Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 1 Issue 3

Analysis of the oscillatory taylor-culick flow using the multiple time scale method

Yi Che, Liu Pei Jin

Science and Technology on Combustion, Northwestern Polytechnical University, China

Correspondence: Liu Pei Jin, Science and Technology on Combustion, Internal Flow and Thermal-Structure Laboratory, Northwestern Polytechnical University, Xi'an, China

Received: September 08, 2017 | Published: October 24, 2017

Citation: Che Y, Peijin L. Analysis of the oscillatory taylor-culick flow using the multiple time scale method. Aeron Aero Open Access J. 2017;1(3):108-114. DOI: 10.15406/aaoaj.2017.01.00014

Download PDF

Abstract

The pressure oscillations of the solid rocket motor could reduce the performance of rocket motors and damage the payloads. Therefore, it is required to predict the conditions leading to turbulent transition from near-laminar to a turbulent flow in the vicinity of the propellant surface, and it is a problem of hydrodynamic instability. In this work, linear stability theory together with the spectral collocation method has been applied on the biglobal hydrodynamic stability analysis of the oscillatory Taylor-Culick flow. Setting the time scale of the basic flow and the hydrodynamic mode as the slow time and the fast time respectively, the linear stability equations are solved using the multiple time scale method. The biglobal hydrodynamic modes are obtained, and the results show that the maximum growth rate of the hydrodynamic mode and its corresponding frequency vary in one period of the basic flow. Furthermore, the parametric study, including the amplitude and the frequency of acoustic motions, is also carried out. The results show that an increase in the amplitude and the frequency of acoustic motions can both make the flow more unstable.

Keywords: biglobal stability analysis, multiple time scale method, taylor-culick flow, hydrodynamic instability, prerequisite condition, eigenvalues

Introduction

Research has shown that oscillatory or modulated flows can achieve a significant increase in heat transfer relative to the corresponding steady flow, providing that critical or threshold amplitude is achieved. The threshold condition is associated with the production of near-surface turbulence by the oscillatory motion. A similar process is hypothesized as a mechanism of high-amplitude acoustic instability in solid propellant rockets, wherein finite amplitude acoustic motions can produce near-surface turbulence and lead to an enhanced propellant burning rate that couples with the chamber acoustics. Prediction of the threshold acoustic amplitude of propellant response requires prediction of the conditions leading to turbulent transition from near-laminar to a turbulent flow in the vicinity of the propellant surface as a prerequisite condition, and is thus a vicinity of the propellant surface as a prerequisite condition, and is thus a problem of hydrodynamic instability.1

Two principal analytical approaches have been applied in the literature to the problem of hydrodynamic stability of time-dependent flows. These are the multiple (time) scales approach1,2 and Floquet expansion approach. Von Kerczek and Davis2 and Hall3 applied the formal Floquet theory to a simple Stokes layer and their results showed that the flow is stable for all Reynolds numbers investigated, in contradiction with experimental results. Singer4 compared the results of the numerical simulation and the linear stability analysis of oscillatory plane channel flow, and concluded that interpreting the stability results in the Floquet sense may not be appropriate for the flow that undergoes large transient growth (and decay) of the disturbances. However, Blennerhassett5,6 obtained the unstable modes of Stokes layer while increasing Reynolds Number up to 708, which was still almost twice greater than the experimental results.7 By following the multiple scales approach, Cowley 8 showed that the disturbances can significantly grow over part of a cycle for asymptotically large Reynolds numbers. Lee1 investigated the stability of the oscillatory planar Taylor-Culick flow using the multiple time scale method, and showed the possible effects of the turbulent transition due to the disturbance amplifications on combustion instability.

Up to now, studies on the stability analysis of the oscillatory Taylor-Culickflow are based on local methods.1 The local non-parallel method can only describe the information of the certain local region, but is not capable to exactly and completely describe the non-parallel flow,9 such as Taylor-Culick flow. In this work, the biglobal stability of the oscillatory Taylor-Culick flow is investigated using the multiple time scale method.

Computational methodology

Governing equations

The linear non-dimensional continuity and momentum equations are adapted:

u =0 u t +( U ¯ B ) u +( u ) U ¯ B + p = 1 R e inj Δ u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq GHhis0cqGHflY1ieWaceWF1bGbauaacqGH9aqpcaaIWaaakeaajuaG daWcaaqaaiabgkGi2kqa=vhagaqbaaqaaiabgkGi2kaadshaaaGaey 4kaSYaaeWaaeaaceWFvbGbaebadaWgaaqcfasaaiaadkeaaKqbagqa aiabgwSixlabgEGirdGaayjkaiaawMcaaiqa=vhagaqbaiabgUcaRm aabmaabaGab8xDayaafaGaeyyXICTaey4bIenacaGLOaGaayzkaaGa b8xvayaaraWaaSbaaKqbGeaacaWGcbaajuaGbeaacqGHRaWkcqGHhi s0ceWGWbGbauaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGsbGaamyz amaaBaaajuaibaGaamyAaiaad6gacaWGQbaajuaGbeaaaaGaeyiLdq Kab8xDayaafaaaaaa@62D5@                     (1)

where basic flow U ¯ B ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaOab8 xvayaaraWaaSbaaKqbGeaacaWGcbaajuaGbeaadaqadaqaaiaa=jha caGGSaGaamiDaaGaayjkaiaawMcaaaaa@3CD5@  are periodic, given as:

U ¯ B ( r,t )= U ¯ ( r )+ u ^ ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaOab8 xvayaaraWaaSbaaKqbGeaacaWGcbaajuaGbeaadaqadaqaaiaa=jha caGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iqa=vfagaqeamaabm aabaGaa8NCaaGaayjkaiaawMcaaiaa=TcaceWF1bGbaKaadaqadaqa aiaa=jhacaGGSaGaamiDaaGaayjkaiaawMcaaaaa@471C@

where U ¯ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaOab8 xvayaaraWaaeWaaeaacaWFYbaacaGLOaGaayzkaaaaaa@3988@  represent steady basic flow, u ^ ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaOab8 xDayaajaWaaeWaaeaacaWFYbGaaiilaiaadshaaiaawIcacaGLPaaa aaa@3B49@  acoustic velocity, r spatial coordinates, Reinj is the Reynolds number of inject flow, and u’ is the perturbation velocity.

Multiple scales approach

The multiple scales approach, namely the fast time t and the slow time t1 are related by t 1 =εt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaKazfa0=baqcLbmacaaIXaaajuaGbeaajugibiabg2da 9iabew7aLjaadshaaaa@407A@  with the small dimensionless expansion parameter, ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzaaa@381C@ , characterizing the ratio of the time scales. Using the method of normal modes, the perturbation solutions is assumed to have the form as following

( u , p )( r, t 1 )=( u,p )( r, t 1 )exp( iϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaieWajugibiqa=vhagaqbaiaacYcaceWGWbGbauaaaKqbakaawIca caGLPaaadaqadaqaaKqzGeGaa8NCaiaacYcacaWG0bqcfa4aaSbaaK azfa0=baqcLbmacaaIXaaajuaGbeaaaiaawIcacaGLPaaajugibiab g2da9KqbaoaabmaabaqcLbsacaWF1bGaaiilaiaadchaaKqbakaawI cacaGLPaaadaqadaqaaKqzGeGaa8NCaiaacYcacaWG0bqcfa4aaSba aKqbGeaajugWaiaaigdaaKqbagqaaaGaayjkaiaawMcaaKqzGeGaci yzaiaacIhacaGGWbqcfa4aaeWaaeaajugibiaadMgacqaHrpGsaKqb akaawIcacaGLPaaaaaa@5E04@           (2)

where ϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHrp Gsaaa@381D@  is defined by

ϑ= 1 ε ω( t 1 ) d t 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy0dOKaey ypa0ZaaSaaaeaacaaIXaaabaGaeqyTdugaamaapeaabaGaeqyYdC3a aeWaaeaacaWG0bWaaSbaaKqaGeaajugWaiaaigdaaSqabaaakiaawI cacaGLPaaaaSqabeqaniabgUIiYdGccaWGKbGaamiDamaaBaaaleaa jugWaiaaigdaaSqabaaaaa@47A5@

with

ϑ t =ω( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaeqy0dOeakeaajugibiabgkGi2kaadshaaaGa eyypa0JaeyOeI0IaeqyYdCxcfa4aaeWaaOqaaKqzGeGaamiDaKqbao aaBaaajeaibaqcLbmacaaIXaaaleqaaaGccaGLOaGaayzkaaaaaa@4763@

The chain rule transforms the temporal derivatives into

t = ϑ ϑ t + t 1 t 1 t =ω( t 1 ) ϑ +ε t 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIylakeaajugibiabgkGi2kaadshaaaGaeyypa0tc fa4aaSaaaOqaaKqzGeGaeyOaIylakeaajugibiabgkGi2kabeg9akb aajuaGdaWcaaGcbaqcLbsacqGHciITcqaHrpGsaOqaaKqzGeGaeyOa IyRaamiDaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsacqGHciITaOqaaK qzGeGaeyOaIyRaamiDaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqa aaaajuaGdaWcaaGcbaqcLbsacqGHciITcaWG0bqcfa4aaSbaaKqaGe aajugWaiaaigdaaSqabaaakeaajugibiabgkGi2kaadshaaaGaeyyp a0JaeyOeI0IaeqyYdCxcfa4aaeWaaOqaaKqzGeGaamiDaKqbaoaaBa aajeaibaqcLbmacaaIXaaaleqaaaGccaGLOaGaayzkaaqcfa4aaSaa aOqaaKqzGeGaeyOaIylakeaajugibiabgkGi2kabeg9akbaacqGHRa WkcqaH1oqzjuaGdaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGaeyOa IyRaamiDaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaaaaaa@7810@

The disturbance amplitude ( u,p )( r, t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaGqadKqzGeGaa8xDaiaacYcacaWGWbaakiaawIcacaGLPaaajuaG daqadaGcbaqcLbsacaWFYbGaaiilaiaadshajuaGdaWgaaqcbasaaK qzadGaaGymaaWcbeaaaOGaayjkaiaawMcaaaaa@436A@  are expanded in powers of ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzaaa@381C@ as

u( r, t 1 )= u 0 ( r, t 1 )+ε u 1 ( r, t 1 )+,   p( r, t 1 )= p 0 ( r, t 1 )+ε p 1 ( r, t 1 )+. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaieWaju gibiaa=vhajuaGdaqadaGcbaqcLbsacaWFYbGaaiilaiaadshajuaG daWgaaqcbasaaKqzadGaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGe Gaeyypa0Jaa8xDaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqb aoaabmaakeaajugibiaa=jhacaGGSaGaamiDaKqbaoaaBaaajeaiba qcLbmacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcqaH 1oqzcaWF1bqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcfa4aae WaaOqaaKqzGeGaa8NCaiaacYcacaWG0bqcfa4aaSbaaKqaGeaajugW aiaaigdaaSqabaaakiaawIcacaGLPaaajugibiabgUcaRiabl+Uimj aacYcacaqGGaGaaeiiaaGcbaqcLbsacaWGWbqcfa4aaeWaaOqaaKqz GeGaa8NCaiaacYcacaWG0bqcfa4aaSbaaKqaGeaajugWaiaaigdaaS qabaaakiaawIcacaGLPaaajugibiabg2da9iaadchajuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaajuaGdaqadaGcbaqcLbsacaWFYbGaai ilaiaadshajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaOGaayjk aiaawMcaaKqzGeGaey4kaSIaeqyTduMaamiCaKqbaoaaBaaajeaiba qcLbmacaaIXaaaleqaaKqbaoaabmaakeaajugibiaa=jhacaGGSaGa amiDaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaGccaGLOaGaay zkaaqcLbsacqGHRaWkcqWIVlctcaGGUaaaaaa@8BA6@

Substituting the above expansion and Eq. (2) into Eq. (1) and collecting the terms with the same power of ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzaaa@381C@  results in the zeroth order equations ( O( ε 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aajugibiaad+eacaGGOaGaeqyTduwcfa4aaWbaaeqajuaibaqcLbma caaIWaaaaKqzGeGaaiykaaqcfaOaayjkaiaawMcaaaaa@4043@

u 0 =0 ω u 0 +( U ¯ B ) u 0 +( u 0 ) U ¯ B + p 0 = 1 R e inj Δ u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abgEGirlabgwSixJqadiaa=vhajuaGdaWgaaqcbasaaKqzadGaaGim aaWcbeaajugibiabg2da9iaaicdaaOqaaKqzGeGaeyOeI0IaeqyYdC Naa8xDaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaey4k aSscfa4aaeWaaOqaaKqzGeGab8xvayaaraqcfa4aaSbaaKqaGeaaju gWaiaadkeaaSqabaqcLbsacqGHflY1cqGHhis0aOGaayjkaiaawMca aKqzGeGaa8xDaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGe Gaey4kaSscfa4aaeWaaOqaaKqzGeGaa8xDaKqbaoaaBaaajeaibaqc LbmacaaIWaaaleqaaKqzGeGaeyyXICTaey4bIenakiaawIcacaGLPa aajugibiqa=vfagaqeaKqbaoaaBaaajeaibaqcLbmacaWGcbaaleqa aKqzGeGaey4kaSIaey4bIeTaamiCaKqbaoaaBaaajeaibaqcLbmaca aIWaaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGc baqcLbsacaWGsbGaamyzaKqbaoaaBaaajeaibaqcLbmacaWGPbGaam OBaiaadQgaaSqabaaaaKqzGeGaeyiLdqKaa8xDaKqbaoaaBaaajeai baqcLbmacaaIWaaaleqaaaaaaa@7F93@      (3)

and the first order equations ( O( ε 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaam4taiaacIcacqaH1oqzjuaGdaahaaWcbeqcbasaaKqz adGaaGymaaaajugibiaacMcaaOGaayjkaiaawMcaaaaa@3FD1@

u 1 =0 u 1 t 1 ω u 1 +( U ¯ B ) u 1 +( u 1 ) U ¯ B + p 1 = 1 R e inj Δ u 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abgEGirlabgwSixJqadiaa=vhajuaGdaWgaaqcKfaG=haajugWaiaa igdaaSqabaqcLbsacqGH9aqpcaaIWaaakeaajuaGdaWcaaGcbaqcLb sacqGHciITcaWF1bqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaa keaajugibiabgkGi2kaadshajuaGdaWgaaqcbasaaKqzadGaaGymaa WcbeaaaaqcLbsacqGHsislcqaHjpWDcaWF1bqcfa4aaSbaaKqaGeaa jugWaiaaigdaaSqabaqcLbsacqGHRaWkjuaGdaqadaGcbaqcLbsace WFvbGbaebajuaGdaWgaaqcbasaaKqzadGaamOqaaWcbeaajugibiab gwSixlabgEGirdGccaGLOaGaayzkaaqcLbsacaWF1bqcfa4aaSbaaK qaGeaajugWaiaaigdaaSqabaqcLbsacqGHRaWkjuaGdaqadaGcbaqc LbsacaWF1bqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacq GHflY1cqGHhis0aOGaayjkaiaawMcaaKqzGeGab8xvayaaraqcfa4a aSbaaKqaGeaajugWaiaadkeaaSqabaqcLbsacqGHRaWkcqGHhis0ca WGWbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH9aqp juaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadkfacaWGLbqcfa 4aaSbaaKqaafaajugWaiaadMgacaWGUbGaamOAaaWcbeaaaaqcLbsa cqGHuoarcaWF1bqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa a@8DA1@

Defining u ^ c * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsace WF1bGbaKaajuaGdaqhaaqcbasaaKqzadGaam4yaaqcbauaaKqzGdGa aiOkaaaaaaa@3CBC@ as the acoustic velocity along the center line, Π= p ^ * / P * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHGo aucqGH9aqpjuaGdaWcgaGcbaqcLbsaceWGWbGbaKaajuaGdaahaaWc beqcbauaaKqzGdGaaiOkaaaaaOqaaKqzGeGaamiuaKqbaoaaCaaale qajeaqbaqcLboacaGGQaaaaaaaaaa@42AB@ the ratio of acoustic pressure and average pressure. p ^ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGWb GbaKaajuaGdaahaaWcbeqcbauaaKqzGdGaaiOkaaaaaaa@3A7B@ and u ^ c * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsace WF1bGbaKaalmaaDaaajeaqbaqcLboacaWGJbaajeaqbaqcLboacaGG Qaaaaaaa@3C79@  are related by linear momentum equation

u ^ c * = p ^ * ρ * c * = p ^ * γ P * c * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsace WF1bGbaKaalmaaDaaajeaqbaqcLboacaWGJbaajeaqbaqcLboacaGG QaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGabmiCayaajaqcfa 4aaWbaaSqabKqaafaajug4aiaacQcaaaaakeaajugibiabeg8aYLqb aoaaCaaaleqajeaqbaqcLboacaGGQaaaaKqzGeGaam4yaKqbaoaaCa aaleqajeaqbaqcLboacaGGQaaaaaaajugibiabg2da9Kqbaoaalaaa keaajugibiqadchagaqcaKqbaoaaCaaaleqajeaqbaqcLboacaGGQa aaaaGcbaqcLbsacqaHZoWzcaWGqbqcfa4aaWbaaSqabKqaafaajug4 aiaacQcaaaaaaKqzGeGaam4yaKqbaoaaCaaaleqajeaqbaqcLboaca GGQaaaaaaa@5E7D@             (4)

where sound velocity c * = γ P * / ρ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaWbaaSqabKqaGeaajugWaiaacQcaaaqcLbsacqGH9aqpjuaG daGcaaGcbaqcfa4aaSGbaOqaaKqzGeGaeq4SdCMaamiuaKqbaoaaCa aaleqajeaibaqcLbmacaGGQaaaaaGcbaqcLbsacqaHbpGCjuaGdaah aaWcbeqcbasaaKqzadGaaiOkaaaaaaaaleqaaaaa@47FA@ Similar to Stokes flow defining the boundary layer thickness as δ * = π V inj / Ω * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azjuaGdaahaaWcbeqcbasaaKqzadGaaiOkaaaajugibiabg2da9Kqb aoaalyaakeaajugibiabec8aWjaadAfajuaGdaWgaaqcbasaaKqzad GaamyAaiaad6gacaWGQbaaleqaaaGcbaqcLbsacqqHPoWvjuaGdaah aaWcbeqcbauaaKqzGdGaaiOkaaaaaaaaaa@4A4F@  with Ω * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaW baaSqabeaacaGGQaaaaaaa@384F@  the acoustic frequency. The expansion parameter ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzaaa@381C@  in the present analysis is formally defined as1

ε= δ * Ω * u ^ c * O( M inj Π ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzcqGH9aqpjuaGdaWcaaGcbaqcLbsacqaH0oazjuaGdaahaaWcbeqc bauaaKqzGdGaaiOkaaaajugibiabfM6axLqbaoaaCaaaleqajeaqba qcLboacaGGQaaaaaGcbaacbiqcLbsaceWF1bGbaKaajuaGdaqhaaqc basaaKqzadGaam4yaaqcbauaaKqzGdGaaiOkaaaaaaqcLbsacqGHij YUcaWGpbqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaad2eajuaG daWgaaqcbasaaKqzadGaamyAaiaad6gacaWGQbaaleqaaaGcbaqcLb sacqqHGoauaaaakiaawIcacaGLPaaaaaa@593E@

When Π>> M inj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHGo aucqGH+aGpcqGH+aGpcaWGnbqcfa4aaSbaaKqaGeaajugWaiaadMga caWGUbGaamOAaaWcbeaaaaa@3FB7@ ,the modulation is considered to be slow and the leading terms form the quasi-static problem.

Basic flow

Basic flows are the superposition of the steady flow and periodic acoutic field (Figure 1)

U ¯ B ( r,t )= U ¯ ( r )+A u ^ ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsace WFvbGbaebajuaGdaWgaaqcbasaaKqzadGaamOqaaWcbeaajuaGdaqa daGcbaqcLbsacaWFYbGaaiilaiaadshaaOGaayjkaiaawMcaaKqzGe Gaeyypa0Jab8xvayaaraqcfa4aaeWaaOqaaKqzGeGaa8NCaaGccaGL OaGaayzkaaqcLbsacaWFRaGaamyqaiqa=vhagaqcaKqbaoaabmaake aajugibiaa=jhacaGGSaGaamiDaaGccaGLOaGaayzkaaaaaa@4DC9@                               (5)

where A represents the oscillation amplitude of acoustic velocity. U ¯ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsace WFvbGbaebajuaGdaqadaGcbaqcLbsacaWFYbaakiaawIcacaGLPaaa aaa@3ABA@ Use the incompressible Taylor-Culick flow solutions obtained under the steady, axisymmetric, inviscid condition.10

  • Figure 1 The contour of steady flow: axial velocity component U z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaOaa8 xvamaaBaaajuaibaqcLbmacaWG6baajuaGbeaaaaa@39FD@  (left) and radial velocity component U r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaOaa8 xvamaaBaaajuaibaGaamOCaaqcfayabaaaaa@38C7@ (right).

    U r = 1 r sin( π r 2 2 )     U z =πzcos( π r 2 2 )    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaca WFvbqcfa4aaSbaaKqaGeaajugWaiaadkhaaSqabaqcLbsacaqG9aGa eyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGYbaaai GacohacaGGPbGaaiOBaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsa cqaHapaCcaWGYbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaake aajugibiaaikdaaaaakiaawIcacaGLPaaajugibiaabccacaqGGaGa aeiiaiaabccacaWFvbqcfa4aaSbaaKqaGeaajugWaiaadQhaaSqaba qcLbsacaqG9aGaeqiWdaNaamOEaiGacogacaGGVbGaai4CaKqbaoaa bmaakeaajuaGdaWcaaGcbaqcLbsacqaHapaCcaWGYbqcfa4aaWbaaS qabKqaGeaajugWaiaaikdaaaaakeaajugibiaaikdaaaaakiaawIca caGLPaaajugibiaabccacaqGGaGaaeiiaaaa@675F@

    u ^ ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsace WF1bGbaKaajuaGdaqadaGcbaqcLbsacaWFYbGaaiilaiaadshaaOGa ayjkaiaawMcaaaaa@3C7B@ can be obtained from the solutions of the unsteady flow providing by Flandro and Majdalani in a simulated solid propellant rocket.10

    The oscillation amplitude of acoustic velocity A is defined as the ratio of acoustic velocity u ^ c * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsace WF1bGbaKaalmaaDaaajeaibaqcLbmacaWGJbaajeaibaqcLbmacaGG Qaaaaaaa@3BF9@  at the center line and injects velocity at the wall V inj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUbGaamOAaaWcbeaaaaa@3BD0@

    A= u ^ c * V inj = 1 γ M inj p ^ * P * = 1 γ M inj Π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaca WFbbGaeyypa0tcfa4aaSaaaOqaaKqzGeGab8xDayaajaWcdaqhaaqc basaaKqzadGaam4yaaqcbasaaKqzadGaaiOkaaaaaOqaaKqzGeGaam OvaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOBaiaadQgaaSqabaaa aKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacq aHZoWzcaWGnbqcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUbGaamOA aaWcbeaaaaqcfa4aaSaaaOqaaKqzGeGabmiCayaajaqcfa4aaWbaaS qabKqaGeaajugWaiaacQcaaaaakeaajugibiaadcfajuaGdaahaaWc beqcbasaaKqzadGaaiOkaaaaaaqcLbsacqGH9aqpjuaGdaWcaaGcba qcLbsacaaIXaaakeaajugibiabeo7aNjaad2eajuaGdaWgaaqcbasa aKqzadGaamyAaiaad6gacaWGQbaaleqaaaaajugibiabfc6aqbaa@677D@                          (6)

    Supposing Π=0.018 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHGo auqaaaaaaaaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaigdacaaI 4aaaaa@3CBC@ M inj =0.003 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUbGaamOAaaWcbeaajugi babaaaaaaaaapeGaeyypa0JaaGimaiaac6cacaaIWaGaaGimaiaaio daaaa@417B@ γ=1.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzqaaaaaaaaaWdbiabg2da9iaaigdacaGGUaGaaGOmaaaa@3B6B@ ,then A=5. Using Eq. (5), axial velocity component U z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaca WFvbqcfa4aaSbaaKqaGeaajugWaiaadQhaaSqabaaaaa@3A05@  of the basic flows U ¯ B ( r,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsace WFvbGbaebajuaGdaWgaaqcbasaaKqzadGaamOqaaWcbeaajuaGdaqa daGcbaqcLbsacaWFYbGaaiilaiaadshaaOGaayjkaiaawMcaaaaa@3F3C@  are plotted as following (Figure 2).


  • Figure 2 The contour of axial velocity component U z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaOaa8 xvamaaBaaajuaibaGaamOEaaqcfayabaaaaa@38CF@ at four moments during a period.

    Results and discussions

    Eigen spectrum

    A spectral collocation method11 based on Chebyschev polynomials are used to numerically solve the eigenvalue problem (2). Figure 3 shows the eigenmodes at four moments during a period when Π=0.018 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHGo auqaaaaaaaaaWdbiabg2da9iaaicdacaGGUaGaaGimaiaaigdacaaI 4aaaaa@3CBC@ ,namely A=5. The eigenvalues are discrete and exhibit one or two curve distribution which depends on time.

  • Figure 3  Eigenmodes at four moments during a period when Π=0.018 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiOda feaaaaaaaaa8qacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaGaaGio aaaa@3CBB@ .

    The greatest growth rate is obtained at t=T/4 and corresponding eigenvectors are illustrated in Figure 4. The eigenvectors whose eigenvalues are in the same line in Figure 3 have similar distribution, with shorter wave length when increasing frequency. The eigenvectors of the greatest growth rate of the second line at t=3T/4 are showed in Figure 4B, where the axial velocity component u z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaSbaaKqaGeaajugWaiaadQhaaSqabaaaaa@3A80@  shows one more wave in the radial direction when comparing to that of the first line.

  • Figure 4 Eigenvector distribution, u z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaSbaaKazfa0=baqcLbmacaWG6baajuaGbeaaaaa@3C8A@ ( top), u r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaSbaaKazfa0=baqcLbmacaWGYbaajuaGbeaaaaa@3C82@ (middle) and p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb aaaa@376A@ (down).

    Effect of the acoustic oscillation frequency

    The dimensionless chamber sound modes are given as

    Ω= Ω * R V inj = π c 0 L R V inj = π L/R 1 M inj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcqGH9aqpcqqHPoWvjuaGdaahaaWcbeqcbasaaKqzadGaaiOkaaaa juaGdaWcaaGcbaqcLbsacaWGsbaakeaajugibiaadAfajuaGdaWgaa qcbasaaKqzadGaamyAaiaad6gacaWGQbaaleqaaaaajugibiabg2da 9Kqbaoaalaaakeaajugibiabec8aWjaadogajuaGdaWgaaqcbasaaK qzadGaaGimaaWcbeaaaOqaaKqzGeGaamitaaaajuaGdaWcaaGcbaqc LbsacaWGsbaakeaajugibiaadAfajuaGdaWgaaqcbasaaKqzadGaam yAaiaad6gacaWGQbaaleqaaaaajugibiabg2da9Kqbaoaalaaakeaa jugibiabec8aWbGcbaqcfa4aaSGbaOqaaKqzGeGaamitaaGcbaqcLb sacaWGsbaaaaaajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaa d2eajuaGdaWgaaqcbasaaKqzadGaamyAaiaad6gacaWGQbaaleqaaa aaaaa@67B5@

    Ω=335275 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvqaaaaaaaaaWdbiabg2da9iaaiodacaaIZaWexLMBbXgBd9gzLbvy Nv2CaeHbcfgDH52zaGqbaiaa=XW=caaMc8UaaGynaiaaikdacaWFm8 VaaGPaVlaaiEdacaaI1aaaaa@4BA0@ when aspect ratio L/R=32,20,14 with M inj =0.003 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUbGaamOAaaWcbeaajugi babaaaaaaaaapeGaeyypa0JaaGimaiaac6cacaaIWaGaaGimaiaaio daaaa@4119@ . Figure 5A shows the greatest growth rate at eight moments and average growth rate during a period of three acoustic frequencies with A=5. The growth rates at eight moments are different and the change range between them are larger at lower acoustic frequencies Ω=3352 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvqaaaaaaaaaWdbiabg2da9iaaiodacaaIZaWexLMBbXgBd9gzLbvy Nv2CaeHbcfgDH52zaGqbaiaa=XW=caaMc8UaaGynaiaaikdaaaa@4709@ and decrease at higher acoustic frequencies Ω=75 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvqaaaaaaaaaWdbiabg2da9iaaiEdacaaI1aaaaa@3A47@ . The straight line represents average growth rates during a period. It can be found that the larger growth rates correspond to higher acoustic frequencies, which are 11.6,10.3,8.0. The perturbation frequencies with the largest growth rate concentrated in the range from 100 to 250 (Figure 5B), which are much larger than the results for the steady basic flow.

  • Figure 5 Stability results at three acoustic frequencies.

    Effect of the acoustic oscillation amplitude

    For given Ω=33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fsY=rqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvqaaaaaaaaaWdbiabg2da9iaaiodacaaIZaaaaa@3A41@ ,three different values of the acoustic oscillation amplitude A=1,5,10 are considered. From Figure 6, it is found that the larger growth rates correspond to higher acoustic oscillation amplitude, which is 11.3,8.4,0.9. The perturbation frequencies with the largest growth rate concentrated in the range from 100 to 200.

  • Figure 6 Stability results at three values of the acoustic oscillation amplitude.

    Conclusions

    In this work, the biglobal stability of the oscillatory Taylor-Culick flow has been investigated using the multiple time scale method. Basic flows are supposed to be the superposition of the steady flow and the periodic acoustic field, which is defined as the slow time and the fast time. It was established that when the dimensionless acoustic oscillation amplitude is much larger than the injecting Mach number, the modulation becomes slow and turns into a quasi-static problem.

    A spectral collocation method based on the Chebyschev polynomials was used to numerically solve the eigenvalue problem. The eigenvalues are discrete and exhibit one or two curve distribution which depends on time. The larger growth rates were shown to correspond to higher acoustic frequencies, and the larger growth rates correspond to higher acoustic oscillation amplitude. The perturbation frequencies with the largest growth rate were found to be concentrated in the range from 100 to 250, which are much larger than that for the steady basic flow.12-16

    Acknowledgements

    None.

    Conflict of interest

    Author declares that there is no conflict of interest.

    References

    1. Lee Y. Instability of oscillatory flow in ducts and application to solid propellant rocket aeroacoustics. Ph. D. thesis, University of Illinois at Urbana-Champaign, USA; 2002. p. 103.
    2. VonKerczek C, Davis SH. Linear stability theory of oscillatory Stokes layers. Journal of Fluid Mechanics. 1974;62:753‒773.
    3. Hall P. The linear stability of flat Stokes layers. Proc R Soc Lond A. 1978;359(1697):151‒166.
    4. Singer BA, Ferziger JL, Reed HL. Numerical simulations of transition in oscillatory plane channel flow. Journal of Fluid Mechanics. 1989;208:45‒66.
    5. Blennerhassett PJ, Bassom AP. The linear stability of flat Stokes layers. Journal of Fluid Mechanics. 2002;464:393‒410.
    6. Blennerhassett PJ, Bassom AP. The linear stability of high-frequency oscillatory flow in a channel. Journal of Fluid Mechanics. 2006;556:1‒25.
    7. Thomas C, Bassom AP, Blennerhassett PJ. The linear stability of oscillatory Poiseuille flow in channels and pipes. Proc R Soc A. 2011;467:2643‒2662.
    8. Cowley SJ. High frequency Rayleigh instability analysis of Stokes layers. In: Dwoyer DL, Hussaini MY, editors. Stability of Time-dependent and Spatially Varying Flows. Springer, Germany; 1987. p. 261‒275.
    9. Sipp D, Marquet O, Meliga P, et al. Dynamics and control of global instabilities in open-flows: a linearized approach. Applied Mechanics Reviews. 2010;63(3):030801‒030826.
    10. Majdalani J, Flandro GA. The oscillatory pipe flow with arbitrary wall injection. P Roy Soc A Math Phy. 2002;458(2023):1621‒1651.
    11. Weideman JAC, Reddy SC. A MATLAB differentiation matrix suite. Acm T Math Software. 2000;26:465‒519.
    12. Akhavan R, Kamm RD, Shapiro AH. An investigation of transition to turbulence in bounded oscillatory Stokes flows Part 1. Experiments. Journal of Fluid Mechanics. 1991;225:395‒422.
    13. Thomas C, Bassom AP, Blennerhassett PJ. The linear stability of oscillating pipe flow. Physics of Fluids. 2012;24(1):014106‒014110.
    14. Nebauer J, Blackburn H. Stability of oscillatory and pulsatile pipe flow. 7th International Conference on CFD in the Minerals and Process Industries. CSIRO, Australia; 2009. p. 1‒6.
    15. Nebauer J, Blackburn H. Floquet stability of time periodic pipe flow. 9th International Conference on CFD in the Minerals and Process Industries. CSIRO , Australia; 2012. p. 1‒6.
    16. Gazanion B, Chedevergne F, Casalis G. On the laminar-turbulent transition in injection-driven porous chambers. Exp Fluids. 2014;55:1643.
    Creative Commons Attribution License

    ©2017 Che, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.