Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Short Communication Volume 6 Issue 1

A Simple proto nebula constituted of plasma under magneto hydrodynamics conditions

Daniel Benjamín Berdichevsky

College Park, USA

Correspondence: Daniel Benjamín Berdichevsky De Febrero y Esmeralda, 2000 Rosario, Santa Fé, RA, College Park, Maryland, 20740, USA

Received: March 19, 2022 | Published: May 30, 2022

Citation: Berdichevsky DB. A Simple proto nebula constituted of plasma under magneto hydrodynamics conditions. Aeron Aero Open Access J. 2022;6(1):22-24. DOI: 10.15406/aaoaj.2022.06.00137

Download PDF

Abstract

Using simplifying assumptions, a region or time in the universe is conceived, which allows for a state constituted solely by a gaseous plasma subject to the current laws of gravity and electromagnetism to exist. Under these conditions, it is proposed that the presence of a portion of that medium, organized in a highly symmetric magnetic field and plasma structure, possesses the symmetry of a torus. We resort to the fact that magneto hydrodynamics (MHD) is the common state of this medium and that it has the property of attaching to it the mass. (I.e. in the language of MHD the mass of the torus is assumed to be magnetized.) The solution to this MHD equilibrium of the matter of the torus, which prevents it from coalescing through the gravitational pool, is presented. Further, analysis shows that a gravitational field generated by the torus may be capable of attracting the other, non-magnetized matter, under the influence of the torus’ gravitational pool. In this way it is shown that the torus shaped MHD structure, under the discussed conditions, satisfies essential properties, like having large regions where the Keplerian mass motion cannot be present. A scenario consistent with a few key properties of proto-nebulae in equilibrium is presented and considered.

Keywords: astrophysics, MHD, magnetic force free analytical solutions

Introduction

We present a simple stage in the evolution of nebulae, at some point in time, before its either gentle or dramatic metamorphosis into becoming an ordinary galaxy. We may locate this scenario at some remote time and its location at some remote place, depending on our favorite big-bang model of the universe,1 or other possibilities including ‘a static,’ time independent solution, and or Kaluza – Klein models.2–4 If we assume a time epoch in the universe’s existence, a few hundred thousand years from its beginning in an expansion-inflationary process,5 following the re-ignition period. In this scenario we consider a possible quasi-equilibrium stage where the presence of currents, i.e. electromagnetic fields, would be enough to allow a state of plasma neutrality and dominance of the magnetic force in an ionized plasma, and constituting a hydromagnetic state, with which we are well acquainted theoretically,6,7 and which was later detected with the automat observations first near the Earth and later everywhere in the heliosphere, and more recently beyond into the local interstellar medium.8

Considering that the Maxwell and gravitational laws applied then, like they do today, we propose that self-organization of matter, plasma, and magnetic fields may have been produced in a variety of regions of the early time’s structures. After the introduction, there is a presentation of the model in Section 2. Conclusions are drawn in Section 3.

A simple proto-nebulae

We consider that self-organization was generated in magnetized plasma and we assume it to be simplest. Hence, we use the simpler mathematical expression of a self-organized structure of the kind discussed earlier,8 Figure 1 shows a representation of the structure, a torus in which the extension of the torus boundaries corresponds to the limit where the axial field reverses its direction.

Figure 1 Approximately cylindrical with minor radius RFRcore, and major radius RcFR.

When assuming ideal MHD conditions, i.e. a scenario in which the self-gravitational field of the structure would curve the magnetized matter, thereby providing stability and long life to the structure (ideal MHD assumes zero diffussion of the B-field)6–8 with the following solutions in toroidal coordinates:

B=  B 0 [ J 0 (A(ρ,f)) e x +H J 1 (A(ρ,f)) e ϕ ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOqaiabg2da9iaacckacaWGcbWdamaaBaaaleaapeGaaGimaaWd aeqaaOGaai4wa8qacaWGkbWdamaaBaaaleaapeGaaGimaaWdaeqaaO Gaaiika8qacaWGbbWdaiaacIcapeGaeqyWdiNaaiilaiaadAgapaGa aiykaiaacMcapeGaaCyza8aadaWgaaWcbaWdbiaahIhaa8aabeaak8 qacqGHRaWkcaWGibGaamOsa8aadaWgaaWcbaWdbiaaigdaa8aabeaa kiaacIcapeGaamyqa8aacaGGOaWdbiabeg8aYjaacYcacaWGMbWdai aacMcacaGGPaWdbiaahwgapaWaaSbaaSqaa8qacqaHvpGza8aabeaa kiaac2fapeGaaiilaaaa@57E1@    (1)

where its solution with

A(ρ,f) =a( ρ )[1 + ρ/ R cFR (cos(f)  |sin(f)|)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aacaGGOaWdbiabeg8aYjaacYcacaWGMbWdaiaacMcapeGa aeiiaiabg2da9iaadggapaWaaeWaaeaapeGaeqyWdihapaGaayjkai aawMcaaiaacUfapeGaaGymaiaabccacqGHRaWkcaqGGaGaeqyWdiNa ai4laiaadkfapaWaaSbaaSqaa8qacaWGJbGaamOraiaadkfaa8aabe aakiaacIcapeGaam4yaiaad+gacaWGZbWdaiaacIcapeGaamOza8aa caGGPaWdbiaabccacaGGtaIaaeiia8aacaGG8bWdbiaadohacaWGPb GaamOBa8aacaGGOaWdbiaadAgapaGaaiykaiaacYhacaGGPaGaaiyx aaaa@5DFD@   (2)

would be the time stationary limit of the solution presented earlier9 in a different context,

where a(ρ)=Aρ,andA=  j 0 / R FRcore , J 0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aacaGGOaWdbiabeg8aY9aacaGGPaWdbiabg2da9iaadgea cqaHbpGCcaGGSaGaamyyaiaad6gacaWGKbGaamyqaiabg2da9iaabc cacaWGQbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaac+cacaWG sbWdamaaBaaaleaapeGaamOraiaadkfacaWGJbGaam4Baiaadkhaca WGLbaapaqabaGcpeGaaiilaiaadQeapaWaaSbaaSqaa8qacaaIWaGa aiilaiaaigdaa8aabeaaaaa@5250@ are the well known orthogonal, grade 0 and 1, cylindrical Bessel functions of 1st kind,9 and the value of ρ= R FRcore MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaamOua8aadaWgaaWcbaWdbiaadAeacaWGsbGa am4yaiaad+gacaWGYbGaamyzaaWdaeqaaaaa@4084@  defines the radius of ‘the circular cross section’ of an approximated cylinder-section of the torus at the location where the axial magnetic field has its first node, is identically zero, i.e., J 0 ( j 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaWgaaWcbaWdbiaaicdaa8aabeaakmaabmaabaWdbiaa dQgapaWaaSbaaSqaa8qacaaIWaaapaqabaaakiaawIcacaGLPaaape Gaeyypa0JaaGimaaaa@3E91@ . In this case study there is no volume (Vol) change of the matter magnetized structure with time. A more general case is considered elsewhere.10,11 As usual we evaluate the convective current J c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOsa8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3943@  using ( J c =Ñ×H) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiaahQeapaWaaSbaaSqaa8qacaWGJbaapaqabaGcpeGaeyyp a0JaaCy0aiabgEna0kaahIeapaGaaiykaaaa@400D@ ,12 up to O ( R FRcore / R cFR ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ta8aadaqadaqaa8qacaWGsbWdamaaBaaaleaapeGaamOraiaa dkfacaWGJbGaam4BaiaadkhacaWGLbaapaqabaGcpeGaai4laiaadk fapaWaaSbaaSqaa8qacaWGJbGaamOraiaadkfaa8aabeaaaOGaayjk aiaawMcaamaaCaaaleqabaWdbiaaikdaaaaaaa@45C5@ , with the accuracy dependent on the ratio of the minor ( R cFRcore ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGsbWdamaaBaaaleaapeGaam4yaiaadAeacaWGsbGa am4yaiaad+gacaWGYbGaamyzaaWdaeqaaaGccaGLOaGaayzkaaaaaa@4039@ to major ( R cFR ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGsbWdamaaBaaaleaapeGaam4yaiaadAeacaWGsbaa paqabaaakiaawIcacaGLPaaaaaa@3C7C@ torus radii, and which gives next the convective current J c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOsa8aadaWgaaWcbaWdbiaadogaa8aabeaaaaa@3943@ components

J cx ( modified )=A/ μ 0 {H B x [1  2ρ/ R cFR (cos(f)  |sin(f)|)] + Δ j cx } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaWgaaWcbaWdbiaadogacaWG4baapaqabaGcdaqadaqa a8qacaWGTbGaam4BaiaadsgacaWGPbGaamOzaiaadMgacaWGLbGaam izaaWdaiaawIcacaGLPaaapeGaeyypa0Jaamyqaiaac+cacqaH8oqB paWaaSbaaSqaa8qacaaIWaaapaqabaGccaGG7bWdbiaadIeacaWGcb WdamaaBaaaleaapeGaamiEaaWdaeqaaOGaai4wa8qacaaIXaGaaeii aiaacobicaqGGaGaaGOmaiabeg8aYjaac+cacaWGsbWdamaaBaaale aapeGaam4yaiaadAeacaWGsbaapaqabaGccaGGOaWdbiaadogacaWG VbGaam4Ca8aacaGGOaWdbiaadAgapaGaaiyka8qacaqGGaGaai4eGi aabccapaGaaiiFa8qacaWGZbGaamyAaiaad6gapaGaaiika8qacaWG MbWdaiaacMcacaGG8bGaaiykaiaac2fapeGaaeiiaiabgUcaRiaabc cacqqHuoarcaWGQbWdamaaBaaaleaapeGaam4yaiaadIhaa8aabeaa kiaac2haaaa@7037@   (3.a)

with

B x =  B 0 J 0 (A(ρ,f)), and Δ j cx = ρ/ R cFR (cos(f)  |sin(f)|) J1(A(ρ,f))/A(ρ,f) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacqGH9aqpcaqG GaGaamOqa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGkbWdam aaBaaaleaapeGaaGimaaWdaeqaaOGaaiika8qacaWGbbWdaiaacIca peGaeqyWdiNaaiilaiaadAgapaGaaiykaiaacMcapeGaaiilaiaabc cacaWGHbGaamOBaiaadsgacaqGGaGaeuiLdqKaamOAa8aadaWgaaWc baWdbiaadogacaWG4baapaqabaGcpeGaeyypa0Jaaeiiaiabeg8aYj aac+cacaWGsbWdamaaBaaaleaapeGaam4yaiaadAeacaWGsbaapaqa baGccaGGOaWdbiaadogacaWGVbGaam4Ca8aacaGGOaWdbiaadAgapa Gaaiyka8qacaqGGaGaai4eGiaabccapaGaaiiFa8qacaWGZbGaamyA aiaad6gapaGaaiika8qacaWGMbWdaiaacMcacaGG8bGaaiyka8qaca qGGaGaamOsaiaaigdapaGaaiika8qacaWGbbWdaiaacIcapeGaeqyW diNaaiilaiaadAgapaGaaiykaiaacMcapeGaai4laiaadgeapaGaai ika8qacqaHbpGCcaGGSaGaamOza8aacaGGPaaaaa@7747@ , the other two components of JC being:

J cρ = A/ μ 0 H B f ρ/  R cFR [sin(f) +  f |sin(f)|] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaWgaaWcbaWdbiaadogacqaHbpGCa8aabeaak8qacqGH 9aqpcaqGGaGaai4eGiaadgeacaGGVaGaeqiVd02damaaBaaaleaape GaaGimaaWdaeqaaOWdbiaadIeacaWGcbWdamaaBaaaleaapeGaamOz aaWdaeqaaOWdbiabeg8aYjaac+cacaqGGaGaamOua8aadaWgaaWcba WdbiaadogacaWGgbGaamOuaaWdaeqaaOGaai4wa8qacaWGZbGaamyA aiaad6gapaGaaiika8qacaWGMbWdaiaacMcapeGaaeiiaiabgUcaRi aabccacqGHciITpaWaaSbaaSqaa8qacaWGMbaapaqabaGccaGG8bWd biaadohacaWGPbGaamOBa8aacaGGOaWdbiaadAgapaGaaiykaiaacY hacaGGDbaaaa@5F07@   (3.b)

J c f =A/ μ 0 H B f [1  2ρ/  R cFR (cos(f)  |sin(f)|)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaWgaaWcbaWdbiaadogaa8aabeaakmaaBaaaleaapeGa amOzaaWdaeqaaOWdbiabg2da9iaadgeacaGGVaGaeqiVd02damaaBa aaleaapeGaaGimaaWdaeqaaOWdbiaadIeacaWGcbWdamaaBaaaleaa peGaamOzaaWdaeqaaOGaai4wa8qacaaIXaGaaeiiaiaacobicaqGGa GaaGOmaiabeg8aYjaac+cacaqGGaGaamOua8aadaWgaaWcbaWdbiaa dogacaWGgbGaamOuaaWdaeqaaOGaaiika8qacaWGJbGaam4Baiaado hapaGaaiika8qacaWGMbWdaiaacMcapeGaaeiiaiaacobicaqGGaWd aiaacYhapeGaam4CaiaadMgacaWGUbWdaiaacIcapeGaamOza8aaca GGPaGaaiiFaiaacMcacaGGDbaaaa@5F24@   (3.c)

where B f = H B 0 J 1 (A(ρ,f)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacqGH9aqpcaqG GaGaamisaiaadkeapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaam Osa8aadaWgaaWcbaWdbiaaigdaa8aabeaakiaacIcapeGaamyqa8aa caGGOaWdbiabeg8aYjaacYcacaWGMbWdaiaacMcacaGGPaaaaa@46BE@ is the polar component of the magnetic field density B. and H ( =+1 or1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisaiaabccapaWaaeWaaeaapeGaeyypa0Jaey4kaSIaaGymaiaa bccacaWGVbGaamOCaiaacobicaaIXaaapaGaayjkaiaawMcaaaaa@40F8@ is the handedness of the FR, and Equations (3.a – 3.c) are the corrected expressions11 Notice that in this case the equations simplify by neglecting time dependencies, i.e. steady state only, considered here. These three components of Jc can be visualized with the help of (Figure 1) which allow to understand the geometric shape of the circulation of the MHD convection current, with components from Equation 3.a to 3.c, respectively flowing along the main axis ‘x’ of the torus, current Jcx, the minor radius ‘ρ’ of the torus, I,e current J, , and along ‘ø’ the poloidal current, Jcø , where ‘x, ρ, and ø ‘ constitute a right handed coordinate system.

Next we drop subindices for RcFR, and instead we use R. The summatory of all ‘torus’ elements and gravitational forces acting on each infinitesimal element ‘δMTorus‘ at the torus’ locus is oriented to the center of the torus, defined as

F g ( δ M Torus ) =  G  M Torus δ M Torus R( δ M Torus )/ | R | 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOra8aadaWgaaWcbaWdbiaadEgaa8aabeaakmaabmaabaWdbiab es7aKjaad2eapaWaaSbaaSqaa8qacaWGubGaam4BaiaadkhacaWG1b Gaam4CaaWdaeqaaaGccaGLOaGaayzkaaWdbiaabccacqGH9aqpcaqG GaGaai4eGiaabccacaWGhbGaaeiiaiaad2eapaWaaSbaaSqaa8qaca WGubGaam4BaiaadkhacaWG1bGaam4CaaWdaeqaaOWdbiabes7aKjaa d2eapaWaaSbaaSqaa8qacaWGubGaam4BaiaadkhacaWG1bGaam4Caa WdaeqaaOWdbiaahkfapaWaaeWaaeaapeGaeqiTdqMaamyta8aadaWg aaWcbaWdbiaadsfacaWGVbGaamOCaiaadwhacaWGZbaapaqabaaaki aawIcacaGLPaaapeGaai4la8aadaabdaqaa8qacaWHsbaapaGaay5b SlaawIa7amaaCaaaleqabaWdbiaaiodaaaaaaa@6535@   (4.a)

for circular symmetry of the simple case of homogeneously distributed matter in a magnetized field (defined in Equation 1). Also, any mass particle m located at the distance from the center of the torus | r R| is bound to feel such gravitational pull,

F g ( m( rR ) ) =  G  M Torus m( rR )/ | rR | 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCOra8aadaWgaaWcbaWdbiaadEgaa8aabeaakmaabmaabaWdbiaa d2gapaWaaeWaaeaapeGaaCOCaiaacobicaWHsbaapaGaayjkaiaawM caaaGaayjkaiaawMcaa8qacaqGGaGaeyypa0JaaeiiaiaacobicaqG GaGaam4raiaabccacaWGnbWdamaaBaaaleaapeGaamivaiaad+gaca WGYbGaamyDaiaadohaa8aabeaak8qacaWGTbWdamaabmaabaWdbiaa hkhacaGGtaIaaCOuaaWdaiaawIcacaGLPaaapeGaai4la8aadaabda qaa8qacaWHYbGaai4eGiaahkfaa8aacaGLhWUaayjcSdWaaWbaaSqa beaapeGaaG4maaaaaaa@580D@   (4.b)

similar to the one shown in Equation 4.a for a coordinate system with its origin at the center of the torus.

For the expression of the vector potential A, notice that the corrected expression13 is easily generalizable to the case of a torus. Once with the expression for the magnetic field and the current, it is easy to find the equilibrium condition for

F=0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyeIuUaaCOraiabg2da9iaahcdacaGGGcGaaiiOaaaa@3DA8@   (5)

where we here solely consider magnetic and gravitational forces, i.e.

M F g ( d M Torus ) dM +  J d J C XB=0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kIi=damaaBaaaleaapeGaamytaaWdaeqaaOWdbiaahAeapaWa aSbaaSqaa8qacaWGNbaapaqabaGcdaqadaqaa8qacaWGKbGaamyta8 aadaWgaaWcbaWdbiaadsfacaWGVbGaamOCaiaadwhacaWGZbaapaqa baaakiaawIcacaGLPaaapeGaaeiiaiaadsgacaWGnbGaaeiiaiabgU caRiaabccacqGHRiI8paWaaSbaaSqaa8qacaWHkbaapaqabaGcpeGa amizaiaahQeapaWaaSbaaSqaa8qacaWGdbaapaqabaGcpeGaamiwai aahkeacqGH9aqpcaWHWaGaaiiOaiaacckaaaa@551B@   (6)

and, considering the solution of Equation 6 in11 for a truncated torus, we proceed to the generalization of the simpler case of a whole torus developed here, which for us corresponds to the simplified equilibrium expression

 G  ( M Torus ) 2 +(25 μ 0 /4) [ Φ f 2 ] = 0.  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4eGiaabccacaWGhbGaaeiia8aadaqadaqaa8qacaWGnbWdamaa BaaaleaapeGaamivaiaad+gacaWGYbGaamyDaiaadohaa8aabeaaaO GaayjkaiaawMcaamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkpaGa aiika8qacaaIYaGaaGynaiabeY7aT9aadaWgaaWcbaWdbiaaicdaa8 aabeaak8qacaGGVaGaaGina8aacaGGPaWdbiaacckapaGaai4wa8qa cqqHMoGrpaWaaSbaaSqaa8qacaWGMbaapaqabaGcdaahaaWcbeqaa8 qacaaIYaaaaOWdaiaac2fapeGaaeiiaiabg2da9iaabccacaaIWaGa aiOlaiaacckaaaa@56A1@   (7)

The mass of the torus (MTorus) and the poloidal magnetic flux (Φϕ) forces in equilibrium are simply related as shown in Equation (7). In this way we obtain, for a simple limit, the condition for matter to be attached to the ‘protogalaxie magnetic field’ generated by convective currents, which stabilize the matter in a cold frozen matter condition. Preliminary studies13,14 suggest that this, “a stable structure.” will possess specific thermodynamic properties characteristic of a diamagnetic environment. This stability condition could be subject to a variety of possible disruptions and that study is beyond the scope of the present work.

Notice that the model does not consider the presence of angular momentum, even though its presence is well known in most galaxies15 (Most likely the centripetal force associated to a “low velocity” simplified here to a rigid rotation of the structure would add to its stability respect to the pull of the gravitational force.)

Discussion

A possible scenario is that the curvature of the magneto matter structure could be provided by the re-ignition process after the appearance of supermassive stars of relatively short life cycles, followed by their gravitational collapse after a primordial cooling following the big-bang as presented in hypotheses elsewhere.15 Here, on simplifying grounds it is given consideration to the possibility of the evolution, under those conditions, of the highly symmetric MHD magneto-matter with a torus shape presented in Figure 1. From our analysis, a large, symmetric, magnetic-matter is connected to the generation of point-like gravitational center at the locus of the MHD torus–structure discussed. Matter in the proximity of this center –of the torus MHD structure considered– could flow to, and possibly generate after a few hundred-thousand years a denser central region in the proto-galaxy.

When thinking of the possible origin of the angular momentum generation, a succession of coherent push by the infalling matter to the center of the major radius of the torus (possibly a proto-galaxy with a denser center and an eventual subject in a line of study to be developed). This condition could introduce angular momentum into the torus magneto-matter system. The frozen nature of the structure subjected to a rotational equilibrium would naturally make the internal part of the torus (here we call it protogalaxy) rotate in a rather synchronous way, with its external region providing a feature that could resemble the rotational pattern of increasing velocity of rotation with the distance from the center of the galaxy. This rotational pattern is today well validated from many very accurate observations, beginning approximately after the mid past century,15,16 This very intriguing rotational pattern has been the engine of a large amount of work for the last several decades due to the fact that we are now well aware that this rotational pattern of galaxies goes contrary to the well understood Keplerian motion, which inspired the theory of universal gravitation by Isaac Newton.

Further, notice that the presented scenario does not require the pre-existent presence of earlier black holes, the kind which could have occurred because of the collapse of the primordial super-massive stars,17 and which may have constituted the seed for the possible appearance later of a primogenious kind of galaxies, of current uncertain existence.

Acknowledgments

To my father for his love of a whole life, and my late wife for her patience with my love for science. To my son Santiago Berdichevsky for a careful check of the English.

Conflicts of interest

Authors declare that there is no conflict of interest.

Funding

None.

References

  1. Weinberg S. Cosmology. Oxford, UK, Oxford Univ Pr. 2008.
  2. Ponce de Leon J. Equations of Motion in Kaluza-Klein Gravity Reexamined, Laboratory of Theoretical Physics, Department of Physics University. 2018
  3. Kaluza Theodor. Zum Unitätsproblem in der Physik. Math Phys.1921;966–972.
  4. Klein Oskar.Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik A. 1926;37(12):895–906.
  5. Senatore L. Lectures on Inflation, Stanford Institute for Theoretical Physics Department of Physics, Stanford University, Stanford, CA 94306 Kavli Institute for Particle Astrophysics and Cosmology. 2016
  6. Alfvén H. Existence of electromagnetic-hydrodynamic waves. Nature.1942;150:405–406.
  7. Alfvén H. On the Theory of Magnetic Storms and Aurorae. Tellus.1958;10(1) l:104–116.
  8. Berdichevsky. On the equilibrium of a extremely extended and dilute magneto-matter state subject to its weight. APS March Meeting. 2016;61(2).
  9. Abramowitz, M Stegun, IA. Handbook of Mathematical Functions, 9th Ed. Dover, New York; 1972.
  10. Berdichevsky DB. On Fields and Mass Constraints for the Uniform Propagation of Magnetic-Flux Ropes Undergoing Isotropic Expansion. Solar Phys. 2013;284:245–259.
  11. Berdichevsky DB. Erratum. Solar Phys. 2019;294:167.
  12.  Jackson D. Electrodinámica Clásica. Translation G Marsal, 2nd ed. La Alhambra, Madrid, Spain; 1963.
  13. Berdichevsky D B, K Schefers. On the thermodynamics and other constitutive properties of a class of strongly magnetized matter observed in astrophysics. Astrophysical J. 2015;805:70:13.
  14. Burlaga LF, JF Lemaire. Interplanetary magneti holes theory. Journal Geophys Res Atmospheres. 1978;83(A11):5157-5160
  15. Rubin VC. Rotational Properties of 21-Sc Galaxies with A Large Range Of Luminosities and Radii, From Ngc 4605 (R = 4 Kpc) To Ugc 2885 (R = 122 Kpc). Astrophysical Journal.1980;238:471–487
  16.  Rubin VC, WK Ford, Jr Kent. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. ApJ. 1970;159:379–403.
  17. D Whalen, E Glover, Patrick, et al. On the detection of supermassive primordial stars. Astrophys J. 2021;915(110):10.
Creative Commons Attribution License

©2022 Berdichevsky. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.