Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Technical Paper Volume 1 Issue 3

Effects of elastic foundations on flexural response of shear deformable laminated plates subjected to transverse uniform lateral pressure uncertain system environment and hygrothermomechanical loading

Rajesh Kumar

School of Mechanical Engineering, Jimma University, Ethiopia

Correspondence: Rajesh Kumar, School of Mechanical Engineering, JIT, Jimma University, P.O. Box-378, Jimma, Ethiopia, Tel 251909462675

Received: May 11, 2017 | Published: October 9, 2017

Citation: Kumar R. Effects of elastic foundations on flexural response of shear deformable laminated plates subjected to transverse uniform lateral pressure uncertain system environment and hygrothermomechanical loading. Aeron Aero Open Access J. 2017;1(3):84-101. DOI: 10.15406/aaoaj.2017.01.00012

Download PDF

Abstract

In this paper, the effect of elastic foundations on flexural response of shear deformable laminated plates subjected to transverse uniform lateral pressure under uncertain system environment and hygrothermomechanical loading using MATLAB [R2010a] code for micromechanical model approach is investigated. A C0 finite element method in conjunction with the first order perturbation technique extended by authors for plate subjected to lateral loading is employed to find out the second order response statistics (expected mean and coefficient of variations) of the transverse deflection of the plate. Plate material properties and elastic foundation parameters are taken as basic random variables. The plate is analysed for plate thickness ratios, aspect ratios, boundary conditions, lamina lay-up, fiber volume fractions, load deflections and environmental conditions. The performance of the stochastic laminated composite model is demonstrated through comparison of mean transverse central deflection by comparison with the results available in literatures and standard deviation results with independent Monte Carlo simulation before data generation.

Keywords: stochastic bending response, finite element method, uncertain system properties, elastic foundations

Nomenclature

A i j ,  B i j , etc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgealmaaBaaajeaibaqcLbmacaWGPbaajeaibeaalmaa BaaajeaibaqcLbmacaWGQbaajeaibeaajugibiaacYcacaqGGaGaam OqaKqbaoaaBaaajeaibaqcLbmacaWGPbaajeaibeaajuaGdaWgaaqc basaaKqzadGaamOAaaWcbeaajugibiaacYcacaqGGaGaamyzaiaads hacaWGJbaaaa@4A1A@

Laminate stiffnesses

a, b

Plate length and breadth

h

Thickness of the plate

E f ,  E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaajugi biaacYcacaqGGaGaamyraKqbaoaaBaaajeaibaqcLbmacaWGTbaale qaaaaa@401C@

Elastic moduli of fiber and matrix, respectively.

G f ,  G m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEeajuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaajugi biaacYcacaqGGaGaae4raKqbaoaaBaaajeaibaqcLbmacaWGTbaale qaaaaa@401E@

Shear moduli of fiber and matrix, respectively.

v f ,  v m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bWaaSbaaKqaGeaajugWaiaadAgaaSqabaqcLbsacaGG SaGaaeiiaiaabAhajuaGdaWgaaqcbasaaKqzadGaamyBaaWcbeaaaa a@3FED@

Poisson’s ratio of fiber and matrix, respectively.

V f ,  V m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGdaWgaaqcbasaaKqzadGaamOzaaWcbeaajugi biaacYcacaqGGaGaaeOvaKqbaoaaBaaajeaibaqcLbmacaWGTbaale qaaaaa@403C@

Volume fraction of fiber and matrix, respectively.

αf, αm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHLqzadGaamOzaKqzGeGaaiilaiaabccacqaHXoqy jugWaiaad2gaaaa@3FFE@

Coefficient of thermal expansion of fiber and matrix, respectively.

bi

Basic random material properties

E11, E22

Longitudinal and Transverse elastic moduli

G12, G13, G23

Shear moduli

Kl,

Linear bending stiffness matrix

Kg

Thermal geometric stiffness matrix

D

Elastic stiffness matrices

M αβ , m αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2 eakmaaBaaajeaibaqcLbmacqaHXoqycqaHYoGyaSqabaqcLbsacaGG SaGaamyBaOWaaSbaaKqaGeaajugWaiabeg7aHjabek7aIbWcbeaaaa a@432A@

Mass and inertia matrices

ne, n

Number of elements, number of layers in the laminated plate

Nx, Ny, Nxy

In-plane thermal buckling loads

nn

Number of nodes per element

Ni

Shape function of ith node

C ¯ p ijkl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqaaK qzGeGaam4qaaaakmaaBaaaleaakmaaCaaameqabaGcdaahaaadbeqa aOWaaWbaaWqabKGaafaajugWaiaadchaaaaaaaaajugibiaadMgaca WGQbGaam4AaiaadYgaaSqabaaaaa@3F08@

Reduced elastic material constants

f,  { f } ( e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgacaGGSaGaaeiiaKqba+aadaGadaGcbaqcLbsapeGa amOzaaGcpaGaay5Eaiaaw2haaKqbaoaaCaaaleqajeaibaWcdaqada qcbasaaKqzadWdbiaadwgaaKqaG8aacaGLOaGaayzkaaaaaaaa@4262@

Vector of unknown displacements, displacement vector of eth element

u, v, w

Displacements of a point on the mid plane of plate

u ¯ 1 , u ¯ 2 , u ¯ 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYlf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyDay aaraqcfa4aaSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqzGeGaaiil aiaaykW7ceWG1bGbaebajuaGdaWgaaqcfasaaKqzadGaaGOmaaqcfa yabaqcLbsacaGGSaGaaGPaVlqadwhagaqeaKqbaoaaBaaajuaibaqc LbmacaaIZaaajuaGbeaajugibiaacYcaaaa@49FF@

Displacement of a point (x, y, z)

σ ¯ ij , ε ¯ i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqcfa yaaKqzGeGaeq4WdmhaaOWaaSbaaKqbGeaajugWaiaadMgacaWGQbaa juaGbeaajugibiaacYcakmaanaaajuaGbaqcLbsacqaH1oqzaaGcda WgaaqcfasaaKqzadGaamyAaaqcfayabaGcdaWgaaqcfasaaKqzadGa amOAaaqcfayabaaaaa@4704@

Stress vector, Strain vector

ψy, ψx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeI8a5LqzadGaamyEaKqzGeGaaiilaiaabccacqaHipqE jugWaiaadIhaaaa@407A@

Rotations of normal to mid plane about the x and y axis respectively

θx, θy, θk

Two slopes and angle of fiber orientation wrt x-axis for kth layer

x, y, z

Cartesian coordinates

ρ, λ, Var( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaae qabaaakeaajugibabaaaaaaaaapeGaeqyWdiNaaiilaiaabccacqaH 7oaBcaGGSaGaaeiiaiaadAfacaWGHbGaamOCaKqba+aadaqadaGcba qcLbsapeGaaiOlaaGcpaGaayjkaiaawMcaaaaaaaa@43B4@

Mass density, eigenvalue, variance

ω,ϖ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaai ilaiabeA9a2baa@3A4C@

Fundamental frequency and its dimensionless form

RVs

DT, DC,

Difference in temperatures and moistures

α 1 ,  α 2 ,  β 1 ,  β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHLqbaoaaBaaajiaibaqcLbmacaaIXaaameqaaKqz GeGaaiilaiaabccacqaHXoqyjuaGdaWgaaqccasaaKqzadGaaGOmaa adbeaajugibiaacYcacaGGGcGaeqOSdiwcfa4aaSbaaKGaGeaajugW aiaaigdaaWqabaqcLbsacaGGSaGaaiiOaiabek7aILqbaoaaBaaaji aibaqcLbmacaaIYaaameqaaaaa@4F0B@

Thermal expansion and hygroscopic coefficients along x and y direction, respectively.

Introduction

Laminated composite plates are often subjected to combination of lateral pressure and hygrothermomechanical loading. The plates are more advantageous over plates made of conventional materials and they are more hygrothermally and mechanically stable than plates made of conventional metals. The capability to predict the structural response and enable a better understanding and characterization of the actual behavior of laminated composite plates resting on elastic foundations in terms of structural response when subjected to combined load is of prime interest for structural analysis. Composite structures have inherent dispersion in system properties due to lack of strict quality control and the characteristics of the large parameters involved with the manufacturing and fabrication process. The variation in the system properties of the composite materials necessitates the inclusion of randomness of system properties in the analysis; otherwise predicted response may differ significantly rendering the structures unsafe. For reliable and safe design, especially for sensitive engineering applications in thermal environments. Accurate prediction of system behavior of composite structures in the presence of uncertainties in the system properties favors a probabilistic analysis rather than analytical approach by modeling their properties as basic random variables.

Stochastic micromechanical modeling investigation yields more accurate system behavior and proved to be superior technique for design compared to stochastic macromechanical modeling investigations. Material properties, geometric properties, foundation stiffness parameters, fiber orientations, lamina lay-up sequence design and curing are of prime importance and these parameters must be considered in accurate prediction of uncertain system behavior of composites. Thus there is importance of uncertainties accountability in the responses. Laminated composite plates are widely used in aerospace, submarines, automotive industries, nuclear structures and in various structural components such as beams, thin and thick plates, shells, panels etc.

A considerable literature is available on the static response of geometrically linear and nonlinear composite laminated plates under various thermal, hygrothermal and mechanical loads or combination of both. Notably among them are Shen,1 Huang & Tauchert,2 Sen,3 Lin et al.4 Shen.5 Whitney et al. 6 studied the effect of environment on the elastic response of layered composite elates. Adam et al.7 Lee et al.8 Sai Ram and Sinha.9 Patel et al.10 Shen11,12 Non-linear bending of shear deformable laminated plates under lateral pressure and thermal loading and resting on elastic foundations and hygrothermal effects on the nonlinear bending of shear deformable laminated plates.
Salim et al.13 examined the effect of randomness in material properties (like elastic modulus Poisson’s ratios etc.,) on the response statistics of a composite plate subjected to static loading using classical plate theory (CLT) in conjunction with first order perturbation techniques (FOPT).14-17

A little literature is available on stochastic analysis for macromechanocal and micromechanical model investigation.18-30 Keeping in mind the above aspect, to the best of the authors’ knowledge, there is no literature covering effects of elastic foundations on flexural response of shear deformable laminated plates subjected to transverse uniform lateral pressure under uncertain system environment and hygrothermomechanical loading,

However, no work is available dealing with effects of elastic foundations on flexural response of shear deformable laminated plates subjected to transverse uniform lateral pressure uncertain system environment and hygrothermomechanical loading to the best of author’s knowledge.

In the present investigation, effects of elastic foundations on flexural response of shear deformable laminated plates subjected to transverse uniform lateral pressure uncertain system environment and hygrothermomechanical loading in the presence of small random variation in the system properties, the transverse shear strain using higher order shear deformation theory (HSDT) with von-Karman sense is studied by using stochastic analysis for micromechanical model. The C0 finite element method is employed to determine the second order statistics (mean and standard deviation) of flexural response parameter of laminated composite plates with uniform constant temperature (U.T). The numerical illustrations are concerned with flexural response behavior under different sets of thermo-material properties, stacking sequence, fiber volume fractions, plate thickness ratios, aspect ratios, different boundary conditions, and foundation stiffness, coefficient of hygroscopic expansions and coefficients of thermal expansions. It is observed that small amount of random variations in above mentioned parameters of the composite plate significantly affect the flexural response especially at micromechanical investigation.

Mathematical formulation

Consider geometry of laminated composite rectangular plate of length a, width b, and thickness h, which consists of N-plies located in three dimensional Cartesian coordinate system (X, Y, Z) where X- and -Y plane passes through the middle of the plate thickness with its origin placed at the corner of the plate as shown in Figure 1. Let ( u ¯ , v ¯ , w ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaiKI8Vvc9q8qqai=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGabmyDay aaraGaaiilaiaaysW7ceWG2bGbaebacaGGSaGaaGjbVlqadEhagaqe aaGaayjkaiaawMcaaaaa@3F8C@  be the displacements parallel to the (X, Y, Z) axes, respectively. The thickness coordinate Z of the top and bottom surfaces of any kth layer are denoted by Z(k-1) and Z(k) respectively. The fiber of the kth layer is oriented with fiber angle θk to the X- axis. The plate is assumed to be subjected to uniformly distributed transverse static load is defined as q( x,y )= q o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCam aabmaabaGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyypa0Ja amyCamaaBaaajuaibaGaam4Baaqcfayabaaaaa@3F7C@

Figure 1 Geometry of Laminated Composite Plate

The plate is assumed to attach to the foundation so that no separation takes place in the process of deformation.1,2 The interaction between the plate and the supporting foundation follows the two- parameter model (Pasternak-type) as:

P= K 1 w K 2 2 w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuai abg2da9iaadUeadaWgaaqcfasaaiaaigdaaKqbagqaaiaadEhacqGH sislcaWGlbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGHhis0daahaa qabKqbGeaacaaIYaaaaKqbakaadEhaaaa@4336@

Where P is the foundation reaction per unit area, and 2 = 2 / x 2 + 2 / y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVaYJG8yqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaeqajuaibaGaaGOmaaaajuaGcqGH9aqpdaWcgaqaaiabgkGi 2oaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaeyOaIyRaamiEamaaCa aabeqcfasaaiaaikdaaaqcfaOaey4kaSYaaSGbaeaacqGHciITdaah aaqabKqbGeaacaaIYaaaaaqcfayaaiabgkGi2kaadMhadaahaaqabK qbGeaacaaIYaaaaaaaaaaaaa@493C@  is Laplace differential operator and K1 and K2 are the Winkler and Pasternak foundation stiffness. This model is simply known as Winkler type when K 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4sam aaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0JaaGimaaaa@3AAE@ .1

Displacement field model

In the present study, the assumed displacement field is based on the Reddy’s22,23 higher order shear deformation theory [1996], which requires C1 continuous element approximation. In order to avoid the usual difficulties associated with these elements the displacement model has been slightly modified to make the suitability for C0 continuous element [1997]. In modified form, the derivatives of out-of-plane displacement are themselves considered as separate degree of freedom (DOFs). Thus five DOFs with C1 continuity are transformed into seven DOFs with C0 due to conformity with the HSDT. In this process, the artificial constraints are imposed which should be enforced variationally through a penalty approach.

In the present study, the assumed displacement field is based on the Reddy’s22,23 higher order shear deformation theory, which requires C1 continuous element approximation. In order to avoid the usual difficulties associated with these elements the displacement model has been slightly modified to make the suitability for C0 continuous element in modified form, the derivatives of out-of-plane displacement are themselves considered as separate degree of freedom (DOFs). Thus five DOFs with C1 continuity are transformed into seven DOFs with C0 due to conformity with the HSDT. In this process, the artificial constraints are imposed which should be enforced variationally through a penalty approach. However, the literature26 demonstrates results using C0 can be obtained. The modified displacement field along the X, Y, and Z directions for an arbitrary composite laminated plate is now written as

u ¯ =u+ f 1 (z) ψ x + f 2 (z) ϕ x ; v ¯ =v+ f 1 (z) ψ y + f 2 (z) ϕ y ; w ¯ =w; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsace WG1bGbaebacqGH9aqpcaWG1bGaey4kaSIaamOzaOWaaSbaaKazfa2= baqcLbmacaaIXaaajuaGbeaajugibiaacIcacaWG6bGaaiykaiabeI 8a5PWaaSbaaKqbGeaajugWaiaadIhaaKqbagqaaKqzGeGaey4kaSIa amOzaOWaaSbaaKqbGeaajugWaiaaikdaaKqbagqaaKqzGeGaaiikai aadQhacaGGPaGaeqy1dyMcdaWgaaqcfasaaKqzadGaamiEaaqcfaya baqcLbsacaGG7aGaaGjbVlaaysW7caaMe8UaaGjbVdqcfayaaKqzGe GabmODayaaraGaeyypa0JaamODaiabgUcaRiaadAgakmaaBaaajuai baqcLbmacaaIXaaajuaGbeaajugibiaacIcacaWG6bGaaiykaiabeI 8a5PWaaSbaaKqbGeaajugWaiacCb4G5baajuaGbeaajugibiabgUca RiaadAgakmaaBaaajuaibaqcLbmacaaIYaaajuaGbeaajugibiaacI cacaWG6bGaaiykaiabew9aMPWaaSbaaKqbGeaajugWaiaadMhaaKqb agqaaKqzGeGaai4oaiaaysW7caaMe8UaaGjbVlaaysW7aOqaaKqzGe Gabm4DayaaraGaeyypa0Jaam4DaiaacUdaaaaa@85C1@    (1)

where u ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyDay aaraaaaa@36E9@ , v ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmODay aaraaaaa@36EA@  and w ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabm4Day aaraaaaa@36EB@  denote the displacements of a point along the (X, Y, Z) coordinates axes: u, v, and w are corresponding displacements of a point on the mid plane, ϕ x =w , x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqy1dy McdaWgaaqcbasaaKqzadGaamiEaaWcbeaajugibiabg2da9iaadEha caGGSaGcdaWgaaqcbasaaKqzadGaamiEaaWcbeaaaaa@3FF6@ and ϕ y =w , x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeea0dXdh9vqai=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqy1dy McdaWgaaqcbasaaKqzadGaamyEaaWcbeaajugibiabg2da9iaadEha caGGSaGcdaWgaaqcbasaaKqzadGaamiEaaWcbeaaaaa@3FF7@ and ψ x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiYdK NcdaWgaaqcfasaaKqzadGaamiEaaqcfayabaaaaa@3B58@ , ψ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiYdK NcdaWgaaqcbasaaKqzadGaiGgGdMhaaSqabaaaaa@3BC2@ are the rotations of normal to the mid plane about the y-axis and x-axis respectively. The function f 1 ( z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaiKI8VrYlbbf9q8qk0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaSbaaS qaaKqzadGaaGymaaWcbeaakmaabmaabaGaamOEaaGaayjkaiaawMca aaaa@3BF5@ and f 2 ( z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaO WaaSbaaKqbGeaajugWaiaaikdaaKqbagqaaOWaaeWaaKqbagaajugi biaadQhaaKqbakaawIcacaGLPaaaaaa@3E71@  can be written as

f 1 ( z )= C 1 z C 2 z 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaO WaaSbaaKqaGeaajugWaiaaigdaaSqabaGcdaqadaqaaKqzGeGaamOE aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGdbGcdaWgaaqcbasaaK qzadGaaGymaaWcbeaajugibiaadQhacqGHsislcaWGdbGcdaWgaaqc basaaKqzadGaaGOmaaWcbeaajugibiaadQhakmaaCaaaleqajeaiba qcLbmacaaIZaaaaaaa@4AE4@ ; f 2 ( z )= C 4 z 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaO WaaSbaaKqaGeaajugWaiaaikdaaSqabaGcdaqadaqaaKqzGeGaamOE aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcqGHsislcaWGdbGcdaWgaa qcbasaaKqzadGaaGinaaWcbeaajugibiaadQhakmaaCaaaleqajeai baqcLbmacaaIZaaaaaaa@4648@ with C 1 =1, C 2 = C 4 = 4 h 2 /3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO WaaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaaIXaGa aiilaiaaygW7caaMi8UaaGPaVlaadoeakmaaBaaajeaibaqcLbmaca aIYaaaleqaaKqzGeGaeyypa0Jaam4qaOWaaSbaaKqaGeaajugWaiaa isdaaSqabaqcLbsacqGH9aqpkmaalyaabaqcLbsacaaI0aGaamiAaO WaaWbaaSqabKqaGeaajugWaiaaikdaaaaakeaajugibiaaiodaaaaa aa@507A@ .

The displacement vector for the modified C0 continuous model is denoted as

{ Λ }= [ u v w ϕ y ϕ x ψ y ψ x ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacqqHBoataOGaay5Eaiaaw2haaKqzGeGaeyypa0JcdaWadaqaaKqz GeqbaeqaaeWbaaaakeaajugibiaadwhaaOqaaKqzGeGaamODaaGcba qcLbsacaWG3baakeaajugibiabew9aMPWaaSbaaKqaGeaajugWaiaa dMhaaSqabaaakeaajugibiabew9aMPWaaSbaaSqaaiaadIhaaeqaaa GcbaqcLbsacqaHipqEkmaaBaaaleaacaWG5baabeaaaOqaaKqzGeGa eqiYdKNcdaWgaaqcbasaaKqzadGaamiEaaWcbeaaaaaakiaawUfaca GLDbaadaahaaWcbeqcbasaaKqzadGaamivaaaaaaa@5690@ ,                               (2)

where, comma (,) denotes partial differential.

Strain displacement relations

For the structures considered here, the relevant strain vector consisting of strains in terms of mid-plane deformation, rotation of normal and higher order terms associated with the displacement for kth layer are written as

{ ε }={ ε l }{ ε ¯ HT } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGada qaaKqzGeGaeqyTdugakiaawUhacaGL9baajugibiabg2da9OWaaiWa aeaajugibiabew7aLPWaaSbaaKqaGeaajugWaiaadYgaaSqabaaaki aawUhacaGL9baajugibiabgkHiTOWaaiWaaeaajugibiqbew7aLzaa raGcdaWgaaqcbauaaKqzadGaamisaiaadsfaaSqabaaakiaawUhaca GL9baaaaa@4DEE@                 (3)

where { ε l } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaju gibiabew7aLPWaaSbaaKqaGeaajugWaiaadYgaaSqabaaakiaawUha caGL9baaaaa@3CC6@ and { ε ¯ HT } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGada qaaKqzGeGafqyTduMbaebakmaaBaaajeaibaqcLbmacaWGibGaamiv aaWcbeaaaOGaay5Eaiaaw2haaaaa@3F48@ are the linear and hygrothermal strain vector, respectively. Nonlinear analysis is given in.25

Using Eq. (3) the linear strain vector can be obtained using linear strain displacement relations which can be written as

{ ε l }={ ε P L 0 }+{ z ε b L ε s }+{ 0 z 2 ε s * }+{ z 3 ε * 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaju gibiabew7aLPWaaSbaaKqaGeaajugWaiaadYgaaSqabaaakiaawUha caGL9baajugibiabg2da9OWaaiWaaeaajugibuaabeqaceaaaOqaaK qzGeGaeqyTdu2cdaqhaaqcbasaaKqzadGaamiuaaqcbasaaKqzadGa amitaaaaaOqaaKqzGeGaaGimaaaaaOGaay5Eaiaaw2haaKqzGeGaey 4kaSIcdaGadaqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG6bGaeqyT du2cdaqhaaqcbauaaKqzadGaamOyaaqcbauaaKqzadGaamitaaaaaO qaaKqzGeGaeqyTduMcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaaaa kiaawUhacaGL9baajugibiabgUcaROWaaiWaaeaajugibuaabeqace aaaOqaaKqzGeGaaGimaaGcbaqcLbsacaWG6bGcdaahaaWcbeqcbasa aKqzadGaaGOmaaaajugibiabew7aLPWaa0baaKqaGeaajugWaiaado haaKqaGeaajugibiaacQcaaaaaaaGccaGL7bGaayzFaaqcLbsacqGH RaWkkmaacmaabaqcLbsafaqabeGabaaakeaajugibiaadQhakmaaCa aaleqajeaibaqcLbmacaaIZaaaaKqzGeGaeqyTduMcdaahaaWcbeqc basaaKqzadGaaiOkaaaaaOqaaKqzGeGaaGimaaaaaOGaay5Eaiaaw2 haaaaa@781B@            (4)

The hygrothermal strain vector { ε ¯ t } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGada qaaKqzGeGafqyTduMbaebakmaaBaaajeaibaqcLbmacaWG0baaleqa aaGccaGL7bGaayzFaaaaaa@3E9B@ is represented as

{ ε ¯ HT }={ ε ¯ x ε ¯ y ε ¯ xy ε ¯ yz ε ¯ zx }=ΔT{ α 1 α 2 α 12 0 0 }+ΔC{ β 1 β 2 β 12 0 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacuaH1oqzgaqeaOWaaSbaaKqaGeaajugWaiaadIeacaWGubaaleqa aaGccaGL7bGaayzFaaqcLbsacqGH9aqpkmaacmaabaqcLbsafaqabe qbbaaaaOqaaKqzGeGafqyTduMbaebakmaaBaaajeaibaqcLbmacaWG 4baaleqaaaGcbaqcLbsacuaH1oqzgaqeaOWaaSbaaKqaGeaajugWai aadMhaaSqabaaakeaajugibiqbew7aLzaaraGcdaWgaaqcbasaaKqz adGaamiEaiaadMhaaSqabaaakeaajugibiqbew7aLzaaraGcdaWgaa qcbasaaKqzadGaamyEaiaadQhaaSqabaaakeaajugibiqbew7aLzaa raGcdaWgaaqcbasaaKqzadGaamOEaiaadIhaaSqabaaaaaGccaGL7b GaayzFaaqcLbsacqGH9aqpcqqHuoarcaWGubGcdaGadaqaaKqzGeqb aeqabuqaaaaakeaajugibiabeg7aHPWaaSbaaKqaGeaajugWaiaaig daaSqabaaakeaajugibiabeg7aHPWaaSbaaKqaGeaajugWaiaaikda aSqabaaakeaajugibiabeg7aHPWaaSbaaKqaGeaajugWaiaaigdaca aIYaaaleqaaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaaaakiaa wUhacaGL9baajugibiabgUcaRiabfs5aejaadoeakmaacmaabaqcLb safaqabeqbbaaaaOqaaKqzGeGaeqOSdiMcdaWgaaqcbasaaKqzadGa aGymaaWcbeaaaOqaaKqzGeGaeqOSdiMcdaWgaaqcbasaaKqzadGaaG OmaaWcbeaaaOqaaKqzGeGaeqOSdiMcdaWgaaqcbasaaKqzadGaaGym aiaaikdaaSqabaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaaaaO Gaay5Eaiaaw2haaaaa@8CA1@               (5)

Stress–strain relation

The constitutive law of thermo-elasticity for the materials under considerations relates the stresses with strains in a plane stress state for the kth lamina oriented as an arbitrary angle with respect to reference axis for the orthotropic layers is given by.27

{ σ } k = [ Q ¯ ] k { ε } k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacqaHdpWCaOGaay5Eaiaaw2haamaaBaaajeaibaqcLbmacaWGRbaa leqaaKqzGeGaeyypa0JcdaWadaqaaKqzGeGabmyuayaaraaakiaawU facaGLDbaadaWgaaqcbasaaKqzadGaam4AaaWcbeaakmaacmaabaqc LbsacqaH1oqzaOGaay5Eaiaaw2haamaaBaaajeaibaqcLbmacaWGRb aaleqaaaaa@4B64@

or

{ σ x σ y σ xy σ yz σ xz } k = [ Q ¯ 11 Q ¯ 12 Q ¯ 16 0 0 Q ¯ 12 Q ¯ 22 Q ¯ 26 0 0 Q ¯ 16 Q ¯ 26 Q ¯ 66 0 0 0 0 0 Q ¯ 44 Q ¯ 45 0 0 0 Q ¯ 45 Q ¯ 55 ] k { { ε l }{ ε ¯ HT } } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb safaqabeqbbaaaaOqaaKqzGeGaeq4WdmNcdaWgaaqcbasaaKqzadGa amiEaaWcbeaaaOqaaKqzGeGaeq4WdmNcdaWgaaqcbasaaKqzadGaam yEaaWcbeaaaOqaaKqzGeGaeq4WdmNcdaWgaaqcbasaaKqzadGaamiE aiaadMhaaSqabaaakeaajugibiabeo8aZPWaaSbaaKqaGeaajugWai aadMhacaWG6baaleqaaaGcbaqcLbsacqaHdpWCkmaaBaaajeaibaqc LbmacaWG4bGaamOEaaWcbeaaaaaakiaawUhacaGL9baadaWgaaWcba qcLbsacaWGRbaaleqaaKqzGeGaeyypa0JcdaWadaqaaKqzGeqbaeqa buqbaaaaaOqaamaanaaabaqcLbsacaWGrbaaaOWaaSbaaKqaGeaaju gWaiaaigdacaaIXaaaleqaaaGcbaWaa0aaaeaajugibiaadgfaaaGc daWgaaqcbasaaKqzadGaaGymaiaaikdaaSqabaaakeaadaqdaaqaaK qzGeGaamyuaaaakmaaBaaajeaibaqcLbmacaaIXaGaaGOnaaWcbeaa aOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaadaqdaaqaaKqzGe GaamyuaaaakmaaBaaajeaibaqcLbmacaaIXaGaaGOmaaWcbeaaaOqa amaanaaabaqcLbsacaWGrbaaaOWaaSbaaKqaGeaajugWaiaaikdaca aIYaaaleqaaaGcbaWaa0aaaeaajugibiaadgfaaaGcdaWgaaqcbasa aKqzadGaaGOmaiaaiAdaaSqabaaakeaajugibiaaicdaaOqaaKqzGe GaaGimaaGcbaWaa0aaaeaajugibiaadgfaaaGcdaWgaaqcbasaaKqz adGaaGymaiaaiAdaaSqabaaakeaadaqdaaqaaKqzGeGaamyuaaaakm aaBaaajeaibaqcLbmacaaIYaGaaGOnaaWcbeaaaOqaamaanaaabaqc LbsacaWGrbaaaOWaaSbaaKqaGeaajugWaiaaiAdacaaI2aaaleqaaa GcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGc baqcLbsacaaIWaaakeaajugibiaaicdaaOqaamaanaaabaqcLbsaca WGrbaaaOWaaSbaaKqaGeaajugWaiaaisdacaaI0aaaleqaaaGcbaWa a0aaaeaajugibiaadgfaaaGcdaWgaaqcbasaaKqzadGaaGinaiaaiw daaSqabaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsa caaIWaaakeaadaqdaaqaaKqzGeGaamyuaaaakmaaBaaajeaibaqcLb macaaI0aGaaGynaaWcbeaaaOqaamaanaaabaqcLbsacaWGrbaaaOWa aSbaaKqaGeaajugWaiaaiwdacaaI1aaaleqaaaaaaOGaay5waiaaw2 faamaaBaaajeaibaqcLbmacaWGRbaaleqaaOWaaiWaaeaadaGadaqa aKqzGeGaeqyTduMcdaWgaaqcbasaaKqzadGaamiBaaWcbeaaaOGaay 5Eaiaaw2haaKqzGeGaeyOeI0IcdaGadaqaaKqzGeGafqyTduMbaeba kmaaBaaajeaqbaqcLboacaWGibGaamivaaWcbeaaaOGaay5Eaiaaw2 haaaGaay5Eaiaaw2haaaaa@BA4B@                              (6)

where, { Q ¯ ij } k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb saceWGrbGbaebakmaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaa aOGaay5Eaiaaw2haamaaBaaajeaibaqcLbmacaWGRbaaleqaaaaa@3F7F@ , { σ } k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacqaHdpWCaOGaay5Eaiaaw2haamaaBaaajeaibaqcLbmacaWGRbaa leqaaaaa@3CE9@ and { ε } k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacqaH1oqzaOGaay5Eaiaaw2haamaaBaaajeaibaqcLbmacaWGRbaa leqaaaaa@3CCD@  are transformed stiffness matrix, stress and strain vectors of the kth lamina, respectively,

Strain energy of the plate

The strain energy Π SE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaaiGacaGaaeqabaWaaeaaeaaakeaajugibi abfc6aqPWaaSbaaKqaGeaajugWaiaabofacaqGfbaaleqaaaaa@3CC2@  of the laminated composite plates can be expressed as

Π SE = 1 2 { ε } V T [ σ ]dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaaiGacaGaaeqabaWaaeaaeaaakeaajugibi abfc6aqPWaaSbaaKqaGeaajugWaiaabofacaqGfbaaleqaaKqzGeGa eyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaOWaa8 qeaeaadaWgbaWcbaGaamOvaaqabaGcdaGadaqaaKqzGeGaeqyTduga kiaawUhacaGL9baadaahaaWcbeqcbasaaKqzadGaamivaaaakmaadm aabaqcLbsacqaHdpWCaOGaay5waiaaw2faaKqzGeGaamizaiaadAfa aKqaGeaaaSqabKqzGeGaey4kIipaaaa@525C@ .                     (7)

Strain energy due to hygrothermal stresses

The strain energy ( Π TH ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aacIcaqaaaaaaaaaWdbiabfc6aqPWaaSbaaKqaGeaajugWaiaadsfa caWGibaaleqaaKqzGeWdaiaacMcaaaa@3EE3@ storage by hygrothermal load (uniform and transverse change in temperature and moisture across the thickness) is written as

Π TH = 1 2 A [ N x ( w , x ) 2 + N y ( w , y ) 2 +2 N xy ( w , x )( w , y ) ] dA = 1 2 A { w , x w , y } T [ N x N xy N xy N y ]{ w , x w , y }dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfc6aqPWaaSbaaKqaGeaajugWaiaadsfacaWGibaaleqaaKqzGeGa eyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaOWaa8 qeaeaadaWadaqaaKqzGeGaamOtaOWaaSbaaKqaGeaajugWaiaadIha aSqabaGcdaqadaqaaKqzGeGaam4DaiaacYcakmaaBaaajeaibaqcLb macaWG4baaleqaaaGccaGLOaGaayzkaaWaaWbaaSqabKqaGeaajugW aiaaikdaaaqcLbsacqGHRaWkcaWGobGcdaWgaaqcbasaaKqzadGaam yEaaWcbeaakmaabmaabaqcLbsacaWG3bGaaiilaOWaaSbaaKqaGeaa jugWaiaadMhaaSqabaaakiaawIcacaGLPaaadaahaaWcbeqcbasaaK qzadGaaGOmaaaajugibiabgUcaRiaaikdacaWGobGcdaWgaaqcbasa aKqzadGaamiEaiaadMhaaSqabaGcdaqadaqaaKqzGeGaam4DaiaacY cakmaaBaaajeaibaqcLbmacaWG4baaleqaaaGccaGLOaGaayzkaaWa aeWaaeaajugibiaadEhacaGGSaGcdaWgaaqcbasaaKqzadGaamyEaa WcbeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaqcbasaaKqzadGa amyqaaWcbeqcLbsacqGHRiI8aiaaysW7caWGKbGaamyqaaGcbaqcLb sacaaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JcdaWcaaqaaKqzGeGa aGymaaGcbaqcLbsacaaIYaaaaOWaa8qeaeaadaGadaqaaKqzGeqbae qabiqaaaGcbaqcLbsacaWG3bGaaiilaOWaaSbaaKqaGeaajugWaiaa dIhaaSqabaaakeaajugibiaadEhacaGGSaGcdaWgaaqcbasaaKqzad GaamyEaaWcbeaaaaaakiaawUhacaGL9baaaKqaGeaajugWaiaadgea aSqabKqzGeGaey4kIipakmaaCaaaleqajeaibaqcLbmacaWGubaaaO WaamWaaeaajugibuaabeqaciaaaOqaaKqzGeGaamOtaOWaaSbaaKqa GeaajugWaiaadIhaaSqabaaakeaajugibiaad6eakmaaBaaajeaiba qcLbmacaWG4bGaamyEaaWcbeaaaOqaaKqzGeGaamOtaOWaaSbaaKqa GeaajugWaiaadIhacaWG5baaleqaaaGcbaqcLbsacaWGobGcdaWgaa qcbasaaKqzadGaamyEaaWcbeaaaaaakiaawUfacaGLDbaadaGadaqa aKqzGeqbaeqabiqaaaGcbaqcLbsacaWG3bGaaiilaOWaaSbaaKqaGe aajugWaiaadIhaaSqabaaakeaajugibiaadEhacaGGSaGcdaWgaaqc basaaKqzadGaamyEaaWcbeaaaaaakiaawUhacaGL9baajugibiaads gacaWGbbaaaaa@B869@                     (8)

where, Nx, Ny and Nxy are pre-buckling thermal stresses.

Strain energy due to elastic foundations

The strain energy ( Π 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaaiGacaGaaeqabaWaaeaaeaaakeaajugibi aacIcacqqHGoaukmaaBaaajeaibaqcLbmacaaIZaaaleqaaKqzGeGa aiykaaaa@3DC9@  due to elastic foundation having foundation layers can be written a

Π f = 1 2 A { K 1 ( w , x ) 2 + K 2 [ ( w , x ) 2 + ( w , x ) 2 ] } dA = 1 2 A { w w , x w , y } T [ K 1 0 0 0 K 2 0 0 0 K 2 ]{ w w , x w , y }dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfc6aqPWaaSbaaKqaGeaajugWaiaadAgaaSqabaqcLbsacqGH9aqp kmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGcdaWdraqaam aacmaabaqcLbsacaWGlbGcdaWgaaqcbasaaKqzadGaaGymaaWcbeaa kmaabmaabaqcLbsacaWG3bGaaiilaOWaaSbaaKqaGeaajugWaiaadI haaSqabaaakiaawIcacaGLPaaadaahaaWcbeqcbasaaKqzadGaaGOm aaaajugibiabgUcaRiaadUeakmaaBaaajeaibaqcLbmacaaIYaaale qaaOWaamWaaeaadaqadaqaaKqzGeGaam4DaiaacYcakmaaBaaajeaq baqcLbmacaWG4baaleqaaaGccaGLOaGaayzkaaWaaWbaaSqabKqaGe aajugWaiaaikdaaaqcLbsacqGHRaWkkmaabmaabaqcLbsacaWG3bGa aiilaOWaaSbaaKqaGeaajugWaiaadIhaaSqabaaakiaawIcacaGLPa aadaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOGaay5waiaaw2faaaGa ay5Eaiaaw2haaaqcbasaaKqzadGaamyqaaWcbeqcLbsacqGHRiI8ai aaysW7caWGKbGaamyqaaGcbaqcLbsacaaMe8UaaGjbVlaaysW7caaM e8Uaeyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaO Waa8qeaeaadaGadaqaaKqzGeqbaeqabiqaaaabaeqakeaajugibiaa dEhaaOqaaKqzGeGaam4DaiaacYcakmaaBaaajeaibaqcLbmacaWG4b aaleqaaaaakeaajugibiaadEhacaGGSaGcdaWgaaqcbasaaKqzadGa amyEaaWcbeaaaaaakiaawUhacaGL9baaaSqaaKqzGeGaamyqaaWcbe qcLbsacqGHRiI8aOWaaWbaaSqabKqaGeaajugWaiaadsfaaaGcdaWa daqaaKqzGeqbaeqabmWaaaGcbaqcLbsacaWGlbGcdaWgaaqcbasaaK qzadGaaGymaaWcbeaaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaa keaajugibiaaicdaaOqaaKqzGeGaam4saOWaaSbaaKqaGeaajugWai aaikdaaSqabaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqc LbsacaaIWaaakeaajugibiaadUeakmaaBaaajeaibaqcLbmacaaIYa aaleqaaaaaaOGaay5waiaaw2faamaacmaabaqcLbsafaqabeGabaaa eaqabOqaaKqzGeGaam4DaaGcbaqcLbsacaWG3bGaaiilaOWaaSbaaK qaGeaajugWaiaadIhaaSqabaaaaOqaaKqzGeGaam4DaiaacYcakmaa BaaajeaibaqcLbmacaWG5baaleqaaaaaaOGaay5Eaiaaw2haaKqzGe Gaamizaiaadgeaaaaa@B3FF@                (9)

External work done

The potential energy due to work done by external mechanical loading of intensity q( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadg hajuaGdaqadaGcbaqcLbsacaWG4bGaaiilaiaadMhaaOGaayjkaiaa wMcaaaaa@3D48@ is given by

W= W q = A q( x,y ) w dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXx e9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGe Gaam4vaiabg2da9iabgkHiTiaadEfakmaaBaaajeaibaqcLbmacaWG XbaaleqaaKqzGeGaeyypa0JcdaWdraqaaKqzGeGaamyCaOWaaeWaae aajugibiaadIhacaGGSaGaamyEaaGccaGLOaGaayzkaaqcLbsacaqG GaGaam4DaaqcbasaaKqzadGaamyqaaWcbeqcLbsacqGHRiI8aiaays W7caWGKbGaamyqaaaa@50C0@ (10)

where, q(x, y) is the intensity of distributed transverse static load which is defined as

q( x,y )= Q E 22 h 3 b 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXx e9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGe GaamyCaOWaaeWaaeaajugibiaadIhacaGGSaGaamyEaaGccaGLOaGa ayzkaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGrbGaamyraOWaaS baaKqaGeaajugWaiaaikdacaaIYaaaleqaaKqzGeGaamiAaOWaaWba aSqabKqaGeaajugWaiaaiodaaaaakeaajugibiaadkgakmaaCaaale qajeaibaqcLbmacaaI0aaaaaaaaaa@4CC8@                                   (11)

In the present study, a C0 nine-noded isoparametric finite element with 7 degree of freedoms (DOFs) per node as described earlier by {Δ} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aacUhaqaaaaaaaaaWdbiabgs5ae9aacaGG9baaaa@3BB0@ is employed. For this type of element, the displacement vector and the element geometry are expressed as

{ Λ }= i=1 NN φ i { Λ } i ;x= i=1 NN φ i x i ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacqqHBoataOGaay5Eaiaaw2haaKqzGeGaeyypa0JcdaaeWbqaaKqz GeGaeqOXdOMcdaWgaaqcbasaaKqzadGaamyAaaWcbeaaaKqaGeaaju gWaiaadMgacqGH9aqpcaaIXaaajeaibaqcLbmacaWGobGaamOtaaqc LbsacqGHris5aOWaaiWaaeaajugibiabfU5ambGccaGL7bGaayzFaa WaaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGG7aGaaGjbVlaa ysW7caaMe8UaamiEaiabg2da9OWaaabCaeaajugibiabeA8aQPWaaS baaKqaGeaajugWaiaadMgaaSqabaaajeaibaqcLbmacaWGPbGaeyyp a0JaaGymaaqcbasaaKqzadGaamOtaiaad6eaaKqzGeGaeyyeIuoaca WG4bGcdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugibiaacUdaaaa@6C56@  and y= i=1 NN φ i y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyEai abg2da9OWaaabCaeaajugibiabeA8aQPWaaSbaaKqaGeaajugWaiaa dMgaaSqabaaajeaibaqcLbmacaWGPbGaeyypa0JaaGymaaqcbasaaK qzadGaamOtaiaad6eaaKqzGeGaeyyeIuoacaWG5bGcdaWgaaqcbasa aKqzadGaamyAaaWcbeaaaaa@4A86@                                (12)

where φ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOXdO McdaWgaaqcbasaaKqzadGaamyAaaWcbeaaaaa@3AB1@  is the interpolation function for the ith node, { Λ } i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacqqHBoataOGaay5Eaiaaw2haamaaBaaajeaibaqcLbmacaWGPbaa leqaaaaa@3C9A@ is the vector of unknown displacements for the ith node, NN is the number of nodes per element and xi and yi are cartesian coordinate of the ith node.

Π HT = e=1 NE [ 1 2 { Λ ( e ) } T [ K ( e ) ] { Λ } ( e ) { Λ ( e ) } T [ F HT ( e ) ] ] = 1 2 { q } T [ K ]{ q } { q } T [ F HT ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiOda LcdaWgaaqcbasaaKqzadGaamisaiaadsfaaSqabaqcLbsacqGH9aqp kmaaqahabaWaamWaaeaadaWcaaqaaKqzGeGaaGymaaGcbaqcLbsaca aIYaaaaOWaaiWaaeaajugibiabfU5amPWaaWbaaSqabKqaGeaalmaa bmaajeaibaqcLbmacaWGLbaajeaicaGLOaGaayzkaaaaaaGccaGL7b GaayzFaaWaaWbaaSqabKqaGeaajugWaiaadsfaaaGcdaWadaqaaKqz GeGaam4saOWaaWbaaSqabeaakmaaCaaameqajiaqbaWcdaqadaqcca uaaKqzadGaamyzaaqccaKaayjkaiaawMcaaaaaaaaakiaawUfacaGL DbaadaGadaqaaKqzGeGaeu4MdWeakiaawUhacaGL9baadaahaaWcbe qcbasaaSWaaeWaaKqaGeaajugWaiaadwgaaKqaGiaawIcacaGLPaaa aaqcLbsacqGHsislkmaacmaabaqcLbsacqqHBoatkmaaCaaaleqaje aibaWcdaqadaqcbasaaKqzadGaamyzaaqcbaIaayjkaiaawMcaaaaa aOGaay5Eaiaaw2haamaaCaaaleqajeaqbaqcLbmacaWGubaaaOWaam WaaeaajugibiaadAeakmaaDaaajeaibaqcLbmacaWGibGaamivaaqc basaaSWaaWbaaKGaafqabaWcdaqadaqccauaaKqzadGaamyzaaqcca KaayjkaiaawMcaaaaaaaaakiaawUfacaGLDbaaaiaawUfacaGLDbaa aKqaGeaajugWaiaadwgacqGH9aqpcaaIXaaajeaibaqcLbmacaWGob GaamyraaqcLbsacqGHris5aiabg2da9OWaaSaaaeaajugibiaaigda aOqaaKqzGeGaaGOmaaaakmaacmaabaqcLbsacaWGXbaakiaawUhaca GL9baadaahaaWcbeqcbasaaKqzadGaamivaaaakmaadmaabaqcLbsa caWGlbaakiaawUfacaGLDbaadaGadaqaaKqzGeGaamyCaaGccaGL7b GaayzFaaqcLbsacqGHsislkmaacmaabaqcLbsacaWGXbaakiaawUha caGL9baadaahaaWcbeqcbasaaKqzadGaamivaaaakmaadmaabaqcLb sacaWGgbGcdaahaaWcbeqcbasaaKqzadGaamisaiaadsfaaaaakiaa wUfacaGLDbaaaaa@9E70@    (13)

Work done due to external transverse load

Using finite element model (Eq. (10), Equation (9) may be written as

W= e=1 NE W { e } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXx e9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadE facqGH9aqpdaaeWbqaaiaadEfadaahaaWcbeqaamaacmaabaGaamyz aaGaay5Eaiaaw2haaaaaaeaacaWGLbGaeyypa0JaaGymaaqaaiaad6 eacaWGfbaaniabggHiLdaaaa@4478@         where W { e } = A ( e ) { Λ } ( e ) T { P M } ( e ) dA= { q } ( e ) T { P M } ( e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaaW baaSqabeaadaGadaqaaiaadwgaaiaawUhacaGL9baaaaGccqGH9aqp cqGHsisldaWdraqaamaacmaabaGaeu4MdWeacaGL7bGaayzFaaWaaW baaSqabeaadaqadaqaaiaadwgaaiaawIcacaGLPaaaaaGcdaahaaWc beqaaiaadsfaaaGcdaGadaqaaiaadcfadaWgaaWcbaGaamytaaqaba aakiaawUhacaGL9baadaahaaWcbeqaamaabmaabaGaamyzaaGaayjk aiaawMcaaaaaaeaacaWGbbWaaWbaaWqabeaadaqadaqaaiaadwgaai aawIcacaGLPaaaaaaaleqaniabgUIiYdGccaaMe8Uaamizaiaadgea caaMe8UaaGjbVlaaysW7cqGH9aqpcqGHsisldaGadaqaaiaadghaai aawUhacaGL9baadaahaaWcbeqaamaabmaabaGaamyzaaGaayjkaiaa wMcaaaaakmaaCaaaleqabaGaamivaaaakmaacmaabaGaamiuamaaBa aaleaacaWGnbaabeaaaOGaay5Eaiaaw2haamaaCaaaleqabaWaaeWa aeaacaWGLbaacaGLOaGaayzkaaaaaaaa@674D@            (14)

Governing equations

The governing equation for the bending analysis can be derived using Variational principle, which is generalization of the principle of virtual displacement.23 For the bending analysis, the minimization of first variation of total potential energy Π ( Π SE +  Π HT +  Π f  W ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiOdaLaaeiiaOWdamaabmaabaqcLbsapeGaeuiO daLcpaWaaSbaaKqaGeaajugWa8qacaWGtbGaamyraaWcpaqabaqcLb sapeGaey4kaSIaaeiiaiabfc6aqPWdamaaBaaajeaibaqcLbmapeGa amisaiaadsfaaSWdaeqaaKqzGeWdbiabgUcaRiaabccacqqHGoauk8 aadaWgaaqcbasaaKqzadWdbiaadAgaaSWdaeqaaKqzGeWdbiabgkHi TiaabccacaWGxbaak8aacaGLOaGaayzkaaaaaa@51E9@ with respect to displacement vector is given by

δ( Π SE +  Π HT +  Π f  W ) = 0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeqiTdqMcpaWaaeWaaeaajugib8qacqqHGoauk8aa daWgaaqcbasaaKqzadWdbiaadofacaWGfbaal8aabeaajugib8qacq GHRaWkcaqGGaGaeuiOdaLcpaWaaSbaaKqaGeaajugWa8qacaWGibGa amivaaWcpaqabaqcLbsapeGaey4kaSIaaeiiaiabfc6aqPWdamaaBa aajeaibaqcLbmapeGaamOzaaWcpaqabaqcLbsapeGaeyOeI0Iaaeii aiaadEfaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0Jaae iiaiaaicdacaGGGcGaaiiOaaaa@575A@     (15)

[ K ]{ W }={ F HT }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaju gibiaadUeaaOGaay5waiaaw2faamaacmaabaqcLbsacaWGxbaakiaa wUhacaGL9baajugibiabg2da9OWaaiWaaeaajugibiaadAeakmaaBa aajeaibaqcLbmacaWGibGaamivaaWcbeaaaOGaay5Eaiaaw2haaKqz GeGaaiilaaaa@46F8@                  (16)

with { F HT }={ P M }+{ P HT } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaju gibiaadAeakmaaBaaajeaibaqcLbmacaWGibGaamivaaWcbeaakmaa CaaaleqabaaaaaGccaGL7bGaayzFaaqcLbsacqGH9aqpkmaacmaaba qcLbsacaWGqbGcdaWgaaqcbasaaKqzadGaamytaaWcbeaaaOGaay5E aiaaw2haaKqzGeGaey4kaSIcdaGadaqaaKqzGeGaamiuaOWaaSbaaK qaGeaajugWaiaadIeacaWGubaaleqaaaGccaGL7bGaayzFaaaaaa@4CC2@

where [K], {W}, {PM} and {PHT} are global linear stiffness matrix, response vector, mechanical and hygrothermal force vector, respectively.

The stiffness matrixes [K], displacement vector {W} and force vector [FHT] are random in nature, being dependent on the system properties. Therefore the eigenvalues and eigenvectors also become random. In deterministic environment, the solution of Eq. (16) can be obtained using conventional method.

Solution methodology - perturbation approach

In the present study, our aim is to find the second order statistics of W i R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadEfalmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbmacaWGsbaa aaaa@3D98@  when the second order statistics of primary RVs b i R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadkgalmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbmacaWGsbaa aaaa@3DA3@  are known. Any random variable can be expressed as the sum of its mean and the zero mean random variable which is expressed .The expression only up to the first-order terms and neglecting the second- and higher-order terms are given as random variable RVR =mean (RVs)+ zero-mean random variable (RVR)

The operating random variables in the present case are defined as:

b i R = b i d + b i r ; K sij R = K sij d + K sij r ; W i R = W i d + W i r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadkgalmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbmacaWGsbaa aKqzGeGaeyypa0JaamOyaSWaa0baaKqaGeaajugWaiaadMgaaKqaGe aajugWaiaadsgaaaqcLbsacqGHRaWkcaWGIbqcfa4aa0baaKqaGeaa jug4aiaadMgaaKqaGeaajug4aiaadkhaaaqcLbsacaGG7aGaaGPaVl aaykW7caaMc8Uaam4saSWaa0baaKGaafaajugWaiaadohacaWGPbGa amOAaaqccauaaKqzadGaamOuaaaajugibiabg2da9iaadUealmaaDa aajiaqbaqcLbmacaWGZbGaamyAaiaadQgaaKGaafaajugWaiaadsga aaqcLbsacqGHRaWkcaWGlbWcdaqhaaqccauaaKqzadGaam4CaiaadM gacaWGQbaajiaqbaqcLbmacaWGYbaaaKqzGeGaai4oaiaaykW7caaM c8Uaam4vaSWaa0baaKqaGeaajugWaiaadMgaaKqaGeaajugWaiaadk faaaqcLbsacqGH9aqpcaWGxbWcdaqhaaqcbasaaKqzadGaamyAaaqc basaaKqzadGaamizaaaajugibiabgUcaRiaadEfalmaaDaaajeaiba qcLbmacaWGPbaajeaibaqcLbmacaWGYbaaaaaa@84BE@

We can express the above relations in the form:

b i R = b i d + b i r ; K sij R = K sij d + K sij r ; W i R = W i d + W i r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadkgalmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbmacaWGsbaa aKqzGeGaeyypa0JaamOyaSWaa0baaKqaGeaajugWaiaadMgaaKqaGe aajugWaiaadsgaaaqcLbsacqGHRaWkcqGHiiIZcaWGIbqcfa4aa0ba aKqaGeaajug4aiaadMgaaKqaGeaajug4aiaadkhaaaqcLbsacaGG7a GaaGPaVlaaykW7caaMc8Uaam4saSWaa0baaKGaafaajugWaiaadoha caWGPbGaamOAaaqccauaaKqzadGaamOuaaaajugibiabg2da9iaadU ealmaaDaaajiaqbaqcLbmacaWGZbGaamyAaiaadQgaaKGaafaajugW aiaadsgaaaqcLbsacqGHRaWkcqGHiiIZcaWGlbWcdaqhaaqccauaaK qzadGaam4CaiaadMgacaWGQbaajiaqbaqcLbmacaWGYbaaaKqzGeGa ai4oaiaaykW7caaMc8Uaam4vaSWaa0baaKqaGeaajugWaiaadMgaaK qaGeaajugWaiaadkfaaaqcLbsacqGH9aqpcaWGxbWcdaqhaaqcbasa aKqzadGaamyAaaqcbasaaKqzadGaamizaaaajugibiabgUcaRiabgI GiolaadEfalmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbmacaWG Ybaaaaaa@894A@

where MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abgIGiodaa@399E@  is a scaling parameter, and is small in magnitude. We consider a class of problems where the zero-mean random variation is very small as compared to the mean part of random variables. i.e., R V d >>R V r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaa aaaaWdbiaadkfacaWGwbWdamaaCaaaleqabaWdbiaadsgaaaGcpaGa eyOpa4JaeyOpa4tcLbsacqGHiiIZk8qacaWGsbGaamOva8aadaahaa Wcbeqaa8qacaWGYbaaaaaa@41DD@  . Using the Taylor series expansion and neglecting the second and higher-order terms since first order approximation is sufficient to yield results with desired accuracy with low variability which is the cases in most of the sensitive application.

The governing equation (16) can be written in the most general form as:24,28-30

[ K R ]{ W R }={ F HT R }={ F R } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaju gibiaadUeakmaaCaaaleqajeaibaqcLbmacaWGsbaaaaGccaGLBbGa ayzxaaWaaiWaaeaajugibiaadEfakmaaCaaaleqajeaibaqcLbmaca WGsbaaaaGccaGL7bGaayzFaaqcLbsacqGH9aqpkmaacmaabaqcLbsa caWGgbWcdaqhaaqcbauaaKqzadGaamisaiaadsfaaKqaafaajugWai aadkfaaaaakiaawUhacaGL9baajugibiabg2da9OWaaiWaaeaajugi biaadAeakmaaCaaaleqajeaibaqcLbmacaWGsbaaaaGccaGL7bGaay zFaaaaaa@546B@                                (17)

Zeroth order perturbation equation ( 0 ):[ K d ]{ W d }={ F d } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiabgIGioRWaaWbaaSqabKqaGeaajugWaiaaicdaaaaakiaawIca caGLPaaacaGG6aWaamWaaeaajugibiaadUeakmaaCaaaleqajeaiba qcLbmacaWGKbaaaaGccaGLBbGaayzxaaWaaiWaaeaajugibiaadEfa kmaaCaaaleqajeaibaqcLbmacaWGKbaaaaGccaGL7bGaayzFaaqcLb sacqGH9aqpkmaacmaabaqcLbsacaWGgbGcdaahaaWcbeqcbauaaKqz adGaamizaaaaaOGaay5Eaiaaw2haaaaa@4FFE@                  (18)        

First order perturbation equation ( 1 ):[ K d ]{ W r }+[ K r ]{ W d }={ F r } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiabgIGioRWaaWbaaSqabKqaGeaajugWaiaaigdaaaaakiaawIca caGLPaaajugibiaacQdacaaMc8UaaGPaVlaaykW7kmaadmaabaqcLb sacaWGlbGcdaahaaWcbeqcbasaaKqzadGaamizaaaaaOGaay5waiaa w2faamaacmaabaqcLbsacaWGxbGcdaahaaWcbeqcbasaaKqzadGaam OCaaaaaOGaay5Eaiaaw2haaKqzGeGaey4kaSIcdaWadaqaaKqzGeGa am4saOWaaWbaaSqabKqaGeaajugWaiaadkhaaaaakiaawUfacaGLDb aadaGadaqaaKqzGeGaam4vaOWaaWbaaSqabKqaGeaajugWaiaadsga aaaakiaawUhacaGL9baajugibiabg2da9OWaaiWaaeaajugibiaadA eakmaaCaaaleqajeaibaqcLbmacaWGYbaaaaGccaGL7bGaayzFaaaa aa@62AF@                  (19)

W= W d +{ W d b l r } b l r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE facqGH9aqpcaWGxbqcfa4aaWbaaSqabKqaGeaajugWaiaadsgaaaqc LbsacqGHRaWkjuaGdaGadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIy Raam4vaKqbaoaaCaaaleqajeaibaqcLbmacaWGKbaaaaGcbaqcLbsa cqGHciITcaWGIbWcdaqhaaqcbasaaKqzadGaamiBaaqcbasaaKqzad GaamOCaaaaaaaakiaawUhacaGL9baajugibiaadkgalmaaDaaajeai baqcLbmacaWGSbaajeaibaqcLbmacaWGYbaaaaaa@5546@  and var ( W )=E [ l W d b l R b l r ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiaadEfaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaamyraOWaamWa aeaadaaeqbqaamaalaaabaqcLbsacqGHciITcaWGxbGcdaahaaWcbe qcbasaaKqzadGaamizaaaaaOqaaKqzGeGaeyOaIyRaamOyaOWaaSba aKqaGeaajugWaiaadYgaaSqabaGcdaahaaWcbeqcbasaaKqzadGaam OuaaaaaaqcLbsacaWGIbWcdaWgaaqcbasaaKqzadGaamiBaaqcbasa baWcdaahaaqcbasabeaajugWaiaadkhaaaaaleaajugibiaadYgaaS qabKqzGeGaeyyeIuoaaOGaay5waiaaw2faamaaCaaaleqajeaibaqc LbmacaaIYaaaaaaa@571D@                     (20)

Where E [ ] and var (.) are the expectation and variance respectively. The variance can further be written as.28

var ( W )= l N l N diag [ W d b l R ( W d b l R ) T ]E( b l r , b l r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiaadEfaaOGaayjkaiaawMcaaKqzGeGaeyypa0JcdaaeWbqaamaa qahabaqcLbsacaWGKbGaamyAaiaadggacaWGNbaajeaibaqcLbmaca WGSbaajeaibaqcLbmacaWGobaajugibiabggHiLdaajeaibaqcLbma caWGSbaajeaibaqcLbmacaWGobaajugibiabggHiLdGcdaWadaqaam aalaaabaqcLbsacqGHciITcaWGxbGcdaahaaWcbeqcbasaaKqzadGa amizaaaaaOqaaKqzGeGaeyOaIyRaamOyaSWaaSbaaKqaGeaajugWai aadYgaaKqaGeqaaSWaaWbaaKqaGeqabaqcLbmacaWGsbaaaaaakmaa bmaabaWaaSaaaeaajugibiabgkGi2kaadEfakmaaCaaaleqajeaiba qcLbmacaWGKbaaaaGcbaqcLbsacqGHciITcaWGIbWcdaWgaaqcbasa aKqzadGaamiBaaqcbasabaWcdaahaaqcbasabeaajugWaiaadkfaaa aaaaGccaGLOaGaayzkaaWaaWbaaSqabKqaGeaajugWaiaadsfaaaaa kiaawUfacaGLDbaajugibiaadweakmaabmaabaqcLbsacaWGIbWcda WgaaqcbasaaKqzadGaamiBaaqcbasabaWcdaahaaqcbasabeaajugW aiaadkhaaaqcLbsacaGGSaGaamOyaSWaaSbaaKqaGeaajugWaiaadY gaaKqaGeqaaSWaaWbaaKqaGeqabaqcLbmacaWGYbaaaaGccaGLOaGa ayzkaaaaaa@7E00@                               (21)

var ( W )=( W d b l R )[ σ b ][ ρ ][ σ b ] ( W d b l R ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9yqqrpepu0dbbG8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiaadEfaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jcdaqadaqaamaa laaabaqcLbsacqGHciITcaWGxbGcdaahaaWcbeqcbasaaKqzadGaam izaaaaaOqaaKqzGeGaeyOaIyRaamOyaSWaaSbaaKqaGeaajugWaiaa dYgaaKqaGeqaaSWaaWbaaKqaGeqabaqcLbmacaWGsbaaaaaaaOGaay jkaiaawMcaamaadmaabaqcLbsacqaHdpWCkmaaBaaajeaibaqcLbma caWGIbaaleqaaaGccaGLBbGaayzxaaWaamWaaeaajugibiabeg8aYb GccaGLBbGaayzxaaWaamWaaeaajugibiabeo8aZPWaaSbaaKqaGeaa jugWaiaadkgaaSqabaaakiaawUfacaGLDbaadaqadaqaamaalaaaba qcLbsacqGHciITcaWGxbGcdaahaaWcbeqcbasaaKqzadGaamizaaaa aOqaaKqzGeGaeyOaIyRaamOyaSWaaSbaaKqaGeaajugWaiaadYgaaK qaGeqaaSWaaWbaaKqaGeqabaqcLbmacaWGsbaaaaaaaOGaayjkaiaa wMcaamaaCaaaleqajeaibaqcLbmacaWGubaaaaaa@6BFA@                                            (22)

Eq. (22) expresses the covariance of the deflection in terms of standard deviations (SD) of random variables bi (i=1, 2,…, R) and correlation coefficients.

Results and discussion

A nine noded Lagrange isoparamatric element, with 63 DOFs per element for the present HSDT model has been used for discretizing the laminate. Based on convergence study conducted a (8 × 8) mesh has been used throughout the study. In the all problem considered, the individual layers are taken be equal thickness.

The results are presented taking COV of the system property equal to 0.10.31 However, the scattering of system can be taken by allowing the COV to vary from 0 to 20% and the presented results would be sufficient to extrapolate the results keeping in mind the limitation of FOPT. The basic random system variables such as E1, E2, G12, G13, G23, υ12, α1, α2, k1, k2 and Q are sequenced and defined as

b 1 = E 11 , b 2 = E 22 , b 3 = G 12 , b 4 = G 13 , b 5 = G 23 , b 6 = α 1 , b 7 = α 2 , b 8 = β 2 , b 9 = k 1 , b 10 = k 2 , b 11 =Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GcdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiabg2da9iaadwea kmaaBaaajeaibaqcLbmacaaIXaGaaGymaaWcbeaajugibiaacYcaca aMe8UaaGjbVlaaysW7caWGIbGcdaWgaaqcbasaaKqzadGaaGOmaaWc beaajugibiabg2da9iaadweakmaaBaaajeaibaqcLbmacaaIYaGaaG OmaaWcbeaajugibiaacYcacaaMe8UaaGjbVlaaysW7caWGIbGcdaWg aaqcbasaaKqzadGaaG4maaWcbeaajugibiabg2da9iaadEeakmaaBa aajeaibaqcLbmacaaIXaGaaGOmaaWcbeaajugibiaacYcacaaMe8Ua aGjbVlaaysW7caWGIbGcdaWgaaqcbasaaKqzadGaaGinaaWcbeaaju gibiabg2da9iaadEeakmaaBaaajeaibaqcLbmacaaIXaGaaG4maaWc beaajugibiaacYcacaaMe8UaaGjbVlaaysW7caWGIbGcdaWgaaqcba saaKqzadGaaGynaaWcbeaajugibiabg2da9iaadEeakmaaBaaajeai baqcLbmacaaIYaGaaG4maaWcbeaajugibiaacYcacaaMe8UaamOyaO WaaSbaaKqaGeaajugWaiaaiAdaaSqabaqcLbsacaaMe8Uaeyypa0Ja aGjbVlabeg7aHPWaaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsaca GGSaGaaGjbVlaaygW7caWGIbGcdaWgaaqcbasaaKqzadGaaG4naaWc beaajugibiaaysW7cqGH9aqpcaaMe8UaeqySdeMcdaWgaaWcbaGaaG OmaaqabaqcLbsacaGGSaGaaGjbVlaaysW7caaMe8UaamOyaOWaaSba aKqaGeaajugWaiaaiIdaaSqabaqcLbsacaaMe8Uaeyypa0JaaGjbVl abek7aIPWaaSbaaSqaaiaaikdaaeqaaKqzGeGaaiilaiaaysW7caWG IbGcdaWgaaqcbasaaKqzadGaaGyoaaWcbeaajugibiaaysW7cqGH9a qpcaaMe8Uaam4AaOWaaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsa caGGSaGaaGjbVlaaysW7caWGIbGcdaWgaaqcbasaaKqzadGaaGymai aaicdaaSqabaqcLbsacaaMe8Uaeyypa0JaaGjbVlaadUgakmaaBaaa leaacaaIYaaabeaajugibiaacYcacaWGIbGcdaWgaaqcbasaaKqzad GaaGymaiaaigdaaSqabaqcLbsacaaMe8Uaeyypa0JaaGjbVlaadgfa aaa@CEA0@  

The following dimensionless linear transverse mean central deflection has been used in this study.

W 0l = W l /h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jh9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb addaWgaaqcbasaaKqzadGaaGimaiaadYgaaSqabaqcLbsacqGH9aqp caWGxbaddaWgaaqcbasaaKqzadGaamiBaaWcbeaajugibiaac+caca WGObaaaa@41F0@ , k 1 = K 1 b 4 / E 22 d h 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaK qbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0Jaam4s aKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaamOyaKqbao aaCaaaleqajeaibaqcLbmacaaI0aaaaKqzGeGaai4laiaadwealmaa DaaajeaibaqcLbmacaaIYaGaaGOmaaqcbasaaKqzadGaamizaaaaju gibiaadIgajuaGdaahaaWcbeqcbasaaKqzadGaaG4maaaaaaa@4F63@ ; k 2 = K 2 b 2 / E 22 d h 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaK qbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaeyypa0Jaam4s aKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaamOyaKqbao aaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaai4laiaadweajuaG daqhaaqcbasaaKqzadGaaGOmaiaaikdaaKqaGeaajugWaiaadsgaaa qcLbsacaWGObqcfa4aaWbaaSqabKqaGeaajugWaiaaiodaaaaaaa@4FE6@ ,

in which Wi, K1 and K1 dimensional mean transverse central deflection, dimensionless Winkler and Pasternak foundation stiffness parameters respectively.

In the present study,

various combination of boundary edge support conditions namely, simply supported (S1 and S2), clamped and combination of clamped and simply supported have been used and shown in.Figure 2

Figure 2 Schematic Diagram of Various Boundary Conditions.

The plate geometry used is characterized by aspect ratios (a/b) = 1and 2, side to thickness ratios (a/h) = 20, 30, 40, 50, 60, 80 and 100. The following material properties are used for computation Shen:12

Validation study for mean and random transverse central deflection

Validation study for mean transverse central deflection

Table 1 compares the hygrothermal effects on the linear and non-linear bending behavior of a (±450)2T laminated square plate, dimensionless load deflection (Q) where (Q= q b4/E22h4=100, 150, 200), fiber volume fraction (Vf =0.6), plate thickness ratio (a/h =10), simple support SSSS (S2) boundary conditions and under environmental conditions. It is noticed that present [HSDT] result for mean hygrothermal deflection are in good agreement with the deterministic results of.12 Figure 3 compares the hygrothermal effects on the linear and non-linear bending behavior of a (±450)2T laminated square plate, dimensionless load deflection (Q) where (Q= q b4/E22h4=100, 150, 200), fiber volume fraction (Vf =0.6), plate thickness ratio (a/h =10), simple support SSSS (S2) boundary conditions and under environmental conditions. It is noticed that present [HSDT] result for mean hygrothermal deflection are in good agreement with the deterministic results of.12

(Q)

Non-Dimensional Hygrothermal Bending Load

Shen 12

Present[HSDT]

Shen 12

Present[ HSDT]

ΔT= 0 0 C, ΔC=0% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaaicdakmaaCaaaleqa baGaaGimaaaajugibiaacoeacaGGSaGaaeiiaiabfs5aejaadoeacq GH9aqpcaaIWaGaaiyjaaaa@446A@

ΔT= 0 0 C, ΔC=0% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaaicdakmaaCaaaleqa baGaaGimaaaajugibiaacoeacaGGSaGaaeiiaiabfs5aejaadoeacq GH9aqpcaaIWaGaaiyjaaaa@446A@

ΔT=300, ΔC=3% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaaiodacaaIWaGaaGim aiaacYcacaqGGaGaeuiLdqKaam4qaiabg2da9iaaiodacaGGLaaaaa@439D@

ΔT=300, ΔC=3% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaaiodacaaIWaGaaGim aiaacYcacaqGGaGaeuiLdqKaam4qaiabg2da9iaaiodacaGGLaaaaa@439D@

Non-linear

Linear

Non-linear

Non-linear

Linear

Non-linear

100

0.6887

1.328

0.6952

0.6261

0.9377

0.6222

150

0.8857

1.5801

0.883

0.7126

1.1067

0.7264

200

0.9909

1.7325

0.9989

0.777

1.1837

0.768

Table 1 Comparison of Hygrothermal Effects on the Linear and Non-linear Bending Behavior of a (±450)2T Laminated Square Plate, Load Deflection (Q) where Q= q b4/E22h4, Fiber Volume Fraction (Vf) =0.6, Plate Thickness Ratio (a/h) =10, Simple Support SSSS (S2) Boundary Conditions under Environmental Conditions

  • Figure 3 Validation study of dimensionless transverse central deflection of angle-ply square laminated composite plate subjected to linearly varying temperature.

    Validation study for random transverse central deflection

     Validation study for random hygrothermal central deflection of material properties (E22), plate thickness ratio (a/h) =30, aspect ratio (a/b) =1, rise in temperature ( ΔT= 200 0 C ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaKqzGeaeaaaaaaaaa8qacqqHuoarcaWGubGaeyypa0JaaGOmaiaa icdacaaIWaGcpaWaaWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGe Gaam4qaaGcpaGaayjkaiaawMcaaaaa@4310@ , rise in moisture concentration ( ΔC=2% ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqada qaaKqzGeaeaaaaaaaaa8qacqqHuoarcaWGdbGaeyypa0JaaGOmaiaa cwcaaOWdaiaawIcacaGLPaaaaaa@3E75@ , simple support SSSS (S2), fiber volume fraction (Vf=0.6) , dimensionless load deflection (Q =100), angle ply antisymmetric (±450)2T laminated composite plate resting on Winkler (k1=100, k2=00) and Pasternak( k1=100, k2=10) elastic foundations is shown in Figure 4. It is seen that present FOPT results are satisfactory with the MCS results.


  • Figure 4 Validation of present SFEM results with independent MCS results of laminate composite square plates resting on Winkler and Pasternak elastic foundations, subjected hygrothermal lateral loading having SSSS (S2) support condition for only one system properties E22.

    In (Table 2a) (Table 2b), it is observed that as increases the lateral pressure, the mean transverse central deflection increases and corresponding coefficient of variation decreases. It is noticed that expected mean transverse central deflection (W0l) value of individual random variables of hygrothermal deflection decreases for Winkler elastic foundation and it further decreases for Pasternak elastic foundation whereas COV of hygrothermal deflection increases on rise in temperature and moisture concentration as shown in Figure 5.

    (bi)

    (k1=100, k2=00)

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  100 0 C, ΔC=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIXaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa igdaaaa@4820@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    ΔT= 300 0 C, ΔC=0.03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9OGaaG4ma8aacaaIWaGa aGimamaaCaaaleqabaGaaGimaaaajugib8qacaWGdbGaaiilaiaabc cacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6cacaaIWaGaaG4maaaa @4781@

    COV, Wl,

    COV, Wl,

    COV, Wl,

    COV, Wl,

    E 11 (i=1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGym aaWcpaqabaqcfaOaaiikaiaadMgacqGH9aqpcaaIXaGaaiykaaaa@3FBB@

    (0.0351) 2.14e-07

    (0.0312) 6.15e-06

    (0.0273) 1.83e-05

    (0.0234) 3.87e-05

    E 22 (i=2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIYaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaIYaGaaiykaaaa@3F71@

    0.0024

    5.00E-04

    3.27E-04

    3.11E-04

    G 12 (i=3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIYaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaIZaGaaiykaaaa@3F73@

    5.06E-07

    1.31E-06

    3.35E-06

    5.76E-06

    G 13 (i=4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIZaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaI0aGaaiykaaaa@3F75@

    1.81E-05

    2.12E-05

    2.26E-05

    2.15E-05

    G 23 (i=5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIZaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaI1aGaaiykaaaa@3F77@

    9.08E-06

    1.06E-05

    1.13E-05

    1.07E-05

    V 12 (i=6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSbaaKqbGeaacaaIXaGaaGOmaaqcfayabaqcLbsacaGGOaGa amyAaiabg2da9iaaiAdacaGGPaaaaa@3EDE@

    7.19E-05

    7.19E-06

    4.77E-06

    7.14E-06

    α 11 (i=7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcfasaaiaaigdacaaIXaaajuaGbeaajugibiaacIca caWGPbGaeyypa0JaaG4naiaacMcaaaa@3FA2@

    1.53E-11

    8.77E-11

    1.58E-10

    1.86E-10

    α 22 (i=8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcfasaaiaaikdacaaIYaaajuaGbeaajugibiaacIca caWGPbGaeyypa0JaaGioaiaacMcaaaa@3FA5@

    4.05E-12

    2.10E-10

    6.75E-10

    1.40E-09

    β 2 ( i=9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeqOSdiMcdaWgaaqcbasaaKqzadGaaGOmaaWcbeaa k8aadaqadaqaaKqzGeWdbiaadMgacqGH9aqpcaaI5aaak8aacaGLOa Gaayzkaaaaaa@4136@

    7.42E-10

    4.11E-08

    1.31E-07

    2.73E-07

    k 1  ( i=10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaiiO aaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadMgacqGH9aqpcaaIXa GaaGimaaGcpaGaayjkaiaawMcaaaaa@41F6@

    6.76E-06

    7.00E-06

    7.32E-06

    7.77E-06

    k 2 ( i=11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamyAaiabg2da9iaaigdacaaIXa aak8aacaGLOaGaayzkaaaaaa@40D4@

    0

    0

    0

    0

    Q( i=12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamyuaOWdamaabmaabaqcLbsapeGaamyAaiabg2da 9iaaigdacaaIYaaak8aacaGLOaGaayzkaaaaaa@3ED5@

    2.52E-04

    2.61E-04

    2.73E-04

    2.88E-04

    Table 2(A) Effects of the Variation of Individual Random System Properties bi, [{(i =1 to 12), = 0.10] on the Dimensionless Expected Mean (W0l) and Coefficient of Variation (Wl) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Winkler (k1=100,k2=00) Elastic Foundations, Subjected to Uniform Constant Temperature and Moisture (U.T), in-plane Bi-axial Compression, Plate Thickness Ratio (a/h=20), with Simple Support S2 Boundary Conditions. The Dimensionless Mean Hygrothermal Deflections are given in Brackets. Load Deflection Q=100, Fiber Volume Fraction (Vf=0.6)

    (bi)

    (k1=100,k2=10)

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  100 0 C, ΔC=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIXaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa igdaaaa@4820@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    ΔT= 300 0 C, ΔC=0.03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9OGaaG4ma8aacaaIWaGa aGimamaaCaaaleqabaGaaGimaaaajugib8qacaWGdbGaaiilaiaabc cacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6cacaaIWaGaaG4maaaa @4781@

    COV, Wl,

    COV, Wl,

    COV, Wl,

    SD/Mean, Wl,

    E 11 (i=1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaGym aaWcpaqabaqcfaOaaiikaiaadMgacqGH9aqpcaaIXaGaaiykaaaa@3FBB@

    (0.0330) 1.07e-05

    (0.0291)3.26e-06

    (0.0253) 8.63e-06

    COV, Wl,

    E 22 (i=2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIYaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaIYaGaaiykaaaa@3F71@

    0.0012

    3.63E-04

    2.98E-04

    3.01E-04

    G 12 (i=3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIYaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaIZaGaaiykaaaa@3F73@

    1.03E-07

    1.18E-06

    2.68E-06

    4.48E-06

    G 13 (i=4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIZaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaI0aGaaiykaaaa@3F75@

    7.42E-06

    6.09E-06

    2.43E-06

    4.57E-06

    G 23 (i=5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIZaaaleqaaKqzGeGaaiik aiaadMgacqGH9aqpcaaI1aGaaiykaaaa@3F77@

    3.71E-06

    3.04E-06

    1.21E-06

    2.28E-06

    V 12 (i=6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSbaaKqbGeaacaaIXaGaaGOmaaqcfayabaqcLbsacaGGOaGa amyAaiabg2da9iaaiAdacaGGPaaaaa@3EDE@

    0.0017

    1.08E-04

    1.20E-05

    2.51E-07

    α 11 (i=7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcfasaaiaaigdacaaIXaaajuaGbeaajugibiaacIca caWGPbGaeyypa0JaaG4naiaacMcaaaa@3FA2@

    2.03E-10

    3.10E-10

    4.21E-10

    5.30E-10

    α 22 (i=8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcfasaaiaaikdacaaIYaaajuaGbeaajugibiaacIca caWGPbGaeyypa0JaaGioaiaacMcaaaa@3FA5@

    2.17E-09

    1.81E-09

    1.39E-09

    8.93E-10

    β 2 ( i=9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeqOSdiMcdaWgaaqcbasaaKqzadGaaGOmaaWcbeaa k8aadaqadaqaaKqzGeWdbiaadMgacqGH9aqpcaaI5aaak8aacaGLOa Gaayzkaaaaaa@4136@

    4.16E-07

    3.47E-07

    5.82E-06

    1.67E-07

    k 1  ( i=10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaGaaiiO aaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadMgacqGH9aqpcaaIXa GaaGimaaGcpaGaayjkaiaawMcaaaaa@41F6@

    5.63E-06

    5.70E-06

    5.82E-06

    5.98E-06

    k 2 ( i=11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamyAaiabg2da9iaaigdacaaIXa aak8aacaGLOaGaayzkaaaaaa@40D4@

    5.29E-06

    5.59E-06

    5.79E-06

    5.85E-06

    Q( i=12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamyuaOWdamaabmaabaqcLbsapeGaamyAaiabg2da 9iaaigdacaaIYaaak8aacaGLOaGaayzkaaaaaa@3ED5@

    2.52E-04

    2.64E-04

    2.78E-04

    2.93E-04

    Table 2(B) Effects of the Variation of Individual Random System Properties bi, [{(i =1 to 12), = 0.10] on the Dimensionless Expected Mean (W0l) and Coefficient of Variation (Wl) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Pasternak (k1=100, k2=10) Elastic Foundations, Subjected to Uniform Constant Temperature and Moisture (U.T), in-plane Bi-axial Compression, Plate Thickness Ratio (a/h=20), with Simple Support S2 Boundary Conditions. The Dimensionless Mean Hygrothermal Deflections are given in Brackets. Load Deflection Q=100, Fiber Volume Fraction (Vf=0.6)




  • Figure 5 COV for various combinations of random input variables and other variables.

    For the same lateral pressure and temperature distribution, it is seen that the COV of transverse central deflection becomes more important as the plate thickness decreases i.e., a/h increases (Table 3). It is seen that on variations of thickness ratio the mean (W0l) hygrothermal deflection increases whereas COV of hygrothermal deflection decreases with different combinations of input random variables when laminated composite plates resting on Winkler and for Pasternak elastic foundations hygrothermal deflection decreases further with different combinations of input random variables in Figure 6.

    a/h

    (k1=100, k2=00)

    (k1=100, k2=10)

    Mean, W0l

    Mean, W0l

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    5

    0.0126

    0.0097

    0.0304

    0.0261

    10

    0.0278

    0.0228

    0.0314

    0.0268

    30

    0.0377

    0.0285

    0.0338

    0.0229

    50

    0.0411

    0.0332

    0.0351

    0.0227

    100

    0.0449

    0.0256

    0.0364

    0.0175

    Table 3 Effects of Plate Thickness Ratios (a/h) with Random Input Variables bi, [{(i =1 to 9), (7..9), (10,11) and (12)} = 0.10] on the Dimensionless Expected Mean (W0l) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) Elastic Foundations, Subjected to Uniform Constant Temperature (U.T), and In-plane Bi-axial Compression with Simple Support S2 Boundary Conditions. Load Deflection Q=100, Fiber Volume Fraction (Vf=0.6)


  • Figure 6 COV for various combinations of random input variables and other variables.

    In Table 4, it is noticed that on increase of aspect ratio the mean (W0l) hygrothermal central deflection value increases for Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) elastic foundations whereas COV of hygrothermal deflection decreases for all different combinations of input random variables, it is more dominant for Pasternak elastic foundations as shown in Figure 7.

    a/b

    (k1=100, k2=00)

    (k1=100, k2=10)

    Mean, W0l

    Mean, W0l

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    0.5

    0.0027

    0.0024

    0.0024

    0.0019

    1

    0.0395

    0.0308

    0.0345

    0.0223

    1.5

    0.1947

    0.1314

    0.1562

    0.1049

    2

    0.5555

    0.3814

    0.4088

    0.29

    Table 4 Effects of Aspect Ratios (a/b) with Random Input Variables bi, [{(i =1 to 9), (7..9), (10,11) and (12)} = 0.10] on the Dimensionless Expected Mean (W0l) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) Elastic Foundations, Plate Thickness Ratios (a/h=40). Subjected to Uniform Constant Temperature (U.T), and In-plane Bi-axial Compression with Simple Support S2 Boundary Conditions. Load Deflection Q=100, Fiber Volume Fraction (Vf=0.6)


  • Figure 7 COV for various combinations of random input variables and other variables.

    In Table 5 it is noticed that combined simple support and clamped support CSCS have significance effects on mean (W0l) hygrothermal deflection with different combinations of input random variables under environmental conditions. However the COV of hygrothermal deflection also varies accordingly under given environmental conditions and different combinations of input random variables for square composite plates resting on Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) elastic foundations, mean and COV are significant for ΔT = 200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiaabccacqGH9aqpcaaIYaGaaGim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGOmaaaa@497A@ Pasternak(k1=100,k2=10) elastic foundations as shown in Figure 8.

    BCs

    (k1=100, k2=00)

    (k1=100, k2=10)

    Mean, W0l

    Mean, W0l

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    SSSS (S1)

    0.0426

    0.0346

    0.0358

    0.0232

    SSSS (S2)

    0.0426

    0.0345

    0.0357

    0.0231

    CCCC

    0.0423

    0.0411

    0.0353

    0.0358

    CSCS

    0.0408

    0.0686

    0.0391

    0.0777

    Table 5 Effects of Support Conditions with Random Input Variables bi, [{(i =1 to 9), (7..9), (10,11) and (12)} = 0.10] on the Dimensionless Expected Mean (W0l) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) Elastic Foundations, Plate Thickness Ratios (a/h=60). Subjected to Uniform Constant Temperature (U.T), and In-plane Bi-axial Compression with Simple Support S2 Boundary Conditions. Load Deflection Q=100, Fiber Volume Fraction (Vf=0.6)


  • Figure 8 COV for various combinations of random input variables and other variables.

    In Table 6, it is observed that on change of lamina layup the mean (W0l) of hygrothermal central deflection decreases significantly for cross ply symmetric plate. The COV of hygrothermal central deflection also decreases for different combinations of input random variables. It is significant to note for cross ply symmetric plates with ΔT = 200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiaabccacqGH9aqpcaaIYaGaaGim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGOmaaaa@497A@ and Pasternak elastic foundations as shown in Figure 9.

    Lay-up

    (k1=100, k2=00)

    (k1=100, k2=10)

    Mean, W0l

    Mean, W0l

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    (±450)2T

    (k1=100, k2=00)

    (k1=100, k2=10)

    (k1=100, k2=00)

    (k1=100, k2=10)

    (±450)S

    0.0335

    0.0268

    0.0302

    0.0239

    [00/900]2T

    0.0226

    0.0178

    0.0202

    0.0156

    [00/900] S

    0.0107

    0.0088

    0.0101

    0.0082

    Table 6 Effects of Lay-Up with Random Input Variables bi, [{(i =1 to 9), (7..9), (10,11) and (12)} = 0.10] on the Dimensionless Expected Mean (W0l) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) Elastic Foundations, Plate Thickness Ratios (a/h=50). Subjected to Uniform Constant Temperature (U.T), and In-plane Bi-axial Compression with Simple Support S2 Boundary Conditions. Load Deflection Q=100, Fiber Volume Fraction (Vf=0.6)


  • Figure 9 COV for various combinations of random input variables and other variables.

    In Table 7, it is seen that on increasing load deflection the mean (W0l) hygrothermal central deflection increases in given environmental conditions and different combinations of input random variables .The central deflection value and COV of hygrothermal central deflection decreases in similar conditions and important to note for plates with ΔT = 200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiaabccacqGH9aqpcaaIYaGaaGim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGOmaaaa@497A@  and Pasternak elastic foundations as shown in Figure 10.

    (Q)

    (k1=100, k2=00)

    (k1=100, k2=10)

    Mean, W0l

    Mean, W0l

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    100

    0.0377

    0.0285

    0.0338

    0.0229

    150

    0.0563

    0.0476

    0.0501

    0.0392

    200

    0.0698

    0.063

    0.0616

    0.0523

    Table 7 Effects of Load Deflections (Q) with Random Input Variables bi, [{(i =1 to 9), (7..9), (10,11) and (12)} = 0.10] on the Dimensionless Expected Mean (W0l) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) Elastic Foundations, Plate Thickness Ratios (a/h=30). Subjected to Uniform Constant Temperature (U.T), and In-plane Bi-axial Compression with Simple Support S2 Boundary Conditions. Fiber Volume Fraction (Vf=0.6)


  • Figure 10 COV for various combinations of random input variables and other variables.

    In Table 8, it is noticed that on varying fiber matrix volume fraction the mean (W0l) hygrothermal central deflection increases in given environmental conditions and different combinations of input random variables whereas the value of COV of hygrothermal central deflection also varies in similar conditions. It is to be noted for Pasternak elastic foundations and plates with ΔT = 200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiaabccacqGH9aqpcaaIYaGaaGim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGOmaaaa@497A@  as shown in Figure 11.

    (Vf)

    (k1=100, k2=00)

    (k1=100, k2=10)

    Mean, W0l

    Mean, W0l

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    ΔT=  0 0 C, ΔC=0.00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaaicda aaa@4802@

    ΔT=  200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccak8aacaaIYaGa aGimaiaaicdadaahaaWcbeqaaiaaicdaaaqcLbsapeGaam4qaiaacY cacaqGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaiaa ikdaaaa@4822@

    0.50

    0.0381

    0.0289

    0.0332

    0.0209

    0.55

    0.0385

    0.0296

    0.0336

    0.0213

    0.60

    0.0395

    0.0308

    0.0345

    0.0223

    0.65

    0.0413

    0.0327

    0.0361

    0.024

    0.70

    0.044

    0.0355

    0.0385

    0.0265

    Table 8 Effects of Fibre Volume Fractions (Vf) with Random Input Variables bi, [{(i =1 to 9), (7..9), (10,11) and (12)} = 0.10] on the Dimensionless Expected Mean (W0l) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) Elastic Foundations, Plate Thickness Ratios (a/h=40). Subjected to Uniform Constant Temperature (U.T), and In-plane Bi-axial Compression with Simple Support S2 Boundary Conditions. Load Deflection (Q)=100

    In Table 9, it is noticed that on increasing temperature and moisture the mean (W0l) hygrothermal central deflection decreases in given environmental conditions and different combinations of input random variables whereas the value of COV of hygrothermal central deflection increases in similar conditions as noticed for plates with ΔT = 200 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiaabccacqGH9aqpcaaIYaGaaGim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGOmaaaa@497A@  and Pasternak (k1=100,k2=10) elastic foundations as shown in Figure 12.

    Environmental conditions

    (k1=100, k2=00)

    (k1=100, k2=10)

    W0l

    W0l

    ΔT=  0 0 C, ΔC=0.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaaIWaGcpaWa aWbaaSqabKqaGeaajugWa8qacaaIWaaaaKqzGeGaam4qaiaacYcaca qGGaGaeuiLdqKaam4qaiabg2da9iaaicdacaGGUaGaaGimaaaa@4748@

    0.0533

    0.0488

    ΔT= 10 0 0 C, ΔC=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaqGXaGaaeim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGymaaaa@496A@

    0.0486

    0.0438

    ΔT= 20 0 0 C, ΔC=0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaqGYaGaaeim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGOmaaaa@496C@

    0.0436

    0.0388

    ΔT= 30 0 0 C, ΔC=0.03 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaqGZaGaaeim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaG4maaaa@496E@

    0.0384

    0.0338

    ΔT= 40 0 0 C, ΔC=0.04 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaqG0aGaaeim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGinaaaa@4970@

    0.033

    0.0288

    ΔT= 50 0 0 C, ΔC=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaeuiLdqKaamivaiabg2da9iaabccacaqG1aGaaeim aiaaicdak8aadaahaaWcbeqcbasaaKqzadWdbiaaicdaaaqcLbsaca WGdbGaaiilaiaabccacqqHuoarcaWGdbGaeyypa0JaaGimaiaac6ca caaIWaGaaGynaaaa@4972@

    0.0276

    0.0238

    Table 9 Effects of Temperature and Moisture Rise (ΔT, ΔC) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aacIcaqaaaaaaaaaWdbiabfs5aejaadsfacaGGSaGaaeiiaiabfs5a ejaadoeapaGaaiykaaaa@3F62@ with Random Input Variables bi, [{(i =1 to 9), (7..9), (10,11) and (12)} = 0.10] on the Dimensionless Expected Mean (W0l) of Hygrothermomechanically Induced Central Deflection of Angle Ply (±450)2T Square Laminated Composite Plates Resting on Winkler (k1=100,k2=00) and Pasternak(k1=100,k2=10) Elastic Foundations, Plate Thickness Ratios (a/h=20). Subjected to Uniform Constant Temperature (U.T), and In-plane Bi-axial Compression with Simple Support S2 Boundary Conditions. Load Deflection (Q)=150, Fiber Volume Fraction (Vf=0.6)


  • Figure 11 COV for various combinations of random input variables and other variables.


  • Figure 12 COV for various combinations of random input variables and other variables.

    Conclusion

    A C0 SFEM probabilistic procedure is adopted to compute the second order statistics of transverse central deflection of geometrically linear laminated composite plate in the framework of HSDT with randomness in material properties, coefficients of thermal expansion and coefficients of hygroscopic expansion, elastic foundation parameters and lateral loading.

    Among the different system properties studied, the elastic moduli, elastic foundation parameters, lateral loading and environmental conditions have dominant effect on the COV of the transverse deflection when compared to other system properties subjected to uniform and linearly varying temperature distribution. In order to assess the effects of temperature and moisture on the bending behavior of shear deformable laminated plates, a theoretical analysis is developed based on a micro mechanical model.

    The COV of the hygrothermomechanically induced transverse central deflection of the plate increases as distribution in lateral pressure increases, this bring out importance of considering hygrothermomechanical loading along with lateral pressure from design point of view specially in aerospace and other sensitive application where reliability of the components is important. Tight controls of these properties are therefore required for high reliability of the plate design. The flexural response of the laminated composite plate deteriorates considerably with the increase in temperature and moisture concentration and this hygrothermal environment becomes more detrimental as the working temperature reaches higher temperature.

    Appendix

    ( A ij , B ij , D ij , E ij , F ij , H ij )= h/2 h/2 Q ij ( 1,z, z 2 , z 3 , z 4 , z 6 ) dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiaadgeakmaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaajugi biaacYcacaWGcbGcdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqaba qcLbsacaGGSaGaamiraOWaaSbaaKqaGeaajugWaiaadMgacaWGQbaa leqaaKqzGeGaaiilaiaadweakmaaBaaajeaibaqcLbmacaWGPbGaam OAaaWcbeaajugibiaacYcacaWGgbGcdaWgaaqcbasaaKqzadGaamyA aiaadQgaaSqabaqcLbsacaGGSaGaamisaOWaaSbaaKqaGeaajugWai aadMgacaWGQbaaleqaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpkmaa pedabaqcLbsacaWGrbGcdaWgaaqcbasaaKqzadGaamyAaiaadQgaaS qabaGcdaqadaqaaKqzGeGaaGymaiaacYcacaWG6bGaaiilaiaadQha kmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaaiilaiaadQhakm aaCaaaleqajeaibaqcLbmacaaIZaaaaKqzGeGaaiilaiaadQhakmaa CaaaleqajeaibaqcLbmacaaI0aaaaKqzGeGaaiilaiaadQhakmaaCa aaleqajeaibaqcLbmacaaI2aaaaaGccaGLOaGaayzkaaaajeaibaqc LbmacqGHsislcaWGObGaai4laiaaikdaaKqaGeaajugWaiaadIgaca GGVaGaaGOmaaqcLbsacqGHRiI8aiaadsgacaWG6baaaa@80EB@ ;           (i,j=1,2,6)  
    ( A ij , D ij , F ij )= h/2 h/2 Q ij ( 1, z 2 , z 4 ) dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiaadgeakmaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaajugi biaacYcacaWGebGcdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqaba qcLbsacaGGSaGaamOraOWaaSbaaKqaGeaajugWaiaadMgacaWGQbaa leqaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpkmaapedabaqcLbsaca WGrbGcdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqabaGcdaqadaqa aKqzGeGaaGymaiaacYcacaWG6bGcdaahaaWcbeqcbasaaKqzadGaaG OmaaaajugibiaacYcacaWG6bGcdaahaaWcbeqcbasaaKqzadGaaGin aaaaaOGaayjkaiaawMcaaaqcbasaaKqzadGaeyOeI0IaamiAaiaac+ cacaaIYaaajeaibaqcLbmacaWGObGaai4laiaaikdaaKqzGeGaey4k IipacaWGKbGaamOEaaaa@65C9@ ;        (i,j=4,5)
    [ K b ]= i=1 n A ( e ) [ B b ( e ) ] T [ D b ][ B b ( e ) ]dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGlbGcdaWgaaqcbasaaKqzadGaamOyaaWcbeaaaOGaay5waiaa w2faaKqzGeGaeyypa0JcdaaeWbqaamaapebabaWaamWaaeaajugibi aadkeakmaaBaaajeaibaqcLbmacaWGIbaaleqaaOWaaWbaaSqabKqa GeaalmaabmaajeaibaqcLbmacaWGLbaajeaicaGLOaGaayzkaaaaaa GccaGLBbGaayzxaaWaaWbaaSqabKqaGeaajugWaiaadsfaaaaaleaa jugibiaadgeakmaaCaaameqajiaqbaWcdaqadaqccauaaKqzadGaam yzaaqccaKaayjkaiaawMcaaaaaaSqabKqzGeGaey4kIipaaKqaGeaa jugWaiaadMgacqGH9aqpcaaIXaaajeaibaqcLbmacaWGUbaajugibi abggHiLdGcdaWadaqaaKqzGeGaamiraOWaaSbaaKqaGeaajugWaiaa dkgaaSqabaaakiaawUfacaGLDbaadaWadaqaaKqzGeGaamOqaOWaaS baaKqaGeaajugWaiaadkgaaSqabaGcdaahaaWcbeqcbasaaSWaaeWa aKqaGeaajugWaiaadwgaaKqaGiaawIcacaGLPaaaaaaakiaawUfaca GLDbaajugibiaadsgacaWGbbaaaa@6DD2@ ;
    [ K s ]= i=1 n A ( e ) [ B s ( e ) ] T [ D s ][ B s ( e ) ]dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGlbGcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaOGaay5waiaa w2faaKqzGeGaeyypa0JcdaaeWbqaamaapebabaWaamWaaeaajugibi aadkeakmaaBaaaleaajugibiaadohaaSqabaGcdaahaaWcbeqaaOWa aeWaaSqaaKqzGeGaamyzaaWccaGLOaGaayzkaaaaaaGccaGLBbGaay zxaaWaaWbaaSqabKqaGeaajugWaiaadsfaaaaaleaajugibiaadgea kmaaCaaameqajiaqbaWcdaqadaqccauaaKqzadGaamyzaaqccaKaay jkaiaawMcaaaaaaSqabKqzGeGaey4kIipaaKqaGeaajugWaiaadMga cqGH9aqpcaaIXaaajeaibaqcLbmacaWGUbaajugibiabggHiLdGcda WadaqaaKqzGeGaamiraOWaaSbaaKqaGeaajugWaiaadohaaSqabaaa kiaawUfacaGLDbaadaWadaqaaKqzGeGaamOqaOWaaSbaaKqaGeaaju gWaiaadohaaSqabaGcdaahaaWcbeqcbasaaSWaaeWaaKqaGeaajugW aiaadwgaaKqaGiaawIcacaGLPaaaaaaakiaawUfacaGLDbaajugibi aadsgacaWGbbaaaa@6C50@
    [ K G ] e = A [ B NL ] T { φ }dA = A [ G ] T [ φ ][ G ]dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGlbGcdaWgaaqcbasaaKqzadGaam4raaWcbeaaaOGaay5waiaa w2faamaaCaaaleqajeaibaqcLbmacaWGLbaaaKqzGeGaeyypa0Jcda WdraqaamaadmaabaqcLbsacaWGcbGcdaWgaaqcbasaaKqzadGaamOt aiaadYeaaSqabaaakiaawUfacaGLDbaadaahaaWcbeqcbasaaKqzad GaamivaaaakmaacmaabaqcLbsacqaHgpGAaOGaay5Eaiaaw2haaKqz GeGaamizaiaadgeaaKqaGeaajugWaiaadgeaaSqabKqzGeGaey4kIi pacqGH9aqpkmaapebabaWaamWaaeaajugibiaadEeaaOGaay5waiaa w2faamaaCaaaleqajeaibaqcLbmacaWGubaaaOWaamWaaeaajugibi abeA8aQbGccaGLBbGaayzxaaWaamWaaeaajugibiaadEeaaOGaay5w aiaaw2faaKqzGeGaamizaiaadgeaaKqaGeaajugWaiaadgeaaSqabK qzGeGaey4kIipaaaa@695C@
    [ K f ]= 1 2 A [ B f ] T [ D f ][ B f ]dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaajuaGba qcLbsacaWGlbGcdaWgaaqcKvay=haajugWaiaadAgaaKqbagqaaaGa ay5waiaaw2faaKqzGeGaeyypa0JcdaWcaaqcfayaaKqzGeGaaGymaa qcfayaaKqzGeGaaGOmaaaakmaapebajuaGbaGcdaWadaqcfayaaKqz GeGaamOqaOWaaSbaaKqbagaajugibiaadAgaaKqbagqaaaGaay5wai aaw2faaOWaaWbaaKqbagqajqwbG9FaaKqzadGaamivaaaakmaadmaa juaGbaqcLbsacaWGebGcdaWgaaqcfasaaKqzadGaamOzaaqcfayaba aacaGLBbGaayzxaaGcdaWadaqcfayaaKqzGeGaamOqaOWaaSbaaKqb GeaajugWaiaadAgaaKqbagqaaaGaay5waiaaw2faaKqzGeGaamizai aadgeaaKazfa2=baqcLbmacaWGbbaajuaGbeqcLbsacqGHRiI8aaaa @6669@
    { q }= e=1 NE { Λ } ( e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaqcLb sacaWGXbaakiaawUhacaGL9baajugibiabg2da9OWaaabCaeaadaGa daqaaKqzGeGaeu4MdWeakiaawUhacaGL9baadaahaaWcbeqcbasaaS WaaeWaaKqaGeaajugWaiaadwgaaKqaGiaawIcacaGLPaaaaaaajeaq baqcLboacaWGLbGaeyypa0JaaGymaaqcbasaaKqzadGaamOtaiaadw eaaKqzGeGaeyyeIuoaaaa@4DCE@
    [ F T ]= i=1 n A ( e ) [ [ B 1i ( e ) ] T [ N T ]+ [ B b1i ( e ) ] T [ M T ]+ [ B b2i ( e ) ] T [ P T ] ]dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGgbGcdaahaaWcbeqcbasaaKqzadGaamivaaaaaOGaay5waiaa w2faaKqzGeGaeyypa0JcdaaeWbqaamaapebabaWaamWaaeaadaWada qaaKqzGeGaamOqaOWaaSbaaKqaGeaajugWaiaaigdacaWGPbaaleqa aOWaaWbaaSqabeaakmaabmaaleaajugibiaadwgaaSGaayjkaiaawM caaaaaaOGaay5waiaaw2faamaaCaaaleqajeaibaqcLbmacaWGubaa aOWaamWaaeaajugibiaad6eakmaaCaaaleqajeaibaqcLbmacaWGub aaaaGccaGLBbGaayzxaaqcLbsacqGHRaWkkmaadmaabaqcLbsacaWG cbGcdaWgaaqcbasaaKqzadGaamOyaiaaigdacaWGPbaaleqaaOWaaW baaSqabKqaGeaalmaabmaajeaibaqcLbmacaWGLbaajeaicaGLOaGa ayzkaaaaaaGccaGLBbGaayzxaaWaaWbaaSqabKqaGeaajugWaiaads faaaGcdaWadaqaaKqzGeGaamytaOWaaWbaaSqabKqaGeaajugWaiaa dsfaaaaakiaawUfacaGLDbaajugibiabgUcaROWaamWaaeaajugibi aadkeakmaaBaaajeaqbaqcLbmacaWGIbGaaGOmaiaadMgaaSqabaGc daahaaWcbeqcbasaaSWaaeWaaKqaGeaajugWaiaadwgaaKqaGiaawI cacaGLPaaaaaaakiaawUfacaGLDbaadaahaaWcbeqcbasaaKqzadGa amivaaaakmaadmaabaqcLbsacaWGqbGcdaahaaWcbeqcbasaaKqzad GaamivaaaaaOGaay5waiaaw2faaaGaay5waiaaw2faaKqzGeGaamiz aiaadgeaaSqaaKqzGeGaamyqaOWaaWbaaWqabKGaafaalmaabmaaji aqbaqcLbmacaWGLbaajiaqcaGLOaGaayzkaaaaaaWcbeqcLbsacqGH RiI8aaqcbasaaKqzadGaamyAaiabg2da9iaaigdaaKqaafaajug4ai aad6gaaKqzGeGaeyyeIuoaaaa@9097@ .

    where

    [ D b ]=[ φ i , x 0 0 0 0 0 0 φ i , y 0 0 0 0 0 0 0 φ i , x 0 0 0 0 0 0 φ i , y 0 0 0 0 0 0 0 φ i , x 0 0 0 0 0 0 φ i , y 0 0 0 0 0 0 0 C 1 φ i , x 0 0 0 0 0 0 0 C 1 φ i , y 0 0 0 0 0 C 1 φ i , y C 1 φ i , x 0 0 0 0 0 C 2 φ i , x 0 C 2 φ i , x 0 0 0 0 0 C 2 φ i , y 0 C 2 φ i , y 0 0 0 C 2 φ i , y C 2 φ i , x C 2 φ i , y C 2 φ i , x φ i , x ]{ q } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGebGcdaWgaaqcbasaaKqzadGaamOyaaWcbeaaaOGaay5waiaa w2faaKqzGeGaeyypa0JcdaWadaqaaKqzGeqbaeqabWWbaaaaaaaake aajugibiabeA8aQTWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqz adGaaiilaSWaaSbaaKqaGeaajugWaiaadIhaaKqaGeqaaaGcbaqcLb sacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsa caaIWaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacq aHgpGAlmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugWaiaacYca lmaaBaaajeaibaqcLbmacaWG5baajeaibeaaaOqaaKqzGeGaaGimaa GcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGc baqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGcba qcLbsacqaHgpGAlmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugW aiaacYcalmaaBaaajeaibaqcLbmacaWG4baajeaibeaaaOqaaKqzGe GaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGa aGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaeq OXdO2cdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbmacaGGSaWc daWgaaqcbasaaKqzadGaamyEaaqcbasabaaakeaajugibiaaicdaaO qaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqa aKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaK qzGeGaeqOXdO2cdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbma caGGSaWcdaWgaaqcbasaaKqzadGaamiEaaqcbasabaaakeaajugibi aaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaa icdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiabeA 8aQTWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzadGaaiilaSWa aSbaaKqaGeaajugWaiaadMhaaKqaGeqaaaGcbaqcLbsacaaIWaaake aajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaa jugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaaju gibiaadoeakmaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaeqOX dO2cdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbmacaGGSaWcda WgaaqcbasaaKqzadGaamiEaaqcbasabaaakeaajugibiaaicdaaOqa aKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaK qzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqz GeGaam4qaOWaaSbaaSqaaiaaigdaaeqaaKqzGeGaeqOXdOMcdaWgaa WcbaqcLbsacaWGPbaaleqaaKqzGeGaaiilaOWaaSbaaSqaaKqzGeGa amyEaaWcbeaaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaaju gibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugi biaadoeakmaaBaaaleaacaaIXaaabeaajugibiabeA8aQTWaaSbaaK qaGeaajugWaiaadMgaaKqaGeqaaKqzadGaaiilaSWaaSbaaKqaGeaa jugWaiaadMhaaKqaGeqaaaGcbaqcLbsacaWGdbGcdaWgaaWcbaGaaG ymaaqabaqcLbsacqaHgpGAlmaaBaaajeaibaqcLbmacaWGPbaajeai beaajugWaiaacYcalmaaBaaajeaibaqcLbmacaWG4baajeaibeaaaO qaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqa aKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiabgkHiTiaado eakmaaBaaaleaacaaIYaaabeaajugibiabeA8aQTWaaSbaaKqaGeaa jugWaiaadMgaaKqaGeqaaKqzadGaaiilaSWaaSbaaKqaGeaajugWai aadIhaaKqaGeqaaaGcbaqcLbsacaaIWaaakeaajugibiabgkHiTiaa doeakmaaBaaaleaacaaIYaaabeaajugibiabeA8aQTWaaSbaaKqaGe aajugWaiaadMgaaKqaGeqaaKqzadGaaiilaSWaaSbaaKqaGeaajugW aiaadIhaaKqaGeqaaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaO qaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqa aKqzGeGaeyOeI0Iaam4qaOWaaSbaaSqaaiaaikdaaeqaaKqzGeGaeq OXdO2cdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbmacaGGSaWc daWgaaqcbasaaKqzadGaamyEaaqcbasabaaakeaajugibiaaicdaaO qaaKqzGeGaeyOeI0Iaam4qaOWaaSbaaKqaGeaajugWaiaaikdaaSqa baqcLbsacqaHgpGAlmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaju gWaiaacYcalmaaBaaajeaibaqcLbmacaWG5baajeaibeaaaOqaaKqz GeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGe GaeyOeI0Iaam4qaOWaaSbaaSqaaiaaikdaaeqaaKqzGeGaeqOXdO2c daWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbmacaGGSaWcdaWgaa qcbasaaKqzadGaamyEaaqcbasabaaakeaajugibiabgkHiTiaadoea kmaaBaaaleaacaaIYaaabeaajugibiabeA8aQTWaaSbaaKqaGeaaju gWaiaadMgaaKqaGeqaaKqzadGaaiilaSWaaSbaaKqaGeaajugWaiaa dIhaaKqaGeqaaaGcbaqcLbsacqGHsislcaWGdbGcdaWgaaWcbaGaaG OmaaqabaqcLbsacqaHgpGAlmaaBaaajeaibaqcLbmacaWGPbaajeai beaajugWaiaacYcalmaaBaaajeaibaqcLbmacaWG5baajeaibeaaaO qaaKqzGeGaeyOeI0Iaam4qaOWaaSbaaSqaaiaaikdaaeqaaKqzGeGa eqOXdO2cdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbmacaGGSa WcdaWgaaqcbasaaKqzadGaamiEaaqcbasabaaaaKqzGeGaeqOXdO2c daWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbmacaGGSaWcdaWgaa qcbasaaKqzadGaamiEaaqcbasabaaakiaawUfacaGLDbaadaGadaqa aKqzGeGaamyCaaGccaGL7bGaayzFaaaaaa@72B5@ ,

    [ D s ]=[ 0 0 φ i , x 1 0 0 0 0 0 φ i , x 0 1 0 0 0 0 0 3 0 3 0 0 0 0 0 3 0 3 ]{ q } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGebGcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaOGaay5waiaa w2faaKqzGeGaeyypa0JcdaWadaqaaKqzGeqbaeqabqWbaaaaaOqaaK qzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiabeA8aQTWaaSba aKqaGeaajugWaiaadMgaaKqaGeqaaKqzadGaaiilaSWaaSbaaKqaGe aajugWaiaadIhaaKqaGeqaaaGcbaqcLbsacaaIXaaakeaajugibiaa icdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaic daaOqaaKqzGeGaaGimaaGcbaqcLbsacqaHgpGAlmaaBaaajeaibaqc LbmacaWGPbaajeaibeaajugWaiaacYcalmaaBaaajeaibaqcLbmaca WG4baajeaibeaaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIXaaakeaa jugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaaju gibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacqGHsislcaaIZaaa keaajugibiaaicdaaOqaaKqzGeGaeyOeI0IaaG4maaGcbaqcLbsaca aIWaaakeaajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaI WaaakeaajugibiaaicdaaOqaaKqzGeGaeyOeI0IaaG4maaGcbaqcLb sacaaIWaaakeaajugibiabgkHiTiaaiodaaaaakiaawUfacaGLDbaa daGadaqaaKqzGeGaamyCaaGccaGL7bGaayzFaaaaaa@7D01@
    [ B gi ]=[ 0 0 φ i , x 0 0 0 0 0 0 φ i , y 0 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGcbGcdaWgaaqcbasaaKqzadGaam4zaiaadMgaaSqabaaakiaa wUfacaGLDbaajugibiabg2da9OWaamWaaeaajugibuaabeqacCaaaa GcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGeGaeqOXdO2c daWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbmacaGGSaWcdaWgaa qcbasaaKqzadGaamiEaaqcbasabaaakeaajugibiaaicdaaOqaaKqz GeGaaGimaaGcbaqcLbsacaaIWaaakeaajugibiaaicdaaOqaaKqzGe GaaGimaaGcbaqcLbsacaaIWaaakeaajugibiabeA8aQTWaaSbaaKqa GeaajugWaiaadMgaaKqaGeqaaKqzadGaaiilaSWaaSbaaKqaGeaaju gWaiaadMhaaKqaGeqaaaGcbaqcLbsacaaIWaaakeaajugibiaaicda aOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaaaaGccaGLBbGaayzxaa aaaa@63C6@ , [ N 0 ]=[ N x N xy N xy N y ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGobGcdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaOGaay5waiaa w2faaKqzGeGaeyypa0JcdaWadaqaaKqzGeqbaeqabiGaaaGcbaqcLb sacaWGobGcdaWgaaqcbasaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGa amOtaOWaaSbaaKqaGeaajugWaiaadIhacaWG5baaleqaaaGcbaqcLb sacaWGobGcdaWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaqcLbsacaWG obGcdaWgaaqcbasaaKqzadGaamyEaaWcbeaaaaaakiaawUfacaGLDb aaaaa@5049@ ,

    C ¯ ijkl =[ Q ¯ 11 Q ¯ 12 Q ¯ 16 0 0 Q ¯ 12 Q ¯ 22 Q ¯ 26 0 0 Q ¯ 16 Q ¯ 26 Q ¯ 66 0 0 0 0 0 Q ¯ 44 Q ¯ 45 0 0 0 Q ¯ 45 Q ¯ 55 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaajuaGba qcLbsacaWGdbaaaOWaaSbaaKazfa2=baqcLbmacaWGPbGaamOAaiaa dUgacaWGSbaajuaGbeaajugibiabg2da9OWaamWaaKqbagaajugibu aabeqafuaaaaaajuaGbaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaa BaaajuaibaqcLbmacaaIXaGaaGymaaqcfayabaaabaGcdaqdaaqcfa yaaKqzGeGaamyuaaaakmaaBaaajuaibaqcLbmacaaIXaGaaGOmaaqc fayabaaabaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBaaajuaiba qcLbmacaaIXaGaaGOnaaqcfayabaaabaqcLbsacaaIWaaajuaGbaqc LbsacaaIWaaajuaGbaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBa aajuaibaqcLbmacaaIXaGaaGOmaaqcfayabaaabaGcdaqdaaqcfaya aKqzGeGaamyuaaaakmaaBaaajuaibaqcLbmacaaIYaGaaGOmaaqcfa yabaaabaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBaaajuaibaqc LbmacaaIYaGaaGOnaaqcfayabaaabaqcLbsacaaIWaaajuaGbaqcLb sacaaIWaaajuaGbaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBaaa juaibaqcLbmacaaIXaGaaGOnaaqcfayabaaabaGcdaqdaaqcfayaaK qzGeGaamyuaaaakmaaBaaajuaibaqcLbmacaaIYaGaaGOnaaqcfaya baaabaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBaaajuaibaqcLb macaaI2aGaaGOnaaqcfayabaaabaqcLbsacaaIWaaajuaGbaqcLbsa caaIWaaajuaGbaqcLbsacaaIWaaajuaGbaqcLbsacaaIWaaajuaGba qcLbsacaaIWaaajuaGbaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaa BaaajuaibaqcLbmacaaI0aGaaGinaaqcfayabaaabaGcdaqdaaqcfa yaaKqzGeGaamyuaaaakmaaBaaajuaibaqcLbmacaaI0aGaaGynaaqc fayabaaabaqcLbsacaaIWaaajuaGbaqcLbsacaaIWaaajuaGbaqcLb sacaaIWaaajuaGbaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBaaa juaibaqcLbmacaaI0aGaaGynaaqcfayabaaabaGcdaqdaaqcfayaaK qzGeGaamyuaaaakmaaBaaajuaibaqcLbmacaaI1aGaaGynaaqcfaya baaaaaGaay5waiaaw2faaaaa@A3D4@
    Q ¯ 12 = Q ¯ 21 cos 4 α+2( Q 12 +2 Q 66 ) cos 2 α sin 2 α+ Q 22 sin 4 α Q ¯ 12 = Q ¯ 21 =( Q 11 + Q 22 4 Q 66 ) cos 2 α sin 2 α+ Q 12 ( cos 4 α+ sin 4 α) Q ¯ 16 =( Q 11 Q 12 2 Q 66 )sinα cos 3 α+( Q 12 Q 22 2 Q 66 ) sin 3 αcosα Q ¯ 22 = Q 11 sin 4 α+2( Q 12 +2 Q 66 ) cos 2 α sin 2 α+ Q 22 cos 4 α Q ¯ 26 =( Q 11 Q 12 2 Q 66 ) sin 3 αcosα+( Q 12 Q 22 2 Q 66 )sinα cos 3 α Q ¯ 26 =( Q 11 + Q 22 2 Q 12 2 Q 66 ) cos 2 α sin 2 α+ Q 66 ( cos 4 α+ sin 4 α) Q ¯ 44 = Q 44 cos 2 α+ Q 55 sin 2 α Q ¯ 45 =( Q 55 Q 44 )sinαcosα Q 54 Q ¯ 55 = Q 55 cos 2 α+ Q 44 sin 2 α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaa0aaaK qbagaajugibiaadgfaaaGcdaWgaaqcKvay=haajugWaiaaigdacaaI YaaajuaGbeaajugibiabg2da9iaaykW7caaMc8UaaGPaVlaaykW7km aanaaajuaGbaqcLbsacaWGrbaaaOWaaSbaaKazfa2=baqcLbmacaaI YaGaaGymaaqcfayabaqcLbsaciGGJbGaai4BaiaacohakmaaCaaaju aGbeqcfasaaKqzadGaaGinaaaajugibiabeg7aHjabgUcaRiaaikda caGGOaGaamyuaOWaaSbaaKazfa2=baqcLbmacaaIXaGaaGOmaaqcfa yabaqcLbsacqGHRaWkcaaIYaGaamyuaOWaaSbaaKazfa2=baqcLbma caaI2aGaaGOnaaqcfayabaqcLbsacaGGPaGaci4yaiaac+gacaGGZb GcdaahaaqcfayabKqbGeaajugWaiaaikdaaaqcLbsacqaHXoqyciGG ZbGaaiyAaiaac6gakmaaCaaajuaGbeqcfasaaKqzadGaaGOmaaaaju gibiabeg7aHjabgUcaRiaadgfakmaaBaaajqwbG9FaaKqzadGaaGOm aiaaikdaaKqbagqaaKqzGeGaci4CaiaacMgacaGGUbGcdaahaaqcfa yabKqbGeaajugWaiaaisdaaaqcLbsacqaHXoqyaKqbagaakmaanaaa juaGbaqcLbsacaWGrbaaaOWaaSbaaKqbGeaajugWaiaaigdacaaIYa aajuaGbeaajugibiabg2da9iaaykW7caaMc8UaaGPaVlaaykW7kmaa naaajuaGbaqcLbsacaWGrbaaaOWaaSbaaKqbGeaajugWaiaaikdaca aIXaaajuaGbeaajugibiabg2da9iaacIcacaWGrbGcdaWgaaqcfasa aKqzadGaaGymaiaaigdaaKqbagqaaKqzGeGaey4kaSIaamyuaOWaaS baaKqbGeaajugWaiaaikdacaaIYaaajuaGbeaajugibiabgkHiTiaa isdacaWGrbGcdaWgaaqcfasaaKqzadGaaGOnaiaaiAdaaKqbagqaaK qzGeGaaiykaiGacogacaGGVbGaai4CaOWaaWbaaKqbagqajuaibaqc LbmacaaIYaaaaKqzGeGaeqySdeMaci4CaiaacMgacaGGUbGcdaahaa qcfayabKqbGeaajugWaiaaikdaaaqcLbsacqaHXoqycqGHRaWkcaWG rbGcdaWgaaqcfasaaKqzadGaaGymaiaaikdaaKqbagqaaKqzGeGaai ikaiGacogacaGGVbGaai4CaOWaaWbaaKqbagqajuaibaqcLbmacaaI 0aaaaKqzGeGaeqySdeMaey4kaSIaci4CaiaacMgacaGGUbGcdaahaa qcfayabKqbGeaajugWaiaaisdaaaqcLbsacqaHXoqycaGGPaaajuaG baGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBaaajqwbG9FaaKqzad GaaGymaiaaiAdaaKqbagqaaKqzGeGaeyypa0Jaaiikaiaadgfakmaa BaaajqwbG9FaaKqzadGaaGymaiaaigdaaKqbagqaaKqzGeGaeyOeI0 IaamyuaOWaaSbaaKazfa2=baqcLbmacaaIXaGaaGOmaaqcfayabaqc LbsacqGHsislcaaIYaGaamyuaOWaaSbaaKazfa2=baqcLbmacaaI2a GaaGOnaaqcfayabaqcLbsacaGGPaGaci4CaiaacMgacaGGUbGaeqyS deMaci4yaiaac+gacaGGZbGcdaahaaqcfayabKqbGeaajugWaiaaio daaaqcLbsacqaHXoqycqGHRaWkcaGGOaGaamyuaOWaaSbaaKazfa2= baqcLbmacaaIXaGaaGOmaaqcfayabaqcLbsacqGHsislcaWGrbGcda WgaaqcKvay=haajugWaiaaikdacaaIYaaajuaGbeaajugibiabgkHi TiaaikdacaWGrbGcdaWgaaqcKvay=haajugWaiaaiAdacaaI2aaaju aGbeaajugibiaacMcaciGGZbGaaiyAaiaac6gakmaaCaaaleqajeai baqcLbmacaaIZaaaaKqzGeGaeqySdeMaci4yaiaac+gacaGGZbGaeq ySdegajuaGbaGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBaaajqwb G9FaaKqzadGaaGOmaiaaikdaaKqbagqaaKqzGeGaeyypa0JaamyuaO WaaSbaaKqbGeaajugWaiaaigdacaaIXaaajuaGbeaajugibiGacoha caGGPbGaaiOBaOWaaWbaaKqbagqajuaibaqcLbmacaaI0aaaaKqzGe GaeqySdeMaey4kaSIaaGOmaiaacIcacaWGrbGcdaWgaaqcKvay=haa jugWaiaaigdacaaIYaaajuaGbeaajugibiabgUcaRiaaikdacaWGrb GcdaWgaaqcKvay=haajugWaiaaiAdacaaI2aaajuaGbeaajugibiaa cMcaciGGJbGaai4BaiaacohakmaaCaaajuaGbeqcfasaaKqzadGaaG Omaaaajugibiabeg7aHjGacohacaGGPbGaaiOBaOWaaWbaaKqbagqa juaibaqcLbmacaaIYaaaaKqzGeGaeqySdeMaey4kaSIaamyuaOWaaS baaKazfa2=baqcLbmacaaIYaGaaGOmaaqcfayabaqcLbsaciGGJbGa ai4BaiaacohakmaaCaaajuaGbeqcfasaaKqzadGaaGinaaaajugibi abeg7aHbqcfayaaOWaa0aaaKqbagaajugibiaadgfaaaGcdaWgaaqc Kvay=haajugWaiaaikdacaaI2aaajuaGbeaajugibiabg2da9iaacI cacaWGrbGcdaWgaaqcKvay=haajugWaiaaigdacaaIXaaajuaGbeaa jugibiabgkHiTiaadgfakmaaBaaajqwbG9FaaKqzadGaaGymaiaaik daaKqbagqaaKqzGeGaeyOeI0IaaGOmaiaadgfakmaaBaaajqwbG9Fa aKqzadGaaGOnaiaaiAdaaKqbagqaaKqzGeGaaiykaiGacohacaGGPb GaaiOBaOWaaWbaaSqabKqaGeaajugWaiaaiodaaaqcLbsacqaHXoqy ciGGJbGaai4BaiaacohacqaHXoqycqGHRaWkcaGGOaGaamyuaOWaaS baaKazfa2=baqcLbmacaaIXaGaaGOmaaqcfayabaqcLbsacqGHsisl caWGrbGcdaWgaaqcKvay=haajugWaiaaikdacaaIYaaajuaGbeaaju gibiabgkHiTiaaikdacaWGrbGcdaWgaaqcKvay=haajugWaiaaiAda caaI2aaajuaGbeaajugibiaacMcaciGGZbGaaiyAaiaac6gacqaHXo qyciGGJbGaai4BaiaacohakmaaCaaajuaGbeqcfasaaKqzadGaaG4m aaaajugibiabeg7aHbqcfayaaOWaa0aaaKqbagaajugibiaadgfaaa GcdaWgaaqcKvay=haajugWaiaaikdacaaI2aaajuaGbeaajugibiab g2da9iaacIcacaWGrbGcdaWgaaqcfasaaKqzadGaaGymaiaaigdaaK qbagqaaKqzGeGaey4kaSIaamyuaOWaaSbaaKqbGeaajugWaiaaikda caaIYaaajuaGbeaajugibiabgkHiTiaaikdacaWGrbGcdaWgaaqcfa saaKqzadGaaGymaiaaikdaaKqbagqaaOGaeyOeI0IaaGOmaKqzGeGa amyuaOWaaSbaaKqbGeaajugWaiaaiAdacaaI2aaajuaGbeaajugibi aacMcaciGGJbGaai4BaiaacohakmaaCaaajuaGbeqcfasaaKqzadGa aGOmaaaajugibiabeg7aHjGacohacaGGPbGaaiOBaOWaaWbaaKqbag qajuaibaqcLbmacaaIYaaaaKqzGeGaeqySdeMaey4kaSIaamyuaOWa aSbaaKazfa2=baqcLbmacaaI2aGaaGOnaaqcfayabaGccaGGOaqcLb saciGGJbGaai4BaiaacohakmaaCaaajuaGbeqcfasaaKqzadGaaGin aaaajugibiabeg7aHjabgUcaRiGacohacaGGPbGaaiOBaOWaaWbaaK qbagqajuaibaqcLbmacaaI0aaaaKqzGeGaeqySdeMccaGGPaaajuaG baGcdaqdaaqcfayaaKqzGeGaamyuaaaakmaaBaaajqwbG9FaaKqzad GaaGinaiaaisdaaKqbagqaaKqzGeGaeyypa0JaamyuaOWaaSbaaKqb GeaajugWaiaaisdacaaI0aaajuaGbeaajugibiGacogacaGGVbGaai 4CaOWaaWbaaKqbagqajuaibaqcLbmacaaIYaaaaKqzGeGaeqySdeMa ey4kaSIaamyuaOWaaSbaaKqbGeaajugWaiaaiwdacaaI1aaajuaGbe aajugibiGacohacaGGPbGaaiOBaOWaaWbaaKqbagqajuaibaqcLbma caaIYaaaaKqzGeGaeqySdegajuaGbaGcdaqdaaqcfayaaKqzGeGaam yuaaaakmaaBaaajqwbG9FaaKqzadGaaGinaiaaiwdaaKqbagqaaOGa eyypa0JaaiikaKqzGeGaamyuaOWaaSbaaKqbGeaajugWaiaaiwdaca aI1aaajuaGbeaakiabgkHiTKqzGeGaamyuaOWaaSbaaKqbGeaajugW aiaaisdacaaI0aaajuaGbeaakiaacMcajugibiGacohacaGGPbGaai OBaiabeg7aHjGacogacaGGVbGaai4Caiabeg7aHjabgkHiTiaadgfa kmaaBaaajuaibaqcLbmacaaI1aGaaGinaaqcfayabaaabaGcdaqdaa qcfayaaKqzGeGaamyuaaaakmaaBaaajqwbG9FaaKqzadGaaGynaiaa iwdaaKqbagqaaOGaeyypa0tcLbsacaWGrbGcdaWgaaqcfasaaKqzad GaaGynaiaaiwdaaKqbagqaaKqzGeGaci4yaiaac+gacaGGZbGcdaah aaqcfayabKqbGeaajugWaiaaikdaaaqcLbsacqaHXoqycqGHRaWkca WGrbGcdaWgaaqcfasaaKqzadGaaGinaiaaisdaaKqbagqaaKqzGeGa ci4CaiaacMgacaGGUbGcdaahaaqcfayabKqbGeaajugWaiaaikdaaa qcLbsacqaHXoqyaaaa@7617@

    Where

    Q 11 = E 11 (1 v 12 v 21 ) , Q 12 = v 12 E 22 (1 v 12 v 21 ) ,= v 21 E 11 (1 v 12 v 21 ) = Q 21 , Q 22 = E 22 (1 v 12 v 21 ) , Q 66 = G 12 , Q 44 = G 13 , Q 55 = G 12 , v 21 = v 12 E 22 E 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGrbGcdaWgaaqcKvay=haajugWaiaaigdacaaIXaaajuaGbeaajugi biabg2da9OWaaSaaaKqbagaajugibiaadweakmaaBaaajqwbG9FaaK qzadGaaGymaiaaigdaaKqbagqaaaqaaKqzGeGaaiikaiaaigdacqGH sislcaWG2bGcdaWgaaqcfasaaKqzGeGaaGymaiaaikdaaKqbagqaaK qzGeGaamODaOWaaSbaaKqbGeaajugibiaaikdacaaIXaaajuaGbeaa jugibiaacMcaaaGaaGPaVlaacYcacaWGrbGcdaWgaaqcKvay=haaju gWaiaaigdacaaIYaaajuaGbeaajugibiabg2da9OWaaSaaaKqbagaa jugibiaadAhakmaaBaaajqwbG9FaaKqzadGaaGymaiaaikdaaKqbag qaaKqzGeGaamyraOWaaSbaaKazfa2=baqcLbmacaaIYaGaaGOmaaqc fayabaaabaqcLbsacaGGOaGaaGymaiabgkHiTiaadAhakmaaBaaaju aibaqcLbsacaaIXaGaaGOmaaqcfayabaqcLbsacaWG2bGcdaWgaaqc fasaaKqzGeGaaGOmaiaaigdaaKqbagqaaKqzGeGaaiykaaaacaaMc8 Uaaiilaiabg2da9OWaaSaaaKqbagaajugibiaadAhakmaaBaaajqwb G9FaaKqzadGaaGOmaiaaigdaaKqbagqaaKqzGeGaamyraOWaaSbaaK azfa2=baqcLbmacaaIXaGaaGymaaqcfayabaaabaqcLbsacaGGOaGa aGymaiabgkHiTiaadAhakmaaBaaajuaibaqcLbsacaaIXaGaaGOmaa qcfayabaqcLbsacaWG2bGcdaWgaaqcfasaaKqzGeGaaGOmaiaaigda aKqbagqaaKqzGeGaaiykaaaacaaMc8Uaeyypa0JaamyuaOWaaSbaaK azfa2=baqcLbmacaaIYaGaaGymaaqcfayabaqcLbsacaGGSaaajuaG baqcLbsacaWGrbGcdaWgaaqcKvay=haajugWaiaaikdacaaIYaaaju aGbeaajugibiabg2da9OWaaSaaaKqbagaajugibiaadweakmaaBaaa jqwbG9FaaKqzadGaaGOmaiaaikdaaKqbagqaaaqaaKqzGeGaaiikai aaigdacqGHsislcaWG2bGcdaWgaaqcKvay=haajugWaiaaigdacaaI YaaajuaGbeaajugibiaadAhakmaaBaaajqwbG9FaaKqzadGaaGOmai aaigdaaKqbagqaaKqzGeGaaiykaaaacaaMc8UaaiilaiaaykW7caWG rbGcdaWgaaqcKvay=haajugWaiaaiAdacaaI2aaajuaGbeaajugibi abg2da9iaadEeakmaaBaaajeaibaqcLbmacaaIXaGaaGOmaaWcbeaa jugibiaacYcacaaMc8UaaGPaVlaaykW7caWGrbGcdaWgaaqcKvay=h aajugWaiaaisdacaaI0aaajuaGbeaajugibiabg2da9iaadEeakmaa BaaajeaibaqcLbmacaaIXaGaaG4maaWcbeaajugibiaacYcacaaMc8 UaaGPaVlaaykW7caWGrbGcdaWgaaqcKvay=haajugWaiaaiwdacaaI 1aaajuaGbeaajugibiabg2da9iaadEeakmaaBaaajeaibaqcLbmaca aIXaGaaGOmaaWcbeaajugibiaacYcacaaMc8UaaGPaVlaadAhakmaa BaaajqwbG9FaaKqzadGaaGOmaiaaigdaaKqbagqaaKqzGeGaeyypa0 JcdaWcaaqcfayaaKqzGeGaamODaOWaaSbaaKazfa2=baqcLbmacaaI XaGaaGOmaaqcfayabaqcLbsacaWGfbGcdaWgaaqcKvay=haajugWai aaikdacaaIYaaajuaGbeaaaeaajugibiaadweakmaaBaaajuaibaqc LbmacaaIXaGaaGymaaqcfayabaaaaKqzGeGaaGPaVdaaaa@1141@

    Acknowledgements

    None.

    Conflicts of interest

    Author declares that there is no conflict of interest.

    References

    1. Shen Hui. Nonlinear analysis of composite laminated thin plates subjected to lateral pressure and thermal loading resting on elastic foundation. Composite Structures. 2000;49(2):115‒128.
    2. Huang NN, Tauchert TR. Large deformation of anti-symmetric angle-ply laminated composites resulting from non-uniform temperature loading. J Thermal Stresses. 1998;11(3):287‒297.
    3. Shen Hui Shen. Nonlinear bending analysis of unsymmetric cross-ply laminated plates with piezoelectric actuators in Thermal environment. Composite Structures. 2004;63(2):167-177.
    4. Lin RM, Lim MK, Du H. Large deflection analysis of plates under thermal loading. Comput Meth Appl Mechanics Engng. 1994;117(3‒4):381‒390.
    5. Shen Hui Shen. Non-linear bending of shear deformable laminated plates under lateral pressure and thermal loading and resting on elastic foundations. J Strain Anal Eng Des. 2000;35(2):93‒108.
    6. Whitney JM, Ashton JE. Effect of Environment on the Elastic Response of Layered Composite Plates. AIAA Journal. 1971;9(9):1708‒1713.
    7. Adams DF, Miller AK. Hygrothermal micro stress in unidirectional composite exhibiting inelastic materials behavior. Journal of Composite Materials. 1977;11(3):285‒99.
    8. Lee SY, Chou CJ, Jang JL, et al. Hygrothermal effects on the linear and nonlinear analysis of symmetric angle-ply laminated plates. Composite Materials. 1992;21(1):41‒48.
    9. Sai Ram KS, Sinha PK. Hygrothermal effects on the bending characteristics of laminated composite plates. Computers & Structures. 1991;40(4):1009‒1015.
    10. Patel BP, Ganapathi M, Makhecha DP. Hygrothermal effects on the structural behavior of thick composite laminates using higher-order theory. Composite Structures. 2002;56(1):25‒34.
    11. Shen Hui Shen. Hygrothermal effects on the post buckling of shear deformable laminated plates. Int J Mech Sci. 2001;43(5):1259‒1281.
    12. Shen HS. Hygrothermal Effects on the Nonlinear Bending of Shear Deformable Laminated Plates. Journal of Engineering Mechanics. 2002;128(4):493.
    13. Salim S, Yadav D, Iyengar NGR. Analysis of composite plates with random material characteristics. Mechanics Research Communications. 1993;20(5):405‒14.
    14. Singh BN, Iyengar NGR, Yadav D. A C0 finite element investigation for buckling analysis of composite plates with random material properties. Int J Struct Engrg Mech. 2000;13:53‒74.
    15. Onkar AK, Yadav D. Non-linear response statistics of composite laminates with random material properties under random loading. Composite Structures. 2003;60(4):375‒383.
    16. Yang J, Liew KM, Kitipornchai S. Stochastic analysis of compositionally graded plates with system randomness under static loading. Int J Mech Sci. 2005;47(10):1519‒1541.
    17. Upadhyay AK, Pandey Ramesh, Shukla KK. Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading. Communications in Nonlinear Science and Numerical Simulation. 2010;152(9):2634‒2650.
    18. Lal A, Singh BN, Kumar Rajesh. Stochastic nonlinear bending response of laminated composite plates with system randomness under lateral pressure and thermal loading. Archive of Applied Mechanics. 2011;81(6):727‒743.
    19. Lal A, Singh BN. Effect of random system properties on bending response of thermo-mechanically loaded laminated composite plates. Applied Mathematical Modelling. 2011;35(12):5618‒5635.
    20. Kumar Rajesh, Patil HS, Lal A. Hygrothermal effects on the flexural response of laminated composite plates with random material properties: Micromechanical (SFEM) model. International Journal of Applied Engineering and Research (RIP). 2011.
    21. Kumar Rajesh, Patil HS, Lal A. Nonlinear Flexural Response of Laminated Composite Plates on a Nonlinear Elastic Foundation with Uncertain System Properties under Lateral Pressure and Hygrothermal Loading: Micromechanical Model. International Journal of Aerospace Engg. 2014;27(3):168.
    22. Reddy JN. A simple higher order theory for laminated composite plates. Trans ASME J Applied Mech. 1984;51(4):745‒752.
    23. Reddy JN. Mechanics of laminated composite plates. 2nd edn. Theory and Analysis, CRC Press, Florida, USA; 1996. p. 858.
    24. Kleiber M, Hien TD. The stochastic finite element method. John Wiley & Sons, USA; 1992. p. 322.
    25. Chia YA. Nonlinear analysis of plates. McGraw-Hill, New York, USA; 1980. p. 436.
    26. Shankara CA, Iyengar NGR. A C0 element for analysis of laminated composite plate. Journal of Sound and Vibration. 1996;191(5):721‒738.
    27. Jones RM. Mechanics of Composite Materials. 2nd edn. McGraw-Hill, Taylor & Francis group, USA; 1998. p. 538.
    28. Zongeen   Z, Suhaun C. The standard deviation of the eigen solutions for random multi degree freedom systems. J Comp Struct. 1990;39(6):603‒607.
    29. Zhang Y, Chen S, Liu Q, et al. Stochastic perturbation finite elements. Computers & Structures. 1996;59(3):425‒429.
    30. Liu WK, Ted B, Mani A. A random field finite elements. Int J Numer Meth Engrg. 1986;23(10):1831‒1845.
    31. Zhang J, Ellingwood B. Effects of uncertain material properties on structural stability. J Struct Engrg. 1993;121(4):705‒716.
    32. Singh BN, A Lal, R Kumar. Nonlinear bending response of laminated composite plates on nonlinear elastic foundation with uncertain system properties. Engineering Structures. 2008;30(4):1101‒1112.
    33. Dash Padmanav, Singh BN. Geometrically nonlinear bending analysis of laminated composite plate. Commun Nonlinear Sci Numer Simulat. 2010;15(10):3170‒3181.
    34. Lal A, Singh BN, Soham Anand. Nonlinear bending response of laminated composite spherical shell panel with system randomness subjected to hygro-thermo-mechanical loading. International Journal of Mechanical Sciences. 2011;53(10):855‒866.
    35. Singh BN, Grover Neeraj. Stochastic Methods for the Analysis of Uncertain Composites. Journal of the Indian Institute of Science. 2013;93(4).
    Creative Commons Attribution License

    ©2017 Kumar. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.