Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Correspondence:

Received: January 01, 1970 | Published: ,

Citation: DOI:

Download PDF

Abstract

The limitation of the probability of any fatigue failure in a fleet of N fatigue-prone aircraft (FFPN) and fatigue failure rate (FFR) of airline (AL) is a problem of high priority. The offered solution of the problem is based on the acceptance full-scale fatigue test of an aircraft structure. If the result of this test is not good enough then this new type of aircraft will not be used in a service. Previously the redesign of this project should be done. For this strategy there are a maximum of FFPN and a maximum of FFR as functions of unknown parameters of a fatigue life distribution and of a model of fatigue crack growth. In this paper the approach is discussed which allows to limit these maximums for any unknown parameters of fatigue life and fatigue crack model. Numerical examples are given.

Keywords: inspection program, markov chain, monte-carlo, reliability, p-set function, weibull distributions.

Abbreviations

FFR, fatigue failure rate; FFPN, fleet of n fatigue-prone aircraft; AL, airline; AC, aircraft; SL, safe life; FS, fail safe; DT, damage tolerance; MIMAR, modeling in industrial maintenance and reliability; CDF, cumulative distribution functions; RV, random variable; ML, maximum likelihood; MCh, markov chain; CD, crack detection; FF, fatigue failure.

Introduction

This paper is in some way a review, a correction and a development of our previous publications devoted to an elimination of a fatigue failure of an aircraft (AC). We discuss here the economical effectiveness of an airline (AL) under a limitation of the fatigue failure rate (FFR) and the limitation of any fatigue failure probability in a fleet of N fatigue-prone aircraft (FFPN).

 The study of the fatigue problem of the aircraft has a long history. The earliest reported accident was the wing failure of a Dornier Merkur on 23 september 1927.1 C Torkingtion2 in his paper reminds: “In a two year period from 1942, about 20 Vickers Wellington bombers were lost in the UK as a result of fatigue failures of the wing main spar joints. In the war situation, if 20 failures in the UK were identified as fatigue, one can only guess that at least a similar number were lost over the sea or enemy territory”.

The most significant accidents were the catastrophic failures of Comet (1953, 1954), Fokker F-27 (1968), F-111 (1969), Hawker Siddeley (1976) and Boeing - 707 - 321C (1977). The most massive structural failure ever survived by an airliner was a geriatric (89,000 - flight) failure of B - 737 (1988). The details of these milestone case histories in aircraft structural integrity are described in.3 And at least hitherto the problem of elimination of fatigue failure is not solved . For example, at the beginning of 2012 year fatigue cracks was discovered in the in the wings of two А380 (4 years of service in Singarope Airlines).

The crash of three Comets was the most significant event, which has a very strong influence on the next aircraft airframe development. Special philosophy and system of aircraft development should have been created in order to prevent aircraft fatigue failure. The first main ideas of the system were offered just during the Comet inquiry4 in October - November 1954. Much attention was paid to the scatter of fatigue life. This is the opinion of director of the Royal Aircraft Establishment: ".... I would have the whole aeroplane tests carried on until the next failure took place, and then take half a dozen specimens and get a safety life, we would then put variation as 3:1 on either side of the average. Whereas, if you only work on a single specimen, you would have to give a safety life of about one ninth of what the specimen comes to, because the specimen might by chance have been the strongest...".4 The approach to the fatigue problem, which developed from these ideas, was called a Safe-Life (SL) approach. Basically this requires that all the parts of the structure, the failure of which could result in loss of the aircraft, are to be able to remain safely in use for a predetermined retirement life (specified life (SL)).

The developed country like USA, introduced Fail-Safe Concept (FS) for fixed wing transport aircraft was later would serve as the framework for common international standards. This new standard resulted from the US. FAA Transport Category Airplane Fatigue Regulatory Review Conference held in March, 1977.5 The European position, primarily advocated by the United Kingdom, was that transport category aircraft should meet two standards, the fail-safe and the safe-life methods, for certification of fixed wing aircraft.

Later the USAF provided new guidelines: Damage Tolerance (DT) philosophy.6 This philosophy is in many ways similar to the fail-safe approach but it goes somewhat further in that consideration is given to crack growth from flaws which may be present in the structure as manufactured. Such flaws may arise from inherent metallurgical imperfections in the material used, or from manufacturing imperfections. The damage tolerance evaluation of structure is intended to insure that should serious fatigue cracks or damage occur, the remaining structure can withstand reasonable loads without excessive structural deformations until the damage is detected.

The FS and the DT concepts make emphasis on the design and test. During fail-safe test we have to prove, that the requirements are met. But it should be taken into account that even if the requirements are met the "fail-safe" structure is not safe, if it is not timely inspected and repaired. “So far better title would be "inspection dependent". This clearly puts the emphasis for safety on the inspector, and implies that, without inspection, things may well be dangerous".7

For the choice of the SL and the program of inspections for the FS and the SL methods correspondingly, several mathematical problems should be solved. The model of fatigue crack growth should be developed and the cumulative distribution function of fatigue life should be studied. The mathematics for the calculation of the probability of the fatigue crack detection should be developed also. There is a lot of publications devoted to these problems. We mention only the most significant ones.

Much attention to these problems was devoted in the papers of Yang JN, et al.8-16 The statistical crack growth model and the distribution on equivalent initial flaw size were studied in.14,15 The models of fatigue crack are offered also in17,18 and.16,19 In two last papers the process of the fatigue crack growth is considered as random process.

Statistical estimation of economic life for aircraft structures and aircraft fleet maintenance based on structural reliability analysis was studied in.13,20,21 Some state-of-the-art and new mathematical approach to the problem was presented in 8th IMA International Conference on Modelling in Industrial Maintenance and Reliability (MIMAR), Oxford, Institute of Mathematics and its Applications, 2014. In22 the control limit policy for aging systems using Markov decision process, in23 a cooperative game-based decision method for aircraft fleet maintenance are discussed. Minimax approach to the development of inspection program in order to provide the economical effectiveness of an airline (AL) under a limitation of the fatigue failure rate (FFR) and the limitation of any fatigue failure probability in a fleet of N fatigue-prone aircraft (FFPN) is offered in.24 The theory of semi-Markov process with rewords was used for the solution of these problems.

Usually, the reliability problem is considered as a problem of the probability theory when the cumulative distribution functions (CDFs) of corresponding random variables (a fatigue life, fatigue crack model parameters …) are known already. But in this paper, which is the development of24 and some solutions presented in,25 the main attention is devoted to the statistical problems when these CDFs are not known but thesolution of the problem is based on the acceptance full-scale fatigue test of an aircraft structure. In Appendix A the planning of inspection intervals is considered as definition of some set of specific “prediction intervals” for “future observations” (the detection and the fatigue failure times of the fleet aircraft) based on the processing of the acceptance fatigue test. After this test one of the two decisions should be chosen: 1) to do the redesign of new type of AC if the result of the test is “too bad” or 2) make the development of inspection program in other case. In this case required reliability can be provided for any unknown parameter of fatigue crack growth. Special attention in this paper will be made also to the beginning of service of a fleet of a new type aircraft.

Nomination of specified life

 There are two versions of the problem.

  1. The nomination of the specified life as some value in the interval (0,) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacIcaca aIWaGaaiilaiabg6HiLkaacMcaaaa@3AD6@ .
  2. The SL is already nominated but it is necessary to check the required reliability.

Estimate of specified life

Usually for fatigue life data processing both lognormal and Weibull distributions are used. If we use logarithm scale (if we use X=ln(T) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiwai abg2da9iGacYgacaGGUbGaaiikaiaadsfacaGGPaaaaa@3CCE@  instead of random variable (RV) T), both these distributions will become distributions with location and scale parameters

X= θ 0 + θ 1 X 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGybGaeyypa0ZdaiabeI7aXPWaaSbaaKqaGeaajugWaiaa icdaaSqabaqcLbsapeGaey4kaSYdaiabeI7aXPWaaSbaaKqaGeaaju gWaiaaigdaaSqabaGcdaWfGaqaaKqzGeGaamiwaaWcbeqcbasaaKqz adGaaGimaaaajugib8qacaGGSaaaaa@4794@                        (1)

where θ 0 , θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde NcdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaacYcacqaH4oqC kmaaBaaajeaibaqcLbmacaaIXaaaleqaaaaa@4011@  are unknown parameters, RV X 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaqcLb sacaWGybaaleqajeaibaqcLbmacaaIWaaaaaaa@3A0D@  has either cdf F X 0 (x)=Φ(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaCbiaeaajugibiaadIfaaSqabKqaGeaajugWaiaaicdaaaqcLbsa caGGOaGaamiEaiaacMcacqGH9aqpcqqHMoGrcaGGOaGaamiEaiaacM caaaa@432C@ , where Φ(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrcaGGOaGaamiEaiaacMcaaaa@3A55@ is cdf of standard normal or the standard smallest extreme value (sev), F X 0 (x)=1exp(exp(x)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaCbiaeaajugibiaadIfaaSqabKqaGeaajugWaiaaicdaaaqcLbsa caGGOaGaamiEaiaacMcacqGH9aqpcaaIXaGaeyOeI0IaciyzaiaacI hacaGGWbGaaiikaiabgkHiTiGacwgacaGG4bGaaiiCaiaacIcacaWG 4bGaaiykaiaacMcaaaa@4B56@ , distributions (for lognormal or Weibull distributions of T correspondingly). In following we use logarithm scale.

 Let X=( X 1 ,..., X n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadIfacq GH9aqpcaGGOaGaamiwaOWaaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadIfakmaaBaaaje aibaqcLbmacaWGUbaaleqaaKqzGeGaaiykaaaa@44F6@  where X i ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadIfakm aaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaaGPaVlaacYcacaaM c8UaamyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaai ilaiaad6gaaaa@4568@ , is the fatigue life of AC (it is a random variable) in full-scale fatigue test, Y=( Y 1 ,..., Y N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMfacq GH9aqpcaGGOaGaamywaOWaaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadMfakmaaBaaaje aibaqcLbmacaWGobaaleqaaKqzGeGaaiykaaaa@44D9@ , Z=min( Y 1 ,..., Y N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadQfacq GH9aqpciGGTbGaaiyAaiaac6gacaGGOaGaamywaOWaaSbaaKqaGeaa jugWaiaaigdaaSqabaqcLbsacaGGSaGaaiOlaiaac6cacaGGUaGaai ilaiaadMfakmaaBaaajeaibaqcLbmacaWGobaaleqaaKqzGeGaaiyk aaaa@47AC@  where Y j ,j=1,...,N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMfakm aaBaaajeaibaqcLbmacaWGQbaaleqaaKqzGeGaaiilaiaaykW7caWG QbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaam Otaaaa@43C0@ , is the fatigue life (random variable) of AC in service. We consider the case when all components of vectors X and Y are independent RVs with the same cdf which has the location and scale parameters

F X 0 ((x θ 0 )/ θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadAeakm aaxacabaqcLbsacaWGybaaleqajeaibaqcLbmacaaIWaaaaKqzGeGa aiikaiaacIcacaWG4bGaeyOeI0IaeqiUdeNcdaWgaaqcbasaaKqzad GaaGimaaWcbeaajugibiaacMcacaGGVaGaeqiUdeNcdaWgaaqcbasa aKqzadGaaGymaaWcbeaajugibiaacMcaaaa@4A37@ , i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMgacq GH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaa aa@3DBA@ , j=1,...,N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadQgacq GH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGobaa aa@3D9B@ .

In order to limit the probability of fatigue failure of any AC in service by small value

ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew7aLb aa@3849@  the SL, τ=τ(X) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes8a0j abg2da9iabes8a0jaacIcacaWGybGaaiykaaaa@3D68@ , should be found from the equation

sup θ P(Zτ(X))ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGacohaca GG1bGaaiiCaOWaaSbaaKqaGeaajugWaiabeI7aXbWcbeaajugibiaa dcfacaGGOaGaamOwaiabgsMiJkabes8a0jaacIcacaWGybGaaiykai aacMcacqGHKjYOcqaH1oqzaaa@4974@ .          (2)

For considered assumptions we have the following solution 25

τ ^ = θ ^ 0 + t 1 θ ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbes8a0z aajaGaeyypa0JafqiUdeNbaKaakmaaBaaajuaibaqcLbmacaaIWaaa juaGbeaajugibiabgUcaRiaadshakmaaBaaajuaibaqcLbmacaaIXa aajuaGbeaajugibiqbeI7aXzaajaGcdaWgaaqcfasaaKqzadGaaGym aaqcfayabaaaaa@4870@                                (3)

where the random variables, estimates of θ 0 , θ 1   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH4oqCk8aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqa aKqzGeWdbiaacYcacqaH4oqCk8aadaWgaaqcbasaaKqzadWdbiaaig daaSWdaeqaaKqzGeWdbiaacckaaaa@4260@  (for example, estimates of Maximum Likelihood (ML) method) as function of X=( X 1 , X 2 ,..., X n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiwai abg2da9iaacIcacaWGybGcdaWgaaqcbasaaKqzadGaaGymaaWcbeaa jugibiaacYcacaWGybGcdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaju gibiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiwaOWaaSbaaKqa GeaajugWaiaad6gaaSqabaqcLbsacaGGPaaaaa@498F@  have the following structures

θ ^ 0 = θ 0 + θ 1 θ o 0 ,    θ ^ 1 = θ 1 θ o 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafqiUde NbaKaakmaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaeyypa0Ja eqiUdeNcdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiabgUcaRi abeI7aXPWaaSbaaKqaGeaajugWaiaaigdaaSqabaGcdaWfGaqaaKqz GeGaeqiUdehaleqajeaibaqcLbmacaWGVbaaaOWaaSbaaKqaGeaaju gWaiaaicdaaSqabaqcLbsacaGGSaGaaGjbVlaaysW7caqGGaGaaeii aiaabccacuaH4oqCgaqcaOWaaSbaaKqaGeaajugWaiaaigdaaSqaba qcLbsacqGH9aqpcqaH4oqCkmaaBaaajeaibaqcLbmacaaIXaaaleqa aOWaaCbiaeaajugibiabeI7aXbWcbeqcbasaaKqzadGaam4Baaaakm aaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaaiilaaaa@6563@   (4)

where θ o 0 ,  θ o 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfGaqaaKqzGe GaeqiUdehaleqajeaibaqcLbmacaWGVbaaaOWaaSbaaKqaGeaajugW aiaaicdaaSqabaqcLbsacaGGSaGcdaWfGaqaaKqzGeGaaeiiaiabeI 7aXbWcbeqcbasaaKqzadGaam4BaaaakmaaBaaajeaibaqcLbmacaaI Xaaaleqaaaaa@4643@  are RVs corresponding to the estimates of θ 0 , θ 1   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH4oqCk8aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqa aKqzGeWdbiaacYcacqaH4oqCk8aadaWgaaqcbasaaKqzadWdbiaaig daaSWdaeqaaKqzGeWdbiaacckaaaa@4260@  using a sample X 0 =( X 0 1 ,..., X 0 n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfGaqaaKqzGe GaamiwaaWcbeqcbasaaKqzadGaaGimaaaajugibiabg2da9iaacIca kmaaxacabaqcLbsacaWGybaaleqajeaibaqcLbmacaaIWaaaaOWaaS baaKqaGeaajugWaiaaigdaaSqabaqcLbsacaGGSaGaaiOlaiaac6ca caGGUaGaaiilaOWaaCbiaeaajugibiaadIfaaSqabKqaGeaajugWai aaicdaaaGcdaWgaaqcbasaaKqzadGaamOBaaWcbeaajugibiaacMca aaa@4DC7@  of the same size n but when θ 0 =0, θ 1  =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH4oqCk8aadaWgaaqcKfaG=haajugWa8qacaaIWaaal8aa beaajugibiabg2da98qacaaIWaGaaiilaiaaykW7caaMc8UaeqiUde NcpaWaaSbaaKazba4=baqcLbmapeGaaGymaaWcpaqabaqcLbsapeGa aiiOaiabg2da9iaaigdaaaa@4C7D@ ;the RV Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfGaqaaKqzGe GaamOwaaWcbeqcbasaaKqzadGaaGimaaaaaaa@39DB@  has the same type of CDF as Z but θ 0 =0, θ 1  =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH4oqCk8aadaWgaaqcKfaG=haajugWa8qacaaIWaaal8aa beaajugibiabg2da98qacaaIWaGaaiilaiaaykW7caaMc8UaeqiUde NcpaWaaSbaaKazba4=baqcLbmapeGaaGymaaWcpaqabaqcLbsapeGa aiiOaiabg2da9iaaigdaaaa@4C7D@ ; t1is ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew7aLb aa@3848@ -quintile of RV V Z =( Z 0 θ 0 0 )/ θ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadAfakm aaBaaajeaibaqcLbmacaWGAbaaleqaaKqzGeGaeyypa0JaaiikaOWa aCbiaeaajugibiaadQfaaSqabKqaGeaajugWaiaaicdaaaqcLbsacq GHsislkmaaxacabaqcLbsacqaH4oqCaSqabKqaGeaajugWaiaaicda aaGcdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaacMcacaGGVa GcdaWfGaqaaKqzGeGaeqiUdehaleqajeaibaqcLbmacaaIWaaaaOWa aSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@514D@  , ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew7aLb aa@3848@  is allowed probability of failure of any AC.

Fixed required specified life-test time limitation

Now we consider the case when the required SL, τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes8a0b aa@3867@ , is fixed already but using result of the acceptance full-scale fatigue test it is necessary to check the reliability requirement. And we consider also definition of the required test time.

 Let us define

τ ^ = θ ^ 0 + t 2 θ ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbes8a0z aajaGaeyypa0JafqiUdeNbaKaakmaaBaaajeaibaqcLbmacaaIWaaa leqaaKqzGeGaey4kaSIaamiDaOWaaSbaaKqaGeaajugWaiaaikdaaS qabaqcLbsacuaH4oqCgaqcaOWaaSbaaKqaGeaajugWaiaaigdaaSqa baaaaa@46DC@          (5)

and we say that required reliability is provided if τ ^ >τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbes8a0z aajaGaeyOpa4JaeqiXdqhaaa@3B43@ . The value t2 we should define in such a way that probability of acceptance of the test and probability of fatigue failure of any AC in service should be limited for any parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@  by very small value, ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew7aLb aa@3848@

P(Z<τ τ ^ >τ)ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaca GGOaGaamOwaiabgYda8iabes8a0PWaaqbaaeaajugibiqbes8a0zaa jaaaleqabeqcLbsacqWIPissaiabg6da+iabes8a0jaacMcacqGHKj YOcqaH1oqzaaa@46EA@ .             (7)

It can be shown [see25) that t2 is the solution of the equation (8)

sup C  F (c) Z O F V C ( t 2 )=ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeaO qaaKqzGeGaae4CaiaabwhacaqGWbaajeaibaqcLbmacaqGdbaaleqa aKqzGeGaaGjbVlaabccacGa4aoOraKqbaoaaBeaaleaajuaGdaWgba qccasaaSWaiqklxacajiaibGaPSKqzadGaiqkldQfaaKGaGeqcKYsa iqkljugOaiacKYYGpbaaaaadbeaaaSqabaqcLbsacaGGOaGaam4yai aacMcacaWGgbqcfa4aaSbaaKazba4=baqcLbmacaWGwbWcdaWgaaqc casaaKqzGcGaam4qaaqccasabaaaleqaaKqzGeGaaiikaiaadshaju aGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaacMcacqGH9aqp cqaH1oqzaaa@6020@       (8)

where RV

V C =(c θ 0 0 )/ θ 0 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGwb qcfa4aaSbaaKqaGeaajugWaiaaboeaaSqabaqcLbsacqGH9aqpcaGG OaGaam4yaiabgkHiTKqbaoaawagabeqabKqbGeaacaaIWaaajuaGba GaeqiUde3aaSbaaKqbGeaacaaIWaaajuaGbeaaaaqcLbsacaGGPaGa ai4laKqbaoaawagabeqabKqbGeaacaaIWaaajuaGbaGaeqiUdehaam aaBaaaleaajugibiaaigdaaSqabaqcLbsacaGGUaaaaa@4D06@

It is worth to note that if the test of all n ACs are made simultaneously, the defined by (4) structure of the parameter estimates takes place only if the test will be stopped at the moment of kth failure, k=2,...,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUgacq GH9aqpcaaIYaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaa aa@3DBD@ . The value of k can be chosen taking into account some specific economical reason. Special attention should be made for the case when the scale parameter, θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXP WaaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3AA1@ , is known. In this case it can be found the limitation of the test time without any failure. It can be shown that in this case the required SL, τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes8a0b aa@3867@ , can be excepted and required reliability (1ε) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacIcaca aIXaGaeyOeI0IaeqyTduMaaiykaaaa@3B49@  will be provided if the smallest fatigue life of the tested AC will be more than x (1) = τ t 2 1 θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadIhakm aaBaaajeaibaqcLbmacaGGOaGaaGymaiaacMcaaSqabaqcLbsacqGH 9aqpcaqGGaGaaGzbVlabes8a0jabgkHiTiaadshalmaaDaaajeaiba qcLbmacaaIYaaajeaibaqcLbmacaaIXaaaaKqzGeGaeqiUdeNcdaWg aaqcbasaaKqzadGaaGymaaWcbeaaaaa@4B93@  where t 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadshalm aaDaaajeaibaqcLbmacaaIYaaajeaibaqcLbmacaaIXaaaaaaa@3BEF@  is the solution of the equation

max C F (c) Z 0 (1 F X (c t 2 1 )) n =ε. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeaO qaaKqzGeGaciyBaiaacggacaGG4baajeaibaqcLbmacaWGdbaaleqa aKqzGeGaiaoGdAeajuaGdaWgbaqcfasaaKqbaoacyIZfGaqcfasaiG jocGaGaIbaK9=GAbaabKaM4eacyIJaiGjoicdaaaaajuaGbeaajugi biaacIcacaWGJbGaaiykaiaacIcacaaIXaGaeyOeI0IaamOraKqbao aaBaaaleaajuaGdaWfGaqcbasaaKqzadGaiairdIfaaWqabeaajugi biablIHiVbaaaSqabaqcLbsacaGGOaGaam4yaiabgkHiTiaadshaju aGdaqhaaqcbasaaKqzadGaaGOmaaqcbasaaKqzadGaaGymaaaajugi biaacMcacaGGPaqcfa4aaWbaaSqabKqaGeaajugWaiaad6gaaaqcLb sacqGH9aqpcqaH1oqzcaGGUaaaaa@67D9@         (9)

Numerical examples of the test time nomination ,/

Simultaneously fatigue tests of 6 airframes of the same type of aircraft have been made but only up to 4th fatigue failure. So we know only 4 first minimal fatigue lives: (t(1), ..., t(4))=(59971; 72600; 77630; 80863) and correspondingly for x(i) = ln( t(i)), i=1,...4, we know x =(x(1), ..., x(4)) = (11.002; 11.193; 11.260, 11.3005). There are 100 aircraft in operation and there is a requirement, that the probability of at least one fatigue failure before t SL =50000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadshakm aaBaaajeaibaqcLbmacaWGtbGaamitaaWcbeaajugibiabg2da9iaa iwdacaaIWaGaaGimaiaaicdacaaIWaaaaa@400D@  cycles should not exceed p = 0.05. Then τ=log( 50000 )=10.82 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiXdq heaaaaaaaaa8qacqGH9aqpcaWGSbGaam4BaiaadEgajuaGpaWaaeWa aOqaaKqzGeWdbiaaiwdacaaIWaGaaGimaiaaicdacaaIWaaak8aaca GLOaGaayzkaaqcLbsapeGaeyypa0JaaGymaiaaicdacaGGUaGaaGio aiaaikdaaaa@480F@ . We can be sure of the required reliability if θ ^ 0 + t 2 θ ^ 1 >τ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafqiUde NbaKaajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiabgUca RiaadshajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiqbeI 7aXzaajaqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH +aGpcqaHepaDcaGGUaaaaa@4974@

Let us consider the lognormal distribution of the fatigue life. Then using the Lifereg procedure of SAS system we can easily get ML estimates θ ^ 0 =11.26,    θ ^ 1 =0.145 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafqiUde NbaKaakmaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaeyypa0Ja aGymaiaaigdacaGGUaGaaGOmaiaaiAdacaGGSaGaaGPaVlaabccaca qGGaGaaeiiaiqbeI7aXzaajaGcdaWgaaqcbasaaKqzadGaaGymaaWc beaajugibiabg2da9iaaicdacaGGUaGaaGymaiaaisdacaaI1aaaaa@4D88@ . And then using Monte Carlo method to get the cdf of RV VC (5000 samples) we have, that t2= -7.055 is the root of the equation

max(1 (1Φ(c)) m )F (t) V C =p=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGTb GaaiyyaiaacIhacaGGOaGaaGymaiabgkHiTiaacIcacaaIXaGaeyOe I0IaeuOPdyKaaiikaiaadogacaGGPaGaaiykaKqbaoaaCaaaleqaje aibaqcLbmacaWGTbaaaKqzGeGaaiykaiacSd4Ggbqcfa4aiWloBeaa juaibGaV4iac8IZGwbqcfa4aiWloBaaajqwbG9FaiWlocGaV4m4qaa qcfasajWloaaqcfayajWloaKqzGeGaaiikaiaadshacaGGPaGaeyyp a0JaamiCaiabg2da9iaaicdacaGGUaGaaGimaiaaiwdaaaa@5F4D@             (10)

Where

V C =(c θ 0 0 )/ θ 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSbaaKqaGeaajugWaiaadoeaaSqabaqcLbsacqGH9aqpcaGG OaGaam4yaiabgkHiTKqbaoaaxacakeaajugibiabeI7aXbWcbeqcba saaKqzadGaiaiYicdaaaqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baqcLbsacaGGPaGaai4laKqbaoaaxacakeaajugibiabeI7aXLqbao aaBaaajeaibaqcLbmacaaIXaaaleqaaaqabKqaGeaajugWaiacaYlI Waaaaaaa@52D1@ .

Accordingly τ ^ 2 = θ ^ 0 + t 2 θ ^ 1 =11.26 7.055*0.145=10.237 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHep aDgaqcaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaeyyp a0JafqiUdeNbaKaajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaju gibiabgUcaRiaadshajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaa jugibiqbeI7aXzaajaqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqaba qcLbsacqGH9aqpqaaaaaaaaaWdbiaaigdacaaIXaGaaiOlaiaaikda caaI2aGaaeiiaiabgkHiTiaaiEdacaGGUaGaaGimaiaaiwdacaaI1a GaaiOkaiaaicdacaGGUaGaaGymaiaaisdacaaI1aGaeyypa0JaaGym aiaaicdacaGGUaGaaGOmaiaaiodacaaI3aaaaa@5FF6@ . This value is less than required τ= 10.82. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes8a0b baaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIWaGaaiOlaiaaiIda caaIYaGaaiOlaaaa@3E86@  So the required reliability is not provided. Now let us consider the case when θ 1 = 0.346 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaaaaaa aapeGaeqiUdeNcpaWaaSbaaKqaGeaajugWa8qacaaIXaaal8aabeaa jugib8qacqGH9aqpcaqGGaGaaGimaiaac6cacaaIZaGaaGinaiaaiA daaaa@40DD@  is known and a new fatigue test after some structure retrofit has to be made. And we have to know the time limit of the fatigue test without any failure, which will be enough to be sure of the required reliability. In this case t 2 1 =2.04 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaS Waa0baaKqaGeaajugWaiaaikdaaKqaGeaajugWaiaaigdaaaqcLbsa qaaaaaaaaaWdbiabg2da9iabgkHiTiaaikdacaGGUaGaaGimaiaais daaaa@41AA@  is the root of the equation

max c (1 (1Φ(c)) N ) (1Φ(ct)) n =0.05, N=100;n=6. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeaO qaaKqzGeGaciyBaiaacggacaGG4baajeaibaqcLbmacaWGJbaaleqa aKqzGeGaaiikaiaaigdacqGHsislcaGGOaGaaGymaiabgkHiTiabfA 6agjaacIcacaWGJbGaaiykaiaacMcajuaGdaahaaWcbeqcbasaaKqz adGaamOtaaaajugibiaacMcacaGGOaGaaGymaiabgkHiTiabfA6agj aacIcacaWGJbGaeyOeI0IaamiDaiaacMcacaGGPaqcfa4aaWbaaSqa bKqaGeaajugWaiaad6gaaaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaic dacaaI1aaeaaaaaaaaa8qacaGGSaGaaeiiaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGob Gaeyypa0JaaGymaiaaicdacaaIWaGaai4oaiaad6gacqGH9aqpcaaI 2aGaaiOlaaaa@7360@       (11)

So for the required time limit of the fatigue test without the failure (in logarithm scale) we have

x WF = x (1) = τ t 2 1 θ 1 =10.82(2.0425)×0.346=11.52648 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadIhakm aaBaaajeaibaqcLbmacaWGxbGaamOraaWcbeaajugibiabg2da9iaa dIhakmaaBaaajeaibaqcLbmacaGGOaGaaGymaiaacMcaaSqabaqcLb sacqGH9aqpcaqGGaGaaGzbVlabes8a0jabgkHiTiaadshalmaaDaaa jeaibaqcLbmacaaIYaaajeaibaqcLbmacaaIXaaaaKqzGeGaeqiUde 3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH9aqpcaaI XaGaaGimaiaac6cacaaI4aGaaGOmaiabgkHiTiaacIcacqGHsislca aIYaGaaiOlaiaaicdacaaI0aGaaGOmaiaaiwdacaGGPaGaey41aqRa aGimaiaac6cacaaIZaGaaGinaiaaiAdacqGH9aqpcaaIXaGaaGymai aac6cacaaI1aGaaGOmaiaaiAdacaaI0aGaaGioaaaa@6AEF@

or in the natural scale

  t WF =exp(11.52648)=101365    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabccaca WGGaGaamiDaOWaaSbaaKqaGeaajugWaiaadEfacaWGgbaaleqaaKqz GeGaeyypa0JaciyzaiaacIhacaGGWbGaaiikaiaaigdacaaIXaGaai OlaiaaiwdacaaIYaGaaGOnaiaaisdacaaI4aGaaiykaiabg2da9iaa igdacaaIWaGaaGymaiaaiodacaaI2aGaaGynaiaabccacaqGGaGaae iiaaaa@4F1E@ .

It is worth to note that for the same initial data but for Weibull distributions of fatigue live the required time of test without failure is equal to 179836.

Developing of inspection program

Limitation of fatigue failure rate

 Now we suppose that reliability of every AC is defined by fatigue crack which is discovered with probability 1 if inspection is made in the interval ( T d , T c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacIcaca WGubGcdaWgaaqcbasaaKqzadGaamizaaWcbeaajugibiaacYcacaWG ubGcdaWgaaqcbasaaKqzadGaam4yaaWcbeaakiaacMcaaaa@3FE3@ where T d ,  T c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadsfakm aaBaaajeaibaqcLbmacaWGKbaaleqaaKqzGeGaaiilaiaabccacaWG ubGcdaWgaaqcbasaaKqzadGaam4yaaWcbeaaaaa@3F23@  are random variables: T d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadsfakm aaBaaajeaibaqcLbmacaWGKbaaleqaaaaa@39F2@  is the time when the fatigue crack can be detected, T c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadsfakm aaBaaajeaibaqcLbmacaWGJbaaleqaaaaa@39F1@  is the time when the fatigue failure takes place. Here we consider the simplest case: interval between the inspections is equal to the constant t SL /(n+1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFGI8pgYtOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadshaju aGdaWgaaqcbasaaKqzadGaam4uaiaadYeaaSqabaqcLbsacaGGVaGa aiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaa@40F5@  , where t SL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bqcfa4damaaBaaajeaibaqcLbmapeGaam4uaiaadYea aSWdaeqaaaaa@3B6D@ is the aircraft specified life (SL) (the retirement time). The process of an operation of AL can be considered as a Markov chain (MCh)25 with ( n+4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaaOWdaeaajugib8qacaWGUbGaey4kaSIaaGinaaGccaGL OaGaayzkaaaaaa@3B68@ states. The states E 1 , E 2 ,, E n+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaaGymaaWcpaqa baqcLbsapeGaaiilaiaadweajuaGpaWaaSbaaKqaGeaajugWa8qaca aIYaaal8aabeaajugib8qacaGGSaGaeyOjGWRaaiilaiaadweajuaG paWaaSbaaKqaGeaajugWa8qacaWGUbGaey4kaSIaaGymaaWcpaqaba aaaa@488C@  correspond to an AC operation in the time intervals [ t 0 , t 1 ),[ t 1 , t 2 ),,[ t n , t n+1 ), t 0 =0, t n+1 = t SL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaKGeaOWdaeaajugib8qacaWG0bqcfa4damaaBaaajeaibaqc LbmapeGaaGimaaWcpaqabaqcLbsapeGaaiilaiaadshajuaGpaWaaS baaKqaGeaajugWa8qacaaIXaaal8aabeaaaOWdbiaawUfacaGLPaaa jugibiaacYcajuaGdaqcsaGcpaqaaKqzGeWdbiaadshajuaGpaWaaS baaKqaGeaajugWa8qacaaIXaaal8aabeaajugib8qacaGGSaGaamiD aKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaaGcpeGaay 5waiaawMcaaKqzGeGaaiilaiabgAci8kaacYcajuaGdaqcsaGcpaqa aKqzGeWdbiaadshajuaGpaWaaSbaaKqaGeaajugWa8qacaWGUbaal8 aabeaajugib8qacaGGSaGaamiDaKqba+aadaWgaaqcbasaaKqzadGa amOBaiabgUcaRiaaigdaaSqabaaak8qacaGLBbGaayzkaaqcfaOaai ilaiaaykW7caaMc8UaaGPaVlaaykW7jugib8aacaWG0bqcfa4aaSba aKqaGeaajugWaiaaicdaaSqabaqcLbsacqGH9aqpcaaIWaGaaiilai aaykW7caaMc8UaaGPaVlaaykW7peGaamiDaKqbaoaaBaaajeaibaqc LbmacaWGUbGaey4kaSIaaGymaaWcbeaajugibiabg2da9iaadshaju aGpaWaaSbaaKqaGeaajugWa8qacaWGtbGaamitaaWcpaqabaaaaa@82FE@ . The states E n+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaiabgUca RiaaikdaaSWdaeqaaaaa@3C25@ , E n+3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaiabgUca RiaaiodaaSWdaeqaaaaa@3C27@  and E n+4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaiabgUca RiaaisdaaSWdaeqaaaaa@3C28@  correspond to the events: AC reaches the SL without any problem, the fatigue failure (FF) or the fatigue crack detection (CD) take place and in all these three cases the new AC is purchased and begins the service in first interval.

In the corresponding transition probability matrix, PAL, let ν i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH9oGBjuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aa beaaaaa@3B71@  be the probability of a crack detection during the inspection number i , let q i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGXbqcfa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqa baaaaa@3AAF@  be the probability of the failure in service time interval ( t i1 , t i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaKamaOWdaeaajugib8qacaWG0bqcfa4damaaBaaajeaibaqc LbmapeGaamyAaiabgkHiTiaaigdaaSWdaeqaaKqzGeWdbiaacYcaca WG0bqcfa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaaak8qa caGLOaGaayzxaaaaaa@4493@ , and let u i =1 ν i q i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG1bqcfa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqa baqcLbsapeGaeyypa0JaaGymaiabgkHiTiabe27aULqba+aadaWgaa qcbasaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiabgkHiTiaadgha juaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaaaaa@4896@  be the probability of successful transition to the next state. In our model we also assume that an aircraft is discarded from a service at t SL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bqcfa4damaaBaaajeaibaqcLbmapeGaam4uaiaadYea aSWdaeqaaaaa@3B6D@  even if there is no any crack discovered by inspection at the time moment t SL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bqcfa4damaaBaaajeaibaqcLbmapeGaam4uaiaadYea aSWdaeqaaaaa@3B6D@ .

The inspection at the end of ( n+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaaOWdaeaajugib8qacaWGUbGaey4kaSIaaGymaaGccaGL OaGaayzkaaaaaa@3B65@ -th interval (in state E n+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaiabgUca RiaaigdaaSWdaeqaaaaa@3C25@ ) does not change the reliability but it is made in order to know the state of aircraft (whether there is a fatigue crack or there is no fatigue crack). It can be shown that u i =P( T d > t i | T d > t i1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadwhakm aaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0Jaamiuaiaa cIcacaWGubGcdaWgaaqcbasaaKqzadGaamizaaWcbeaajugibiabg6 da+iaadshakmaaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaaiiF aiaadsfakmaaBaaajeaibaqcLbmacaWGKbaaleqaaKqzGeGaeyOpa4 JaamiDaOWaaSbaaKqaGeaajugWaiaadMgacqGHsislcaaIXaaaleqa aKqzGeGaaiykaaaa@5259@ , q i =P( t i1 < T d < T c < t i | T d > t i1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadghakm aaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0Jaamiuaiaa cIcacaWG0bGcdaWgaaqcbasaaKqzadGaamyAaiabgkHiTiaaigdaaS qabaqcLbsacqGH8aapcaWGubGcdaWgaaqcbasaaKqzadGaamizaaWc beaajugibiabgYda8iaadsfakmaaBaaajeaibaqcLbmacaWGJbaale qaaKqzGeGaeyipaWJaamiDaOWaaSbaaKqaGeaajugWaiaadMgaaSqa baqcLbsacaGG8bGaamivaOWaaSbaaKqaGeaajugWaiaadsgaaSqaba qcLbsacqGH+aGpcaWG0bGcdaWgaaqcbasaaKqzadGaamyAaiabgkHi TiaaigdaaSqabaqcLbsacaGGPaaaaa@5DE3@ , ν i =1 u i q i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH9oGBjuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aa beaajugib8qacqGH9aqpcaaIXaGaeyOeI0IaamyDaKqba+aadaWgaa qcbasaaKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiabgkHiTiaadgha juaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaaaaa@4896@ ,  i=1,,n+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGGGcGaamyAaiabg2da9iaaigdacaGGSaGaeyOjGWRaaiil aiaad6gacqGHRaWkcaaIXaaaaa@3FDC@ . In the three last lines of the matrix PAL there are three units in the in the first column. All the other entries of this matrix are equal to zero, see Table 1.

E1

E2

E3

...

En-1

En

En+1

En+2
(SL)

En+3
(FF)

En+4
(CD)

E1

0

u1

0

...

0

0

0

0

q1

v1

E2

0

0

u2

...

0

0

0

0

q2

v2

E3

0

0

0

...

0

0

0

0

q3

v3

...

...

...

...

...

...

...

...

...

...

...

En-1

0

0

0

...

0

un-1

0

0

qn-1

vn-1

En

0

0

0

...

0

0

un

0

qn

vn

En+1

0

0

0

...

0

0

0

un+1

qn+1

vn+1

En+2
(SL)

1

0

0

...

0

0

0

0

0

0

En+3
(FF)

1

0

0

...

0

0

0

0

0

0

En+4
(CD)

1

0

0

...

0

0

0

0

0

0

Table 1 Matrix of transition probabilities P AL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfakm aaBaaajeaibaqcLbmacaWGbbGaamitaaWcbeaaaaa@3A9B@

Using the theory of the semi-Markov process with rewards and the definition of the matrix PAL we can get the vector of stationary probabilities, π=( π 1 ,..., π n+4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabec8aWj abg2da9iaacIcacqaHapaCkmaaBaaajeaibaqcLbmacaaIXaaaleqa aKqzGeGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacqaHapaCkmaaBa aajeaibaqcLbmacaWGUbGaey4kaSIaaGinaaWcbeaajugibiaacMca aaa@4936@ , which is defined by the equation system:

π P AL =π, i=1 n+4 π i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHapaCcaWGqbqcfa4damaaBaaajeaibaqcLbmapeGaamyq aiaadYeaaSWdaeqaaKqzGeWdbiabg2da9iabec8aWjaacYcacaaMc8 UaaGPaVNqbaoaaqahabaqcLbsacqaHapaCjuaGpaWaaSbaaKqbGeaa jugWa8qacaWGPbaajuaGpaqabaqcLbsapeGaeyypa0JaaGymaaqcfa saaKqzadGaamyAaiabg2da9iaaigdaaKazfa0=baqcLbmacaWGUbGa ey4kaSIaaGinaaqcLbsacqGHris5aaaa@5940@                                 (12)

and the airline gain

g( n )= i=1 n+4 π i g i ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGNbqcfa4aaeWaaOWdaeaajugib8qacaWGUbaakiaawIca caGLPaaajugibiabg2da9KqbaoaaqahabaqcLbsacqaHapaCjuaGpa WaaSbaaeaajugib8qacaWGPbaajuaGpaqabaqcLbsapeGaam4zaKqb a+aadaWgaaqaaKqzGeWdbiaadMgaaKqba+aabeaapeWaaeWaa8aaba qcLbsapeGaamOBaaqcfaOaayjkaiaawMcaaaqcfasaaKqzadGaamyA aiabg2da9iaaigdaaKqbGeaajugWaiaad6gacqGHRaWkcaaI0aaaju gibiabggHiLdaaaa@5588@                (12a)

where

g i ( n )={ a i u i + b i q i + c i ν i , i=1,,n+1, d i , i=n+2,,n+4, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGNbqcfa4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqa baqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaaGccaGLOaGaayzkaa qcLbsacqGH9aqpjuaGdaGabaGcpaqaaKqzGeqbaeqabiqaaaGcbaqc LbsapeGaamyyaKqba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWdae qaaKqzGeWdbiaadwhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaa l8aabeaajugib8qacqGHRaWkcaWGIbqcfa4damaaBaaajeaibaqcLb mapeGaamyAaaWcpaqabaqcLbsapeGaamyCaKqba+aadaWgaaqcbasa aKqzadWdbiaadMgaaSWdaeqaaKqzGeWdbiabgUcaRiaadogajuaGpa WaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaajugib8qacqaH9oGB juaGpaWaaSbaaKqaGeaajugWa8qacaWGPbaal8aabeaajugib8qaca GGSaGaaiiOaiaadMgacqGH9aqpcaaIXaGaaiilaiabgAci8kaacYca caWGUbGaey4kaSIaaGymaiaacYcaaOWdaeaajugib8qacaWGKbqcfa 4damaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaaiil aiaacckacaWGPbGaeyypa0JaamOBaiabgUcaRiaaikdacaGGSaGaey OjGWRaaiilaiaad6gacqGHRaWkcaaI0aGaaiilaaaaaOGaay5Eaaaa aa@7EBE@ .

ai is the reward defined by the successful transition from one operation interval to the following one and the cost of one inspection; bi, ci and di correspond to transition to the states E n+3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaiabgUca RiaaiodaaSWdaeqaaaaa@3C27@  (FF), E n+4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaiabgUca RiaaisdaaSWdaeqaaaaa@3C28@  (CD) and then to the state E 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaaGymaaWcpaqa baaaaa@3A50@  (the “cost” of FF of AC, fatigue crack detection, acquisition of new AC) . Let us note that if a i = t i t i1 ,b=c=d=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadggakm aaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0JaamiDaOWa aSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacqGHsislcaWG0bGcda WgaaqcbauaaKqzGdGaamyAaiabgkHiTiaaigdaaSqabaqcLbsacaaM c8UaaiilaiaaykW7caWGIbGaeyypa0Jaam4yaiabg2da9iaadsgacq GH9aqpcaaIWaaaaa@50C0@  then

g( n )= i=1 n+4 π i g i ( n )= g t ( n )= i=1 n+1 π i ( t i t i1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGNbqcfa4aaeWaaOWdaeaajugib8qacaWGUbaakiaawIca caGLPaaajugibiabg2da9KqbaoaaqahabaqcLbsacqaHapaCjuaGpa WaaSbaaKazfa2=baqcLbmapeGaamyAaaqcfa4daeqaaKqzGeWdbiaa dEgajuaGpaWaaSbaaKqbGeaajugWa8qacaWGPbaajuaGpaqabaWdbm aabmaapaqaaKqzGeWdbiaad6gaaKqbakaawIcacaGLPaaajugibiab g2da9iaadEgajuaGdaWgaaqcfasaaKqzadGaamiDaaqcfayabaWaae Waa8aabaqcLbsapeGaamOBaaqcfaOaayjkaiaawMcaaKqzGeGaeyyp a0tcfa4aaybCaeqajuaipaqaaKqzadWdbiaadMgacqGH9aqpcaaIXa aajuaipaqaaKqzadWdbiaad6gacqGHRaWkcaaIXaaajuaGpaqaaKqz GeWdbiabggHiLdaacqaHapaCjuaGpaWaaSbaaKqbGeaajugWa8qaca WGPbaajuaGpaqabaqcLbsapeGaaiikaiaadshajuaGdaWgaaqcfasa aKqzadGaamyAaaqcfayabaqcLbsacqGHsislcaWG0bqcfa4aaSbaaK qbGeaajugWaiaadMgacqGHsislcaaIXaaajuaGbeaajugibiaacMca aKazfa0=baqcLbmacaWGPbGaeyypa0JaaGymaaqcKvaq=haajugWai aad6gacqGHRaWkcaaI0aaajugibiabggHiLdaaaa@8779@  .             (13)

Let the cdf of the vector ( T d , T c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadsfakm aaBaaajeaibaqcLbmacaWGKbaaleqaaKqzGeGaaiilaiaadsfakmaa BaaajeaibaqcLbmacaWGJbaaleqaaaaa@3E80@ ) and the matrix P AL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfakm aaBaaajeaibaqcLbmacaWGbbGaamitaaWcbeaaaaa@3A9B@ are defined by the known parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@ . Then we should consider g(n,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4zai aacIcacaWGUbGaaiilaiabeI7aXjaacMcaaaa@3C09@  and g t (n,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4zaK qbaoaaBaaajeaibaqcLbmacaWG0baaleqaaKqzGeGaaiikaiaad6ga caGGSaGaeqiUdeNaaiykaaaa@3FA3@ . The value L j = g t (n,θ)/ π j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGmbqcfa4damaaBaaajeaibaqcLbmapeGaamOAaaWcpaqa baqcLbsapeGaeyypa0Jaam4zaKqbaoaaBaaajeaibaqcLbmacaWG0b aaleqaaKqzGeGaaiikaiaad6gacaGGSaGaeqiUdeNaaiykaiaac+ca cqaHapaCjuaGpaWaaSbaaKqaGeaajugWa8qacaWGQbaal8aabeaaaa a@4B07@  defines the mean time to return to the same state E j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaamOAaaWcpaqa baaaaa@3A84@ . So λ F (n,θ)=1/ L n+3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW wcfa4aaSbaaKqaGeaajugWaiaadAeaaSqabaqcLbsacaGGOaGaamOB aiaacYcacqaH4oqCcaGGPaGaeyypa0JaaGymaiaac+cacaWGmbqcfa 4aaSbaaKqaGeaajugWaiaad6gacqGHRaWkcaaIZaaaleqaaaaa@4825@  is the FFR.

If θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde haaa@3821@ is known we calculate the gain as a function of n,g(n,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai aacYcakiaaykW7jugibiaadEgacaGGOaGaamOBaiaacYcacqaH4oqC caGGPaaaaa@3FD0@ , and choose the number n g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBaK qbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaaaa@3A5C@  corresponding to the maximum of gain : n g (θ)=arg max n g( n,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBaK qbaoaaBaaajeaibaqcLbmacaWGNbaaleqaaKqzGeGaaiikaiabeI7a XjaacMcacqGH9aqpciGGHbGaaiOCaiaacEgajuaGdaWfqaGcbaqcLb saciGGTbGaaiyyaiaacIhaaKqaGeaajugWaiaad6gaaSqabaqcLbsa caWGNbqcfa4aaeWaaOqaaKqzGeGaamOBaiaacYcacqaH4oqCaOGaay jkaiaawMcaaaaa@4FD4@ . Then we calculate FFR as function of n, λ F (n,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai aacYcacaaMc8UaaGPaVlaaykW7cqaH7oaBjuaGdaWgaaqcbasaaKqz adGaamOraaWcbeaajugibiaacIcacaWGUbGaaiilaiabeI7aXjaacM caaaa@4680@ , and choose n λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBaK qbaoaaBaaajeaibaqcLbmacqaH7oaBaSqabaaaaa@3B24@  in such a way that for any n n λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai abgwMiZkaad6gajuaGdaWgaaqcbasaaKqzadGaeq4UdWgaleqaaaaa @3DDD@  the function λ F (n,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW wcfa4aaSbaaKqaGeaajugWaiaadAeaaSqabaqcLbsacaGGOaGaamOB aiaacYcacqaH4oqCcaGGPaaaaa@403C@  will be equal or less than some value λ: n λ (λ,θ)=min{ n: λ F (n,θ)λ,  for all n n λ (λ,θ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW MaaiOoaiaad6gajuaGdaWgaaqcbasaaKqzadGaeq4UdWgaleqaaKqz GeGaaiikaiabeU7aSjaacYcacqaH4oqCcaGGPaGaeyypa0JaciyBai aacMgacaGGUbqcfa4aaiWaaOqaaKqzGeGaamOBaiaacQdacqaH7oaB juaGdaWgaaqcbasaaKqzadGaamOraaWcbeaajugibiaacIcacaWGUb GaaiilaiabeI7aXjaacMcacqGHKjYOcqaH7oaBcaGGSaGaaeiiaiaa bccacaqGMbGaae4BaiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaae iiaiaad6gacqGHLjYScaWGUbqcfa4aaSbaaKqaGeaajugWaiabeU7a SbWcbeaajugibiaacIcacqaH7oaBcaGGSaGaeqiUdeNaaiykaaGcca GL7bGaayzFaaaaaa@6FFF@ . And finally n= n gλ (λ,θ)=max( n g , n λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai abg2da9iaad6gajuaGdaWgaaqcbasaaKqzadGaam4zaiabeU7aSbWc beaajugibiaacIcacqaH7oaBcaGGSaGaeqiUdeNaaiykaiabg2da9i Gac2gacaGGHbGaaiiEaiaacIcacaWGUbqcfa4aaSbaaKqaGeaajugW aiaadEgaaSqabaqcLbsacaGGSaGaamOBaKqbaoaaBaaajeaibaqcLb macqaH7oaBaSqabaqcLbsacaGGPaaaaa@53B6@ , Figure 1.

Figure 1 The choice of inspection number n= n gλ (λ,θ)=max( n g , n λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai abg2da9iaad6gajuaGdaWgaaqcbasaaKqzadGaam4zaiabeU7aSbWc beaajugibiaacIcacqaH7oaBcaGGSaGaeqiUdeNaaiykaiabg2da9i Gac2gacaGGHbGaaiiEaiaacIcacaWGUbqcfa4aaSbaaKqaGeaajugW aiaadEgaaSqabaqcLbsacaGGSaGaamOBaKqbaoaaBaaajeaibaqcLb macqaH7oaBaSqabaqcLbsacaGGPaaaaa@53B6@ .

 But if θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde haaa@3821@ is not known the value n is a RV: n ^ = n gλ (λ, θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGsbGaamOvaiaacQdapaGabmOBayaajaGaeyypa0JaamOB aKqbaoaaBaaajeaibaqcLbmacaWGNbGaeq4UdWgaleqaaKqzGeGaai ikaiabeU7aSjaacYcacuaH4oqCgaqcaiaacMcaaaa@46CA@ . For the approximate solution the confidence interval for the θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@  can be used. But some uncertainty appears: confidence level is not defined by required reliability. The precise solution of the limiting value λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW gaaa@381F@  can be found in case if the fatigue test is acceptance test. The result of acceptance test can be used to calculate the estimate of the parameter θ, θ ^ = θ ^ ( x 1 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXj aacYcacaaMc8UafqiUdeNbaKaacqGH9aqpcuaH4oqCgaqcaiaacIca caWG4bGcdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaacYcaca GGUaGaaiOlaiaac6cacaGGSaGaamiEaOWaaSbaaKqaGeaajugWaiaa d6gaaSqabaqcLbsacaGGPaaaaa@4BD6@ . The service of a new type of aircraft will not take place if the result of the fatigue test in a laboratory is “too bad” (previously, the redesign of the new type of AC should be made). We say that in this case the event θ ^ Θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFGI8pgYtOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaGaeyycI8SaeuiMdevcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baaaaa@3EA5@  takes place, where Θ 0 Θ,Θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFGI8pgYtOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfI5arL qbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaeyOGIWSaeuiM deLaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabfI 5arbaa@4AC4@  is a parameter space (for example, θ ^ Θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafqiUde NbaKaacqGHjiYZcqqHyoqujuaGdaWgaaqcbasaaKqzadGaaGimaaWc beaaaaa@3DFA@  if the test fatigue life, tC, is lower than some limit; or n gλ (λ, θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaam4zaiabeU7aSbqabaGccaGGOaGaeq4UdWMaaiilaiqbeI7a XzaajaGaaiykaaaa@3F27@  is too large,…).

Let λ FD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaamOraiaadseaaeqaaaaa@3987@  be a preliminary designed allowed FFR which is the solution of the equation

sup θ E θ ^ ( λ F ( n gλ ( λ FD , θ ^ ),θ)| θ ^ Θ 0 )P( θ ^ Θ 0 ))=λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaci4Cai aacwhacaGGWbqcfa4aaSbaaKqaGeaajugWaiabeI7aXbWcbeaajugi biaadweajuaGdaahaaWcbeqcbasaaKqzadGafqiUdeNbaKaaaaqcLb sacaGGOaGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamOraaWcbeaajugi biaacIcacaWGUbqcfa4aaSbaaKqaGeaajugWaiaadEgacqaH7oaBaS qabaqcLbsacaGGOaGaeq4UdWwcfa4aaSbaaKqaGeaajugWaiaadAea caWGebaaleqaaKqzGeGaaiilaiqbeI7aXzaajaGaaiykaiaacYcacq aH4oqCcaGGPaGaaiiFaiqbeI7aXzaajaGaeyicI4SaeuiMdevcfa4a aSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaGGPaGaamiuaKqbao aabmaakeaajugibiqbeI7aXzaajaGaeyicI4SaeuiMdevcfa4aaSba aKqaGeaajugWaiaaicdaaSqabaaakiaawIcacaGLPaaajugibiaacM cacqGH9aqpcqaH7oaBaaa@746D@                       (14)

where E θ ^ (.) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadweakm aaCaaaleqajeaibaqcLbmacuaH4oqCgaqcaaaajugibiaacIcacaGG UaGaaiykaaaa@3D5B@  is the expectation corresponding to the distribution of θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaaaaa@3868@  under condition θ ^ Θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFGI8pgYtOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaGaeyicI4SaeuiMdevcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baaaaa@3EA3@ .

Then the number of inspections n gλ ( λ FD , θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBaK qbaoaaBaaajeaibaqcLbmacaWGNbGaeq4UdWgaleqaaKqzGeGaaiik aiabeU7aSLqbaoaaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaaju gibiaacYcacuaH4oqCgaqcaiaacMcaaaa@4656@  provides the limitation of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeU7aSb aa@3856@  independently of any unknown parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde haaa@3821@ .

Limitation of probability of any fatigue failure in fleet of aircraft

Now we consider the case when the operation of all N aircraft will be stopped if any fatigue crack will be detected. So in order to limit the probability of fatigue failure in the fleet (FFPN) it is enough to find at least one fatigue crack before the failure of any aircraft in the fleet takes place. Let t k + ,   t k1 + < t k + ,     t 0 + =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaS Waa0baaKqaGeaajugWaiaadUgaaKqaGeaajugWaiabgUcaRaaajugi biaacYcacaqGGaGaaeiiaiaadshalmaaDaaajeaibaqcLbmacaWGRb GaeyOeI0IaaGymaaqcbasaaKqzadGaey4kaScaaKqzGeGaeyipaWJa amiDaKqbaoaaDaaaleaajugibiaadUgaaSqaaKqzGeGaey4kaScaai aacYcacaqGGaGaaeiiaiaabccacaqGGaGaamiDaSWaa0baaKqaGeaa jugWaiaaicdaaKqaGeaajugWaiabgUcaRaaajugibiabg2da9iaaic daaaa@5727@  to be “calendar” time moment when kth aircraft begins the service, T d k + = t k + + T d k , T c k + = t k + + T c k , k=1,2,...,N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaS Waa0baaKqaGeaajugWaiaadsgalmaaBaaajiaibaqcLbkacaWGRbaa jiaibeaaaKqaGeaajugWaiabgUcaRaaajugibiabg2da9iaadshalm aaDaaajeaibaqcLbmacaWGRbaajeaibaqcLbmacqGHRaWkaaqcLbsa cqGHRaWkcaWGubqcfa4aaSbaaKqaGeaajugWaiaadsgalmaaBaaaji aibaqcLbkacaWGRbaajiaibeaaaSqabaqcLbsacaGGSaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGubWcdaqhaaqcbasaaKqzadGaam 4yaSWaaSbaaKGaGeaajugOaiaadUgaaKGaGeqaaaqcbasaaKqzadGa ey4kaScaaKqzGeGaeyypa0JaamiDaSWaa0baaKqaGeaajugWaiaadU gaaKqaGeaajugWaiabgUcaRaaajugibiabgUcaRiaadsfalmaaBaaa jeaibaqcLbmacaWGJbWcdaWgaaqccasaaKqzGcGaam4Aaaqccasaba aajeaibeaaliaacYcacaaMc8UaaGPaVlaaykW7kiaabccajugibiaa bUgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6caca GGUaGaaiilaiaad6eaaaa@7BFD@ , to be the random calendar time moments when fatigue crack can be discovered and fatigue failure of AC takes place correspondingly, see Figure 2. And let K SL ={k: T ck < t SL ,  k=1,2,...,N} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4saK qbaoaaBaaajeaibaqcLbmacaWGtbGaamitaaWcbeaajugibiabg2da 9iaacUhacaWGRbGaaiOoaiaadsfajuaGdaWgaaqcbasaaKqzadGaam 4yaiaadUgaaSqabaqcLbsacqGH8aapcaWG0bqcfa4aaSbaaKqaafaa jugWaiaadofacaWGmbaaleqaaKqzGeGaaiilaiaabccacaqGGaGaam 4Aaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaa c6cacaGGSaGaamOtaiaac2haaaa@564D@  be a set of an indexes of aircraft the failure of which can take a place if an inspection will not take the place, T f + =min{ T ck + :k K SL } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaS Waa0baaKqaGeaajugWaiaadAgaaKqaGeaajugWaiabgUcaRaaajugi biabg2da9iGac2gacaGGPbGaaiOBaiaacUhacaWGubWcdaqhaaqcba saaKqzadGaam4yaiaadUgaaKqaGeaajugWaiabgUcaRaaajugibiaa cQdacaWGRbGaeyicI4Saam4saKqbaoaaBaaajeaibaqcLbmacaWGtb GaamitaaWcbeaajugibiaac2haaaa@51A0@ , is a calendar time corresponding the first failure in the fleet without inspections and let K f ={ k:1kN,  t 0k + < T f + } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4saK qbaoaaBaaajeaibaqcLbmacaWGMbaaleqaaKqzGeGaeyypa0tcfa4a aiWaaOqaaKqzGeGaam4AaiaacQdacaaIXaGaeyizImQaam4Aaiabgs MiJkaad6eacaGGSaGaaeiiaiaadshalmaaDaaajeaibaqcLbmacaaI WaGaam4AaaqcbasaaKqzadGaey4kaScaaKqzGeGaeyipaWJaamivaS Waa0baaKqaGeaajugWaiaadAgaaKqaGeaajugWaiabgUcaRaaaaOGa ay5Eaiaaw2haaaaa@558F@  is the set of aircraft the service of which begin before the first failure in the fleet,    K SLf = K SL K f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaeiiai aabccacaWGlbqcfa4aaSbaaKqaGeaajugWaiaadofacaWGmbGaamOz aaWcbeaajugibiabg2da9iaadUeajuaGdaWgaaqcbasaaKqzadGaam 4uaiaadYeaaSqabaqcfa4aaqbaaOqaaKqzGeGaam4saKqbaoaaBaaa jeaibaqcLbmacaWGMbaaleqaaaqabeqajugibiablMIijbaaaa@4A0B@ ; and let us define:
T dkf + =min{ T dk + ,  T f + },  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaS Waa0baaKqaGeaajugWaiaadsgacaWGRbGaamOzaaqcbasaaKqzadGa ey4kaScaaKqzGeGaeyypa0JaciyBaiaacMgacaGGUbGaai4Eaiaads falmaaDaaajeaibaqcLbmacaWGKbGaam4AaaqcbasaaKqzadGaey4k aScaaKqzGeGaaiilaiaabccacaWGubWcdaqhaaqcbasaaKqzadGaam OzaaqcbasaaKqzadGaey4kaScaaKqzGeGaaiyFaiaacYcacaqGGaaa aa@53E5@ T ckf + =min{ T ck + ,  T f + },  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaS Waa0baaKqaGeaajugWaiaadogacaWGRbGaamOzaaqcbasaaKqzadGa ey4kaScaaKqzGeGaeyypa0JaciyBaiaacMgacaGGUbGaai4Eaiaads falmaaDaaajeaibaqcLbmacaWGJbGaam4AaaqcbasaaKqzadGaey4k aScaaKqzGeGaaiilaiaabccacaWGubWcdaqhaaqcbasaaKqzadGaam OzaaqcbasaaKqzadGaey4kaScaaKqzGeGaaiyFaiaacYcacaqGGaaa aa@53E3@ R dkf =max{ j: t kj + < T dkf + ,j=0,1,2,... } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacaWGKbGaam4AaiaadAgaaSqabaqcLbsa cqGH9aqpciGGTbGaaiyyaiaacIhajuaGdaGadaGcbaqcLbsacaWGQb GaaiOoaiaadshalmaaDaaajeaibaqcLbmacaWGRbGaamOAaaqcbasa aKqzadGaey4kaScaaKqzGeGaeyipaWJaamivaSWaa0baaKqaGeaaju gWaiaadsgacaWGRbGaamOzaaqcbasaaKqzadGaey4kaScaaKqzGeGa aiilaiaadQgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaaGOmai aacYcacaGGUaGaaiOlaiaac6caaOGaay5Eaiaaw2haaaaa@5EA0@ , R ckf =max{ j: t kj + < T ckf + ,j=0,1,2,... } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacaWGJbGaam4AaiaadAgaaSqabaqcLbsa cqGH9aqpciGGTbGaaiyyaiaacIhajuaGdaGadaGcbaqcLbsacaWGQb GaaiOoaiaadshalmaaDaaajeaibaqcLbmacaWGRbGaamOAaaqcbasa aKqzadGaey4kaScaaKqzGeGaeyipaWJaamivaSWaa0baaKqaGeaaju gWaiaadogacaWGRbGaamOzaaqcbasaaKqzadGaey4kaScaaKqzGeGa aiilaiaadQgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaaGOmai aacYcacaGGUaGaaiOlaiaac6caaOGaay5Eaiaaw2haaaaa@5E9E@ , R kf = R ckf R dkf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfakm aaBaaajeaibaqcLbmacaWGRbGaamOzaaWcbeaajugibiabg2da9iaa dkfakmaaBaaajeaibaqcLbmacaWGJbGaam4AaiaadAgaaSqabaqcLb sacqGHsislcaWGsbGcdaWgaaqcbasaaKqzadGaamizaiaadUgacaWG Mbaaleqaaaaa@4844@ where k K SLf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai abgIGiolaadUeajuaGdaWgaaqcbasaaKqzadGaam4uaiaadYeacaWG Mbaaleqaaaaa@3E54@ .
For fixed value of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@  the probability of any failure in the fleet p fNW (n,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadchakm aaBaaajeaibaqcLbmacaWGMbGaamOtaiaadEfaaSqabaqcLbsacaGG OaGaamOBaiaacYcacqaH4oqCcaGGPaaaaa@4100@  will be equal to expected value of random variable P fNW (n,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfakm aaBaaajeaibaqcLbmacaWGMbGaamOtaiaadEfaaSqabaqcLbsacaGG OaGaamOBaiaacYcacqaH4oqCcaGGPaaaaa@40DF@

p fNW (n,θ)= E T ( P fNW (n,θ)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadchakm aaBaaajeaibaqcLbmacaWGMbGaamOtaiaadEfaaSqabaqcLbsacaGG OaGaamOBaiaacYcacqaH4oqCcaGGPaGaeyypa0JaamyraOWaaWbaaS qabKqaGeaajugWaiaadsfaaaqcLbsacaGGOaGaamiuaOWaaSbaaKqa GeaajugWaiaadAgacaWGobGaam4vaaWcbeaajugibiaacIcacaWGUb GaaiilaiabeI7aXjaacMcacaGGPaaaaa@515D@ .               (15)

Figure 2 Inspection of N aircraft.

where

P fNW (n,θ)={ P f1W , if w=1, (1w) R f , if 0w<1, P f1W ={ 1, if   R f =0 0, if   R f 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfakm aaBaaajeaibaqcLbmacaWGMbGaamOtaiaadEfaaSqabaqcLbsacaGG OaGaamOBaiaacYcacqaH4oqCcaGGPaGaeyypa0JcdaGabaqcLbsaea qabOqaaKqzGeGaamiuaOWaaSbaaKqaGeaajugWaiaadAgacaaIXaGa am4vaaWcbeaajugibiaacYcacaqGGaGaaeyAaiaabAgacaqGGaGaam 4Daiabg2da9iaaigdacaGGSaaakeaajugibiaacIcacaaIXaGaeyOe I0Iaam4DaiaacMcacaaMc8UcdaahaaWcbeqaaiaadkfadaWgaaadba GaamOzaaqabaaaaKqzGeGaaiilaiaabccacaqGPbGaaeOzaiaabcca caqGWaGaeyizImQaam4DaiabgYda8iaaigdacaGGSaaaaOGaay5Eaa qcLbsacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadcfakmaaBaaa jeaibaqcLbmacaWGMbGaaGymaiaadEfaaSqabaqcLbsacqGH9aqpkm aaceaajugibqaabeGcbaqcLbsacaaIXaGaaiilaiaabccacaqGPbGa aeOzaiaabccacaqGGaGaamOuaOWaaSbaaKqaGeaajugWaiaadAgaaS qabaqcLbsacqGH9aqpcaaIWaGaaeilaiaabccaaOqaaKqzGeGaaGim aiaabYcacaqGGaGaaeyAaiaabAgacaqGGaGaaeiiaiaadkfakmaaBa aajeaibaqcLbmacaWGMbaaleqaaKqzGeGaeyyzImRaaGymaaaakiaa wUhaaaaa@8CB9@  

w is a human factor: a probability, that the planned inspection will be made, R f = k K f R kf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfakm aaBaaajeaibaqcLbmacaWGMbaaleqaaKqzGeGaeyypa0Jcdaaeqbqa aKqzGeGaamOuaOWaaSbaaKqaGeaajugWaiaadUgacaWGMbaaleqaaa qcbasaaKqzadGaam4AaiabgIGiolaadUealmaaBaaajqMaa+FaaKqz GcGaiGgGdAgaaKGaGeqaaaWcbeqcLbsacqGHris5aaaa@4CCF@  is the total random number of inspections before the first failure in the whole fleet; E T (.) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadweakm aaCaaaleqajeaibaqcLbmacaWGubaaaKqzGeGaaiikaiaac6cacaGG Paaaaa@3C6E@  is the expectation corresponding to the distribution of a set of vectors ( ( T D + , T C + ) k ,k=1,...,N) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacIcaca GGOaGaamivaSWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiab gUcaRaaajugibiaacYcacaWGubWcdaqhaaqcbasaaKqzadGaam4qaa qcbasaaKqzadGaey4kaScaaKqzGeGaaiykaOWaaSbaaKqaGeaajugW aiaadUgaaSqabaqcLbsacaGGSaGaam4Aaiabg2da9iaaigdacaGGSa GaaiOlaiaac6cacaGGUaGaaiilaiaad6eacaGGPaaaaa@509A@ . Let us note that if w=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEhacq GH9aqpcaaIXaaaaa@395F@  but the expected probability is very small then approximately

E( P fNW (n,θ))=E(1 k=1 N (1 P f1Wk ))E( k=1 N P f1Wk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadweaca GGOaGaamiuaOWaaSbaaKqaGeaajugWaiaadAgacaWGobGaam4vaaWc beaajugibiaacIcacaWGUbGaaiilaiabeI7aXjaacMcacaGGPaGaey ypa0JaamyraiaacIcacaaIXaGaeyOeI0IcdaqeWbqaaKqzGeGaaiik aiaaigdacqGHsislaKqaGeaajugWaiaadUgacqGH9aqpcaaIXaaaje aibaqcLbmacaWGobaajugibiabg+GivdGaamiuaOWaaSbaaKqaGeaa jugWaiaadAgacaaIXaGaam4vaiaadUgaaSqabaqcLbsacaGGPaGaai ykaiabgIKi7kaadweacaGGOaGcdaaeWbqaaKqzGeGaamiuaOWaaSba aKqaGeaajugWaiaadAgacaaIXaGaam4vaiaadUgaaSqabaqcLbsaca GGPaaajeaibaqcLbmacaWGRbGaeyypa0JaaGymaaqcbasaaKqzadGa amOtaaqcLbsacqGHris5aaaa@6E6B@ .        ( 15a )

The necessary calculation can be made by the use of Monte Carlo method taking into account the distribution of random variables Td and Tc . If parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@ is known then the number of the inspections, n(p,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai aacIcacaWGWbGaaiilaiabeI7aXjaacMcaaaa@3C11@ , required to limit the FFPN by a value p, is defined by the equation

n(p,θ)=min(r: p fNW (θ,r)p  for all r>n(p,θ), r=1,2,...) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai aacIcacaWGWbGaaiilaiabeI7aXjaacMcacqGH9aqpciGGTbGaaiyA aiaac6gacaGGOaGaamOCaiaacQdacaWGWbqcfa4aaSbaaKazba2=ba qcLbmacaWGMbGaamOtaiaadEfaaSqabaqcLbsacaGGOaGaeqiUdeNa aiilaiaadkhacaGGPaGaeyizImQaamiCaiaabccacaqGGaGaaeOzai aab+gacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabccacaWGYbGa eyOpa4JaamOBaiaacIcacaWGWbGaaiilaiabeI7aXjaacMcacaGGSa GaaeiiaiaadkhacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaiOl aiaac6cacaGGUaGaaiykaaaa@6A2B@ .       (16)
For the case of using the result of the acceptance test for the estimation of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@  the required limitation of the FFPN by a value p is provided for any unknown θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@  if the number of the inspections will be defined by value n( p FD , θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai aacIcacaWGWbqcfa4aaSbaaKqaGeaajugWaiaadAeacaWGebaaleqa aKqzGeGaaiilaiqbeI7aXzaajaGaaiykaaaa@4056@ , where p FD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiCaK qbaoaaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaaaaa@3B05@  is the solution of the equation

sup θ E θ ^ { E T ( P fNW (n( p FD , θ ^ ))| θ ^ Θ 0 )}P( θ ^ Θ 0 )=p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfqaqaaKqzGe Gaci4CaiaacwhacaGGWbaajeaibaqcLbmacqaH4oqCaSqabaqcLbsa caWGfbGcdaahaaWcbeqcbasaaKqzadGafqiUdeNbaKaaaaqcLbsaca GG7bGaamyraOWaaWbaaSqabKqaGeaajugWaiaadsfaaaqcLbsacaGG OaGaamiuaOWaaSbaaKqaGeaajugWaiaadAgacaWGobGaam4vaaWcbe aajugibiaacIcacaWGUbGaaiikaiaadchakmaaBaaajeaibaqcLbma caWGgbGaamiraaWcbeaajugibiaacYcacuaH4oqCgaqcaiaacMcaca GGPaGaaiiFaiqbeI7aXzaajaGaeyicI4SaeuiMdeLcdaWgaaqcbasa aKqzadGaaGimaaWcbeaajugibiaacMcacaGG9bGaamiuaiaacIcacu aH4oqCgaqcaiabgIGiolabfI5arPWaaSbaaKqaGeaajugWaiaaicda aSqabaqcLbsacaGGPaGaeyypa0JaamiCaaaa@6DCB@                         (17)

where again E T (.) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadweakm aaCaaaleqajeaibaqcLbmacaWGubaaaKqzGeGaaiikaiaac6cacaGG Paaaaa@3C6E@  is the expectation corresponding to the distribution of a set of vectors ( ( T D + , T C + ) k , k=1,...,N) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacIcaca GGOaGaamivaSWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiab gUcaRaaajugibiaacYcacaWGubWcdaqhaaqcbasaaKqzadGaam4qaa qcbasaaKqzadGaey4kaScaaKqzGeGaaiykaOWaaSbaaKqaGeaajugW aiaadUgaaSqabaqcLbsacaGGSaGaaeiiaiaadUgacqGH9aqpcaaIXa Gaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGobGaaiykaaaa@513D@ , the E θ ^ (.) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadweakm aaCaaaleqajeaibaqcLbmacuaH4oqCgaqcaaaajugibiaacIcacaGG UaGaaiykaaaa@3D5B@  is the expectation corresponding to the distribution of θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaaaaa@3868@  under condition θ ^ Θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFGI8pgYtOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaGaeyicI4SaeuiMdevcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baaaaa@3EA3@ .

Numerical example

We suppose that the equation a(t)=αexp(Qt) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb GaaiikaiaadshacaGGPaGaeyypa0JaeqySdeMaciyzaiaacIhacaGG WbGaaiikaiaadgfacaWG0bGaaiykaaaa@4266@ , where α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde gaaa@3819@  is some constant, Q is some RV, describes the development of fatigue crack in the interval, (td, tc) where td is a time when the crack becomes detectable ( a( t d )= a d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWgajuaGda qadaGcbaqcLbsacaWGHbGaaiikaiaadshajuaGdaWgaaqcbasaaKqz adGaamizaaWcbeaajugibiaacMcacqGH9aqpcaWGHbqcfa4aaSbaaK qaGeaajugWaiaadsgaaSqabaaakiaawIcacaGLPaaaaaa@44C9@  and tc is a time when the crack reaches its critical size ( a( t c )= a c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyyaiaacIcacaWG0bqcfa4aaSbaaKqaGeaajugWaiaa dogaaSqabaqcLbsacaGGPaGaeyypa0JaamyyaKqbaoaaBaaajeaiba qcLbmacaWGJbaaleqaaaGccaGLOaGaayzkaaaaaa@4458@  and fatigue failure takes place. Corresponding random variables are defined by equations: T d =(log a d logα)/Q= C d /Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaK qbaoaaBaaajeaibaqcLbmacaWGKbaaleqaaKqzGeGaeyypa0Jaaiik aiGacYgacaGGVbGaai4zaiaadggajuaGdaWgaaqcbasaaKqzadGaam izaaWcbeaajugibiabgkHiTiGacYgacaGGVbGaai4zaiabeg7aHjaa cMcacaGGVaGaamyuaiabg2da9iaadoeajuaGdaWgaaqcbasaaKqzad GaamizaaWcbeaajugibiaac+cacaWGrbaaaa@5242@ , T c =(log a c logα)/Q= C c /Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaK qbaoaaBaaajeaibaqcLbmacaWGJbaaleqaaKqzGeGaeyypa0Jaaiik aiGacYgacaGGVbGaai4zaiaadggajuaGdaWgaaqcbasaaKqzadGaam 4yaaWcbeaajugibiabgkHiTiGacYgacaGGVbGaai4zaiabeg7aHjaa cMcacaGGVaGaamyuaiabg2da9iaadoeajuaGdaWgaaqcbasaaKqzad Gaam4yaaWcbeaajugibiaac+cacaWGrbaaaa@523F@ .

Let us denote X=logQ   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiwai abg2da9iGacYgacaGGVbGaai4zaiaadgfacaqGGaGaaeiiaaaa@3D49@  and Y=log C c    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamywai abg2da9iGacYgacaGGVbGaai4zaiaadoeajuaGdaWgaaqcbasaaKqz adGaam4yaaWcbeaajugibiaabccacaqGGaaaaa@40C5@ , where C c =log a c logα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaK qbaoaaBaaajeaibaqcLbmacaWGJbaaleqaaKqzGeGaeyypa0JaciiB aiaac+gacaGGNbGaamyyaKqbaoaaBaaajeaibaqcLbmacaWGJbaale qaaKqzGeGaeyOeI0IaciiBaiaac+gacaGGNbGaeqySdegaaa@486C@ . Here we assume that Cc is some constant. From the analysis of the fatigue test data it can be assumed, that the log T c =log C c logQ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaciiBai aac+gacaGGNbGaamivaKqbaoaaBaaajeaibaqcLbmacaWGJbaaleqa aKqzGeGaeyypa0JaciiBaiaac+gacaGGNbGaam4qaKqbaoaaBaaaje aibaqcLbmacaWGJbaaleqaaKqzGeGaeyOeI0IaciiBaiaac+gacaGG NbGaamyuaaaa@4A67@ is distributed normally. It can take place only if X=logQ   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiwai abg2da9iGacYgacaGGVbGaai4zaiaadgfacaqGGaGaaeiiaaaa@3D49@  has normal distribution. Additionally we assume that standard deviation of log(Q) is equal to 0.346.

Now we consider an example of the problem to limit the FFPN by the value p=0.05. Suppose that during fatigue test we see the fatigue crack (see Figure 2.22 in 1 ) and get the following data:

  log(Q)=8.588 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGacYgaca GGVbGaai4zaiaacIcacaWGrbGaaiykaiabg2da9iabgkHiTiaaiIda caGGUaGaaGynaiaaiIdacaaI4aaaaa@414B@ ; α=0.286mm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg7aHb baaaaaaaaapeGaeyypa0JaaGimaiaac6cacaaIYaGaaGioaiaaiAda caWGTbGaamyBaaaa@3DC6@ . It is known: α d =20mm,  α c =237mm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHXoqyk8aadaWgaaqcbasaaKqzadWdbiaadsgaaSWdaeqa aKqzGeWdbiabg2da9iaaikdacaaIWaGaamyBaiaad2gacaGGSaGaaG PaVlaaykW7kiaacckajugibiabeg7aHPWdamaaBaaajeaibaqcLbma peGaam4yaaWcpaqabaqcLbsapeGaeyypa0JaaGOmaiaaiodacaaI3a GaamyBaiaad2gaaaa@4FC2@ 1. Assume that t SL =40000h,w=0.9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bGcpaWaaSbaaKqaGeaajugWa8qacaWGtbGaamitaaWc paqabaqcLbsapeGaeyypa0JaaGinaiaaicdacaaIWaGaaGimaiaaic dacaWGObGaaiilaiaaykW7caaMc8Uaam4Daiabg2da9iaaicdacaGG UaGaaGyoaaaa@4983@ ; there is 10 aircraft in the fleet, the interval between the aircraft putting into operation as t i+1 t i =500h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG0bGcpaWaaSbaaKqaGeaajugWa8qacaWGPbGaey4kaSIa aGymaaWcpaqabaqcLbsapeGaeyOeI0IaamiDaOWdamaaBaaajeaiba qcLbmapeGaamyAaaWcpaqabaqcLbsapeGaeyypa0JaaGynaiaaicda caaIWaGaamiAaaaa@462A@ ; required reliability R=0.95 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfacq GH9aqpcaaIWaGaaiOlaiaaiMdacaaI1aaaaa@3A3E@ , allowed failure probability ε=1R=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew7aLj abg2da9iaaigdacqGHsislcaWGsbaeaaaaaaaaa8qacqGH9aqpcaaI WaGaaiOlaiaaicdacaaI1aaaaa@3EAA@ , a number of allowed maximal inspections is equal to 20 (the redesign of aircraft should be made if required reliability R=0.95 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfacq GH9aqpcaaIWaGaaiOlaiaaiMdacaaI1aaaaa@3A3E@ is provided only for the inspection number, n ^ =n(ε, θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqad6gaga qcaiabg2da9iaad6gacaGGOaGaeqyTduMaaiilaiqbeI7aXzaajaGa aiykaaaa@3DE4@  , more than 20; this requirement defines the set Θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfI5arP WaaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A61@ .

 The calculations made by the use of Monte Carlo method show: if θ 0 =log(Q)=8.588 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXP WaaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGH9aqpciGGSbGa ai4BaiaacEgacaGGOaGaamyuaiaacMcacqGH9aqpcqGHsislcaaI4a GaaiOlaiaaiwdacaaI4aGaaGioaaaa@46DE@ , θ 1 =0346 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXP WaaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaaIWaGa aG4maiaaisdacaaI2aaaaa@3F2B@  are fixed, all inspection intervals are equal, then it can be calculated that 9 inspections for each aircraft during the operating time should be carry out to ensure the required reliability. But if it taken into account that θ 0 =log(Q)=8.588 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXP WaaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGH9aqpciGGSbGa ai4BaiaacEgacaGGOaGaamyuaiaacMcacqGH9aqpcqGHsislcaaI4a GaaiOlaiaaiwdacaaI4aGaaGioaaaa@46DE@  is only the estimate of the unknown parameter then 16 inspections should be chosen corresponding to p FD =0.01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadchakm aaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaajugibabaaaaaaaaa peGaeyypa0JaaGimaiaac6cacaaIWaGaaGymaaaa@3E20@ . We see that in order to limit the fleet failure probability for any unknown θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH4oqCk8aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqa aaaa@3B22@  by the value ε=0.05 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew7aLb baaaaaaaaapeGaeyypa0JaaGimaiaac6cacaaIWaGaaGynaaaa@3B25@  the inspection interval should be calculated using p FD =0.01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadchakm aaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaajugibabaaaaaaaaa peGaeyypa0JaaGimaiaac6cacaaIWaGaaGymaaaa@3E20@ .

Appendix A

Here we consider only the limitation of any fatigue failure in a fleet of N aircraft and show a connection of the development of the inspection program with the definition of a prediction interval for future observation.26

Let Z=( Z 1 + ,..., Z N + } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOwai abg2da9iaacIcacaWGAbWcdaqhaaqcbasaaKqzadGaaGymaaqcbasa aKqzadGaey4kaScaaKqzGeGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaWGAbWcdaqhaaqcbasaaKqzadGaamOtaaqcbasaaKqzadGaey4k aScaaKqzGeGaaiyFaaaa@495A@ , where Z k + =( T d,k + , T c,k + ),k=1,...,N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOwaS Waa0baaKqaGeaajugWaiaadUgaaKqaGeaajugWaiabgUcaRaaajugi biabg2da9iaacIcacaWGubqcfa4aa0baaSqaaKqzGeGaamizaiaacY cacaWGRbaaleaajugibiabgUcaRaaacaGGSaGaamivaSWaa0baaKqa GeaajugWaiaadogacaGGSaGaam4AaaqcbasaaKqzadGaey4kaScaaK qzGeGaaiykaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaam4Aaiab g2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6eaaa a@5B43@  are some previously defined vectors, the vector X defines the result of the acceptance full-scale fatigue test of an aircraft structure. It is supposed that the class is known { P θ ,θΘ} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaai4Eai aadcfajuaGdaWgaaqcbasaaKqzadGaeqiUdehaleqaaKqzGeGaaiil aiaaykW7cqaH4oqCcqGHiiIZcqqHyoqucaGG9baaaa@4492@  to which the probability distribution of the random vector W=(Z, X) is assumed to belong. Of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde haaa@388B@ , which labels the distribution, it is presumably known only that it lies in a certain set Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiMde faaa@37F1@ , the parameter space and θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaaaaa@3868@  is the estimate of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@  as a result of processing X. It is useful to note that the choice of the program with the n inspections defines some random set function

S + ( θ ^ , Θ 0 ,n)= 1kN S k + ( θ ^ , Θ 0 ,n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaCaaaleqajeaibaqcLbmacqGHRaWkaaqcLbsacaGGOaGafqiU deNbaKaacaGGSaGaeuiMdevcfa4aaSbaaKqaGeaajugWaiaaicdaaS qabaqcLbsacaGGSaGaamOBaiaacMcacqGH9aqpjuaGdaWeqaGcbaqc LbsacaWGtbWcdaqhaaqcbasaaKqzadGaam4AaaqcbasaaKqzadGaey 4kaScaaaqcbasaaKqzadGaaGymaiabgsMiJkaadUgacqGHKjYOcaWG obaaleqajugibiablQIivbGaaiikaiqbeI7aXzaajaGaaiilaiabfI 5arLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaiilaiaa d6gacaGGPaaaaa@6038@                      (A1)

where

S k + ( θ ^ , Θ 0 ,n)={ 1kN S j,k + (n) ,  if   θ ^ Θ 0 , ,  if   θ ^ Θ 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS Waa0baaKqaGeaajugWaiaadUgaaKqaGeaajugWaiabgUcaRaaajugi biaacIcacuaH4oqCgaqcaiaacYcacqqHyoqujuaGdaWgaaqcbasaaK qzadGaaGimaaWcbeaajugibiaacYcacaWGUbGaaiykaiabg2da9Kqb aoaaceaajugibqaabeGcbaqcfa4aambuaOqaaKqzGeGaam4uaSWaa0 baaKqaGeaajugWaiaadQgacaGGSaGaam4AaaqcbasaaKqzadGaey4k aScaaKqzGeGaaiikaiaad6gacaGGPaaajeaibaqcLbmacaaIXaGaey izImQaam4AaiabgsMiJkaad6eaaSqabKqzGeGaeSOkIufacaqGSaGa aeiiaiaabccacaWGPbGaamOzaiaabccacaqGGaGafqiUdeNbaKaacq GHiiIZcqqHyoqujuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biaacYcaaOqaaKqzGeGaeyybIySaaiilaiaabccacaqGGaGaamyAai aadAgacaqGGaGaaeiiaiqbeI7aXzaajaGaeyycI8SaeuiMdevcfa4a aSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaGGSaaaaOGaay5Eaa aaaa@7C8F@
S j,k + ={( t d,k + , t c,k + ): t (j1),k < t d,k , t c,k t j,k },i=1,...,n+1,1kN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS Waa0baaKqaGeaajugWaiaadQgacaGGSaGaam4AaaqcbasaaKqzadGa ey4kaScaaKqzGeGaeyypa0Jaai4EaiaacIcacaWG0bWcdaqhaaqcba saaKqzadGaamizaiaacYcacaWGRbaajeaibaqcLbmacqGHRaWkaaqc LbsacaGGSaGaamiDaSWaa0baaKqaGeaajugWaiaadogacaGGSaGaam 4AaaqcbasaaKqzadGaey4kaScaaKqzGeGaaiykaiaacQdacaWG0bqc fa4aaSbaaKqaGeaajugWaiaacIcacaWGQbGaeyOeI0IaaGymaiaacM cacaGGSaGaam4AaaWcbeaajugibiabgYda8iaadshajuaGdaWgaaqc basaaKqzadGaamizaiaacYcacaWGRbaaleqaaKqzGeGaaiilaiaads hajuaGdaWgaaqcbasaaKqzadGaam4yaiaacYcacaWGRbaaleqaaKqz GeGaeyizImQaamiDaKqbaoaaBaaajeaibaqcLbmacaWGQbGaaiilai aadUgaaSqabaqcLbsacaGG9bGaaiilaiaaykW7caaMc8UaaGPaVlaa ykW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaamOBaiabgUcaRiaaigdacaGGSaGaaGPaVlaaykW7caaMc8Ua aGymaiabgsMiJkaadUgacqGHKjYOcaWGobaaaa@8D56@ .

Example of S + ( θ ^ , Θ 0 ,n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaCaaaleqabaqcLbsacqGHRaWkaaGaaiikaiqbeI7aXzaajaGa aiilaiabfI5arLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGe Gaaiilaiaad6gacaGGPaaaaa@43B2@  is shown in Figure 3.

Figure 3 Example of S + ( θ ^ , Θ 0 ,n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaCaaaleqajeaibaqcLbmacqGHRaWkaaqcLbsacaGGOaGafqiU deNbaKaacaGGSaGaeuiMdevcfa4aaSbaaKqaGeaajugWaiaaicdaaS qabaqcLbsacaGGSaGaamOBaiaacMcaaaa@450A@ .

This function defines some set of specific “prediction intervals” for the set of the vectors { Z k + ,k=1,...,N} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaai4Eai aadQfalmaaDaaajeaibaqcLbmacaWGRbaajeaibaqcLbmacqGHRaWk aaqcLbsacaGGSaGaam4Aaiabg2da9iaaigdacaGGSaGaaiOlaiaac6 cacaGGUaGaaiilaiaad6eacaGG9baaaa@4632@  based on the observation of the X (or based on the estimate θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaaaaa@3868@  of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@ ) which defines the probability of any fatigue failure in the fleet , FFPN. We remind that if X is the result of the acceptance test the required limitation of the FFPN by a value p is provided for any unknown θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXb aa@3858@  if the number of the inspections will be defined by value n( p FD , θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOBai aacIcacaWGWbqcfa4aaSbaaKqaGeaajugWaiaadAeacaWGebaaleqa aKqzGeGaaiilaiqbeI7aXzaajaGaaiykaaaa@4056@ , where (we remind) p FD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiCaK qbaoaaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaaaaa@3B05@  is the solution of the equation

sup θ E θ ^ { E T ( P fNW (n( p FD , θ ^ ))| θ ^ Θ 0 )}P( θ ^ Θ 0 )=p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfqaqaaKqzGe Gaci4CaiaacwhacaGGWbaajeaibaqcLbmacqaH4oqCaSqabaqcLbsa caWGfbGcdaahaaWcbeqcbasaaKqzadGafqiUdeNbaKaaaaqcLbsaca GG7bGaamyraOWaaWbaaSqabKqaGeaajugWaiaadsfaaaqcLbsacaGG OaGaamiuaOWaaSbaaKqaGeaajugWaiaadAgacaWGobGaam4vaaWcbe aajugibiaacIcacaWGUbGaaiikaiaadchakmaaBaaajeaibaqcLbma caWGgbGaamiraaWcbeaajugibiaacYcacuaH4oqCgaqcaiaacMcaca GGPaGaaiiFaiqbeI7aXzaajaGaeyicI4SaeuiMdeLcdaWgaaqcbasa aKqzadGaaGimaaWcbeaajugibiaacMcacaGG9bGaamiuaiaacIcacu aH4oqCgaqcaiabgIGiolabfI5arPWaaSbaaKqaGeaajugWaiaaicda aSqabaqcLbsacaGGPaGaeyypa0JaamiCaaaa@6DCB@                         (A2)

where again E T (.) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadweakm aaCaaaleqajeaibaqcLbmacaWGubaaaKqzGeGaaiikaiaac6cacaGG Paaaaa@3C6E@  is the expectation corresponding to the distribution of a set of vectors ( ( T D + , T C + ) k ,k=1,...,N) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacIcaca GGOaGaamivaSWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiab gUcaRaaajugibiaacYcacaWGubWcdaqhaaqcbasaaKqzadGaam4qaa qcbasaaKqzadGaey4kaScaaKqzGeGaaiykaOWaaSbaaKqaGeaajugW aiaadUgaaSqabaqcLbsacaGGSaGaam4Aaiabg2da9iaaigdacaGGSa GaaiOlaiaac6cacaGGUaGaaiilaiaad6eacaGGPaaaaa@509A@ , the E θ ^ (.) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadweakm aaCaaaleqajeaibaqcLbmacuaH4oqCgaqcaaaajugibiaacIcacaGG UaGaaiykaaaa@3D5B@  is the expectation corresponding to the distribution of θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdMqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaaaaa@3868@  under condition θ ^ Θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFGI8pgYtOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeI7aXz aajaGaeyicI4SaeuiMdevcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baaaaa@3EA3@ .

Some details can be provided if the human factor w=1. It can be shown that in this case for a very broad spectrum of set Θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuiMde vcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3AAD@  there is a preliminary “designed” choice of allowed FFPN, p FD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiCaK qbaoaaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaaaaa@3B06@ , such that

sup θ P{ k=1 N j=1 n ( Z k + S j,k + (n( p FD , θ ^ )))| θ ^ Θ 0 }P( θ ^ Θ 0 )=p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaci4Cai aacwhacaGGWbqcfa4aaSbaaKqaGeaajugWaiabeI7aXbWcbeaajugi biaadcfacaGG7bqcfa4aambCaOqaaKqbaoaatahakeaajugibiaacI cacaWGAbWcdaqhaaqcbasaaKqzadGaam4AaaqcbasaaKqzadGaey4k aScaaKqzGeGaeyicI4Saam4uaSWaa0baaKqaGeaajugWaiaadQgaca GGSaGaam4AaaqcbasaaKqzadGaey4kaScaaKqzGeGaaiikaiaad6ga caGGOaGaamiCaKqbaoaaBaaajeaibaqcLbmacaWGgbGaamiraaWcbe aajugibiaacYcacuaH4oqCgaqcaiaacMcacaGGPaGaaiykaiaacYha cuaH4oqCgaqcaiabgIGiolabfI5arLqbaoaaBaaajeaibaqcLbmaca aIWaaaleqaaKqzGeGaaiyFaiaadcfacaGGOaGafqiUdeNbaKaacqGH iiIZcqqHyoqujuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibi aacMcacqGH9aqpcaWGWbaajeaibaqcLbmacaWGQbGaeyypa0JaaGym aaqcbasaaKqzadGaamOBaaqcLbsacqWIQisvaaqcbasaaKqzadGaam 4Aaiabg2da9iaaigdaaKqaGeaajugWaiaad6eaaKqzGeGaeSOkIufa aaa@84AB@  .         (A3)

If additionally, the services of all aircraft are independent (after discovery of fatigue crack the service of only one corresponding aircraft will finished but the service of all other aircraft continues) than again there is the “preliminary designed” choice of p FD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiCaK qbaoaaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaaaaa@3B06@  such that

sup θ ({1 k=1 N (1 1jn P( Z k + S j,k + (n( p FD , θ ^ ))| θ ^ Θ 0 }P( θ ^ Θ 0 ) =p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaci4Cai aacwhacaGGWbqcfa4aaSbaaKqaGeaajugWaiabeI7aXbWcbeaajugi biaacIcacaGG7bGaaGymaiabgkHiTKqbaoaarahakeaajugibiaacI cacaaIXaGaeyOeI0scfa4aaabeaOqaaKqzGeGaamiuaiaacIcacaWG AbWcdaqhaaqcbasaaKqzadGaam4AaaqcbasaaKqzadGaey4kaScaaK qzGeGaeyicI4Saam4uaSWaa0baaKqaGeaajugWaiaadQgacaGGSaGa am4AaaqcbasaaKqzadGaey4kaScaaKqzGeGaaiikaiaad6gacaGGOa GaamiCaKqbaoaaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaajugi biaacYcacuaH4oqCgaqcaiaacMcacaGGPaGaaiiFaiqbeI7aXzaaja GaeyicI4SaeuiMdevcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqc LbsacaGG9bGaamiuaiaacIcacuaH4oqCgaqcaiabgIGiolabfI5arL qbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaiykaaWcbaqc LbsacaaIXaGaeyizImQaamOAaiabgsMiJkaad6gaaSqabKqzGeGaey yeIuoaaKqaGeaajugWaiaadUgacqGH9aqpcaaIXaaajeaibaqcLbma caWGobaajugibiabg+GivdGaeyypa0JaamiCaaaa@89FC@ .     (A4)

If the left side part of (A4) is small enough then instead of (A4) the equation (A5) can be used

sup θ { k=1 N 1jn P( Z k + S j,k + (n( p FD , θ ^ )) θ ^ Θ 0 ) }=p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaci4Cai aacwhacaGGWbqcfa4aaSbaaKqaGeaajugWaiabeI7aXbWcbeaajugi biaacUhajuaGdaaeWbGcbaqcfa4aaabeaOqaaKqzGeGaamiuaiaacI cacaWGAbWcdaqhaaqcbasaaKqzadGaam4AaaqcbasaaKqzadGaey4k aScaaKqzGeGaeyicI4Saam4uaSWaa0baaKqaGeaajugWaiaadQgaca GGSaGaam4AaaqcbasaaKqzadGaey4kaScaaKqzGeGaaiikaiaad6ga caGGOaGaamiCaKqbaoaaBaaajeaibaqcLbmacaWGgbGaamiraaWcbe aajugibiaacYcacuaH4oqCgaqcaiaacMcacaGGPaqcfa4aaqbaaOqa aKqzGeGafqiUdeNbaKaacqGHiiIZcqqHyoqujuaGdaWgaaqcbasaaK qzadGaaGimaaWcbeaaaeqabeqcLbsacqWIPissaiaacMcaaSqaaKqz GeGaaGymaiabgsMiJkaadQgacqGHKjYOcaWGUbaaleqajugibiabgg HiLdaajeaibaqcLbmacaWGRbGaeyypa0JaaGymaaqcbasaaKqzadGa amOtaaqcLbsacqGHris5aiaac2hacqGH9aqpcaWGWbaaaa@7CA1@ .                                  (A5)

Note: It should be noted that in [27] similar problem was considered but with some mistakes. The equation (A2) is not given at all but the equation (A5) is given without explanation that it can be used only if p is very small.

Equations (A2 – A5) show that the FFPN will be limited by the value p for any unknown parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiUde haaa@3821@ .

Conclusion

Some mathematics for the solution of the problem of the limitation of the probability of any fatigue failure in a fleet of N fatigue-prone aircraft (FFPN) and fatigue failure rate (FFR) of some airline is offered. Usually, the reliability problem is considered as a problem of the theory of probability when the cumulative distribution functions (CDFs) of the corresponding random variables (the fatigue life, the fatigue crack model parameters …) are known already. But in this paper the main attention is devoted to the statistical problem when these CDFs are not known but thesolution of the problem is based on the acceptance full-scale fatigue test of an aircraft structure. In the Appendix A the planning of inspection intervals is considered as definition of some set of specific “prediction intervals” for “the future observations” (the detection and the fatigue failure times of the fleet aircraft). They are based on the processing of the acceptance fatigue test. After this test one of the two decisions should be chosen: 1) to do the redesign of new type of AC if the result of the test is “too bad” or 2) to make the choice of the number of inspection, n=n( θ ^ , p FD ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6gacq GH9aqpcaWGUbGaaiikaiqbeI7aXzaajaGaaiilaiaadchakmaaBaaa jeaibaqcLbmacaWGgbGaamiraaWcbeaajugibiaacMcaaaa@40D3@ , as function of θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaaaa@384C@  and specific p FD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYlH8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadchakm aaBaaajeaibaqcLbmacaWGgbGaamiraaWcbeaaaaa@398A@  defined in this paper. In this case required reliability can be provided for any unknown parameter of fatigue crack growth.

Acknowledgements

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Campbell GS, Lahey RA. Survey of Serious Aircraft Accidents Involving Fatigue Fracture. Int J Fatigue. 1984;6(1):25‒30.
  2. Torkington C. Fatigue Problems Old and New. Aircraft. 1980;59(10):8‒11.
  3. Wanhill RJH. Milestone Case Histories in Aircraft Structural Integrity. National Aerospace Laboratory NLR, Netherlands; 2002. p. 521‒525.
  4. The Comet Inquiry. Flight. 29 October, 1954; 638‒639, 652‒654; 5 November, 1954; 725‒728; 19 November, 1954; 731‒732, 740‒742; 26 November, 1954; 787‒789.
  5. US Sets Pattern for Fatigue Standards. Aviation Week and Space Technology. March 28, 1977, 32.
  6. Hall J, UG Goranson. Structural Damage Tolerance of Commercial Jet Transports. Reprints from 1984 Boeing AIRLINER. Part 1, Damage Tolerance Concepts. Jan-Mar, 1984; part 2, 727 / 737 / 747 Supplement Structural Inspection Programs Apr-June, 1984; part 3 “ 757/767 Structural Inspection Program. July-Sep, 1984.
  7. Heath WG. Fail Safe Tech. Air.1979.
  8. Yang JN, Trapp WJ. Reliability Analysis of Aircraft Structures under Random Loading and Periodic Inspection. AIAA Journal. 1974;12(12):1623‒1630.
  9. Yang JN, Trapp WJ. Inspection Frequency Optimization for Aircraft Structures Based on Reliability Analysis. Journal of Aircraft. 1975;12(5):494‒496.
  10. Yang JN. Reliability Analysis of Structures Under Periodic Proof Tests in Service. AIAA Journal. 1976;14(9):1225‒1234.
  11. Yang JN. Optimal Periodic Proof Test Based on Cost-Effective and Reliability Criteria. AIAA/ASME/SAE 17th Structures, Structural Dynamics and Materials Conference Proceedings. Pennsylvania; 1976. p. 567‒576.
  12. Yang JN, Trapp WJ. Joint Aircraft Loading/Structure Statistics of Time to Service Crack Initiation. Journal of Aircraft 1976;13(4):270‒278.
  13. Yang JN. Statistical Estimation of Economic Life for Aircraft Structures. Journal of Aircraft. 1980;17(7):528‒535.
  14. Yang JN. Statistical Crack Growth in Durability and Damage Tolerant Analysis. In: AIAA/ASME/ASCE/AHS. 22nd Structures, Structural Dynamics and Materials Conference Proceedings. USA, 1980. p. 38‒44.
  15. Yang JN, Manning SD. Distribution on Equivalent Initial Flaw Size. In: Proceedings of Annual Reliability and Maintainability Symposium. San Francisco, California, US; 1980. p. 112‒120.
  16. Yang JN, Manning SD. Aircraft Fleet Maintenance Based on Structural Reliability Analysis. Journal of Aircraft. 1994;31(2):419‒425.
  17. Mohanty JR, Verma BB, Ray PK. Prediction of Fatigue Crack Growth and Residual Life Using an Exponential Model: Part I (constant amplitude loading). Intemational Journal of Fatigue. 2009;31(3):418‒424.
  18. Mohanty JR, Verma BB, Ray PK. Prediction of Fatigue Crack Growth and Residual Life Using an Exponential Model: Part II (mode-I overload induced retardation). International Journal of Fatigue. 2009;31(3):425‒432.
  19. Spencer BF, J Tang. Markov Process Model for Fatigue Crack Growth. Journal of Engineering Mechanics. 1988;114(12):2134‒2157.
  20. Silvar R De. Exponential Model of Fatigue Crack. In Proceeding of the International workshop "Aviation Reliability AvR 2000”, Riga, RAU, Latvia. 2000. p. 45‒48.
  21. Aven T, Castro IT. A Delay-Time Model with Safety Constraints. Reliability Engineering & System Safety. 2009;94(2):261‒267.
  22. Jin L, Bayarsaikhan U. Control Limit Policy for Aging Systems Using Markov Decision Process. Proceedings for 8th IMA International Conference on Modeling in Industrial Maintenance and Reliability (MIMAR). Oxford, Institute of Mathematics and its Applications, 2014. p. 149‒154.
  23. Feng Q, Chen Y, Sun B. A cooperative game-based decision method for aircraft fleet condition based maintenance. Proceedings for 8th IMA International Conference on Modeling in Industrial Maintenance and Reliability (MIMAR). Oxford, Institut of Mathematics and its Applications, 2014. p. 89‒96.
  24. Hauka M, S Tretyakov, Yu Paramonov. Minimax inspection program for reliability of aircraft fleet and airline. Proceedings for 8th IMA International Conference on Modeling in Industrial Maintenance and Reliability (MIMAR). Oxford, Institute of Mathematics and its Applications, 2014. p. 120‒124.
  25. Paramonov Y, Kuznetsov A, Kleinhofs M. Reliabilty of fatigue-prone airframes and composite materials. Aviation institute of Riga. Technical University, Latvia, 2011. p. 129.
  26. Cox DR, Hinkly DV. Theoretical statistics. Chapmen and Hall,London, UK; 1979. p. 528.
  27. Paramonov Y, Tretyakov S, Hauka M. Reliability of aircraft fleet: Binary p-set and lambda-set functions. International Journal of Performability Engineering. 2016;12(3):215‒228.
Creative Commons Attribution License

© . This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.