypa0JaaGymaa WcbaqcLbmacaaIYaaajugibiabggHiLdGaeqiUdexcfa4aa0baaSqa aKqzadGaamOAaaWcbaqcLbsacaGGNaaaaaGccaGLiWoajuaGdaqhaa WcbaqcLbmacqaH3oaAlmaaBaaameaajugWaiaadwgaaWqabaaaleaa jugWaiabeE7aOTWaaSbaaWqaaKqzadGaamyzaiabgUcaRiaaigdaaW qabaaaaKqzGeGaeyOeI0scfa4aa8qmaOqaaKqbaoaaqahakeaajugi biaad6eajuaGdaqhaaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaa aaleaajugWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqz GeGaeyyeIuoacqaH4oqCjuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaK qzGeGaamOtaKqbaoaaDaaaleaajugWaiaadMgaaSqaaKqzGeGaai4j aaaacaWGKbGaeq4TdGgaleaajugWaiabeE7aOTWaaSbaaWqaaKqzad GaamyzaaadbeaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWG LbGaey4kaSIaaGymaaadbeaaaKqzGeGaey4kIipaaOGaay5waiaaw2 faaaqaaKqzGeGaey4kaSscfa4aa8qmaOqaaKqzGeGaamOtaKqbaoaa BaaaleaajugWaiaadMgaaSqabaqcfa4aamWaaKqzGeabaeqakeaaju aGdaWcaaGcbaqcLbsacaWGfbGaam4yaiaadcfacaWGYbaakeaajugi biaadkeajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaajugibiqadE gagaqeaKqbaoaaqahakeaajugibiaad6eajuaGdaqhaaWcbaqcLbma caWGQbaaleaajugibiaacEcaaaaaleaajugWaiaadMgacqGH9aqpca aIXaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoacaWGNbqcfa4aaSba aSqaaKqzadGaamOAaaWcbeaajugibiabgUcaRKqbaoaabmaakeaaju gibiaadgeajuaGdaahaaWcbeqaaKqzadGaey4fIOcaaKqbaoaabmaa keaajuaGdaaeWbGcbaqcLbsacaWGobqcfa4aaSbaaSqaaKqzadGaam OAaaWcbeaaaeaajugWaiaadMgacqGH9aqpcaaIXaaaleaajugWaiaa ikdaaKqzGeGaeyyeIuoacaWGNbqcfa4aaSbaaSqaaKqzadGaamOAaa WcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamOqaKqbaoaaCaaa leqakeaajugWaiabgEHiQaaajuaGdaaeWbGcbaqcLbsacaWGobqcfa 4aaSbaaSqaaKqzadGaamOAaaWcbeaaaeaajugWaiaadQgacqGH9aqp caaIXaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoacqaH4oqCjuaGda WgaaWcbaqcLbmacaWGQbaaleqaaaGccaGLOaGaayzkaaaabaqcLbsa cqGHsislcaWGcbqcfa4aaSbaaSqaaKqzadGaaGinaaWcbeaajugibi aadcfacaWGYbqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadofa aOqaaKqzGeGaaGOmaaaajuaGdaqadaqcLbsaeaqabOqaaKqbaoaabm aakeaajugibiabeE7aOLqbaoaaqahakeaajugibiaad6eajuaGdaqh aaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaaaaleaajugWaiaadQ gacqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoacqaH 4oqCjuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaKqzGeGaey4kaSIaaG 4maKqbaoaaqahakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWG QbaaleqaaaqaaKqzadGaamOAaiabg2da9iaaigdaaSqaaKqzadGaaG OmaaqcLbsacqGHris5aiabeI7aXLqbaoaaBaaaleaajugWaiaadQga aSqabaaakiaawIcacaGLPaaajugibiabgUcaRiaaikdajuaGdaqada GcbaqcLbsaceWGNbGbaebajuaGdaWgaaWcbaqcLbmacaWGQbaaleqa aKqbaoaaqahakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGQb aaleqaaaqaaKqzadGaamOAaiabg2da9iaaigdaaSqaaKqzadGaaGOm aaqcLbsacqGHris5aiabeI7aXLqbaoaaBaaaleaajugWaiaadQgaaS qabaaakiaawIcacaGLPaaaaeaajugibiabgkHiTiqadAgagaqeaKqb aoaaBaaaleaajugWaiaadQgaaSqabaqcfa4aaabCaOqaaKqzGeGaam OtaKqbaoaaDaaaleaajugWaiaadQgaaSqaaKqzGeGaai4jaaaaaSqa aKqzadGaamOAaiabg2da9iaaigdaaSqaaKqzadGaaGOmaaqcLbsacq GHris5aiabeI7aXLqbaoaaBaaaleaajugWaiaadQgaaSqabaaaaOGa ayjkaiaawMcaaaGaayjkaiaawMcaaaaacaGLBbGaayzxaaqcLbsaca WGKbGaeq4TdGMaeyypa0JaaGimaaWcbaqcLbmacqaH3oaAlmaaBaaa meaajugWaiaadwgaaWqabaaaleaajugWaiabeE7aOTWaaSbaaWqaaK qzadGaamyzaiabgUcaRiaaigdaaWqabaaajugibiabgUIiYdaaaaa@7401@ (38)

The finite element model of the equations in matrix form is given as follow

[ [ K 11 ] [ K 12 ] [ K 13 ] [ K 21 ] [ K 22 ] [ K 23 ] [ K 31 ] [ K 32 ] [ K 33 ] ]{ { f } { g } { θ } }={ { S ( 1 ) } { S ( 2 ) } { S ( 3 ) } } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaake aajugibuaabeqadmaaaOqaaKqbaoaadmaakeaajugibiaadUeajuaG daahaaWcbeqaaKqzadGaaGymaiaaigdaaaaakiaawUfacaGLDbaaae aajuaGdaWadaGcbaqcLbsacaWGlbqcfa4aaWbaaSqabeaajugWaiaa igdacaaIYaaaaaGccaGLBbGaayzxaaaabaqcfa4aamWaaOqaaKqzGe Gaam4saKqbaoaaCaaaleqabaqcLbmacaaIXaGaaG4maaaaaOGaay5w aiaaw2faaaqaaKqbaoaadmaakeaajugibiaadUeajuaGdaahaaWcbe qaaKqzadGaaGOmaiaaigdaaaaakiaawUfacaGLDbaaaeaajuaGdaWa daGcbaqcLbsacaWGlbqcfa4aaWbaaSqabeaajugWaiaaikdacaaIYa aaaaGccaGLBbGaayzxaaaabaqcfa4aamWaaOqaaKqzGeGaam4saKqb aoaaCaaaleqabaqcLbmacaaIYaGaaG4maaaaaOGaay5waiaaw2faaa qaaKqbaoaadmaakeaajugibiaadUeajuaGdaahaaWcbeqaaKqzadGa aG4maiaaigdaaaaakiaawUfacaGLDbaaaeaajuaGdaWadaGcbaqcLb sacaWGlbqcfa4aaWbaaSqabeaajugWaiaaiodacaaIYaaaaaGccaGL BbGaayzxaaaabaqcfa4aamWaaOqaaKqzGeGaam4saKqbaoaaCaaale qabaqcLbmacaaIZaGaaG4maaaaaOGaay5waiaaw2faaaaaaiaawUfa caGLDbaajuaGdaGadaqcLbsaeaqabOqaaKqbaoaacmaakeaajugibi aadAgajuaGdaahaaWcbeqaaaaaaOGaay5Eaiaaw2haaaqaaKqbaoaa cmaakeaajugibiaadEgajuaGdaahaaWcbeqaaaaaaOGaay5Eaiaaw2 haaaqaaKqbaoaacmaakeaajugibiabeI7aXLqbaoaaCaaaleqabaaa aaGccaGL7bGaayzFaaaaaiaawUhacaGL9baajugibiabg2da9Kqbao aacmaajugibqaabeGcbaqcfa4aaiWaaOqaaKqzGeGaam4uaKqbaoaa CaaaleqabaWaaeWaaeaajugWaiaaigdaaSGaayjkaiaawMcaaaaaaO Gaay5Eaiaaw2haaaqaaKqbaoaacmaakeaajugibiaadofalmaaCaaa beqaamaabmaabaqcLbmacaaIYaaaliaawIcacaGLPaaaaaaakiaawU hacaGL9baaaeaajuaGdaGadaGcbaqcLbsacaWGtbWcdaahaaqabeaa daqadaqaaKqzadGaaG4maaWccaGLOaGaayzkaaaaaaGccaGL7bGaay zFaaaaaiaawUhacaGL9baaaaa@AB8F@              (39)

where [ K mn ] 2×2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaake aajugibiaadUeajuaGdaahaaWcbeqaaKqzadGaamyBaiaad6gaaaaa kiaawUfacaGLDbaajuaGdaWgaaWcbaqcLbmacaaIYaGaey41aqRaaG OmaaWcbeaaaaa@432E@  and [ S m ] 2×1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaake aajugibiaadofajuaGdaahaaWcbeqaaKqzadGaamyBaaaaaOGaay5w aiaaw2faaKqbaoaaBaaaleaajugWaiaaikdacqGHxdaTcaaIXaaale qaaaaa@4242@  (m, n=1, 2, 3) are defined as follows:

K ij 11 =( 1+ 1 β ) η e η e+1 N i N j ' dη=0 , K ij 12 =( 1+ 1 β ) η e η e+1 N i N j dη=0 , K ij 13 =0, S ( 1 ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4saK qbaoaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaaigdacaaI XaaaaKqzGeGaeyypa0tcfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaeqOSdigaaaGccaGL OaGaayzkaaqcfa4aa8qmaOqaaKqzGeGaamOtaKqbaoaaBaaaleaaju gWaiaadMgaaSqabaqcLbsacaWGobqcfa4aa0baaSqaaKqzadGaamOA aaWcbaqcLbsacaGGNaaaaiaadsgacqaH3oaAcqGH9aqpcaaIWaaale aajugWaiabeE7aOTWaaSbaaWqaaKqzadGaamyzaaadbeaaaSqaaKqz adGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGaey4kaSIaaGymaaadbe aaaKqzGeGaey4kIipacaGGSaGaaGzbVlaadUeajuaGdaqhaaWcbaqc LbmacaWGPbGaamOAaaWcbaqcLbmacaaIXaGaaGOmaaaajugibiabg2 da9iabgkHiTKqbaoaabmaakeaajugibiaaigdacqGHRaWkjuaGdaWc aaGcbaqcLbsacaaIXaaakeaajugibiabek7aIbaaaOGaayjkaiaawM caaKqbaoaapedakeaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWG PbaaleqaaKqzGeGaamOtaKqbaoaaBaaaleaajugWaiaadQgaaSqaba qcLbsacaWGKbGaeq4TdGMaeyypa0JaaGimaaWcbaqcLbmacqaH3oaA lmaaBaaameaajugWaiaadwgaaWqabaaaleaajugWaiabeE7aOTWaaS baaWqaaKqzadGaamyzaiabgUcaRiaaigdaaWqabaaajugibiabgUIi YdGaaiilaiaaywW7caWGlbqcfa4aa0baaSqaaKqzadGaamyAaiaadQ gaaSqaaKqzadGaaGymaiaaiodaaaqcLbsacqGH9aqpcaaIWaGaaiil aiaaysW7caaMe8Uaam4uaKqbaoaaCaaaleqabaWaaeWaaeaajugWai aaigdaaSGaayjkaiaawMcaaaaajugibiabg2da9iaaicdaaaa@AD8D@

K ij 21 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaqhaa WcbaGaamyAaiaadQgaaeaacaaIYaGaaGymaaaakiabg2da9iaaicda aaa@3C06@

K ij 22 =( 1+ 1 β ){ η e η e+1 N j ' N i ' dη( ( n1 )We 2 )[ η e η e+1 N i ' N j ' g ¯ 2 dη ] }           + η e η e+1 N i [ B 1 { B 2 ( ( S N j + η 2 N j ' )+( f ¯ j N j ' ) g ¯ N j ) }H a 2 N j co s 2 γ 1 Da N j ]dη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGlbqcfa4aa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaaGOm aiaaikdaaaqcLbsacqGH9aqpcqGHsisljuaGdaqadaGcbaqcLbsaca aIXaGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacqaH YoGyaaaakiaawIcacaGLPaaajuaGdaGadaGcbaqcfa4aa8qmaOqaaK qzGeGaamOtaKqbaoaaDaaaleaajugWaiaadQgaaSqaaKqzGeGaai4j aaaacaWGobqcfa4aa0baaSqaaKqzadGaamyAaaWcbaqcLbsacaGGNa aaaiaadsgacqaH3oaAcqGHsisljuaGdaqadaGcbaqcfa4aaSaaaOqa aKqbaoaabmaakeaajugibiaad6gacqGHsislcaaIXaaakiaawIcaca GLPaaajugibiaadEfacaWGLbaakeaajugibiaaikdaaaaakiaawIca caGLPaaajuaGdaWadaGcbaqcfa4aa8qmaOqaaKqzGeGaamOtaKqbao aaDaaaleaajugWaiaadMgaaSqaaKqzGeGaai4jaaaacaWGobqcfa4a a0baaSqaaKqzadGaamOAaaWcbaqcLbsacaGGNaaaaiqadEgagaqeaK qbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaamizaiabeE7aObWc baqcLbmacqaH3oaAlmaaBaaameaajugWaiaadwgaaWqabaaaleaaju gWaiabeE7aOTWaaSbaaWqaaKqzadGaamyzaiabgUcaRiaaigdaaWqa baaajugibiabgUIiYdaakiaawUfacaGLDbaaaSqaaKqzadGaeq4TdG 2cdaWgaaadbaqcLbmacaWGLbaameqaaaWcbaqcLbmacqaH3oaAlmaa BaaameaajugWaiaadwgacqGHRaWkcaaIXaaameqaaaqcLbsacqGHRi I8aaGccaGL7bGaayzFaaaabaqcLbsacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaey4kaSscfa 4aa8qmaOqaaKqzGeGaamOtaKqbaoaaBaaaleaajugWaiaadMgaaSqa baqcfa4aamWaaOqaaKqzGeGaamOqaKqbaoaaBaaaleaajugWaiaaig daaSqabaqcfa4aaiWaaOqaaKqzGeGaamOqaKqbaoaaBaaaleaajugW aiaaikdaaSqabaqcfa4aaeWaaOqaaKqbaoaabmaakeaajugibiaado facaWGobqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaajugibiabgUca RKqbaoaalaaakeaajugibiabeE7aObGcbaqcLbsacaaIYaaaaiaad6 eajuaGdaqhaaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaaaakiaa wIcacaGLPaaajugibiabgUcaRKqbaoaabmaakeaajugibiqadAgaga qeaKqbaoaaBaaaleaajugWaiaadQgaaSqabaqcLbsacaWGobqcfa4a a0baaSqaaKqzadGaamOAaaWcbaqcLbsacaGGNaaaaaGccaGLOaGaay zkaaqcLbsacqGHsislceWGNbGbaebacaWGobqcfa4aaSbaaSqaaKqz adGaamOAaaWcbeaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaKqzGe GaeyOeI0IaamisaiaadggajuaGdaahaaWcbeqaaKqzadGaaGOmaaaa jugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaKqzGeGaam 4yaiaad+gacaWGZbqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsa cqaHZoWzcqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibi aadseacaWGHbaaaiaad6eajuaGdaWgaaWcbaqcLbmacaWGQbaaleqa aaGccaGLBbGaayzxaaqcLbsacaWGKbGaeq4TdGgaleaajugWaiabeE 7aOTWaaSbaaWqaaKqzadGaamyzaaadbeaaaSqaaKqzadGaeq4TdG2c daWgaaadbaqcLbmacaWGLbGaey4kaSIaaGymaaadbeaaaKqzGeGaey 4kIipacaaMf8UaaGjbVdaaaa@09EE@

K ij 23 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4saK qbaoaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaaikdacaaI ZaaaaKqzGeGaeyypa0JaaGimaaaa@4011@

S ( 2 ) =( 1+ 1 β ){ N i N j ' g j | η e η e+1 +( ( n1 )We 2 )[ N i N j ' g ¯ 2 g j | η e η e+1 ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS WaaWbaaeqabaWaaeWaaeaajugWaiaaikdaaSGaayjkaiaawMcaaaaa jugibiabg2da9KqbaoaabmaakeaajugibiaaigdacqGHRaWkjuaGda WcaaGcbaqcLbsacaaIXaaakeaajugibiabek7aIbaaaOGaayjkaiaa wMcaaKqbaoaacmaakeaajuaGdaabcaGcbaqcLbsacaWGobqcfa4aaS baaSqaaKqzadGaamyAaaWcbeaajugibiaad6eajuaGdaqhaaWcbaqc LbmacaWGQbaaleaajugibiaacEcaaaGaam4zaKqbaoaaBaaaleaaju gWaiaadQgaaSqabaaakiaawIa7aKqbaoaaDaaaleaajugWaiabeE7a OTWaaSbaaWqaaKqzadGaamyzaaadbeaaaSqaaKqzadGaeq4TdG2cda WgaaadbaqcLbmacaWGLbGaey4kaSIaaGymaaadbeaaaaqcLbsacqGH RaWkjuaGdaqadaGcbaqcfa4aaSaaaOqaaKqbaoaabmaakeaajugibi aad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadEfacaWG LbaakeaajugibiaaikdaaaaakiaawIcacaGLPaaajuaGdaWadaGcba qcfa4aaqGaaOqaaKqzGeGaamOtaKqbaoaaBaaaleaajugWaiaadMga aSqabaqcLbsacaWGobqcfa4aa0baaSqaaKqzadGaamOAaaWcbaqcLb sacaGGNaaaaiqadEgagaqeaKqbaoaaCaaaleqabaqcLbmacaaIYaaa aKqzGeGaam4zaKqbaoaaBaaaleaajugWaiaadQgaaSqabaaakiaawI a7aKqbaoaaDaaaleaajugWaiabeE7aOTWaaSbaaWqaaKqzadGaamyz aaadbeaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGaey 4kaSIaaGymaaadbeaaaaaakiaawUfacaGLDbaaaiaawUhacaGL9baa aaa@951B@

K ij 31 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4saK qbaoaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaaiodacaaI XaaaaKqzGeGaeyypa0JaaGimaaaa@4010@

K ij 32 = η e η e+1 N i [ EcPr B 1 g ¯ N j ' +( A N j ) ]dη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4saK qbaoaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaaiodacaaI YaaaaKqzGeGaeyypa0tcfa4aa8qmaOqaaKqzGeGaamOtaKqbaoaaBa aaleaajugWaiaadMgaaSqabaqcfa4aamWaaOqaaKqbaoaalaaakeaa jugibiaadweacaWGJbGaamiuaiaadkhaaOqaaKqzGeGaamOqaKqbao aaBaaaleaajugWaiaaigdaaSqabaaaaKqzGeGabm4zayaaraGaamOt aKqbaoaaDaaaleaajugWaiaadQgaaSqaaKqzGeGaai4jaaaacqGHRa WkjuaGdaqadaGcbaqcLbsacaWGbbqcfa4aaWbaaSqabeaajugWaiab gEHiQaaajugibiaad6eajuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaqcLbsacaWGKbGaeq4TdGga leaajugWaiabeE7aOTWaaSbaaWqaaKqzadGaamyzaaadbeaaaSqaaK qzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGaey4kaSIaaGymaaad beaaaKqzGeGaey4kIipaaaa@7363@

K ij 33 = B 3 ( 1+ 4 3 R )[ η e η e+1 N j ' N i ' dη ]+ η e η e+1 N i [ ( B N j ) B 4 Pr( S 2 ( ( η N j ' +3 N j ) +2( g ¯ j N j ) f ¯ j N j ) ) ]dη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4saK qbaoaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaaiodacaaI ZaaaaKqzGeGaeyypa0JaeyOeI0IaamOqaKqbaoaaBaaaleaajugWai aaiodaaSqabaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaa laaakeaajugibiaaisdaaOqaaKqzGeGaaG4maaaacaWGsbaakiaawI cacaGLPaaajuaGdaWadaGcbaqcfa4aa8qmaOqaaKqzGeGaamOtaKqb aoaaDaaaleaajugWaiaadQgaaSqaaKqzGeGaai4jaaaacaWGobqcfa 4aa0baaSqaaKqzadGaamyAaaWcbaqcLbsacaGGNaaaaiaadsgacqaH 3oaAaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbaameqaaa WcbaqcLbmacqaH3oaAlmaaBaaameaajugWaiaadwgacqGHRaWkcaaI XaaameqaaaqcLbsacqGHRiI8aaGccaGLBbGaayzxaaqcLbsacqGHRa WkjuaGdaWdXaGcbaqcLbsacaWGobqcfa4aaSbaaSqaaKqzadGaamyA aaWcbeaajuaGdaWadaGcbaqcfa4aaeWaaOqaaKqzGeGaamOqaKqbao aaCaaaleqabaqcLbmacqGHxiIkaaqcLbsacaWGobqcfa4aaSbaaSqa aKqzadGaamOAaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaam OqaKqbaoaaBaaaleaajugWaiaaisdaaSqabaqcLbsacaWGqbGaamOC aKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWGtbaakeaajugibi aaikdaaaqcfa4aaeWaaKqzGeabaeqakeaajuaGdaqadaGcbaqcLbsa cqaH3oaAcaWGobqcfa4aa0baaSqaaKqzadGaamOAaaWcbaqcLbsaca GGNaaaaiabgUcaRiaaiodacaWGobqcfa4aaSbaaSqaaKqzadGaamOA aaWcbeaaaOGaayjkaiaawMcaaaqaaKqzGeGaey4kaSIaaGOmaKqbao aabmaakeaajugibiqadEgagaqeaKqbaoaaBaaaleaajugWaiaadQga aSqabaqcLbsacaWGobqcfa4aaSbaaSqaaKqzadGaamOAaaWcbeaaaO GaayjkaiaawMcaaKqzGeGaeyOeI0IabmOzayaaraqcfa4aaSbaaSqa aKqzadGaamOAaaWcbeaajugibiaad6eajuaGdaWgaaWcbaqcLbmaca WGQbaaleqaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUfa caGLDbaajugibiaadsgacqaH3oaAaSqaaKqzadGaeq4TdG2cdaWgaa adbaqcLbmacaWGLbaameqaaaWcbaqcLbmacqaH3oaAlmaaBaaameaa jugWaiaadwgacqGHRaWkcaaIXaaameqaaaqcLbsacqGHRiI8aaaa@C56E@

S ( 3 ) = B 3 ( 1+ 4 3 R )[ N i j=1 2 N j ' θ j ' | η e η e+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS WaaWbaaeqabaWaaeWaaeaajugWaiaaiodaaSGaayjkaiaawMcaaaaa jugibiabg2da9iaadkeajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaK qbaoaabmaakeaajugibiaaigdacqGHRaWkjuaGdaWcaaGcbaqcLbsa caaI0aaakeaajugibiaaiodaaaGaamOuaaGccaGLOaGaayzkaaqcfa 4aamWaaOqaaKqbaoaaeiaakeaajugibiaad6eajuaGdaWgaaWcbaqc LbmacaWGPbaaleqaaKqbaoaaqahakeaajugibiaad6eajuaGdaqhaa WcbaqcLbmacaWGQbaaleaajugibiaacEcaaaaaleaajugWaiaadQga cqGH9aqpcaaIXaaaleaajugWaiaaikdaaKqzGeGaeyyeIuoacqaH4o qCjuaGdaqhaaWcbaqcLbmacaWGQbaaleaajugibiaacEcaaaaakiaa wIa7aKqbaoaaDaaaleaajugWaiabeE7aOTWaaSbaaWqaaKqzadGaam yzaaadbeaaaSqaaKqzadGaeq4TdG2cdaWgaaadbaqcLbmacaWGLbGa ey4kaSIaaGymaaadbeaaaaaakiaawUfacaGLDbaaaaa@72E2@

with

f ¯ = j=1 2 N j f ¯ j , g ¯ = j=1 2 N j g ¯ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOzay aaraGaeyypa0tcfa4aaabCaOqaaKqzGeGaamOtaKqbaoaaBaaaleaa jugWaiaadQgaaSqabaaabaqcLbmacaWGQbGaeyypa0JaaGymaaWcba qcLbmacaaIYaaajugibiabggHiLdGabmOzayaaraqcfa4aaSbaaSqa aKqzadGaamOAaaWcbeaajugibiaacYcacaaMe8UaaGzbVlqadEgaga qeaiabg2da9Kqbaoaaqahakeaajugibiaad6eajuaGdaWgaaWcbaqc LbmacaWGQbaaleqaaaqaaKqzadGaamOAaiabg2da9iaaigdaaSqaaK qzadGaaGOmaaqcLbsacqGHris5aiqadEgagaqeaKqbaoaaBaaaleaa jugWaiaadQgaaSqabaaaaa@6182@

The element matrix given by Eq. (39) is 6×6 order and it’s domain is sectioned into 1200 line elements. Thus, a 3603 × 3603 order matrix is obtained after assembly. The remaining system of equations is solved numerically after using the boundary conditions. It should be noted that if Eq. (25) and (26) for the nonlinear forms of Eqs. (35) and (36), the developed finite element equations is nonlinear. The nonlinear algebraic equations so obtained are modified by imposition of boundary conditions. The set of equations were solved with the aid of MATLAB and the convergence was conditioned to be:

| ϕ i p ϕ p1 | 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqahake aajuaGdaabdaGcbaqcLbsacqaHvpGzjuaGdaqhaaWcbaqcLbmacaWG PbaaleaajugWaiaadchaaaqcLbsacqGHsislcqaHvpGzjuaGdaahaa WcbeqaaKqzadGaamiCaiabgkHiTiaaigdaaaaakiaawEa7caGLiWoa aSqaaaqaaaqcLbsacqGHris5aiabgsMiJkaaigdacaaIWaqcfa4aaW baaSqabeaajugWaiabgkHiTiaaisdaaaaaaa@52EF@               (40)

Results and discussion

For the selected domain, numerical solutions are computed and grid-independence test is to obtain the results accurately. The necessary convergence of the results is achieved with the desired degree of accuracy. The results with the discussion are illustrated through the Figures 2‒19 to substantiate the applicability of the present analysis.

 Grid independency test

Table 1 and Table 2 show the grid refinement studies. The analysis are performed from 300 to 1500 elements in steps on 300 for arbitrary values of the thermophysical parameters of using M=2, ϕ=0.3, We=5, S=0.6, n=10, A*=3, E=3 and γ=60. The scale of 300 elements show a very little difference with the results obtained for the elements 600, 900, 1200 and 1500. A mesh sensitivity exercise was carried out to ensure grid independence. It is observed that for large values of number of elements greater than 300, there is no appreciable change in the results. The convergence of results is depicted in Table 1 & Table 2. Increasing the element were observed not to after the result obtained. Hence the grid size of 300-1500 elements is sufficient for optimum result. However, for parametric studies, 1200 linear elements is selected and used.

No. of elements

fll(0)

θl(0)

300

-0.800675

3.183500

600

-0.800673

3.183501

900

-0.800673

3.183502

1200

-0.800673

3.183502

1500

-0.800673

3.183502

Table 1 Convergence of finite element results for fll(0) and θl(0) for Cu-kerosene

No. of elements

fll(0)

θl(0)

300

-0.841595

-3.090644

600

-0.841593

-3.090643

900

-0.841593

-3.090642

1200

-0.841593

-3.090642

1500

-0.841593

-3.090642

Table 2 Convergence of finite element results for Ag-kerosene

Code validation

To verify the functionability and reliability of the present numerical code, result comparism with other numerical method using RK-4 with boundary value problem shooting method is adopted for the nonlinear equations (14a) and (14b) as presented by Kumar et al.74 Adequate and comprehensive reports are depicted in Table 3 and Table 4. The Tables show the comparison of the results of numerical methods (NM) and that of FEM. FEM as presented in the present study gives a splendid agreement with the results of the numerical method (NM) using Runge-Kutta coupled with Newton method as presented by Kumar et al.74 The high accuracy established by FEM validates and represents a bench mark in generating solution to similar nonlinear problems.

 

NM[74] 

FEM

NM[74]            

FEM

ø

We

S

n

A*

E

γ

f (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOzay aagaGaaiikaiaaicdacaGGPaaaaa@3985@

f (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOzay aagaGaaiikaiaaicdacaGGPaaaaa@3985@

θ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyOeI0 IafqiUdeNbauaacaGGOaGaaGimaiaacMcaaaa@3B3C@

θ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyOeI0 IafqiUdeNbauaacaGGOaGaaGimaiaacMcaaaa@3B3C@

1

-0.800673

-0.800673

3.183502

3.183502

2

-0.951051

-0.951050

3.137925

3.137923

3

-1.077238

-1.077238

3.097322

3.097320

0.1

-0.951051

-0.951050

3.137925

3.137923

0.2

-0.926769      

-0.926768      

2.900338

2.900336

0.3

-0.843920

-0.843921

2.683437

2.683437

1

-0.865479

-0.865478

3.155764

3.155763

3

-0.611938

-0.611938

3.218581

3.218581

5

-0.484571

-0.484571

3.252867 

3.252868 

0.2

-1.090240

-1.090238

3.094797

3.094797

0.4

-1.002314

-1.002312

3.125135

3.125137

0.6

-0.894041

-0.894040

3.149859

3.149861

1

-0.995049

-0.995047

3.129665

3.129667

5

-0.796797

-0.796798

3.171534

3.171534

10

-0.700307

-0.700307

3.195477

3.195475

1

-0.951051

-0.951050

3.002623

3.002622

2

-0.951051

-0.951050

2.833496

2.833495

3

-0.951051

-0.951050

2.664369

2.664368

1

-0.951051

-0.951050

2.534955

2.534956

2

-0.951051

-0.951050

1.864989

1.864989

3

-0.951051

-0.951050

1.195023

1.195024

π/6

-1.077238

-1.077237

3.097322

3.097321

π/4

-0.951051

-0.951050

3.137925

3.137926

 

 

 

 

 

 

 

π/3

 -0.800673      

 -0.800673      

 3.183502

 3.183501

Table 3 Physical parameter values of f (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOzay aagaGaaiikaiaaicdacaGGPaaaaa@3985@ and θ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyOeI0 IafqiUdeNbauaacaGGOaGaaGimaiaacMcaaaa@3B3C@ for Cu-Kerosene nanofluid

 

NM[74] 

FEM

NM[74]            

FEM

ø

We

S

n

A*

E

γ

f (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOzay aagaGaaiikaiaaicdacaGGPaaaaa@3985@

f (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOzay aagaGaaiikaiaaicdacaGGPaaaaa@3985@

θ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyOeI0 IafqiUdeNbauaacaGGOaGaaGimaiaacMcaaaa@3B3C@

θ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyOeI0 IafqiUdeNbauaacaGGOaGaaGimaiaacMcaaaa@3B3C@

1

-0.841593

-0.841595

-3.090642        

-3.090644        

2

-0.987394

-0.987396

-3.045404

-3.045403

3

-1.110328

-1.110327

-3.005010

-3.005011

0.1

-0.987394

-0.987392

-3.045404

-3.045402

0.2

-0.982125

-0.982127

-2.739717

-2.739718

0.3

-0.907088 

-0.907089 

-2.473053

-2.473053

1

-0.894212

-0.894211

-3.064925

-3.064924

3

-0.627126

-0.627125

-3.132014

-3.132012

5

-0.495591 

-0.495590 

-3.168031

-3.168030

0.2

-1.133904

-1.133903

-2.982102

-2.982104

0.4

-1.041797

-1.041795

-3.026448

-3.026447

0.6

-0.926340

-0.926341

-3.063119

-3.063118

1

-1.036497

-1.036498

-3.036220

-3.036221

5

-0.820912

-0.820911

-3.081939

-3.081940

10

-0.719234

-0.719235

-3.107549

-3.107547

1

-0.987394

-0.987392

-2.906601

-2.906603

2

-0.987394

-0.987392

-2.733098

-2.733096

3

-0.987394

-0.987392

-2.559594

-2.559592

1

-0.987395

-0.987394

-2.390294

-2.390293

2

-0.987395

-0.987394

-1.662395

-1.662396

3

-0.987395

-0.987394

-0.934497

-0.934497

π/6

-1.110328

-1.110327

-3.005010

-3.005011

π/4

-0.987394

-0.987395

-3.045404

-3.045406

 

 

 

 

 

 

 

π/3

-0.841593

-0.841591

-3.090642

-3.090641

Table 4 Physical parameter values of f (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOzay aagaGaaiikaiaaicdacaGGPaaaaa@3985@ and θ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyOeI0 IafqiUdeNbauaacaGGOaGaaGimaiaacMcaaaa@3B3C@ for Ag-Kerosene nanofluid

Figure 2A & Figure 2B depicts the effects of Casson parameter on velocity and temperature profiles Casson nanofluid, respectively. It is obvious from the figure that Casson the parameter has influence on axial velocity. From Figure 4A, the magnitude of velocity near the plate for Casson nanofluid parameter decreases for increasing value of the Casson parameter, while temperature increases for increase in Casson fluid parameter as shown in Figure 4B. Physically, increasing values of Casson parameter develop the viscous forces. These forces have a tendency to decline the thermal boundary layer. Figure 3A & Figure 3B depict the effect of thermal radiation parameter on the velocity and temperature profiles. From the figure, it is shown that an increase in radiation parameter causes the velocity of the fluid to increase, while the temperature profiles increases with increasing radiation parameter values. This is because, increases in thermal radiation causes the thermal boundary layer of fluid to increase. Generally, increasing radiation parameter values enhances the temperature near the boundary. Effects of other pertinent parameters such as magnetic field parameter, unsteadiness parameter, heat source/sink parameter, Eckert number, volume fraction of nanoparticles etc. on the flow and heat transfer of the thin film flow are investigated. Figure 4 & Figure 5 show the effects of magnetic field (Ha) on the velocity and temperature fields, respectively. It is established that as the Ha number increases, the velocity profile dominates and this enhance the temperature field. The presence of magnetic field slows fluid motion at boundary layer and hence retards the velocity field. It should be noted that the magnetic field tends to make the boundary layer thinner, thereby increasing the wall friction. It is seen through Figure 5 that the temperature profile θ(η) enhances increasing the Hartmann number Ha. Practically, the Lorentz force has a resistive nature which opposes motion of the fluid and as a result heat is produced which increases thermal boundary layer thickness and fluid temperature. The magnetic field tends to make the boundary layer thinner, thereby increasing the wall friction.

Figure 2A Effects of radiation parameter on the temperature profile of Ag-kerosene casson-carreau nanofluid.

Figure 2B Effects of radiation parameter on temperature profile of the Cu-kerosene casson-carreau nanofluid.

Figure 3A Effects of casson parameter on the velocity profile of Ag-kerosene casson-carreau nanofluid.

Figure 3B Effects of casson parameter on temperature profile of Cu-kerosene casson-carreau nanofluid.

Figure 4 Effect of magnetic field parameter (Hartmann number) on the fluid velocity distribution.

Figure 5 Effect of magnetic field parameter (Hartmann number) on the fluid temperature distribution.

The effects of unsteadiness parameter on velocity and temperature profiles are shown in Figure 6 & Figure 7, respectively. It is observed that increasing values of S increases the velocity field while decreases the temperature field. This is because as the rate of heat loss by the thin film increases as the value of unsteadiness parameter increases. Figure 8 & Figure 9 depict the effects of Weissenberg number (We) on the velocity and temperature profiles. It is shown from the figures that the velocity increases for increasing values of We and opposite trend was observed in temperature field. The observed trends in the velocity and temperature fields are due to the fact that a higher value of We will reduce the viscosity forces of the Carreau fluid. Increasing the Weissenberg number reduces the magnitude of the fluid velocity for shear thinning fluid while it arises for the shear thickening fluid. The influence of aligned angle on velocity and temperature profiles is presented in Figure 10 & Figure 11. From the figures, it is shown that as the value of aligned parameter increases, the velocity field increases while temperature field decreases.

Figure 6 Effect of unsteadiness parameter on the fluid velocity distribution.

Figure 7 Effect of unsteadiness parameter on the fluid temperature distribution.

Figure 8 Effect of Weissenberg number on the fluid velocity distribution.

Figure 9 Effect of Weissenberg number on the fluid temperature distribution.

Figure 10 Effect of aligned angle on the fluid velocity distribution.

Figure 11 Effect of aligned angle on the fluid temperature distribution.

Figure 12 & Figure 13 demonstrated the effect of power law index on velocity and temperature fields. As the power index is increased, it was observed that the velocity profile increases while the temperature profile decreases. This is because, increasing value of the power law index, thickens the liquid film associated with an increase of the thermal boundary layer. An increase in the momentum boundary layer thickness and a decrease in thermal boundary layer thickness is observed for the increasing values of the power law index including shear thinning to shear thickening fluids. Also, it should be pointed out that an increase in Weissenberg number correspond a decrease in the local skin friction coefficient and the magnitude of the local Nusselt number s decreases when the Weissenberg number increases. The effects of nanoparticles volume fraction on the velocity and temperature profiles are depicted in Figure 14 & Figure 15, respectively. The result shows that as the solid volume fraction of the film increases both the velocity and temperature field increases. This is because as the nanoparticle volume increases, more collision occurs between nanoparticles and particles with the boundary surface of the plate and consequently the resulting friction enhances the thermal conductivity of the flow and gives rise to increase the temperature within the fluid near the boundary region.

Figure 12 Effect of power-law index on the fluid velocity distribution.

Figure 13 Effect of power-law index on the fluid temperature distribution.

Figure 14 Effect of nanoparticle volume fractions on the fluid velocity distribution.

Figure 15 Effect of nanoparticle volume fractions on the fluid temperature distribution.

Figure 16 & Figure 17 depict the influence of non-uniform heat source/sink parameter on the temperature field. It is revealed that increasing the non-uniform heat source/sink parameter enhances the temperature fields. It is observed in the analysis that the temperature and thermal boundary layer thickness is depressed by increasing the Prandtl number Pr. The effect of Eckert number on temperature profile is shown in Figure 18. It was established that as the values of Eckert number increases, the values of the temperature distributions in the fluid increases. This is because as Ec increases, heat energy is saved in the liquid due to the frictional heating. The effect of nanoparticle volume fraction ϕ on the film thickness of the nanofluid is shown in Figure 19. It is evident from the figure that the film thickness is enhanced as the values of ϕ is increased. It can be inferred from Eq. (12) that if nanoparticle volume fraction ϕ is increased, the nanofluid viscosity will increased as there exist a direct relationship or proportion between the two parameters. As a result, the increasing viscosity resists the fluid motion along the stretching direction leading to the slowdown of the film thinning process.96

Figure 16 Effect of non-uniform heat source/sink parameter (A*) on the fluid temperature distribution.

Figure 17 Effect of non-uniform heat source/sink parameter (B*) on the fluid temperature distribution.

Figure 18 Effect of Eckert number on the fluid temperature distribution.

Figure 19 Variation of film thickness h with time t for different values of ϕ.

Conclusion

In this paper, combined influences of thermal radiation, inclined magnetic field and temperature-dependent internal heat generation on unsteady two-dimensional flow and heat transfer analysis of dissipative Casson-Carreau nanofluid over a stretching sheet embedded in a porous medium have been investigated examined. Using kerosene as the base fluid embedded with the silver (Ag) and copper (Cu) nanoparticles, the effects of other pertinent parameters on flow and heat transfer characteristics of the nanofluids are investigated and discussed. From the results, it was established temperature field and the thermal boundary layers of Ag-kerosene nanofluid are highly effective when compared with the Cu-kerosene nanofluid. Thermal and momentum boundary layers of Cu-kerosene and Ag-kerosene nanofluids are not uniform. Heat transfer rate is enhanced by increasing in power-law index and unsteadiness parameter. Skin friction coefficient and local Nusselt number can be reduced by magnetic field parameter and they can be enhanced by increasing in aligned angle. Friction factor is depreciated and the rate of heat transfer increases by increasing the Weissenberg number. This analysis can help in expanding the understanding of the thermo-fluidic behaviour of the Carreau nanofluid over a stretching sheet. Also, the present study has numerous applications involving heat transfer and other applications such as chemical sensors, biological applications, glass, solar energy transformation, electronics, petrochemical products, light-weight, heat-insulating and refractory fiberboard and metallic ceramics etc

Acknowledgements

None.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Nomenclature

a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyyay aacaaaaa@3769@ Time-dependent rate

A* Non-uniform heat generation/absorption parameter

B* Non-uniform heat generation/absorption parameter

Bo Electromagnetic induction

 Ec Eckert number

M Hartmann number/magnetic field parameter

 n Power law index

Pr Prandtl number

p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmiCay aaraaaaa@3787@  Pressure

R Radiation number

Re Permeation Reynolds number

S Unsteadiness parameter

t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaa aa@3773@  Time

u ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyDay aaraaaaa@378C@ Velocity component in x-direction

v ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmODay aaraaaaa@378D@ Velocity component in y-direction

U w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaK qbaoaaBaaaleaajugWaiaadEhaaSqabaaaaa@3A43@  Fluid inflow velocity at the wall

We Weissenberg number

x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmiEay aaraaaaa@378F@ Coordinate axis parallel to the channel walls

y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyEay aaraaaaa@3790@  Coordinate axis perpendicular to the channel walls

Symbol

ρ nf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyWdi xcfa4aaSbaaSqaaKqzadGaamOBaiaadAgaaSqabaaaaa@3C0B@

Density of the nanofluid

ρ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyWdi xcfa4aaSbaaSqaaKqzadGaamOzaaWcbeaaaaa@3B18@  Density of the fluid

μ nf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiVd0 wcfa4aaSbaaSqaaKqzadGaamOBaiaadAgaaSqabaaaaa@3C01@ Dynamic viscosity of the nanofluid

ρ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyWdi xcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaaaaa@3B25@ Density of the nanoparticles

ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqy1dy gaaa@3842@  Fraction of nanoparticles in the nanofluid

σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4Wdm haaa@383D@ Electrical conductivity
Γ Time constant
γ Aligned angle

References

  1. Hayat T, Ullah I, Ahmad B, et al. Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction. Results in Physics. 2017;7:715–722.
  2. Andersson HI, Aarseth JB, Braudand N, et al. Flow of a Power-Law Fluid on an Unsteady Stretching Surface. J Non-Newtonian Fluid Mech. 1996;62(1):1–8.
  3. Anderson HI, Bech KH, Dandapat BS. Magneto Hydrodynamics Flow of a Power-Law Fluid Over A Stretching Sheet. Int J Non- Linear Mech. 1992;27(6):929–936.
  4. Chen CH. Heat Transfer in a Power-Law Fluid Film over an Unsteady Stretching Sheet. Heat Mass Transf. 2003;39(9):791–796.
  5. Dandapat BS, Santra B, Andersson HI. Thermo Capillarity in a Liquid Film on an Unsteady Stretching Surface. Int J Heat and Mass transfer. 2003;46(16):3009–3015.
  6. Dandapat BS, Santra B, Vejravelu K. The Effects of Variable Fluid Properties and the Thermo Capillarity on The Flow of a Thin Film On Stretching Sheet. Int J Heat and Mass transfer. 2007;50(6):991–996.
  7. Wang C. Analytic Solutions for a Liquid Film on an Unsteady Stretching Surface. Heat Mass Transf. 2006;42(8):759–766.
  8. Chen CH. Effect of Viscous Dissipation on Heat Transfer in a Non-Newtonian Liquid Film over an Unsteady Stretching Sheet. J Nonnewton Fluid Mech. 2006;135(3):128–135.
  9. Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM Solutions of Thin Film Flows of Non-Newtonian Fluids on a Moving Belt. Nonlinear Dyn. 2007;50(2):27–35.
  10. Dandapat BS, Maity S, Kitamura A. Liquid Film Flow Due to an Unsteady Stretching Sheet. Int J Non Linear Mech. 2008;43(9):880–886.
  11. Abbasbandy S, Yurusoy M, Pakdemirli M. The Analysis Approach of Boundary Layer Equation of Power-Law Fluids of Second Grade. Zzeitschrift fur Naturforschung A. 2008;63(9):564–570.
  12. Santra B, Dandapat BS. Unsteady Thin Film Flow over A Heated Stretching Sheet. Int J Heat Mass transfer. 2008;52:1965–1970.
  13. Sajid M, Ali N, Hayat T. On Exact Solutions for Thin Film Flows of A Micropolar Fluid. Commun Nonlinear Sci Numer Simul. 2009;14(2):451–461.
  14. Noor NFM, Hashim I. Thermocapillarity and Magnetic Field Effects in a Thin Liquid Film on an Unsteady Stretching Surface. Int J Heat and mass Transfer. 2010;53(10):2044–2051.
  15. Dandapat BS, Chakraborty S. Effects of Variable Fluid Properties on Unsteady Thin-Film Flow over a Non-Linear Stretching Sheet. Int J Heat Mass Transf. 2010;(53):5757–5763.
  16. Dandapat BS, Singh SK. Thin Film Flow over a Heated Nonlinear Stretching Sheet in Presence of Uniform Transverse Magnetic Field. Int Commun Heat Mass Transf. 2011;38(3):324–328.
  17. Abdel-Rahman GM. Effect of Magnetohydrodynamic on Thin Films of Unsteady Micropolar Fluid through A Porous Medium. J Mod Phys. 2011;2(11):1290–1304.
  18. Khan Y, Wu Q, Faraz N, et al. The Effects of Variable Viscosity and Thermal Conductivity on a Thin Film Flow over a Shrinking/Stretching Sheet. Comput Math with Appl. 2011;61(11):3391–3399.
  19. Liu IC, Megahed A, Wang HH. Heat Transfer in a Liquid Film due to an Unsteady Stretching Surface with Variable Heat Flux. J Appl Mech. 2013;80(4):1–7.
  20. Vajravelu K, Prasad KV. Unsteady Flow and Heat Transfer in a Thin Film of Ostwald-De Waele Liquid Over A Stretching Surface. Commun Nonlinear Sci Numer Simul. 2012;17(11):4163–4173.
  21. Liu IC, Megahed AM. Homotopy Perturbation Method for Thin Film Flow and Heat Transfer over an Unsteady Stretching Sheet with Internal Heating and Variable Heat Flux. J Appl Math; 2012.
  22. Aziz RC, Hashimand I, Abbasbandy S. Effects of Thermocapillarity and Thermal Radiation on Flow and Heat Transfer In A Thin Liquid Film on an Unsteady Stretching Sheet. Math Probl Eng; 2012.
  23. Khader MM, Megahed AM. Numerical Simulation Using The Finite Difference Method for the Flow and Heat Transfer in a Thin Liquid Film over an Unsteady Stretching Sheet in a Saturated Porous Medium in the Presence of Thermal Radiation. J King Saud Univ Eng Sci. 2013;25(1):29–34.
  24. Vajravelu K, Hadjinicolaou A. Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream. Int J Eng Sci.1997;35(13):1237–1244.
  25. Pop I, Na TY. A note on MHD flow over a stretching permeable surface. Mech Res Commun. 1998;25(3):263–269.
  26. Xu H, Liao SJ, Pop I. Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. Eur J Mech B-Fluids. 2007;26(1):15–27.
  27. Ishak A, Nazar R, Pop I. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transfer. 2008;44:921.
  28. Ishak A, Jafar K, Nazar R, et al. MHD stagnation point flow towards a stretching sheet. Physica A: Statistical Mechanics and its Applications. 2009;388(17):3377–3383.
  29. Abo Eldahab Emad M. Radiation effect on heat transfer in electrically conducting fluid at a stretching surface with uniform free stream. J Phys D Appl Phys. 2000;33(24):3180–3185.
  30. Gnaneswara Reddy M. Influence of magnetohydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet. J Sci Res. 2014;6(2):257–272.
  31. Abo-Eldahab EM, Elgendy MS. Radiation effect on convective heat transfer in an electrically conducting fluid at a stretching surface with variable viscosity and uniform free stream. Physica Scripta. 2000;62(4):321–325.
  32. Gnaneswara Reddy M. Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating. Eur Phys J Plus. 2014;129:41.
  33. Gnaneswara Reddy M. Effects of thermophoresis, viscous dissipation and joule heating on steady MHD flow over an inclined radiative isothermal permeable surface with variable thermal conductivity. J Appl Fluid Mech. 2014;7(1):51–61.
  34. Raptis A, Perdikis C. Viscoelastic flow by the presence of radiation. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM). 1998;78(4):277–279.
  35. Seddeek MA. Effects of radiation and variable viscosity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow. Int J Heat Mass Transfer. 2002;45(4):931–935.
  36. Mabood F, Imtiaz M, Alsaedi A, et al. Unsteady convective boundary layer flow of Maxwell fluid with nonlinear thermal radiation: A Numerical study. Int J Nonlinear Sci Num Simul. 2016;17(5):221–229.
  37. Hayat T, Muhammad T, Alsaedi A, et al. Magnetohydrodynamic threedimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Magn Magn Mater. 2015;385:222–229.
  38. Farooq M, Khan MI, Waqas M, et al. MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J Mol Liq. 2016;221:1097–1103.
  39. Shehzad SA, Abdullah Z, Alsaedi A, et al. Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field. J Magn Magn Mater. 2016;397:108–114.
  40. Lin Y, Zheng L, Zhang X, et al. MHD Pseudo-Plastic Nanofluid Unsteady Flow And Heat Transfer In A Finite Thin Film Over Stretching Surface With Internal Heat Generation. Int J Heat Mass Transf. 2015;84:903–911.
  41. Sandeep N, Sulochana C, Animasaun IL. Stagnation Point Flow of a Jeffrey Nano Fluid over a Stretching Surface with Induced Magnetic Field and Chemical Reaction. Int J Eng Res Africa. 2016;20:93–111.
  42. Tawade J, Abel MS, Metri PS, et al. Thin Film Flow and Heat Transfer Over an Unsteady Stretching Sheet with Thermal Radiation, Internal Heating In Presence of External Magnetic Field. Int J Adv Appl Math And Mech. 2016;3(4):29–40.
  43. Raju CSK, Sandeep N. Unsteady three-dimensional flow of Casson-Carreau fluids past a stretching surface. Alex Eng J. 2016;55(2):1115–1126.
  44. Raju CSK, Sandeep N. Falkner-Skan flow of a magnetic-Carreau fluid past a wedge in the presence of cross diffusion effects. Eur Phys J Plus. 2016;131:267.
  45. Raju CSK, Sandeep N, Sugunamma V. Dual Solutions For Three-Dimensional MHD Flow Of A Nanofluid Over A Nonlinearly Permeable Stretching Sheet. Alexandria Engineering Journal. 2016;55(1):151–162.
  46. Sandeep N, Koriko OK, Animasaun IL. Modified Kinematic Viscosity Model for 3D-Casson Fluid Flow within Boundary Layer Formed On A Surface At Absolute Zero. Journal of Molecular Liquids. 2016;221:1197–1206.
  47. Babu MJ, Sandeep N, Raju CSK. Heat and Mass Transfer in MHD Eyring-Powell Nanofluid Flow Due To Cone in Porous Medium. International Journal of Engineering Research in Africa. 2016;19:57–74.
  48. Animasun IL, Raju CSK, Sandeep N. Unequal Diffusivities Case of Homogeneous-Heterogeneous Reactions within Viscoelastic Fluid Flow in the Presence of Induced Magnetic Field and Nonlinear Thermal Radiation. Alexandria Engineering Journal. 2016;55(2):1595–1606.
  49. Makinde OD, Animasaun IL. Thermophoresis and Brownian Motion Effect on MHD Bioconvection of Nanofluid with Nonlinear Thermal Radiation and Quartic Chemical Reaction Past an Upper Horizontal Surface of A Paraboloid of Revolution. J Mol Liquids. 2016;221:733–743.
  50. Makinde OD, Animasaun IL. Bioconvection in MHD Nanofluid Flow with Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction Past an Upper Surface of A Paraboloid of Revolution. Int J Ther Sci. 2016;109:159–171.
  51. Sandeep N. Effect of Aligned Magnetic Field on Liquid Thin Film Flow of Magnetic-Nanofluid Embedded With Graphene Nanoparticles. Advanced Powder Technology. 2017;28(3):865–875.
  52. Reddy JVR, Sugunamma V, Sandeep N. Effect Of Frictional Heating on Radiative Ferrofluid Flow over a Slendering Stretching Sheet With Aligned Magnetic Field. Europen Physical Journal Plus. 2017;132:7.
  53. Ali ME, Sandeep N. Cattaneo-Christov Model for Radiative Heat Transfer of Magnetohydrodynamic Casson-Ferrofluid: A Numerical Study. Results in Physics. 2017;7:21–30.
  54. Maity S, Ghatani Y, Dandapat BS. Thermocapillary Flow of a Thin Nanoliquid Film Over an Unsteady Stretching Sheet. Journal of Heat Transfer. 2016;138(4):042401.
  55. Hayat T, Khan MI, Farooq M, et al. Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. International Journal of Heat and Mass Transfer. 2016;99:702–710.
  56. Hayat T, Khan MI, Farooq M, et al. Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Journal of Molecular Liquids. 2016;220:49–55.
  57. Khan MI, Waqas M, Hayat T, et al. A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J Colloid Interface Sci. 2017;498:85–90.
  58. Khan MI, Hayat T, Alsaedi A. Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid. International Communications in Heat and Mass Transfer. 2018;91:216–224.
  59. Hayat T, Ijaz Khan M, Qayyum S, et al. New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials. Physics Letters A. 2018;382(11):749–760.
  60. Hayat T, Nawaz S, Alsaedi A. Entropy generation in peristalsis with different shapes of nanomaterial. Journal of Molecular Liquids. 2017;248:447–458.
  61. Hayat T, Khan MI, Khan TA, et al. Entropy generation in Darcy-Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. Journal of Molecular Liquids. 2018;265:629–638.
  62. Hayat T, Waleed M, Khan A, et al. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate. Physica B: Condensed Matter. 2018;538:95–103.
  63. Khan MI, Qayyum S, Hayat T, et al. Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial. Journal of Molecular Liquids. 2018;259:274–283.
  64. Khan MI, Qayyum S, Hayat T, et al. Entropy generation in flow with silver and copper nanoparticles. Colloids and Surfaces A. 2018;539:335–346.
  65. Khan MI, Qayyum S, Hayat T, et al. Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating. Physics of Fluids. 2018;30(1):017101.
  66. Waleed M, Khan A, Khan MI, et al. Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation. Physica B: Condensed Matter. 2018;534:113–119.
  67. Khan MI, Ullah S, Hayat T, et al. Entropy generation minimization (EGM) for convection nanomaterial flow with nonlinear radiative heat flux. Journal of Molecular Liquids. 2018;260:279–291.
  68. Khan NB, Ibrahima Z, Khan MI, et al. VIV study of an elastically mounted cylinder having low mass-damping ratio using RANS model. International Journal of Heat and Mass Transfer. 2018;121:309–314.
  69. Hayat T, Ijaz Khan M, Qayyum S, et al. Modern developments about statistical declaration and probable error for skin friction and Nusselt number with copper and silver nanoparticles. Chinese Journal of Physics. 2017;55(6):2501–2513.
  70. Khan MI, Waqas M, Hayat T, et al. Numerical simulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions in convective flow by a variable thicked surface. Journal of Molecular Liquids. 2017;246:259–267.
  71. Hayat T, Khan M, Khan MI, et al. Electromagneto squeezing rotational flow of Carbon (C)-Water (H2O) kerosene oil nanofluid past a Riga plate: A numerical study. PLOS ONE. 2017;12(8):e0180976.
  72. Khan MI, Qayyuma S, Hayata T, et al. Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Physics Letters A. 2018;31:2017–2026.
  73. Carreau PJ. Rheological equations from molecular network theories. Trans Soc Rheol. 1972;16(1):99–127.
  74. Kumar MS, Sandeep N, Kumar BR. Free convection Heat transfer of MHD dissipative Carreau Nanofluid Flow Over a Stretching Sheet. Frontiers in Heat and Mass Transfer. 2017;13:8.
  75. Hayat T, Saleem N, Asghar S, et al. Influence of induced magnetic field and heat transfer on peristaltic transport of a Carreau fluid. Commun Nonlinear Sci Numer Simul. 2011;16(9):3559–3577.
  76. Olajuwon BI. Convective heat and mass transfer in a hydromagnetic Carreau fluid past a vertical porous plated in presence of thermal radiation and thermal diffusion. Therm Sci. 2011;15(Suppl 2):241–252.
  77. Hayat T, Asad S, Mustafa M, et al. Boundary layer flow of Carreau fluid over a convectively heated stretching sheet. Appl Math Comput. 2014;246:12–22.
  78. Akbar NS, Nadeem S, Haq Rizwan UI, et al. MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: Dual solutions. Ain Shams Eng J. 2014;5(4):1233–1239.
  79. Akbar NS. Blood flow of Carreau fluid in a tapered artery with mixed convection. Int J Biomath. 2014;7(6):1450068.
  80. MekheimerKh S, Salama F, El Kot MA. The unsteady flow of a carreau fluid through inclined catheterized arteries haveing a balloon with Time-Variant Overlapping Stenosis. Walailak Journal of Science and Technology (WJST). 2015;12(10):863–883.
  81. Elmaboud YA, Mekheimer KS, Mohamed MS. Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis. J Hydrodyn Ser B. 2015;27(6):969–979.
  82. Hashim, Khan M. A revised model to analyze the heat and mass transfer mechanisms in the flow of Carreaunanofluids. Int J Heat Mass Transfer. 2016;103:291–297.
  83. Machireddy GR, Naramgari S. Heat and mass transfer in radiative MHD Carreau fluid with cross diffusion. Ain Shams Eng J; 2016.
  84. Sulochana C, Ashwinkumar GP, Sandeep N. Transpiration effect on stagnation point flow of a Carreau nanofluid in the presence of thermophoresis and Brownian motion. Alex Eng J. 2016;55(2):1151–1157.
  85. Casson N. Rheology of Dispersed System. Oxford, UK: Pergamon Press; 1959.
  86. Casson N. A flow equation for the pigment oil suspension of the printing ink type. In: Rheology of Disperse Systems, New York: Pergamon; 1959. 84–102p.
  87. Dash RK, Mehta KN, Jayaraman G. Casson fluid flow in a pipe filled with a homogeneous porous medium. International Journal of Engineering Science. 1996;34(10):1145–1156.
  88. Andersson HI, Dandapat BS. Flow of a power-law fluid over a stretching sheet. International Journal of Non-Linear Mechanics. 1992;27(6):929–936.
  89. Sajid M, Ahmad I, Hayat T, et al. Unsteady flow and heat transfer of a second grade fluid over a stretching sheet. Communications in Nonlinear Science and Numerical Simulation. 2009;14(1):96–108.
  90. Eldabe NTM, Salwa MGE. Heat transfer of mhd non-Newtonian Casson fluid flow between two rotating cylinder. Journal of the Physical Society of Japan. 1995;64:41–64.
  91. Nadeem S, Haq RL, Akbar NS, et al. MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Engineering Journal. 2013;52(4):577–582.
  92. Al Kalbani KS, Alam MS, Rahman MM. Finite Element Analysis of Unsteady Natural Convective Heat Transfer and Fluid Flow of Nanofluids inside a Tilted Square Enclosure in the Presence of Oriented Magnetic Field. Columbia International Publishing American Journal of Heat and Mass Transfer. 2016;3(3):186–224.
  93. Swapna G, Lokendra Kumar, Puneet Rana, et al. Finite element study of radiative double-diffusive mixed convection magneto-micropolar flow in a porous medium with chemical reaction and convective condition. Alexandria Engineering Journal. 2018;57(1):107–120.
  94. Abel MS, Mahesha N, Tawade J. Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field. Applied Mathematical Modelling. 2009;33(8):3430–3441.
  95. Akbar NS, Nadeem S, Haq RUI, et al. MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: dual solutions. Ain Shams Eng J. 2014;5(4):1233–1239.
  96. Maity S, Ghatani Y, Dandapat BS. Thermocapillary Flow of a Thin Nanoliquid Film Over an Unsteady Stretching Sheet. Journal of Heat Transfer. 2016;138(4):042401.
Creative Commons Attribution License

©2018 Sobamowo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.