Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 4 Issue 2

Control with reduction disturbing factors

Yu D Sheptun,1 SV Spirkin2

1Professor, Oles Honchar Dnipro National University, Ukraine
2Chief designer, Southern Machine-Building Plant named after M. Makarov, Ukraine

Correspondence: Yu D Sheptun, Oles Honchar Dnipro National University, 72 Gagarin Ave., Dpro 49010, Ukraine

Received: January 30, 2020 | Published: May 27, 2020

Citation: Sheptun YD, Spirkin SV. Control with reduction disturbing factors. Aeron Aero Open Access J. 2020;4(2):51-55. DOI: 10.15406/aaoaj.2020.04.00106

Download PDF

Abstract

The structural and dynamic features of the space (moving outside the dense layers of the atmosphere) stages of rockets - carriers of spacecraft as control objects are analyzed. The reasons are investigated - disturbing factors that generate external forces and moments that determine the disturbed motion of space rocket stages. For space rocket stages, disturbing factors are: mass asymmetry of the stage relative to its longitudinal axis and angle of mismatch of the line of action of the thrust vector of the propulsion system of the stage with the longitudinal axis of the stage. It is shown that when using the stage control deviating in the hinge of the marching engine as the executive organs of the control system, the effect of auto-reduction of the mentioned disturbing factors arises. The consequence of the auto compensation of disturbing factors is the reduction of disturbing forces and moments that violates the programmed motion of the step in the pitch and yaw planes. Mass asymmetry and the angle of mismatch of the line of action of the thrust vector of its engine and the longitudinal axis of magnitude are constant. Therefore, a decrease in perturbing forces and moments is accompanied by a decrease in the amount of energy (fuel) spent on processing (zeroing) perturbations of the parameters of the perturbed motion of the stage. It is shown that if the thrust of a space-stage engine is 8000 kgf, the engine operating time (flight time of the stage) is 500 sec, the specific engine thrust is 330 sec, the mass asymmetry is 0.05 m, the angle of mismatch is 0.25 degrees, then fuel economy can reach 200 kgf. The studies were performed using mathematical modeling methods.

Keywords: control ability, motion stability, energy consumption

Introduction

The flight of space stages of launch vehicles (LV) occurs outside the dense layers of the atmosphere, therefore, its perturbed motion is formed only by perturbing forces and moments caused by the mass asymmetry of the stage relative to the longitudinal axis and errors in the manufacturing, assembly, installation of the stage and its propulsion system. Mass asymmetry of space steps is peculiar to rockets; it is not a random value - determined and measured under the conditions of manufacture of the launch vehicle.

Errors in the manufacture, assembly and installation cause the skewness of the line of action of the thrust vector P of the propulsion system of the stage relative to the longitudinal axis of the stage; skew - a random variable. Mass asymmetry and distortion are caused by the presence of disturbing effects on the movement of the LV stage and the need for additional fuel costs to work out the perturbations of the motion parameters.Modern rockets are perfect dynamic systems, but the possibilities for their improvement are not yet exhausted. Thus, the duality of the role of the parameter -"the incompatibility of the center of mass of the rocket stage with the line of action of the vector P-the traction of its marsh engine" is not taken into account yet. On the one hand, -the perturbing factor is the cause of the perturbation of the rocket stage motion, and on the other hand, - factor  the stage motion control; if the control is implemented by swinging the main engine in the hinge. The duality of the role is the ability to minimize the energy (fuel) costs for working out perturbations of the carrier motion parameters.

The purpose of research

Identification and ustification of areas for improvement of launch vehicles.

Research methods

Analytical analysis and mathematical modeling of control processes and stability of the unperturbed motion of the stages of rockets-carriers of spacecraft.

Results and discussion

The research results relate to the problem of a rational choice of the executive bodies of the spacecraft stage control system of the launch vehicle. Consider the motion of the space stage of a carrier rocket, which is controlled by a roll of engine of small thrust, and by pitch and heading, by a mash engine. Pitch and course control is achieved by deflecting the vector P of the traction force of the marching engine of the space stage in the planes xoy, xoz of the associated coordinate system1 from its longitudinal axis by angles γ ϑ , γ ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4SdC McdaWgaaWcbaqcLbmacqaHrpGsaSqabaqcLbsacaGGSaGaaGPaVlaa ykW7cqaHZoWzkmaaBaaaleaajugWaiabeI8a5bWcbeaaaaa@46B2@ , respectively.

Figure 1 & 2 contain diagrams that illustrate the action of forces and moments of force on the LV stage when the vector P deviates from the longitudinal axis of the space stage of the nostel rocket.2

Figure 1 Scheme of action on the space step of the force P in the xoz plane related coordinate system.

Figure 2 Scheme of action on the space stage of the engine thrust P in the xoy plane related coordinate system.

On the diagrams: OXYZ-a linked coordinate system, a с.m. is the center of mass of the stage, (- Z a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=zkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadQ fadaWgaaWcbaqcLbmacaWGHbaaleqaaaaa@3C76@ ) is the mass asymmetry value (it is assumed that the center of mass of the stage coincides with the point of the negative half-plane; <0, (Figure 1);

γ ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4SdC McdaWgaaWcbaGaeqiYdKhabeaaaaa@3C66@ -the angle of deviation of the vector P from the plane parallel to the plane XOY and such that it passes through the longitudinal axis of the stage. The force P (when asymmetry Z а MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaqcLbmacaqGWqaaleqaaaaa@3B27@ and angle γ ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4SdC McdaWgaaWcbaGaeqiYdKhabeaaaaa@3C66@ are obvious) forms a moment M ¯ oy = P 1 | Z a |+ P 2 ( l п x Т ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaBaaaleaacaWGVbGaamyEaaqabaGccqGH9aqpcqGHsislcaWGqbWa aSbaaSqaaiaaigdaaeqaaOGaeyyXIC9aaqWaaeaacaWGAbWaaSbaaS qaaiaabggaaeqaaaGccaGLhWUaayjcSdGaey4kaSIaamiuamaaBaaa leaacaaIYaaabeaakiabgwSixlaacIcacaWGSbWaaSbaaSqaaiaad+ dbaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGIqaabeaakiaacMca aaa@5162@ around the axis OY MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGzb aaaa@39DE@ , the vector of which is directed along the axis OY MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGzb aaaa@39DE@ . Component- P 1 Z a =РCos( δ ψ )| Z a | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadc fadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWGAbWaaSbaaSqaaiaa bggaaeqaaOGaeyypa0JaeyOeI0IaamiieiabgwSixlGacoeacaGGVb Gaai4CaiaacIcacqaH0oazdaWgaaWcbaGaeqiYdKhabeaakiaacMca cqGHflY1daabdaqaaiaadQfadaWgaaWcbaGaaeyyaaqabaaakiaawE a7caGLiWoaaaa@5322@  is disturbing moment; component P 2ϑ ( l п x Т )=PSin( δ ϑ )( l п x T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGOmaiabeg9akbqabaGccqGHflY1caGGOaGaamiBamaaBaaa leaacaWG=qaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamOieaqaba GccaGGPaGaeyypa0JaamiuaiabgwSixlGacofacaGGPbGaaiOBamaa bmaabaGaeqiTdq2aaSbaaSqaaiabeg9akbqabaaakiaawIcacaGLPa aacqGHflY1daqadaqaaiaadYgadaWgaaWcbaGaam4peaqabaGccqGH sislcaWG4bWaaSbaaSqaaiaadsfaaeqaaaGccaGLOaGaayzkaaaaaa@589C@ is moment, which may be the moment controlling.

Usually, angle | γ ψ | 5 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaGaeq 4SdC2aaSbaaSqaaiabeI8a5bqabaaakiaawEa7caGLiWoacqGHKjYO caaI1aWaaWbaaSqabeaacaaIWaaaaaaa@4254@  and P 1 Р, P 2 P γ ψ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGymaaqabaGccqGHijYUcaWGGqGaaiilaiaaykW7caaMc8Ua amiuamaaBaaaleaacaaIYaaabeaakiabgIKi7kaadcfacqGHflY1cq aHZoWzdaWgaaWcbaGaeqiYdKhabeaakiaac6caaaa@4B06@  Note, that a P 1 = Р 1 (t), P 2 = P 2 (t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaWGGqWaaSbaaSqaaiaaigdaaeqa aOGaaiikaiaadshacaGGPaGaaiilaiaaykW7caaMc8UaamiuamaaBa aaleaacaaIYaaabeaakiabg2da9iaadcfadaWgaaWcbaGaaGOmaaqa baGccaGGOaGaamiDaiaacMcaaaa@4990@ are functions of time.  The non-stationarity P 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGymaaqabaaaaa@39E8@  is caused by the non-stationarity of a parameter Z a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaaeyyaaqabaaaaa@3A1B@ , that changes in time due to the emptying in flight of the fuel tanks of the space stage of the launch vehicle (a process independent of the control system), while the non-stationarity P 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGOmaaqabaaaaa@39E9@ depends on the angle γ ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacqaHipqEaeqaaaaa@3BCD@ , which varies in accordance with the control commands.

Figure 2 shows that P, in the presence of an asymmetry Z a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaaeyyaaqabaaaaa@3A1B@ and an angle γ ϑ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4SdC McdaWgaaWcbaqcLbmacqaHrpGsaSqabaaaaa@3D79@ , forms around the axes OY,OZ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGzb GaaiilaiaaykW7caaMc8Uaam4taiaadQfaaaa@3F57@   moments M ¯ oy = P 1ϑ Z a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaBaaaleaacaWGVbGaamyEaaqabaGccqGH9aqpcqGHsislcaWGqbWa aSbaaSqaaiaaigdacqaHrpGsaeqaaOGaeyyXICTaamOwamaaBaaale aacaWGHbaabeaaaaa@44DA@ , M ¯ oz = P 2ϑ ( l п x Т ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaBaaaleaacaWGVbGaamOEaaqabaGccqGH9aqpcaWGqbWaaSbaaSqa aiaaikdacqaHrpGsaeqaaOGaeyyXICTaaiikaiaadYgadaWgaaWcba Gaam4peaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadkcbaeqaaOGa aiykaaaa@4811@ .

The components  P 2ψ , P 2ϑ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGOmaiabeI8a5bqabaGccaGGSaGaaGPaVlaaykW7caWGqbWa aSbaaSqaaiaaikdacqaHrpGsaeqaaaaa@42EC@   of the vector P (Figure 1-3) act in a plane parallel to the plane YOZ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacaWGpb GaamOwaaaa@3ABD@ .

From Figure 3 it follows that the component of the force P creates a moment M ¯ xϕ = P 2ϑ Z a P γ ϑ Z a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaBaaaleaacaWG4bGaeqy1dygabeaakiabg2da9iabgkHiTiaadcfa daWgaaWcbaGaaGOmaiabeg9akbqabaGccqGHflY1caWGAbWaaSbaaS qaaKqzafGaaeyyaaWcbeaakiabgIKi7kabgkHiTiaadcfajugaciab eo7aNPWaaSbaaSqaaiabeg9akbqabaGccqGHflY1caWGAbWaaSbaaS qaaKqzafGaaeyyaaWcbeaaaaa@52D5@ . If the center of mass of the stаge does not coincide with the point of the plane XOZ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacaWGpb GaamOwaaaa@3ABC@ , then the force P 2ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGOmaiabeI8a5bqabaaaaa@3BB7@ also creates a moment around the axis OX MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGyb aaaa@39DD@ .

Figure 3 Scheme of action on the LV stage of components P, which create moments of forces around the longitudinal axis.

The components P 1ψ, P 1ϑ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGymaiabeI8a5jaacYcacaaMc8UaaGPaVdqabaGccaWGqbWa aSbaaSqaaiaaigdacqaHrpGsaeqaaaaa@42EA@ of the moments of forces around the axis OX MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaWGyb aaaa@39DD@ do not create. An analysis of Figure 1& 2 shows that the swing of the vector P around the point of the longitudinal axis of the LV stage, when the mass asymmetry of the stage is obvious, creates moments of forces around the center of mass of the stage, which can be used to control the movement of the stage along pitch, heading, and roll. As an example, to illustrate what was skozhennogo, the effect of the application of the proposed method when controlling the movement of the 3rd stage of the modern launch vehicle with the following characteristics is considered.3

  1. The rated thrust of the main engine in the void is 7916 kgf,
  2. Shift of the geometric axis of the engine chamber relative to the axis of the frame, mm, not more than 2;
  3. Deviation of the axis of the engine chamber from the perpendicular to the plane of the junction of the engine with the frame, under load, not more than 15 arc minutes (~25 arc degrees).
  4. Mass asymmetry, m, not more than: - at the beginning of the movement y T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa adbaGaamivaaWcbeaaaaa@3A3B@ =0.003, z T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa adbaGaamivaaWcbeaaaaa@3A3C@ =0.0085,

at the end of the movement y T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa adbaGaamivaaWcbeaaaaa@3A3B@ =0.017, z T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa adbaGaamivaaWcbeaaaaa@3A3C@ =0.05.

  1. Central principal axial moments of inertia: -at the beginning of the movement I x =307, I y = I z =1189 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaamiEaaqabaGccqGH9aqpcaaIZaGaaGimaiaaiEdacaGGSaGa amysamaaBaaaleaacaWG5baabeaakiabg2da9iaadMeadaWgaaWcba GaamOEaaqabaGccqGH9aqpcaaIXaGaaGymaiaaiIdacaaI5aaaaa@4727@  

at the end of the movement I x =306, I y = I z =310.5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaamiEaaqabaGccqGH9aqpcaaIZaGaaGimaiaaiAdacaGGSaGa amysamaaBaaaleaacaWG5baabeaakiabg2da9iaadMeadaWgaaWcba GaamOEaaqabaGccqGH9aqpcaaIZaGaaGymaiaaicdacaGGUaGaaGyn aiaac6caaaa@4880@

  1. The shoulder of the control forces in pitch, heading, m:
    1. at the beginning of the movement l упр =11.281 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaam4qeiaad+dbcaWGaraabeaakiabg2da9iaaigdacaaIXaGa aiOlaiaaikdacaaI4aGaaGymaaaa@4117@ ,
    2. at the end of the movement   l упр =10.966 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaam4qeiaad+dbcaWGaraabeaakiabg2da9iaaigdacaaIWaGa aiOlaiaaiMdacaaI2aGaaGOnaaaa@4120@ .
  2. The distance of the center of mass of the step from the longitudinal axis the:
    1. in the beginning of the movement z a =0.01, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamyyaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaGa aiilaaaa@3EDE@
    2. at the end of the movement z a =0.05 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamyyaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaicdacaaI1aaa aa@3E32@ .
  3. The distance of the center of mass of the step from the tip of his nose, m:
    1. at the beginning of the movement x Т =1.819 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaO WaaSbaaSqaaKqzadGaamOieaWcbeaajugibiabg2da9iaaigdacaGG UaGaaGioaiaaigdacaaI5aaaaa@4114@ ,   
    2. at the end of the movement x Т =2.034 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiEaO WaaSbaaSqaaKqzGcGaamOieaWcbeaakiabg2da9iaaikdacaGGUaGa aGimaiaaiodacaaI0aaaaa@4065@ .
  4. The duration of the perturbed movement of the stage: 470 s.
  5. The total length of the stage launch vehicle, m:13.

The step control (standard option) in pitch and course is provided by swinging the combustion chamber of the marching engine in the planes of the associated coordinate system,1 in roll by jet thrust engines that create the thrust moment vector directed along the longitudinal axis of the stage. Mathematical modeling of the process of controlling the angular movement of the third stage of a modern launch vehicle,3 that is controlled by pitch and heading by swinging the vector P, was performed using the MathCad software package for a PC. The mathematical model of the motion of the space stage of the launch vehicle was built taking into account unsteady masses, moments of inertia, coordinates of the central masses, and parameters of the motion of the stage.

Models of unsteady characteristics, parameters, disturbing and controlling moments of forces were written as

Z а =0.01 0.04t 470 м, I x =306кгсм с 2 , I y = I z =1189 878.5 470 tкгсм с 2 , x T (t)=1.819+0.215 470 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOwam aaBaaaleaacaWGWqaabeaakiabg2da9iabgkHiTiaaicdacaGGUaGa aGimaiaaigdacqGHsisldaWcaaqaaiaaicdacaGGUaGaaGimaiaais dacqGHflY1caWG0baabaGaaGinaiaaiEdacaaIWaaaaiaadYdbcaGG SaGaaGPaVlaaykW7caaMc8UaamysamaaBaaaleaacaWG4baabeaaki abg2da9iaaiodacaaIWaGaaGOnaiaaykW7caWG6qGaam4meiaadgeb cqGHflY1caWG8qGaeyyXICTaamyqemaaCaaaleqabaGaaGOmaaaaki aacYcaaeaacaWGjbWaaSbaaSqaaiaadMhaaeqaaOGaeyypa0Jaamys amaaBaaaleaacaWG6baabeaakiabg2da9iaaigdacaaIXaGaaGioai aaiMdacqGHsisldaWcaaqaaiaaiIdacaaI3aGaaGioaiaac6cacaaI 1aaabaGaaGinaiaaiEdacaaIWaaaaiabgwSixlaadshacaaMc8UaaG PaVlaadQdbcaWGZqGaamyqeiabgwSixlaadYdbcqGHflY1caWGbrWa aWbaaSqabeaacaaIYaaaaOGaaiilaaqaaiaadIhadaWgaaWcbaGaam ivaaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpcaaIXaGaaiOlaiaa iIdacaaIXaGaaGyoaiabgUcaRiaaicdacaGGUaGaaGOmaiaaigdaca aI1aGaeyyXICTaaGinaiaaiEdacaaIWaWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaaiOlaaaaaa@942A@

M ¯ зdis ψ = P[ Z a + γ ψ ( x п x Т )] (1189 878.5 470 t) s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaDaaaleaacaWG3qGaamizaiaadMgacaWGZbaabaGaeqiYdKhaaOGa eyypa0ZaaSaaaeaacaWGqbGaeyyXICTaai4waiaadQfadaWgaaWcba GaamyyaaqabaGccqGHRaWkcqaHZoWzdaWgaaWcbaqcLbmacqaHipqE aSqabaGccqGHflY1caGGOaGaamiEamaaBaaaleaacaWG=qaabeaaki abgkHiTiaadIhadaWgaaWcbaqcLbmacaWGIqaaleqaaOGaaiykaiaa c2faaeaacaGGOaGaaGymaiaaigdacaaI4aGaaGyoaiabgkHiTmaala aabaGaaGioaiaaiEdacaaI4aGaaiOlaiaaiwdaaeaacaaI0aGaaG4n aiaaicdaaaGaeyyXICTaamiDaiaacMcaaaGaaGPaVlaaygW7caWGZb WaaWbaaSqabeaacqGHsislcaaIYaaaaOGaaiilaaaa@6B22@   M ¯ dis ϕ = P 0.25 57.3 (0.01+ 0.04 470 t) 306 s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaDaaaleaacaWGKbGaamyAaiaadohaaeaacqaHvpGzaaGccqGH9aqp daWcaaqaaiaadcfacqGHflY1daWcaaqaaiaaicdacaGGUaGaaGOmai aaiwdaaeaacaaI1aGaaG4naiaac6cacaaIZaaaaiabgwSixlaacIca caaIWaGaaiOlaiaaicdacaaIXaGaey4kaSYaaSaaaeaacaaIWaGaai OlaiaaicdacaaI0aaabaGaaGinaiaaiEdacaaIWaaaaiabgwSixlaa dshacaGGPaaabaGaaG4maiaaicdacaaI2aaaaiaaykW7caWGZbWaaW baaSqabeaacqGHsislcaaIYaaaaaaa@5E65@   

M ¯ cont ψ(ϑ) = P(11.181 0.218 470 t) (1189 878.5 470 t) γ ψ(ϑ) s 2 rad, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaDaaaleaacaWGJbGaam4Baiaad6gacaWG0baabaGaeqiYdKNaaiik aiabeg9akjaacMcaaaGccqGH9aqpdaWcaaqaaiaadcfacqGHflY1ca GGOaGaaGymaiaaigdacaGGUaGaaGymaiaaiIdacaaIXaGaeyOeI0Ya aSaaaeaacaaIWaGaaiOlaiaaikdacaaIXaGaaGioaaqaaiaaisdaca aI3aGaaGimaaaacqGHflY1caWG0bGaaiykaaqaaiaacIcacaaIXaGa aGymaiaaiIdacaaI5aGaeyOeI0YaaSaaaeaacaaI4aGaaG4naiaaiI dacaGGUaGaaGynaaqaaiaaisdacaaI3aGaaGimaaaacqGHflY1caWG 0bGaaiykaaaacqGHflY1jugaciabeo7aNPWaaSbaaSqaaiabeI8a5j aacIcacqaHrpGscaGGPaaabeaakiaaykW7caWGZbWaaWbaaSqabeaa cqGHsislcaaIYaaaaOGaeyyXICTaamOCaiaadggacaWGKbGaaGPaVl aacYcaaaa@7991@   M ¯ cont ϕ = P(0.01 0.04 470 t) 306 γ ϕ s 2 rad. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaDaaaleaacaWGJbGaam4Baiaad6gacaWG0baabaGaeqy1dygaaOGa eyypa0ZaaSaaaeaacaWGqbGaeyyXICTaaiikaiabgkHiTiaaicdaca GGUaGaaGimaiaaigdacqGHsisldaWcaaqaaiaaicdacaGGUaGaaGim aiaaisdaaeaacaaI0aGaaG4naiaaicdaaaGaeyyXICTaamiDaiaacM caaeaacaaIZaGaaGimaiaaiAdaaaGaeyyXICDcLbsacqaHZoWzkmaa BaaaleaacqaHvpGzaeqaaOGaaGPaVlaaykW7caWGZbWaaWbaaSqabe aacqGHsislcaaIYaaaaOGaamOCaKqzGeGaamyyaOGaamizaiaac6ca aaa@6454@   

Here are M ¯ ccont ψ(ϑ) , M ¯ cont ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaDaaaleaacaWGJbGaam4yaiaad+gacaWGUbGaamiDaaqaaiabeI8a 5jaacIcacqaHrpGscaGGPaaaaOGaaiilaiaaykW7caaMc8Uabmytay aaraWaa0baaSqaaiaadogacaWGVbGaamOBaiaadshaaeaacqaHvpGz aaaaaa@4D39@ the control moments for the course (pitch), roll; M ¯ dis ϕ , M ¯ cont ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaqeam aaDaaaleaacaWGKbGaamyAaiaadohaaeaacqaHvpGzaaGccaGGSaGa aGPaVlaaykW7ceWGnbGbaebadaqhaaWcbaGaam4yaiaad+gacaWGUb GaamiDaaqaaiabew9aMbaaaaa@4851@ -disturbing, controlling moments on the roll; ϑ,ψ,ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg9akjaacY cacaaMc8UaaGPaVlabeI8a5jaacYcacaaMc8UaaGPaVlabew9aMbaa @44F6@ - perturbations of pitch angles, course, roll, respectively; Y a Z a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfadaWgaa WcbaGaamyyaaqabaGccaaMc8UaaGPaVlaadQfadaWgaaWcbaGaamyy aaqabaaaaa@3F2D@ is the distance from the center of the mas stage to the planes xoz, xoy, respectively; γ ψ ,( γ ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaajugWaiabeI8a5bWcbeaakiaacYcacaaMc8UaaGPaVlaacIca cqaHZoWzdaWgaaWcbaqcLbmacqaHrpGsaSqabaGccaGGPaaaaa@46ED@  is the angle between the projection of the vector P on the plane xoz (xoy) and the axis ox.

The initial data for the simulation was recorded on the Mathcad worksheet as follows: x T =| 0.03000.0200 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaahaa WcbeqaaiaadsfaaaGccqGH9aqpdaabdaqaaiaaicdacaGGUaGaaGim aiaaiodacaaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8 UaaGimaiaaykW7caaMc8UaaGPaVlaaicdacaGGUaGaaGimaiaaikda caaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGimaa Gaay5bSlaawIa7aaaa@5E33@ , P:=7916, K0:=0.5, K1:=0.25, K01:=0.5, K11:=0.2, T:=0.01. Here K0, K1, K01, K11 are the transfer coefficients, T is the time constant of the control system, - the state vector is transposed. The function D (t, x)-the function of calculating the first derivatives was written in the form:

D(t,x):=[ x 1 P( 11815.319× 10 4 t ) ( 5.319× 10 4 x 2 ) 11811.871t ( K0 x 0 +K1 x 1 x 2 ) T x 4 P( 0.01+0.04 t 470 ) ( 4.363× 10 3 x 5 ) 306 ( K01 x 3 +K11 x 4 x 5 ) T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa aeaaaaaaaaa8qacaWG0bWdaiaacYcacaWG4bGaaiykaiaacQdacqGH 9aqpdaWadaqaauaabeqadeaaaeaafaqabeWabaaabaGaamiEamaaBa aaleaacaaIXaaabeaaaOqaaiaadcfacqGHflY1daqadaqaaiaaigda caaIXaGaaGioaiaaigdacqGHsislcaaI1aGaaiOlaiaaiodacaaIXa GaaGyoaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI 0aaaaOGaeyyXIC9dbiaadshaa8aacaGLOaGaayzkaaGaeyyXIC9aaS aaaeaadaqadaqaaiaaiwdacaGGUaGaaG4maiaaigdacaaI5aGaey41 aqRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaisdaaaGccqGHsi slcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGa aGymaiaaigdacaaI4aGaaGymaiabgkHiTiaaigdacaGGUaGaaGioai aaiEdacaaIXaGaeyyXIC9dbiaadshaaaaapaqaamaalaaabaWaaeWa aeaacaWGlbGaaGimaiabgwSixlaadIhadaWgaaWcbaGaaGimaaqaba GccqGHRaWkcaWGlbGaaGymaiabgwSixlaadIhadaWgaaWcbaGaaGym aaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaaabaWdbiaadsfaaaaaaaWdaeaacaWG4bWaaSbaaSqaaiaa isdaaeqaaaGcbaqbaeqabiqaaaqaaiaadcfacqGHflY1daqadaqaai aaicdacaGGUaGaaGimaiaaigdacqGHRaWkcaaIWaGaaiOlaiaaicda caaI0aGaeyyXIC9aaSaaaeaapeGaamiDaaWdaeaacaaI0aGaaG4nai aaicdaaaaacaGLOaGaayzkaaGaeyyXIC9aaSaaaeaadaqadaqaaiaa isdacaGGUaGaaG4maiaaiAdacaaIZaGaey41aqRaaGymaiaaicdada ahaaWcbeqaaiabgkHiTiaaiodaaaGccqGHsislcaWG4bWaaSbaaSqa aiaaiwdaaeqaaaGccaGLOaGaayzkaaaabaGaaG4maiaaicdacaaI2a aaaaqaamaalaaabaWaaeWaaeaacaWGlbGaaGimaiaaigdacqGHflY1 caWG4bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam4saiaaigdaca aIXaGaeyyXICTaamiEamaaBaaaleaacaaI0aaabeaakiabgkHiTiaa dIhadaWgaaWcbaGaaGynaaqabaaakiaawIcacaGLPaaaaeaapeGaam ivaaaaaaaaaaWdaiaawUfacaGLDbaaaaa@BCDB@

Z:=rkfixed(x,0,100,100000,D) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfacaGG6a Gaeyypa0JaamOCaiaadUgacaWGMbGaamyAaiaadIhacaWGLbGaamiz aiaacIcacaWG4bGaaiilaiaaicdacaGGSaGaaGymaiaaicdacaaIWa GaaiilaiaaigdacaaIWaGaaGimaiaaicdacaaIWaGaaGimaiaacYca caWGebGaaiykaaaa@4E84@ -team for mathematical modeling.

Character Mappings Introduced:  ϑ:= x 0 , ϑ ˙ ,:= x 1 , γ ϑ := x 2 ,ϕ:= x 3 , ϕ ˙ := x 4 , δ ϕ := x 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg9akjaacQ dacqGH9aqpcaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaaykW7 caaMc8Uafqy0dOKbaiaacaGGSaGaaGPaVlaaykW7caGG6aGaeyypa0 JaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaaGPaVlab eo7aNnaaBaaaleaajugWaiabeg9akbWcbeaakiaacQdacqGH9aqpca WG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaaykW7caaMc8Uaeqy1 dyMaaiOoaiabg2da9iaadIhadaWgaaWcbaGaaG4maaqabaGccaGGSa GaaGPaVlaaykW7cuaHvpGzgaGaaiaacQdacqGH9aqpcaWG4bWaaSba aSqaaiaaisdaaeqaaOGaaiilaiaaygW7caaMc8UaaGPaVlabes7aKn aaBaaaleaacqaHvpGzaeqaaOGaaiOoaiabg2da9iaadIhadaWgaaWc baGaaGynaaqabaaaaa@75D8@

From Figure 4-6 it follows: the initial perturbations ϑ(0)=0.03rad, ϑ ˙ (0)=0.03rad/s,ϕ(0)=0.02rad MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg9akjaacI cacaaIWaGaaiykaiabg2da9iaaicdacaGGUaGaaGimaiaaiodacaaM c8UaamOCaiaadggacaWGKbGaaiilaiaaykW7caaMc8Uafqy0dOKbai aacaGGOaGaaGimaiaacMcacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI ZaGaaGPaVlaadkhacaWGHbGaamizaiaac+cacaWGZbGaaiilaiaayk W7caaMc8Uaeqy1dyMaaiikaiaaicdacaGGPaGaeyypa0JaaGimaiaa c6cacaaIWaGaaGOmaiaadkhacaWGHbGaamizaaaa@63DF@ of the parameters of the stage motion are worked out quite qualitatively.

Figure 4 Time variation of perturbations of the step motion parameters.

Figure 5 Time variation of perturbations of the step motion parameters.

Figure 6 Time variation of perturbations of the stage motion parameters.

Let us carry out a simplified analytical and further refined numerical analysis of the processes of working out disturbances of the parameters of the stage motion by swinging the marching engine and compare them with the processes of working out disturbances by steering engines in two in the pitch and course channels.

 In the case of a simplified analysis, it is permissible to use the method of “frozen” coefficients and the principle of superposition, which are often used in problems of rocket dynamics.1-3 Let us consider separately the processes of developing perturbations of the parameters of the motion of space stages of the LV from mass asymmetry and skew line of action of the vector P of the thrust of the main engine of the stage relative to its longitudinal axis due to errors in the manufacture, assembly, installation of the stage and its propulsion system.

We write the mathematical models for working out perturbations in the form:

- Equations (1, 2) when controlling the swing stage in the hinge of the mid-flight engine

  { I y(z) d 2 ψ d t 2 =P Z a P γ упр ( l п x Т ), T d γ упр dt + γ упр = k 0 ψ+ k 1 dψ dt . (1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaWGjbWaaSbaaSqaaiaadMhacaGGOaGaamOEaiaacMcaaeqaaOGa eyyXIC9aaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqiYdK habaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0Ja amiuaiabgwSixlaadQfadaWgaaWcbaGaamyyaaqabaGccqGHsislca WGqbGaeyyXICTaeq4SdC2aaSbaaSqaaiaadoebcaWG=qGaamiqeaqa baGccqGHflY1caGGOaGaamiBamaaBaaaleaacaWG=qaabeaakiabgk HiTiaadIhadaWgaaWcbaGaamOieaqabaGccaGGPaGaaiilaaqaaiaa dsfacqGHflY1daWcaaqaaiaadsgacqaHZoWzdaWgaaWcbaGaam4qei aad+dbcaWGaraabeaaaOqaaiaadsgacaWG0baaaiabgUcaRiabeo7a NnaaBaaaleaacaWGdrGaam4peiaadcebaeqaaOGaeyypa0Jaam4Aam aaBaaaleaacaaIWaaabeaakiabgwSixlabeI8a5jabgUcaRiaadUga daWgaaWcbaGaaGymaaqabaGccqGHflY1daWcaaqaaiaadsgacqaHip qEaeaacaWGKbGaamiDaaaacaGGUaaaaiaawUhaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaiikaiaaigdacaGGPaaaaa@8878@    { I y(z) d 2 ψ d t 2 =P γ зб ( l п x T )P γ упр ( l п x Т ), T d γ упр dt + γ упр = k 0 ψ+ k 1 dψ dt . (2) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaWGjbWaaSbaaSqaaiaadMhacaGGOaGaamOEaiaacMcaaeqaaOGa eyyXIC9aaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqiYdK habaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0Ja amiuaiabgwSixlabeo7aNnaaBaaaleaacaWG3qGaamymeaqabaGccq GHflY1caGGOaGaamiBamaaBaaaleaacaWG=qaabeaakiabgkHiTiaa dIhadaWgaaWcbaGaamivaaqabaGccaGGPaGaeyOeI0Iaamiuaiabgw Sixlabeo7aNnaaBaaaleaacaWGdrGaam4peiaadcebaeqaaOGaeyyX ICTaaiikaiaadYgadaWgaaWcbaGaam4peaqabaGccqGHsislcaWG4b WaaSbaaSqaaiaadkcbaeqaaOGaaiykaiaacYcaaeaacaWGubGaeyyX IC9aaSaaaeaacaWGKbGaeq4SdC2aaSbaaSqaaiaadoebcaWG=qGaam iqeaqabaaakeaacaWGKbGaamiDaaaacqGHRaWkcqaHZoWzdaWgaaWc baGaam4qeiaad+dbcaWGaraabeaakiabg2da9iaadUgadaWgaaWcba GaaGimaaqabaGccqGHflY1cqaHipqEcqGHRaWkcaWGRbWaaSbaaSqa aiaaigdaaeqaaOGaeyyXIC9aaSaaaeaacaWGKbGaeqiYdKhabaGaam izaiaadshaaaGaaiOlaaaacaGL7baacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaacIcacaaIYaGaaiykaaaa@9260@  

- Equations (3, 4) when controlling a stage with steering engines

  { I y(z) d 2 ψ d t 2 =P Z a 2 P упр ( l п x Т )δ, T dδ dt +δ= k 0 ψ+ k 1 dψ dt . (3) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaWGjbWaaSbaaSqaaiaadMhacaGGOaGaamOEaiaacMcaaeqaaOGa eyyXIC9aaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqiYdK habaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0Ja amiuaiabgwSixlaadQfadaWgaaWcbaGaamyyaaqabaGccqGHsislca aIYaGaeyyXICTaamiuamaaBaaaleaacaWGdrGaam4peiaadcebaeqa aOGaeyyXICTaaiikaiaadYgadaWgaaWcbaGaam4peaqabaGccqGHsi slcaWG4bWaaSbaaSqaaiaadkcbaeqaaOGaaiykaiabgwSixlabes7a KjaacYcaaeaacaWGubGaeyyXIC9aaSaaaeaacaWGKbGaeqiTdqgaba GaamizaiaadshaaaGaey4kaSIaeqiTdqMaeyypa0Jaam4AamaaBaaa leaacaaIWaaabeaakiabgwSixlabeI8a5jabgUcaRiaadUgadaWgaa WcbaGaaGymaaqabaGccqGHflY1daWcaaqaaiaadsgacqaHipqEaeaa caWGKbGaamiDaaaacaGGUaaaaiaawUhaaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaiikaiaaiodacaGGPaaaaa@8654@    { I y(z) d 2 ψ d t 2 =P γ зб ( l п x T )2 P упр ( l п x Т )δ, T dδ dt +δ= k 0 ψ+ k 1 dψ dt . (4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaWGjbWaaSbaaSqaaiaadMhacaGGOaGaamOEaiaacMcaaeqaaOGa eyyXIC9aaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqiYdK habaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0Ja amiuaiabgwSixlabeo7aNnaaBaaaleaacaWG3qGaamymeaqabaGccq GHflY1caGGOaGaamiBamaaBaaaleaacaWG=qaabeaakiabgkHiTiaa dIhadaWgaaWcbaGaamivaaqabaGccaGGPaGaeyOeI0IaaGOmaiabgw SixlaadcfadaWgaaWcbaGaam4qeiaad+dbcaWGaraabeaakiabgwSi xlaacIcacaWGSbWaaSbaaSqaaiaad+dbaeqaaOGaeyOeI0IaamiEam aaBaaaleaacaWGIqaabeaakiaacMcacqaH0oazcaGGSaaabaGaamiv aiabgwSixpaalaaabaGaamizaiabes7aKbqaaiaadsgacaWG0baaai abgUcaRiabes7aKjabg2da9iaadUgadaWgaaWcbaGaaGimaaqabaGc cqGHflY1cqaHipqEcqGHRaWkcaWGRbWaaSbaaSqaaiaaigdaaeqaaO GaeyyXIC9aaSaaaeaacaWGKbGaeqiYdKhabaGaamizaiaadshaaaGa aiOlaaaacaGL7baacaGGOaGaaGinaiaacMcaaaa@863B@  

In equations 1-4, the angles of deviation of the line of action of the thrust vector P of the marching engine thrust from the longitudinal axis of the stage, due to errors in the manufacture, assembly, installation of the foot, its propulsion system (excitation factor) and due to the control commands of the control system, aimed at working out perturbations of the stage motion parameters respectively; δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq gaaa@3A60@ - the angle of deviation of the steering engine from the neutral position in accordance with the commands of the stage control system, aimed at working out perturbations of the motion parameters.

In steady-state modes of motion, the values ψ ¨ , ψ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI8a5zaada GaaiilaiaaykW7caaMc8UafqiYdKNbaiaaaaa@3FA1@ ​​ are zero and we obtain:

1). γ cont = Z а ( l п x T ) = γ dis MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGJbGaam4Baiaad6gacaWG0baabeaakiabg2da9maalaaa baGaamOwamaaBaaaleaacaWGWqaabeaaaOqaaiaacIcacaWGSbWaaS baaSqaaiaad+dbaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaWGubaa beaakiaacMcaaaGaeyypa0Jaeq4SdC2aaSbaaSqaaiaadsgacaWGPb Gaam4Caaqabaaaaa@4C9E@ -from the of equations  (1), and γ cont = γ dis MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGJbGaam4Baiaad6gacaWG0baabeaakiabg2da9iabeo7a NnaaBaaaleaacaWGKbGaamyAaiaadohaaeqaaaaa@4379@ -from the equations of system (2).

2). δ= P Z a 2 P cont ( l п x T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2 da9maalaaabaGaamiuaiabgwSixlaadQfadaWgaaWcbaGaamyyaaqa baaakeaacaaIYaGaeyyXICTaamiuamaaBaaaleaacaWGJbGaam4Bai aad6gacaWG0baabeaakiaacIcacaWGSbWaaSbaaSqaaiaad+dbaeqa aOGaeyOeI0IaamiEamaaBaaaleaacaWGubaabeaakiaacMcaaaaaaa@4E1B@ , δ= P γ зб 2 P уcont MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2 da9maalaaabaGaamiuaiabgwSixlabeo7aNnaaBaaaleaacaWG3qGa amymeaqabaaakeaacaaIYaGaeyyXICTaamiuamaaBaaaleaacaWGdr Gaam4yaiaad+gacaWGUbGaamiDaaqabaaaaaaa@49F8@  - from equations of systems (3), (4), respectively.

Thus, when controlling the movement of a stage by swinging the main engine, the zeroing of disturbances in the parameters of the stage motion is achieved by reducing the disturbing factors by turning the main engine in a hinge. The refined numerical analysis of the processes of working out the disturbances of the motion parameters by swinging the main engine and steering engines is carried out according to the results of mathematical modeling of the stage stabilization processes using the Mattcad programs.

Initial data:

P:=7916кгс,T:=0.01c,L:=11м,K0:=1,K1:=0.25c,x:=| 0.03 0 0 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGG6a Gaeyypa0JaaG4naiaaiMdacaaIXaGaaGOnaiaadQdbcaWGZqGaamyq eiaacYcacaaMc8UaaGPaVlaaykW7caWGubGaaiOoaiabg2da9iaaic dacaGGUaGaaGimaiaaigdacaWGJbGaaiilaiaaykW7caaMc8UaaGPa VlaadYeacaGG6aGaeyypa0JaaGymaiaaigdacaWG8qGaaiilaiaayk W7caaMc8UaaGPaVlaadUeacaaIWaGaaiOoaiabg2da9iaaigdacaGG SaGaaGPaVlaaykW7caaMc8Uaam4saiaaigdacaGG6aGaeyypa0JaaG imaiaac6cacaaIYaGaaGynaiaadogacaGGSaGaaGPaVlaaykW7caaM c8UaamiEaiaacQdacqGH9aqpdaabdaqaauaabeqadeaaaeaacaaIWa GaaiOlaiaaicdacaaIZaaabaGaaGimaaqaaiaaicdaaaaacaGLhWUa ayjcSdaaaa@7B48@ ,

  D(t,x):=[ x 1 P [ ( 0.01+1 10 4 t )L x 2 ] 1190880 t 400 ( K0 x 0 +K1 x 1 x 2 ) T 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa aeaaaaaaaaa8qacaWG0bWdaiaacYcacaWG4bGaaiykaiaacQdacqGH 9aqpdaWadaqaauaabeqadeaaaeaacaWG4bWaaSbaaSqaaiaaigdaae qaaaGcbaGaamiuaiabgwSixpaalaaabaWaamWaaeaadaqadaqaaiaa icdacaGGUaGaaGimaiaaigdacqGHRaWkcaaIXaGaeyyXICTaaGymai aaicdadaahaaWcbeqaaiabgkHiTiaaisdaaaGccqGHflY1peGaamiD aaWdaiaawIcacaGLPaaacqGHsislcaWGmbGaeyyXICTaamiEamaaBa aaleaacaaIYaaabeaaaOGaay5waiaaw2faaaqaaiaaigdacaaIXaGa aGyoaiaaicdacqGHsislcaaI4aGaaGioaiaaicdadaWcaaqaa8qaca WG0baapaqaaiaaisdacaaIWaGaaGimaaaaaaaabaWaaeWaaeaacaWG lbGaaGimaiabgwSixlaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRa WkcaWGlbGaaGymaiabgwSixlaadIhadaWgaaWcbaGaaGymaaqabaGc cqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaa GaeyyXIC9dbiaadsfadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaaGc paGaay5waiaaw2faaaaa@7C5B@    Z:=rkfixed(x,0,100,100000,D) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfacaGG6a Gaeyypa0JaamOCaiaadUgacaWGMbGaamyAaiaadIhacaWGLbGaamiz aiaacIcacaWG4bGaaiilaiaaicdacaGGSaGaaGymaiaaicdacaaIWa GaaiilaiaaigdacaaIWaGaaGimaiaaicdacaaIWaGaaGimaiaacYca caWGebGaaiykaaaa@4E84@  

At characteristic times, the control parammeter γ упр MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGdrGaam4peiaadcebaeqaaaaa@3C5C@ takes values

γ cont (t=0.12)=5.99 10 3 rad, γ cont (t=100)=6.364 10 3 rad. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWGJbGaam4Baiaad6gacaWG0baabeaakiaacIcacaWG0bGa eyypa0JaaGimaiaac6cacaaIXaGaaGOmaiaacMcacqGH9aqpcaaI1a GaaiOlaiaaiMdacaaI5aGaeyyXICTaaGymaiaaicdadaahaaWcbeqa aiabgkHiTiaaiodaaaGccaWGYbGaamyyaiaadsgacaGGSaGaaGPaVl aaykW7caaMc8Uaeq4SdC2aaSbaaSqaaiaadogacaWGVbGaamOBaiaa dshaaeqaaOGaaiikaiaadshacqGH9aqpcaaIXaGaaGimaiaaicdaca GGPaGaeyypa0JaaGOnaiaac6cacaaIZaGaaGOnaiaaisdacqGHflY1 caaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaakiaadkhaca WGHbGaamizaiaac6caaaa@6EB7@

The results of modeling the processes of stabilizing the movement of the LV stage by steering engines

Initial data: К0=:0.1   К1=:0.5   Т=:0.01     а=:1000 x:=( 0.03 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGG6a Gaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGimaiaac6cacaaIWaGa aG4maaqaaiaaicdaaeaacaaIWaaaaaGaayjkaiaawMcaaaaa@40DB@  

  D(t,x):=[ x 1 [ ( 0.01+1 10 4 t+0.05 )P2a x 2 ] 1190880 t 400 ( K0 x 0 +K1 x 1 x 2 ) T 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa aeaaaaaaaaa8qacaWG0bWdaiaacYcacaWG4bGaaiykaiaacQdacqGH 9aqpdaWadaqaauaabeqadeaaaeaacaWG4bWaaSbaaSqaaiaaigdaae qaaaGcbaWaaSaaaeaadaWadaqaamaabmaabaGaaGimaiaac6cacaaI WaGaaGymaiabgUcaRiaaigdacqGHflY1caaIXaGaaGimamaaCaaale qabaGaeyOeI0IaaGinaaaakiabgwSix=qacaWG0bGaey4kaSIaaGim aiaac6cacaaIWaGaaGynaaWdaiaawIcacaGLPaaacqGHflY1caWGqb GaeyOeI0IaaGOmaiaadggacqGHflY1caWG4bWaaSbaaSqaaiaaikda aeqaaaGccaGLBbGaayzxaaaabaGaaGymaiaaigdacaaI5aGaaGimai abgkHiTiaaiIdacaaI4aGaaGimamaalaaabaWdbiaadshaa8aabaGa aGinaiaaicdacaaIWaaaaaaaaeaadaqadaqaaiaadUeacaaIWaGaey yXICTaamiEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadUeacaaI XaGaeyyXICTaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadI hadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHflY1peGa amivamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaaak8aacaGLBbGaay zxaaaaaa@80F3@    Z:=rkfixed(x,0,100,100000,D) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfacaGG6a Gaeyypa0JaamOCaiaadUgacaWGMbGaamyAaiaadIhacaWGLbGaamiz aiaacIcacaWG4bGaaiilaiaaicdacaGGSaGaaGymaiaaicdacaaIWa GaaiilaiaaigdacaaIWaGaaGimaiaaicdacaaIWaGaaGimaiaacYca caWGebGaaiykaaaa@4E84@  

The control parameter δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq gaaa@3A60@ takes the following values ​​at characteristic times

δ(t=20)=0.243rrad,δ(t=100)=0.277rad. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaacI cacaWG0bGaeyypa0JaaGOmaiaaicdacaGGPaGaeyypa0JaaGimaiaa c6cacaaIYaGaaGinaiaaiodacaaMc8UaamOCaiaadkhacaWGHbGaam izaiaacYcacaaMc8UaaGPaVlaaykW7cqaH0oazcaGGOaGaamiDaiab g2da9iaaigdacaaIWaGaaGimaiaacMcacqGH9aqpcaaIWaGaaiOlai aaikdacaaI3aGaaG4naiaadkhacaWGHbGaamizaiaac6caaaa@5D35@

The amount of energy required for working out perturbing effects on the movement of the LV stage during a 100s flight when using a marching engine is characterized by an estimate

Q γ =P 0 100 γ cont (t)dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfadaWgaa WcbaGaeq4SdCgabeaakiabg2da9iaadcfacqGHflY1daWdXbqaaiab eo7aNnaaBaaaleaacaWGJbGaam4Baiaad6gacaWG0baabeaakiaacI cacaWG0bGaaiykaiaadsgacaWG0baaleaacaaIWaaabaGaaGymaiaa icdacaaIWaaaniabgUIiYdaaaa@4E2F@ ,

when using steering engines ( P cont =1000kgf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaam4yaiaad+gacaWGUbGaamiDaaqabaGccqGH9aqpcaaIXaGa aGimaiaaicdacaaIWaGaaGPaVlaadUgacaWGNbGaamOzaaaa@4540@ ) characterize the value

Q δ =2 P cont 0 100 δ(t)dt. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfadaWgaa WcbaGaeqiTdqgabeaakiabg2da9iaaikdacqGHflY1caWGqbWaaSba aSqaaiaadogacaWGVbGaamOBaiaadshaaeqaaOGaeyyXIC9aa8qCae aacqaH0oazcaGGOaGaamiDaiaacMcacaWGKbGaamiDaiaac6caaSqa aiaaicdaaeaacaaIXaGaaGimaiaaicdaa0Gaey4kIipaaaa@51E3@

The values ​​of the integrated estimates of energy costs, determined from the presented results of mathematical modeling, are as follows:. Q γ =49.957kgfrads, Q δ =41.6 10 3 кkgfrads MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfadaWgaa WcbaGaeq4SdCgabeaakiabg2da9iaaisdacaaI5aGaaiOlaiaaiMda caaI1aGaaG4naiaadUgacaWGNbGaamOzaiabgwSixlaadkhacaWGHb GaamizaiabgwSixlaadohacaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaadgfadaWgaaWcbaGaeqiTdqgabeaakiabg2da9iaaisdacaaIXa GaaiOlaiaaiAdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaaG4m aaaakiaadQdbcaWGRbGaam4zaiaadAgacqGHflY1caWGYbGaamyyai aadsgacqGHflY1caWGZbaaaa@6981@ .

An examination of the processes (Figures 7–10) of testing the disturbances of the parameters of the LV stage motion, analysis of the results of mathematical modeling of these processes show the following:

  1. The main engine as the executive body of the spacecraft stage control system of the LV with mass asymmetry relative to the longitudinal axis provides stage control with a reduction in the influence of disturbing factors,
  2. The effect of decreasing the value of the perturbing factor is accompanied by a decrease in the amount of energy (fuel) necessary for working out perturbations of the parameters of the LV stage motion.

Figure 7 Time variation of perturbations of the stage motion parameters ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5baa@39FA@ , ψ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI8a5zaaca aaaa@3A03@ .

Figure 8 Hafiki time variation of the control parameter x 2 = γ cont MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcqaHZoWzdaWgaaWcbaGaam4yaiaa d+gacaWGUbGaamiDaaqabaaaaa@40BC@ .

Figure 9 Time variation of perturbations of the stage motion parameters ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5baa@39FA@ , ψ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI8a5zaaca aaaa@3A03@ .

Figure 10 Gaifik changes in time of the control parameter δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq gaaa@3A60@ .

Conclusion

The implementation of the effect of the reduction of disturbing factors is a possible direction for improving the space stages of the LV as an object of control.

Acknowledgments

None.

Conflicts of interest

Authors declare that there is no conflict of interest.

References

  1. Gerasyuta NF, Novikov AV, Beletskaya NG. Flight dynamics: The main pillars of the dynamic design of missiles. Dnepropetrovsk; 1998.
  2. Igdalov IM, Kuchma LD, Polyakov MV, et al. Rocket-launch and space launch rockets of yak ob'kti keruvannya. Dnipropetrovsk, Vidavnitsvo DNU; 2007.
  3. Igdalov IM, Kuchma LD, Polyakov MV, et al. Dynamical project of missile launch. Dnipropetrovsk, Vidavnitsvo DNU; 2010.
Creative Commons Attribution License

©2020 Sheptun, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.