Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 1

Statistical model of nuclide shell structure

Chen Dayou

Institute for Condensed Matter Physics & Materials under Northwest University, China

Correspondence: Chen Dayou, Institute for Condensed Matter Physics & Materials under Northwest University, Xi’an, Shaanxi, China

Received: November 25, 2017 | Published: February 6, 2018

Citation: Dayou C. Statistical model of nuclide shell structure. Phys Astron Int J. 2018;2(1):64-72. DOI: 10.15406/paij.2018.02.00050

Download PDF

Abstract

This thesis, after a systematic and in-depth analysis of known nuclides, pro-poses a new model of nuclides’ shell structure and offers a table of the shell structures of 935 nuclides. With this theoretic approach, the thesis studies the shell combination with a bias towards the statistical analysis of nuclide structures. This thesis distinguishes between the basic models of nuclides and gives 7criteria for nu-clide binding, the maximal nucleonic number of each shell ( Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfaOaeuiLdq KaamyqamaaBaaajuaibaGaamyAaaqcfayabaaaaa@3CA7@ ), combination of proton and neutron (p/n) and graphs of the nuclide growth. Based on magnetic moment, it also conducts a quantitative analysis of p/n on the shell. The nuclide structure has the characteristic of a shell and on every shell the combination of proton and neutron features clear regularity. Among the 263 elements from 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeymaaWcbaqcLbmacaqGXaaaaaaa@3C1F@ H to 106 263 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI2aaaleaajugWaiaaikdacaaI2aGaaG4m aaaaaaa@3F25@ Sg the serial number of the most outside shell in structure are 7, and nuclides 105 262 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeymaiaabcdacaqG1aaaleaajugWaiaabkdacaqG2aGaaeOm aaaaaaa@3CCF@ Ha and 106 263 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI2aaaleaajugWaiaaikdacaaI2aGaaG4m aaaaaaa@3F25@ Sg are respectively even A and odd A 7 shells. It is not a coincidence but a reflection of the nuclide shell structure. The thesis uses the result of a statistical analysis to confirm the existence of “the magic Number” and reveals the fact that the magic number” is a reflection of p/n on nuclide shell, particularly on the outer shells. The statistical analysis reveals that the nuclide stability and its way of decay are dependent on the nucleonic combination on the most outside shell and the matching between full-filled and semi-full filled p/n, thus unveiling the general law governing the stability and decay of nuclides.

Keywords: nuclide shell structure; p/n (mass rate of proton and neutron), criteria of nuclide binding, graphs of nuclide growth, table of nuclide shell structure

Introduction

In 1940s M.G. Mayer discovered that the number of protons and neutrons is 2, 8, 20, 28, 50, 82 and 126 and soon. These kinds of nuclides are stable in a special way. This characteristic is called “the magic number” law. The existence of “the magic number” indicates that the nuclide is characteristic of a shell structure. Afterwards, M.G. Mayer and J.H.D Jensen proposed, with the nuclide independent motion as its theoretic basis, the shell structure of nuclides and as a result explained the “magic number” law.1 The Mayer’s shell structure model solved the magic numbers of 2, 8 and 20 first by using potential energy function of nuclear central force field in the model of harmonic oscillator potential well and square potential well. Then, with the analysis of splitting of energy levels, other magic numbers are obtained. Mayer’s shell structure is good in many ways. For an example, it successfully explains the characters of double magic-number nuclides and their near-by ones in both theory and experiment. But there are many examples showing grent differences between prediction and experiment such as electric quadruple moment of nucleon and magnetic moment of baryon odd-A nuclear. To solve the problem, A Bohr BR Mottelson and LJ Rainwater proposed the model of collective motion. However neither of the models gave specific from of the nclide shelll structure. We hold that circumstances inside and outside nuclear are entirely different. Inside it is similar to a free space while outside it has a powerful nuclear force. So there is no electronic orbiting motion and no steady-state distribution inside nuclear. Therefore, the model of nucleon shell structure is most likely an approximate description of the nuclide shell sturcture. The model we offer in this paper is different from the thought of Mayer, A Bohr et al. and it is based on classification of basic models of nuclides and on statistical analysis of nuclides.

Statistical characteristics of nuclide shell structure

Shell structure of a nuclear is a necessary result of direct proportion between its volume and its nucleon number. The volume V of a nuclear is

V= 4 3 π r 0 3 A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfacqGH9aqpjuaGpaWaaSaaaOqaaKqzGeGaaGinaaGc baqcLbsacaaIZaaaaiaabc8acaaMi8UaamOCaSWaa0baaKazba4=ba qcLbmacaaIWaaajqwaa+FaaKqzadGaaG4maaaajugibiaadgeaaaa@48DD@   (1)

In which radius r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A48@ ( r 0 =1.21× 10 15 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqcKfaG=haajugWaiaaicdaaKazba4=beaajugibabaaaaa aaaapeGaeyypa0JaaGymaiaac6cacaaIYaGaaGymaiabgEna0kaaig dacaaIWaWcpaWaaWbaaKqaGeqabaqcLbmapeGaeyOeI0IaaGymaiaa iwdaaaqcLbsacaWGTbaaaa@4B1B@ ) is a constant obtained from experiment.2 It is known that each nucleon has similar mass and identical volume. Suppose the nucleon inside the nuclear takes up an average space of a sphere with a radius of r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A48@ , the nuclide shell structure could be composed with diameter r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaaa@39E4@ . Suppose the average space between shells is a sphere with diameter“ r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaaa@39E4@ ,”and the distance between two nearby shells is “ r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A48@ ,” too, the geometric space Δ N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaad6eal8aadaWgaaqcbasaaKqzadWdbiaadMga aKqaG8aabeaaaaa@3BA8@  of No.“i” shell is as follows, for the volume is directly proportional to nucleonic number:

Δ Ν i ={ 4 3 π (i r 0 ) 3 4 3 π [ ( i1 ) r 0 ] 3 }/ 4 3 π r 0 3 = i 3 ( i1 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejabf25aoTWdamaaBaaajeaibaqcLbmacaWGPbaa jeaibeaajugibiabg2da9KqbaoaacmaakeaajuaGdaWcaaGcbaqcLb sacqGH0aanaOqaaKqzGeGaey4mamdaaiabec8aWjabgIcaOiaadMga caWGYbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGHPa qklmaaCaaajeaibeqaaKqzadGaaG4maaaajugibiabgkHiTKqbaoaa laaakeaajugibiabgsda0aGcbaqcLbsacqGHZaWmaaGaeqiWdaxcfa 4aamWaaOqaaKqbaoaabmaakeaajugibiaadMgacqGHsislcaaIXaaa kiaawIcacaGLPaaajugibiaadkhalmaaBaaajeaibaqcLbmacaaIWa aajeaibeaaaOGaay5waiaaw2faaKqbaoaaCaaaleqajeaibaqcLbma caaIZaaaaaGccaGL7bGaayzFaaqcLbsacaGGVaqcfa4aaSaaaOqaaK qzGeGaeyinaqdakeaajugibiabgodaZaaacqaHapaCcaWGYbWcdaqh aaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaG4maaaajugibiabg2 da9iaadMgalmaaCaaajeaibeqaaKqzadGaaG4maaaajugibiabgkHi TKqbaoaabmaakeaajugibiaadMgacqGHsislcaaIXaaakiaawIcaca GLPaaalmaaCaaajeaibeqaaKqzadGaaG4maaaaaaa@7EAA@   (2)

In the formula (2), if “i” is 1, 2, 3, 4, 5, 6 or 7, Δ Ν i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejabf25aoTWdamaaBaaajeaibaqcLbmacaWGPbaa jeaibeaaaaa@3C2F@ must respectively be 1, 7, 19, 37, 61, 91 or 127, indicating geometric space of shell layers in terms of nuclide numbers. To make a distinction, nuclide with “k” shells is called k-shell nuclide. For instance 8 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaaWcbaqcLbmacaaIXaGaaGOnaaaaaaa@3AC8@ O8 could be called 3-shell nuclide and its second shell has 4 nucleons.

There is nuclear force between nucleons, so they cannot be indefinitely close to each other. Except for i=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgacqGH9aqpcaaIXaaaaa@3954@ , no shell can be covered with the maximal number of nucleons as given in formula (2). Nucleons do not fully occupy the geometric space of the shell either. The nuclide shell structure is shown in Figure 1. Suppose the actual maximal number of nucleons contained on I shell structure is, Δ A i ,Δ A i Δ Ν i .Δ A i /Δ Ν i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaWccaGGSaqc LbsacqqHuoarcaWGbbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasaba qcLbsacqGHKjYOqaaaaaaaaaWdbiabfs5aejabf25aoTWdamaaBaaa jeaibaqcLbmacaWGPbaajeaibeaaliaac6cajugibiabfs5aejaadg eajuaGdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcfaOaai4laKqz GeWdbiabfs5aejabf25aoTWdamaaBaaajeaibaqcLbmacaWGPbaaje aibeaaaaa@597A@ represents the ratio of nucleons’ occupation of the shell space and reflects the fullness of nucleons. The proton-neutron ratio of each shell, called p/h for short indicates the nucleonic combination on each shell. Interdigitational distribution of nucleons on shells. It is found that, if even A nuclides are“ hollow” and obb A nuelides are “neutron centered” except for Hydrogen (H) nuclides, the shapes of nuclide shell structures may be obtained according of the pairing characteristics of nucleons and the quantitative relationship of magnetic moment. Through statistical analysis of nuclides, we propose the 7-shell structure of known nuclides. Statistical analysis shows:

  1. There could be only one nucleon on the first shell, and it is always filled by neutron except for element H;
  2. The maximal number Δ A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGdaWgaaqcbasaaKqzadGaaGOmaaWc beaaaaa@3B9F@ of nucleon on the second shell is 4, that is Δ A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGdaWgaaqcbasaaKqzadGaaGOmaaWc beaaaaa@3B9F@ = 4, so Δ A i /Δ N i = 0.5714 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaadMga aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaamyAaaqcbaYdaeqaaKqzGeWdbiabg2da9iaabcca caaIWaGaaiOlaiaaiwdacaaI3aGaaGymaiaaisdaaaa@489D@ . When the second shell is fulfilled, the p/n = 2/2;
  3. On the 3rd shell Δ A 3 = 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaioda aKqaG8aabeaajugib8qacqGH9aqpcaqGGaGaaGymaiaaikdaaaa@3F29@ , Δ A 3 /Δ N 3 = 0.6316 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaioda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiabg2da9iaabcca caaIWaGaaiOlaiaaiAdacaaIZaGaaGymaiaaiAdaaaa@483A@ . If the 3rd shell is the most outside and full-filled, its p/n has only two combinations: p/n = 6/6 and p/n = 5/7;
  4. On the 4th shell Δ A 4 =24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaisda aKqaG8aabeaajugib8qacqGH9aqpcaaIYaGaaGinaaaa@3E8A@ , Δ A 4 /Δ N 4 = 0.6486 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaisda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da9iaabcca caaIWaGaaiOlaiaaiAdacaaI0aGaaGioaiaaiAdaaaa@4844@ , the p/n of the full-filled shell has only two combi-nations:12/12 and 10/14;
  5. On the 5th shell Δ A 5 =48 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwda aKqaG8aabeaajugib8qacqGH9aqpcaaI0aGaaGioaaaa@3E91@ , Δ A 5 /Δ N 5 =0.7868 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaicda caGGUaGaaG4naiaaiIdacaaI2aGaaGioaaaa@47A8@ , the p/n of the full-filled shell has only two combinations: 20/28 and 18/30;
  6. On the 6th shell, Δ A 6 =72 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiAda aKqaG8aabeaajugib8qacqGH9aqpcaaI3aGaaGOmaaaa@3E8F@ , Δ A 6 /Δ N 6 =0.7912 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiAda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaicda caGGUaGaaG4naiaaiMdacaaIXaGaaGOmaaaa@47A0@ , the p/n of the full-filled shell has only two combinations: 28/44 and 26/46;
  7. On the 7th shell Δ A 7 =102 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiEda aKqaG8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaiaaikdaaaa@3F44@ , Δ A 7 /Δ N 7 =0.8031 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiEda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaG4naaqcbaYdaeqaaKqzGeWdbiabg2da9iaaicda caGGUaGaaGioaiaaicdacaaIZaGaaGymaaaa@479B@ , the p/n of the full-filled shell has only two combinations: 44/58 and 42/60.

Figure 1 The Model of Nuclide Shell Structure.
In the diagram, the distance between two nearby cellsis “ r o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkhal8aadaWgaaqcbasaaKqzadWdbiaad+gaaKqaG8aa beaaaaa@3A6C@ ”.Black circles stand for protons and grey ones for neutrons. Full-filled nucleon numbers of the 4th, 5th, 6th and 7th, shells are 24, 48, 72 & 102 respectively.

Except for the first and second shells, there are two kinds of stable combinations when the shell is full-filled. The first kind, represented by I, is full-proton combination and the second kind, represented by II, is full-neutron combination. The objectivity of p/n combination on each shell is a decisive factor for determine the model quality. Further quantitative analysis will be given in the following discussion of nucleonic magnetic moment.

Basic classification of nuclides of determination of ΔAi

For the maximal nucleonic numberthe shell can actually contain, the statistics of Δ A 1 =1, Δ A 2 =4, Δ A 3 = 12, Δ A 4 =24, Δ A 5 =48, Δ A 6 =72, Δ A 7 =102 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI Xaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaiilaiaabccacqqHuo arcaWGbbWcpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaqc LbsapeGaeyypa0JaaGinaiaacYcacaqGGaGaeuiLdqKaamyqaSWdam aaBaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiabg2da 9iaabccacaaIXaGaaGOmaiaacYcacaqGGaGaeuiLdqKaamyqaSWdam aaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da 9iaaikdacaaI0aGaaiilaiaabccacqqHuoarcaWGbbWcpaWaaSbaaK qaGeaajugWa8qacaaI1aaajeaipaqabaqcLbsapeGaeyypa0JaaGin aiaaiIdacaGGSaGaaeiiaiabfs5aejaadgeal8aadaWgaaqcbasaaK qzadWdbiaaiAdaaKqaG8aabeaajugib8qacqGH9aqpcaaI3aGaaGOm aiaacYcacaqGGaGaeuiLdqKaamyqaSWdamaaBaaajeaibaqcLbmape GaaG4naaqcbaYdaeqaaKqzGeWdbiabg2da9iaaigdacaaIWaGaaGOm aaaa@7623@  provided by us is of important significance for the statistic models of plastic shell structure. In implementation this group of statistics may be obtained from the ratio between Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaa@3D79@ and Δ Ν i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejabf25aoTWdamaaBaaajeaibaqcLbmacaWGPbaa jeaibeaaaaa@3C2F@ and the natural abundance of corresponding nuclides.

The nucleonic action inside the nucleus is related to the included angle of nucleonic magnetic moment. The acting force gradually increases as the shell structure enlarges, the nuclear radius becomes longer and the magnetic moment angle becomes smaller between nuclides, making the Δ A i /Δ Ν i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcKfaG=haajugWaiaadMgaaKazba4=beaajugi biaac+caqaaaaaaaaaWdbiabfs5aejabf25aoTWdamaaBaaajqwaa+ FaaKqzadGaamyAaaqcKfaG=hqaaaaa@4B71@ ratio tend to increase. Therefore, we come to the following judgment:

Δ A i /Δ N 1 <Δ A 2 /Δ N 2 <Δ A 3 /Δ N 3 <Δ A 4 /Δ N 4 <Δ A 5 /Δ N 5 <Δ A 6 /Δ N 6 <Δ A 7 /Δ N 7 <α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaadMga aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaKqba+aadaWgaa qcbasaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiabgYda8iabfs5a ejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaaju gib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaajeaibaqcLbmapeGa aGOmaaqcbaYdaeqaaKqzGeWdbiabgYda8iabfs5aejaadgeajuaGpa WaaSbaaKqaGeaajugWa8qacaaIZaaal8aabeaajugib8qacaGGVaGa euiLdqKaamOtaKqba+aadaWgaaqcbasaaKqzadWdbiaaiodaaSWdae qaaKqzGeWdbiabgYda8iabfs5aejaadgeal8aadaWgaaqcbasaaKqz adWdbiaaisdaaKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaS WdamaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiab gYda8iabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwdaaK qaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaajeai baqcLbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiabgYda8iabfs5aej aadgeal8aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8aabeaajugi b8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaajeaibaqcLbmapeGaaG OnaaqcbaYdaeqaaKqzGeWdbiabgYda8iabfs5aejaadgeal8aadaWg aaqcbasaaKqzadWdbiaaiEdaaKqaG8aabeaajugib8qacaGGVaGaeu iLdqKaamOtaSWdamaaBaaajeaibaqcLbmapeGaaG4naaqcbaYdaeqa aKqzGeWdbiabgYda8iabeg7aHbaa@9185@   (3)

α Being an actual number smaller than 1.

The Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaa@3D79@ may be deduced from the relationship shown in Formula (3) and the stability of corresponding nuclide. Taking even A nucleus as an example, we know that the helium (He) nucleus has stable nuclides of sphere symmetry and is often used as bullet to attack other nuclei. From this we infer that 2 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaaWcbaqcLbmacaaI0aaaaaaa@3A05@ He is the even A full-filled nuclide of the second shell level and Δ A 2 =4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaikda aKqaG8aabeaajugib8qacqGH9aqpcaaI0aaaaa@3DCC@ , Δ A 2 /Δ N 2 =4/7=0.571 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI Yaaal8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaKqba+aadaWgaa qcbasaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabg2da9iaaisda caGGVaGaaG4naiabg2da9iaaicdacaGGUaGaaGynaiaaiEdacaaIXa aaaa@4AD8@ . For even A nuclides of the 3rd shell level,

Because

Δ A 3 /Δ N 3 =Δ A 3 /19>0.571 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI Zaaal8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiabg2da9iabfs5a ejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiodaaKqaG8aabeaaju gib8qacaGGVaGaaGymaiaaiMdacqGH+aGpcaaIWaGaaiOlaiaaiwda caaI3aGaaGymaaaa@4FDB@   (4)

So Δ A 3 >10.894 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaioda aKqaG8aabeaajugib8qacqGH+aGpcaaIXaGaaGimaiaac6cacaaI4a GaaGyoaiaaisdaaaa@417B@ . Noticing the characteristic of even integer of even A, Δ A 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI Zaaal8aabeaaaaa@3BCE@ can only be chosen from among 12, 14, 16 and 18. Since 18/191 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaigdacaaI4aGaai4laiaaigdacaaI5aGaeyOKH4QaaGym aaaa@3CFB@ , as a matter of fact Δ A 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI Zaaal8aabeaaaaa@3BCE@ can only be chosen from 12, 14 and 16. Again, because the nucleus number of full-filled nuclides of Even A of 2nd shell level is 4, the nucleus number of full-filled nuclides of even A of 3rd shell level can only be taken from 16, 18 and 20. Seeing that the nuclides hose nucleus numbers are 18 and 20 lack high abundance stability, the nucleus number of even A full-filled nuclides of the 3rd shell level can be none other than 16 and the corresponding nuclide is 8 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaaWcbaqcLbmacaaIXaGaaGOnaaaaaaa@3AC8@ O8. Δ A 3 =12, Δ A 3 /Δ N 3 =12/19=0.6316 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI Zaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaGOmaiaacYcacaqGGa GaeuiLdqKaamyqaSWdamaaBaaajeaibaqcLbmapeGaaG4maaqcbaYd aeqaaKqzGeWdbiaac+cacqqHuoarcaWGobWcpaWaaSbaaKqaGeaaju gWa8qacaaIZaaajeaipaqabaqcLbsapeGaeyypa0JaaGymaiaaikda caGGVaGaaGymaiaaiMdacqGH9aqpcaaIWaGaaiOlaiaaiAdacaaIZa GaaGymaiaaiAdaaaa@55DD@ .

For full-filled nuclides of even A of the 4th shell level, because

Δ A 4 /Δ N 4 =Δ A 4 /37>0.6316 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI 0aaal8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da9iabfs5a ejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaaju gib8qacaGGVaGaaG4maiaaiEdacqGH+aGpcaaIWaGaaiOlaiaaiAda caaIZaGaaGymaiaaiAdaaaa@509B@   (5)

Δ A 4 >23.369 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaisda aKqaG8aabeaajugib8qacqGH+aGpcaaIYaGaaG4maiaac6cacaaIZa GaaGOnaiaaiMdaaaa@417D@ , so Δ A 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaisda aKqaG8aabeaaaaa@3B6B@ can only be chosen from among 24, 26, 28 and 30. The corresponding full-filled nucleus numbers of even A are respectively 40, 42, 44 and 46. We notice that none of the nucleus numbers 42, 44 and 46 have nuclides of high abundance stability while A=40 has two nuclides of high abundance of stability: 18 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiIdaaSqaaKqzadGaaGinaiaaicdaaaaaaa@3B80@ Ar22 and 20 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaicdaaSqaaKqzadGaaGinaiaaicdaaaaaaa@3B79@ Ca20, and their graduations are 99.60 and 96.94. The full-filled nuclides have good stability, and from this we can judge that the full-filled nucleus number of even A of the 4th shell level is 40. Δ A 4 =24,Δ A 4 / Δ N 4 =24/37=0.6486 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaisda aKqaG8aabeaajugib8qacqGH9aqpcaaIYaGaaGinaiaacYcacqqHuo arcaWGbbqcfa4damaaBaaajeaibaqcLbmapeGaaGinaaWcpaqabaqc LbsapeGaai4laiaabccacqqHuoarcaWGobWcpaWaaSbaaKqaGeaaju gWa8qacaaI0aaajeaipaqabaqcLbsapeGaeyypa0JaaGOmaiaaisda caGGVaGaaG4maiaaiEdacqGH9aqpcaaIWaGaaiOlaiaaiAdacaaI0a GaaGioaiaaiAdaaaa@55EE@ .

For full-filled nuclides of even A of the 5th shell,

Δ A 5 /Δ N 5 =Δ A 5 /61>0.6486 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiabg2da9iabfs5a ejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwdaaKqaG8aabeaaju gib8qacaGGVaGaaGOnaiaaigdacqGH+aGpcaaIWaGaaiOlaiaaiAda caaI0aGaaGioaiaaiAdaaaa@503F@   (6)

Δ A 5 >39.56 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwda aKqaG8aabeaajugib8qacqGH+aGpcaaIZaGaaGyoaiaac6cacaaI1a GaaGOnaaaa@40C4@ , so A 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwdaaKqaG8aa beaaaaa@3A06@ can only be chosen from among 40, 42, 44, 46, 48 and 50. Because even A nucleus A4=40, the full-filled nucleus numbers of even A of the 5th shell level are respectively 80, 82, 84, 86, 88 and 90. From the analysis of the natural abundance of stable nuclides, we can infer that the full-filled nucleus number of even A of the 5th shell level is 88, the corresponding nuclide is 38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiIdaaSqaaKqzadGaaGioaiaaiIdaaaaaaa@3B8E@ Sr50 and the abundance is 82.60. Δ A 5 =48, Δ A 5 /Δ N 5 =48/61=0.7869 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwda aKqaG8aabeaajugib8qacqGH9aqpcaaI0aGaaGioaiaacYcacaqGGa GaeuiLdqKaamyqaKqba+aadaWgaaqcbasaaKqzadWdbiaaiwdaaSWd aeqaaKqzGeWdbiaac+cacqqHuoarcaWGobWcpaWaaSbaaKqaGeaaju gWa8qacaaI1aaajeaipaqabaqcLbsapeGaeyypa0JaaGinaiaaiIda caGGVaGaaGOnaiaaigdacqGH9aqpcaaIWaGaaiOlaiaaiEdacaaI4a GaaGOnaiaaiMdaaaa@5600@ .

For full-filled nuclides of even A of the 6th shell level,

Δ A 6 /Δ N 6 =Δ A 6 /91>0.7869 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiAda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaKqba+aadaWgaa qcbasaaKqzadWdbiaaiAdaaSWdaeqaaKqzGeWdbiabg2da9iabfs5a ejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8aabeaaju gib8qacaGGVaGaaGyoaiaaigdacqGH+aGpcaaIWaGaaiOlaiaaiEda caaI4aGaaGOnaiaaiMdaaaa@50AF@   (7)

Δ A 6 >71.608 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI 2aaal8aabeaajugib8qacqGH+aGpcaaI3aGaaGymaiaac6cacaaI2a GaaGimaiaaiIdaaaa@41E2@ , so Δ A 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaaI 2aaal8aabeaaaaa@3BD1@ can only be selected from among 72, 74, 76, 78 and 80 and the corresponding the full-filled nucleus numbers of even A are respectively 160, 162, 164, 166 and 168. From the ratio between Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaa@3D79@  and Δ Ν i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejabf25aoTWdamaaBaaajqwaa+FaaKqzadGaamyA aaqcKfaG=hqaaaaa@41E1@ , we can see that the Δ A i /Δ Ν i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcKfaG=haajugWaiaadMgaaKazba4=beaajugi biaac+caqaaaaaaaaaWdbiabfs5aejabf25aoTWdamaaBaaajqwaa+ FaaKqzadGaamyAaaqcKfaG=hqaaaaa@4B71@ values of the 3rd and 4th shell levels are close to each other and the Δ A 5 /Δ N 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGynaaqcbaYdaeqaaaaa@4192@ value of the 5th shell level is clearly enlarged. Because Δ A i /Δ Ν i <α<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcKfaG=haajugWaiaadMgaaKazba4=beaajugi biaac+caqaaaaaaaaaWdbiabfs5aejabf25aoTWdamaaBaaajqwaa+ FaaKqzadGaamyAaaqcKfaG=hqaaKqzGeWdbiabgYda8iabeg7aHjab gYda8iaaigdaaaa@5072@ , the Δ A 6 /Δ N 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiAda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGOnaaqcbaYdaeqaaaaa@4194@ and Δ A 7 /Δ N 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiEda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaG4naaqcbaYdaeqaaaaa@4196@ cannot possibly maintain the increase rate of Δ A 5 /Δ N 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiwda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGynaaqcbaYdaeqaaaaa@4192@ . From the analysis of the abundance of stable nuclides, it can be determined that the full-filled nucleus number of even A of the 6th shell level is 160 and the corresponding nuclides are respectively 64 160 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaisdaaSqaaKqzadGaaGymaiaaiAdacaaIWaaaaaaa @3C3E@ Gd96 and 66 160 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaiAdaaSqaaKqzadGaaGymaiaaiAdacaaIWaaaaaaa @3C40@ Dy94, Δ A 6 =72 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiAda aKqaG8aabeaajugib8qacqGH9aqpcaaI3aGaaGOmaaaa@3E8F@ , Δ A 6 /Δ N 6 =72/91=0.7912 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiAda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaiEda caaIYaGaai4laiaaiMdacaaIXaGaeyypa0JaaGimaiaac6cacaaI3a GaaGyoaiaaigdacaaIYaaaaa@4C54@ .

Experiments reveal that the maximal nucleus number of even A nucleus is 262, which conforms to the characteristics of even A full-filled nucleus number of the 7th shell level. Since 262 is the biggest nucleus number of even A, it must be the number of full-filled nuclei. If, A 7 =262 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeajuaGdaWgaaqcfasaaiaaiEdaaKqbagqaaKqzGeGa eyypa0JaaGOmaiaaiAdacaaIYaaaaa@3D64@ , Δ A 7 =102, Δ A 7 /Δ N 7 =102/127=0.8031 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiEda aKqaG8aabeaajugib8qacqGH9aqpcaaIXaGaaGimaiaaikdacaGGSa Gaaeiiaiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaaiEda aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaaG4naaqcbaYdaeqaaKqzGeWdbiabg2da9iaaigda caaIWaGaaGOmaiaac+cacaaIXaGaaGOmaiaaiEdacqGH9aqpcaaIWa GaaiOlaiaaiIdacaaIWaGaaG4maiaaigdaaaa@57AF@ , which fully agrees to the relationship shown in Formula 3. From this we can come to the following judgment: 262 is the full-filled nucleus number of even A of the 7th shell level and the corresponding nuclides are respectively 105 262 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI1aaaleaajugWaiaaikdacaaI2aGaaGOm aaaaaaa@3CF7@ Ha157 and 107 262 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI3aaaleaajugWaiaaikdacaaI2aGaaGOm aaaaaaa@3CF9@ Bh155.

After the full-filled nucleus number of even A is determined, that of odd A is at the same time determined. Because the even A nuclei are hollow nuclides and the odd A nuclei are neutron-star nuclides, the addition of one nucleus to even A full-filled nuclei does not alter the nucleus number at various shell levels. From this we know that the full-filled nucleus numbers of odd A are respectively A 1 =1,  A 2 =5,  A 3 =17,  A 4 =41,  A 5 =89,  A 6 =161 and A 7 =263 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeajuaGdaWgaaqcfasaaiaaigdaaKqbagqaaKqzGeGa eyypa0JaaGymaiaacYcacaqGGaGaamyqaKqbaoaaBaaajuaibaGaaG OmaaqcfayabaqcLbsacqGH9aqpcaaI1aGaaiilaiaabccacaWGbbqc fa4aaSbaaKqbGeaacaaIZaaajuaGbeaajugibiabg2da9iaaigdaca aI3aGaaiilaiaabccacaWGbbqcfa4aaSbaaKqbGeaacaaI0aaajuaG beaajugibiabg2da9iaaisdacaaIXaGaaiilaiaabccacaWGbbqcfa 4aaSbaaKqbGeaacaaI1aaajuaGbeaajugibiabg2da9iaaiIdacaaI 5aGaaiilaiaabccacaWGbbqcfa4aaSbaaKqbGeaacaaI2aaajuaGbe aajugibiabg2da9iaaigdacaaI2aGaaGymaiaabccacaWGHbGaamOB aiaadsgacaWGbbqcfa4aaSbaaKqbGeaacaaI3aaajuaGbeaajugibi abg2da9iaaikdacaaI2aGaaG4maaaa@6AA8@ . The corresponding nuclides are respectively 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaaWcbaqcLbmacaaIXaaaaaaa@3A01@ H1, 8 17 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaaWcbaqcLbmacaaIXaGaaG4naaaaaaa@3AC9@ O9, 19 41 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiMdaaSqaaKqzadGaaGinaiaaigdaaaaaaa@3B82@ K22, 39 89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiMdaaSqaaKqzadGaaGioaiaaiMdaaaaaaa@3B90@ Y50, 66 161 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaiAdaaSqaaKqzadGaaGymaiaaiAdacaaIXaaaaaaa @3C41@ Dy95 and 106 263 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI2aaaleaajugWaiaaikdacaaI2aGaaG4m aaaaaaa@3CF9@ Sg157. Here, the nucleus numbers 41, 89 and 161 correspond to the nuclides 19 41 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiMdaaSqaaKqzadGaaGinaiaaigdaaaaaaa@3B82@ K22, 39 89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiMdaaSqaaKqzadGaaGioaiaaiMdaaaaaaa@3B90@ Y50 and 66 161 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaiAdaaSqaaKqzadGaaGymaiaaiAdacaaIXaaaaaaa @3C41@ Dy95. This is an important enlightenment for us to better understand the fundamental categorization of nuclides. Especially, the heaviest nuclide 106 263 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI2aaaleaajugWaiaaikdacaaI2aGaaG4m aaaaaaa@3CF9@ Sg157 of the laboratory exactly fills up the position of odd A full-filled nucleus of the 7th shell level. It provides a convincing evidence for the fundamental classification method of nuclides.

Magnetic moments and combinations of nuclei

The nucleus number Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaa@3D79@ of the shell level offers a general description of the nuclei of the level. To conduct an in-depth analysis of the shell-level structure, we have to probe into the combinations of the shell level nuclei, so as to find the specific forms combination between protons and neutrons. The proton-neutron combination ratio pi/ni at the shell level is determined by the pairing characteristics of nuclei and the quantitative relation of nucleus magnetic moments. A nucleus pairing is the basic condition for the formation of nuclides. The fact that nuclei have magnetic moments means that, apart from nuclear force, there also exists electromagnetic force. Experiments show that the force between nuclei is related to the included angle of the nucleus’s spin angular momentum.3

Let’s take even A nuclei as an example. He2 is the nuclide of full-filled 2nd shell level. The nucleus of the first shell level is vacant. The 2nd level has 4 nuclei and the proton-neutron is p2/n2=2/2. O8 is the nuclides of the full-filled 3rd shell level. The proton-neutron ratios of the 2nd and 3rd levels are p2/n2=2/2 and p3/n3=6/6. Ca20 refers to the nuclides of the full-filled 4th shell level and the proton-neutron ratios of the 2nd, 3rd and 4th levels are p2/n2=2/2, p3/n3=6/6 and p4/n4=12/12. The 3 kinds of nuclides are all highly abundant and stable. This shows that p2/n2=2/2, p3/n3=6/6 and p4/n4=12/12 are the stable combinations of proton-neutron ratios of the 2nd, 3rd and 4th shell levels. This type of combinations is characteristic of one-to-one pairing between protons and neutrons. Please refer to Figure 2 for nuclide pairing.

Figure 2 Pairing of Nucleons.
Nucleons of the same kind expel each other when in the same direction and attract each other when in opposite directions. Nucleons of different kinds attract each other when in the same direction and expel each other when in opposite directions.

With more shell levels and more neutrons, the nuclei of high levels no longer have conditions for one-to-one pairing between protons and neutrons. But the proton-neutron ratio (pi/ni) can be obtained by quantitative analysis of the ratio of nucleus magnetic moments. The magnetic force of nucleons is shown in Figure 3.4

Figure 3 Magnetic Force of Nucleons.
Magnetic moments of the same kind of nucleons attract each other when in the same direction and expel each other when in opposite directions. Those of different kinds of nucleons attract each other when in the same direction and expel each other when in opposite directions.

Experiment tests show that the proton magnetic moment μ p = 2.792847386 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeY7aTTWdamaaBaaajeaibaqcLbmapeGaamiCaaqcbaYd aeqaaKqzGeWdbiabg2da9iaabccacaaIYaGaaiOlaiaaiEdacaaI5a GaaGOmaiaaiIdacaaI0aGaaG4naiaaiodacaaI4aGaaGOnaaaa@45A2@ (63) μ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeY7aTTWdamaaBaaajeaibaqcLbmapeGaamOtaaqcbaYd aeqaaaaa@3B0A@ , the neutron magnetic moment μ n =1.91304275 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeY7aTLqba+aadaWgaaqcbasaaKqzadWdbiaad6gaaSWd aeqaaKqzGeWdbiabg2da9mXvP5wqSX2qVrwzqf2zLnharyGqHrxyUD gaiuaacaWFn8VaaGymaiaac6cacaaI5aGaaGymaiaaiodacaaIWaGa aGinaiaaikdacaaI3aGaaGynaaaa@4E52@  (45) μ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeY7aTTWdamaaBaaajeaibaqcLbmapeGaamOtaaqcbaYd aeqaaaaa@3B0A@  and their relative rate is

| μ p μ n |=1.46 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqbaoaalaaakeaajugibiabeY7aTLqbaoaaBaaajeaibaqcLbma caWGWbaaleqaaaGcbaqcLbsacqaH8oqBjuaGdaWgaaqcbasaaKqzad GaamOBaaWcbeaaaaaakiaawEa7caGLiWoajugibiabg2da9iaaigda caGGUaGaaGinaiaaiAdaaaa@4982@   (8)

This relative rate represents the strength level of the eddy field caused by proton or neutron spin. Nucleons on stable shells are in a state of balance of electromagnetic force. I.e. the eddy fields of protons and neutrons are in mutual balance. Except such nuclides as 8 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaaWcbaqcLbmacaaIXaGaaGOnaaaaaaa@3AC8@ O8 and 20 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaicdaaSqaaKqzadGaaGinaiaaicdaaaaaaa@3B79@ Ca20, total balance of the proton and neutron eddy fields on all shells should be maintained, Formula (8) indicates that, when the p/n of all shells approaches 1/1.46, the electromagnetic force is in balance on the whole. The nucleon number is a natural one and even-even nucleons tend to be stable. With the above characteristics in mind, we can give a semi-quantitative explanation about the combinations of p/n’s on all shells.

Statistical analysis reveals that p/n = 5/7, p/n = 10/14 and p/n = 20/28 are respectively a stable combination of the full-filled p/n of the 3rd,4th and 5th shell. It is no co-incidence that the p/n rate of the 3 shells is 1/1.4. It is a manifestation of the magnetic moment of protons and neutrons and also a manifestation of the strength level of the eddy field caused by a proton or neutron spin. A stable shell is in a balance state of electromagnetic force and is full-filled with neutrons. For any shell, if the quantity of protons is p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb WcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaa@3A16@ , the quantity of neutrons n i 1.46 p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb WcdaWgaaqcKfaG=haajugWaiaadMgaaKazba4=beaajugibabaaaaa aaaapeGaeyisISRaaGymaiaac6cacaaI0aGaaGOna8aacaWGWbWcda WgaaqcbasaaKqzadGaamyAaaqcbasabaaaaa@4685@ . Thus, we have the following:

p i + n i = p i +1.46 p i =Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacqGHRaWkcaWG UbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbsacqGH9aqpca WGWbqcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacqGHRaWk caaIXaGaaiOlaiaaisdacaaI2aGaamiCaSWaaSbaaKqaGeaajugWai aadMgaaKqaGeqaaKqzGeaeaaaaaaaaa8qacqGH9aqpcqqHuoarpaGa amyqaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaeyyXIC naaa@5656@   (9)

In the formula Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcKfaG=haajugWaiaadMgaaKazba4=beaaaaa@3ED3@ stands for the maximal number of nucleonson “i” shell. If pi is figured out, the nucleonic combination on “i” shell can be known.

For the 3rd shell

p 3 + 1.46 p 3 = 12, p 3 = 4. 88, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiodaaKqaG8aa beaajugib8qacqGHRaWkcaqGGaGaaGymaiaac6cacaaI0aGaaGOnai aadchal8aadaWgaaqcbasaaKqzadWdbiaaiodaaKqaG8aabeaajugi b8qacqGH9aqpcaqGGaGaaGymaiaaikdacaGGSaGaamiCaKqba+aada WgaaqcbasaaKqzadWdbiaaiodaaSWdaeqaaKqzGeWdbiabg2da9iaa bccacaaI0aGaaiOlaiaabccacaaI4aGaaGioaiaacYcaaaa@51C0@

After rounding it off to an integer

p 3 = 5,  = 7,   p 3 / n 3 = 5/7. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiodaaKqaG8aa beaajugib8qacqGH9aqpcaqGGaGaaGynaiaacYcacaGGGcGaaiiOai abg2da9iaabccacaaI3aGaaiilaiaacckacaGGGcGaamiCaSWdamaa BaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiaac+caca WGUbqcfa4damaaBaaajeaibaqcLbmapeGaaG4maaWcpaqabaqcLbsa peGaeyypa0JaaeiiaiaaiwdacaGGVaGaaG4naiaac6caaaa@5391@

For the 4th shell

p 4 + 1.46 p 4 = 24,    p 4 = 9.76, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aa beaajugib8qacqGHRaWkcaqGGaGaaGymaiaac6cacaaI0aGaaGOnai aadchal8aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaajugi b8qacqGH9aqpcaqGGaGaaGOmaiaaisdacaGGSaGaaiiOaiaacckaca GGGcGaamiCaSWdamaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqa aKqzGeWdbiabg2da9iaabccacaaI5aGaaiOlaiaaiEdacaaI2aGaai ilaaaa@542D@

After rounding it off to an integer

p 4 = 10,   n 4 = 14,   p 4 / n 4 = 10/14. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaal8aa beaajugib8qacqGH9aqpcaqGGaGaaGymaiaaicdacaGGSaGaaiiOai aacckacaWGUbqcfa4damaaBaaajeaibaqcLbmapeGaaGinaaWcpaqa baqcLbsapeGaeyypa0JaaeiiaiaaigdacaaI0aGaaiilaiaacckaca GGGcGaamiCaSWdamaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqa aKqzGeWdbiaac+cacaWGUbWcpaWaaSbaaKqaGeaajugWa8qacaaI0a aajeaipaqabaqcLbsapeGaeyypa0JaaeiiaiaaigdacaaIWaGaai4l aiaaigdacaaI0aGaaiOlaaaa@5B00@

For the 5th shell

p 5 +1.46 p 5 =48,   p 5 = 19.51, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiwdaaKqaG8aa beaajugib8qacqGHRaWkcaaIXaGaaiOlaiaaisdacaaI2aGaamiCaS WdamaaBaaajeaibaqcLbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiab g2da9iaaisdacaaI4aGaaiilaiaacckacaGGGcGaamiCaSWdamaaBa aajeaibaqcLbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiabg2da9iaa bccacaaIXaGaaGyoaiaac6cacaaI1aGaaGymaiaacYcaaaa@5280@

After rounding it off to an integer

p 5 =20,   n 5 = 28,   p 5 / n 5 =20/28. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiwdaaKqaG8aa beaajugib8qacqGH9aqpcaaIYaGaaGimaiaacYcacaGGGcGaaiiOai aad6gajuaGpaWaaSbaaKqaGeaajugWa8qacaaI1aaal8aabeaajugi b8qacqGH9aqpcaqGGaGaaGOmaiaaiIdacaGGSaGaaiiOaiaacckaca WGWbWcpaWaaSbaaKqaGeaajugWa8qacaaI1aaajeaipaqabaqcLbsa peGaai4laiaad6gal8aadaWgaaqcbasaaKqzadWdbiaaiwdaaKqaG8 aabeaajugib8qacqGH9aqpcaaIYaGaaGimaiaac+cacaaIYaGaaGio aiaac6caaaa@5966@

For the 6th shell

p 6 +1.46 p 6 =72,   p 6 =29.27, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajuaGpaWaaSbaaKqaGeaajugWa8qacaaI2aaal8aa beaajugib8qacqGHRaWkcaaIXaGaaiOlaiaaisdacaaI2aGaamiCaS WdamaaBaaajeaibaqcLbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiab g2da9iaaiEdacaaIYaGaaiilaiaacckacaGGGcGaamiCaKqba+aada WgaaqcbasaaKqzadWdbiaaiAdaaSWdaeqaaKqzGeWdbiabg2da9iaa ikdacaaI5aGaaiOlaiaaikdacaaI3aGaaiilaaaa@52A9@

After rounding it off to an integer

p 6 =28,   n 6 = 44,   p 6 / n 6 =28/44. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8aa beaajugib8qacqGH9aqpcaaIYaGaaGioaiaacYcacaGGGcGaaiiOai aad6gal8aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8aabeaajugi b8qacqGH9aqpcaqGGaGaaGinaiaaisdacaGGSaGaaiiOaiaacckaca WGWbWcpaWaaSbaaKqaGeaajugWa8qacaaI2aaajeaipaqabaqcLbsa peGaai4laiaad6gal8aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8 aabeaajugib8qacqGH9aqpcaaIYaGaaGioaiaac+cacaaI0aGaaGin aiaac6caaaa@5912@

For the 7th shell

p 7 + 1.46 p 7 = 102,   p 7 = 41.46, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiEdaaKqaG8aa beaajugib8qacqGHRaWkcaqGGaGaaGymaiaac6cacaaI0aGaaGOnai aadchal8aadaWgaaqcbasaaKqzadWdbiaaiEdaaKqaG8aabeaajugi b8qacqGH9aqpcaqGGaGaaGymaiaaicdacaaIYaGaaiilaiaacckaca GGGcGaamiCaSWdamaaBaaajeaibaqcLbmapeGaaG4naaqcbaYdaeqa aKqzGeWdbiabg2da9iaabccacaaI0aGaaGymaiaac6cacaaI0aGaaG OnaiaacYcaaaa@547C@

After rounding it off to an integer

p 7 =42,   n 7 = 60,   p 7 / n 7 =42/60. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiEdaaKqaG8aa beaajugib8qacqGH9aqpcaaI0aGaaGOmaiaacYcacaGGGcGaaiiOai aad6gal8aadaWgaaqcbasaaKqzadWdbiaaiEdaaKqaG8aabeaajugi b8qacqGH9aqpcaqGGaGaaGOnaiaaicdacaGGSaGaaiiOaiaacckaca WGWbWcpaWaaSbaaKqaGeaajugWa8qacaaI3aaajeaipaqabaqcLbsa peGaai4laiaad6gal8aadaWgaaqcbasaaKqzadWdbiaaiEdaaKqaG8 aabeaajugib8qacqGH9aqpcaaI0aGaaGOmaiaac+cacaaI2aGaaGim aiaac6caaaa@590A@

The calculated results are in agreement with the stable combination of protons and neutrons on full-filled shells and also with the growing graph of nuclides. If these results reflect the overall balance of nucleonic electromagnetic force on full-filled shells, the p/n ’s p2/n2=2/2, p3/n3=6/6 and p4/n4=12/12 reflect the single balance of the nucleonic electromagnetic force. It is a manifestation of the one-to-one pairing between protons and neutrons. And the other p/n's p5/n5=18/30, p6/n6=26/46 and p7/n7=44/58 are stable combination of dynamic balance of nucleonic electromagnetic force.

Although there is a con-firmed Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWGbbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaa@3B4D@ (maximal number of nucleons) and a stable combination of protons and neutrons on each shell, the nucleons do not remain unchanged, for they keep exchanging nucleons against the background of energy exchange with the outside world. In an instant, a quasi-full-filled shell state is formed. In general, if the combination of nucleons on the 3rd shell in a nuclide is a full-filled one (p3/n3=6/6), the combination of nucleons on the 4th shell is mostly a full-neutron one (p4/n4=10/14). After a pair of nucleons are exchanged, we have p3/n3=5/7, p4/n4=11/13, of which p4/n4=11/13 is a stable combination of inside quasi-filled shell (Figure 4 (A)).

If the nucleonic combination on the 4th shell is a full-proton one (p4/n4=12/12), that on the 5th shell is a full-neutron combination (p5/n5=18/30). The exchange of two pairs of nucleons results in the combination p4/n4=10/14, p5/n5=20/28, which is shown in Figure 4(B). The newly-formed combination may be restored to the original state after exchange of two pairs of nucleons. Similarly, such exchange may take place between the 5th and 6th shells and between the 6th and 7th shells. To sum up, nucleons on shells fluctuate and exchange between individual balance (e.g. p/n=6/6, p/n=12/12) and overall balance (e.g. p/n=5/7, p/n=10/14, p/n=20/28), which is controlled by the relative rate between the magnetic moment of protons and that of neutrons.

Figure 4 Exchange of Nucleons between Shells.

Magic numbers and nuclide stability

In the preparation of the table, no particular attention is attached to the condition of magic numbers which nevertheless do exist as a natural character of the shell structures. Let’s take 2 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaaWcbaqcLbmacaaI0aaaaaaa@3A05@ He2 as an example. Its p/n=2/2 and it is a 2-shelled nuclide with full-filled structure. 8 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaaWcbaqcLbmacaaIXaGaaGOnaaaaaaa@3AC8@ O8 is a 3-shelled nuclide with full-filled shell structure and its Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHJo Wuaaa@3809@ p/n=8/8. 20 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaicdaaSqaaKqzadGaaGinaiaaicdaaaaaaa@3B79@ Ca20, its Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHJo Wuaaa@3809@ p/n=20/20, is a 4-shelled nuclide with fall-filled structure. 38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiIdaaSqaaKqzadGaaGioaiaaiIdaaaaaaa@3B8E@ Sr50, its Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHJo Wuaaa@3809@ p/n=38/50, is a 5-shelled nuclide with full-filled shell structure. Nuclides with full-filled structures are stable in character.

Another feature of stable nuchdes is that the p/n of most outside shell equals. Nuclides with N=20 have 5 kinds of stable nuclides of which 4 have their p/n equal one on the most outside shells. They are, 17 37 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiEdaaSqaaKqzadGaaG4maiaaiEdaaaaaaa@3B85@ Cl20, 18 38 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiIdaaSqaaKqzadGaaG4maiaaiIdaaaaaaa@3B87@ Ar30, 19 39 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiMdaaSqaaKqzadGaaG4maiaaiMdaaaaaaa@3B89@ K20, and 20 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaicdaaSqaaKqzadGaaGinaiaaicdaaaaaaa@3B79@ Ca20. Their p/n’s of most outside shells are respectively 10/10, 11/11, 11/11 and 12/12. Of the 5 kinds of stable nuclides with N=28, 4 have the characteristic of p/n equaling one on the most outside shell. They are 22 50 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaikdaaSqaaKqzadGaaGynaiaaicdaaaaaaa@3B7C@ Ti28, 23 51 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaiodaaSqaaKqzadGaaGynaiaaigdaaaaaaa@3B7E@ V28, 24 52 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaisdaaSqaaKqzadGaaGynaiaaikdaaaaaaa@3B80@ Cr28 and 26 54 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaiAdaaSqaaKqzadGaaGynaiaaisdaaaaaaa@3B84@ Fe28. Their p/n’s of the most outside shells are respectively 5/5, 5/5, 6/6 and 7/7.

There are 6 kinds of stable nuclides with N =50: 36 86 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiAdaaSqaaKqzadGaaGioaiaaiAdaaaaaaa@3B8A@ Kr50, 37 87 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiEdaaSqaaKqzadGaaGioaiaaiEdaaaaaaa@3B8C@ Rb50, 38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiIdaaSqaaKqzadGaaGioaiaaiIdaaaaaaa@3B8E@ Sr50, 39 89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiMdaaSqaaKqzadGaaGioaiaaiMdaaaaaaa@3B90@ Y50 40 90 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGinaiaaicdaaSqaaKqzadGaaGyoaiaaicdaaaaaaa@3B80@ Zr50 and 42 92 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGinaiaaikdaaSqaaKqzadGaaGyoaiaaikdaaaaaaa@3B84@ MoY50.It is known from Table 1 that, of all the p/n’s of full-filled shells on the 5th shell have two combinations of p/n =20/28 and p/n=18/30. The p/n’s of the most outside shells of 36 86 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiAdaaSqaaKqzadGaaGioaiaaiAdaaaaaaa@3B8A@ Kr50 and 37 87 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiEdaaSqaaKqzadGaaGioaiaaiEdaaaaaaa@3B8C@ Rb50 are 18/28 and 18/28, close to the p/n of the 5th shell. For 38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiIdaaSqaaKqzadGaaGioaiaaiIdaaaaaaa@3B8E@ Sr50 and 39 89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiMdaaSqaaKqzadGaaGioaiaaiMdaaaaaaa@3B90@ Y50, the p/n’s are both 20/28, identical with the combinations on the 5th full-filled shell. 40 90 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGinaiaaicdaaSqaaKqzadGaaGyoaiaaicdaaaaaaa@3B80@ Zr50’s and 42 92 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGinaiaaikdaaSqaaKqzadGaaGyoaiaaikdaaaaaaa@3B84@ Mo50 are 6-shelled nuclides with their p/n’s on the 6th shell being 1/1 and 2/2.

Of the heavy nuclides with N=82, seven are stable ones: 54 136 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGynaiaaisdaaSqaaKqzadGaaGymaiaaiodacaaI2aaaaaaa @3E6D@ Xe82, 56 138 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGynaiaaiAdaaSqaaKqzadGaaGymaiaaiodacaaI4aaaaaaa @3E71@ Ba82, 57 139 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGynaiaaiEdaaSqaaKqzadGaaGymaiaaiodacaaI5aaaaaaa @3E73@ La82, 59 141 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGynaiaaiMdaaSqaaKqzadGaaGymaiaaisdacaaIXaaaaaaa @3E6E@ Pr82, 60 142 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaicdaaSqaaKqzadGaaGymaiaaisdacaaIYaaaaaaa @3E67@ Nd82 and 62 144 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaikdaaSqaaKqzadGaaGymaiaaisdacaaI0aaaaaaa @3E6B@ Sm82.They are all 6 shelled and their p/n’s of the most outside shells are respectively 18/30, 20/30, 20/30,22/30, 22/30, 24/30 and 24/32.

Nuclides have shell structures and stable nuclides have stable p/n’s on the most outside shells. But with the increase of nucleonic number A, the filling level of neutrons grows higher and the p/n of the most outside shells is smaller than one. For the 7 stable nuclides with N=82, the p/n valve of the most outside shells changes around 1/1.5. So it is known that this characteristic is relevant to the magnetic moment of nucleons.

Nuclides with N=126 are 7-shell structured and there are two stable nuclides: 82 208 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaiaaikdaaSqaaKqzadGaaGOmaiaaicdacaaI4aaaaaaa @3E6E@ Pb126 and 83 209 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaiaaiodaaSqaaKqzadGaaGOmaiaaicdacaaI5aaaaaaa @3E70@ Bi126. Their p/n’s of the most outside shells are 18/30 and 20/28, identical with the two stable combinations of the 5th shell when it is full-filled. This shows that a nuclide may become stable when its combination of protons and neutrons of the most outside shells in consistent with the stable nucleonic combination of an inside shell.

Heavy nuclides with Z84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQfacqGHLjYScaaI4aGaaGinaaaa@3ACA@ are unstable except 90 232 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGyoaiaaicdaaSqaaKqzadGaaGOmaiaaiodacaaIYaaaaaaa @3E6A@ Th142, 92 235 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGyoaiaaikdaaSqaaKqzadGaaGOmaiaaiodacaaI1aaaaaaa @3E6F@ U143 and 92 238 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGyoaiaaikdaaSqaaKqzadGaaGOmaiaaiodacaaI4aaaaaaa @3E72@ U146.They are 7-shell structured and their p/n’s of the most outside shells are respectively 26/46, 28/46 and 28/50. Except even-even nucleonic combination of the most outside shells, being identical with or close to the p/n’ s of the 6th shell is also a prerequisite for the nuclide stability. To sum up, it could be presumed that the stability of a nuclide is decided by p/n combination on the most outside shells and on the p/n filling level of each shell. The "magic number" is the reflection of this feature. Except the case that the numbers of protons or neutrons are 2, 8 or 20, other magic numbers reflect nucleonic number of unfull-filled shells. So magic numbers reflect the combinations of protons and neutrons of stable nuclides.

Decay modes of unstable nuclides are dependent on the nucleonic combinations of outside shells. The Table of Nuclide Shell Structure (See the appendix) indicates that a nuclide decays in the ( ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqaH1oqzaOWdaiaawIcacaGLPaaaaaa@3A86@ way when its p-n of the most outside shell is 2, 4 or 6 and it decays in the ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaWbaaSqabKqaGeaa jugWa8qacqGHsislaaaak8aacaGLOaGaayzkaaaaaa@3D9F@ way when its outside shell n-p is 2, 4 or 6.This characteristic remains true after nearly 1000 unstable nuclides are tested.

Unstable nuclides decaying in the ( ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqaH1oqzaOWdaiaawIcacaGLPaaaaaa@3A86@ way are characterized by the nucleonic numbers on outside shells being even numbers of 2, 4, 6, etc. Judging from the condition of forming a nuclide, we know from Figure 2 (a) that pairing of protons in the abnormal (reverse) direction caused by magnetic moment is a kind of pairing style. The magnetic moment of a proton is l.46 times more powerful than that of a pair of a neutron and the electromagnetic force of a pair of protons is l.46 times more powerful than that of a pair of neutrons. We know that the pairing of protons and neutrons is an important pre-requisite for a nuclide to form. Therefore, a pair of protons is unstable which can distribute on the most outside shell for a short time. By absorbing an electron, a proton turns into a neutron, thus forming a stable nucleonic pair. So the nuclide becomes stable and this is the cause of ( ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqaH1oqzaOWdaiaawIcacaGLPaaaaaa@3A86@ way of decay.

The unstable nuclides which decay in the ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaWbaaSqabKqaGeaa jugWa8qacqGHsislaaaak8aacaGLOaGaayzkaaaaaa@3D9F@ way are characterized by the even number of nucleons on the outside shells, 2, 4, 6, etc. When protons and neutrons on outside shells fail to strike individual or overall balance, superfluous neutrons pair in reverse direction caused by magnetic moment, as is shown in Figure 2(B). But the electromagnetic force between pairs of neutrons is l.46 greater than that between proton-neutron pairs. It is less powerful than the combination ability of proton-neutron pairs, so the neutron pair is also unstable and can only be distributed on outside shells. By the force of proton-neutron pairs in the neighboring field, one of the neutrons becomes a proton after discharging an electron. A stable nucleonic pair is formed and the nuclide is made stable. And this is the cause of “ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aILqba+aadaahaaWcbeqcbasaaKqzadWdbiabgkHi Taaaaaa@3B65@ ” way of decay. It is surprising that No. 42 element Mo and No. 44 element Ru each have 7 stable isotopes while No. 43 element Tc between them has no stable nuclides at all. The Table of Nuclide Shell Structure tells us that element Tc could not form structure with suitable p/n among the cells and its p/n of the most outside shell is not one.

The ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqaHXoqyaOWdaiaawIcacaGLPaaaaaa@3A7E@ way of decay of heavy nuclides is a reflection of the evolution of the p/n combination of most outside shells from unstable to stable. For instance, the outside shell p/n of stable nuclide 83 209 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaiaaiodaaSqaaKqzadGaaGOmaiaaicdacaaI5aaaaaaa @3E70@ Bi126 is 20/28. As for unstable nuclide 85 213 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaiaaiwdaaSqaaKqzadGaaGOmaiaaigdacaaIZaaaaaaa @3E6D@ At128, its outside shell p/n is 22/30 and the product after its ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqaHXoqyaOWdaiaawIcacaGLPaaaaaa@3A7E@ way of decay is 83 209 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaiaaiodaaSqaaKqzadGaaGOmaiaaicdacaaI5aaaaaaa @3E70@ Bi126, tending to be stable. Let’s cite another example, the stable nuclide 92 238 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGyoaiaaikdaaSqaaKqzadGaaGOmaiaaiodacaaI4aaaaaaa @3E72@ U146has its outside shell p/n at 28/50. The unstable nuclide 94 242 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGyoaiaaisdaaSqaaKqzadGaaGOmaiaaisdacaaIYaaaaaaa @3E6F@ Pu148has it at 30/52, tending to be stable after its decay in the ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqaHXoqyaOWdaiaawIcacaGLPaaaaaa@3A7E@ way. Thus, the conclusion is drawn that the decay mode depends on nucleonic combination of the most outside shells. Unstable nuclides which decay in the ( f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWGMbaak8aacaGLOaGaayzkaaaaaa@39CA@ way result from the imbalance of p/n’s between shells.

The heavy nuclide confirmed by experiment is 106 263 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI2aaaleaajugWaiaaikdacaaI2aGaaG4m aaaaaaa@3F26@ Sg157. It is a neutron-filled nuclide with a 7-shelled full-filled structure. It decays by free fission. If there exists a heavier nuclide with a super-large N number, it must be 8-shell structured. It is presumed from Table 1 about the specific value ( Δ A i /Δ N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaadMga aKqaG8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaamyAaaqcbaYdaeqaaaaa@41F0@ ) of the shell space nucleons take up that the maximal number of nucleons ΔA8 which can be accommodated by the 8th full-filled shell should be 136 [( 8 3 7 3 ) × 0.81] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGBb GaaiikaabaaaaaaaaapeGaaGioaKqba+aadaahaaWcbeqcbasaaKqz adWdbiaaiodaaaqcLbsacqGHsislcaaI3aqcfa4damaaCaaaleqaje aibaqcLbmapeGaaG4maaaajugib8aacaGGPaWdbiaabccacqGHxdaT caqGGaGaaGimaiaac6cacaaI4aGaaGyma8aacaGGDbaaaa@499E@ . If the number of protons on the 8th shell is equal to that of neutrons on the 7th shell, it is a pre-requisite for the stable combination of p/n’s of the 8th shell. The p/n’s of full-fdled 8th shell are 60/76 and 58/78. From this we may calculate that the nucleonic number A of an even-A nuclide with 8 full-filled shells is 398. MG Mayer predicked the existence of Z=114 supper-heavy nuclide. At the end of last century, scientists of Joint Institute for Nuclear Research announced that they had successfully produced Z=114 nuclide, its atomic weight being 289 and its half of decay being 30 seconds which is much longer than other nearby nuclides5 Our theory on nuclide shell structure tells us that, if the nuclide whit Z=114 and A=287 tends to be stable, its structure should be as follows:

Numberof Shell

Δ N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaad6eal8aadaWgaaqcbasaaKqzadWdbiaadMga aKqaG8aabeaalmaaCaaajeaibeqaamXvP5wqSX2qVrwzqf2zLnhary GqHrxyUDgaiuaajugWa8qacaWFGrcaaaaa@4678@

Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaadMga aKqaG8aabeaalmaaCaaajeaibeqaamXvP5wqSX2qVrwzqf2zLnhary GqHrxyUDgaiuaajugWa8qacaWFHrcaaaaa@466C@

Δ A i Δ N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeuiLdqKaamyqaKqbaoaaBaaajeaibaqcLbmacaWGPbaa leqaaaGcbaqcLbsacqqHuoarcaWGobWcdaWgaaqcbasaaKqzadGaam yAaaqcbasabaaaaaaa@41C7@

Structure of Full-filled Nucleon

ΔAi of Even A Kind Nuclear

ΔAi of Odd A Kind Nuclear

 

 

 

 

I (p/n)

II (p/n)

A

I (p/n)

II (p/n)

A

I (p/n)

II(p/n)

7

127

102

0.8031

44/58

42/60

262

107/155

105/157

263

106/157

 

6

91

72

0.7912

28/44

26/46

160

66/94

64/96

161

66/95

64/97

5

61

48

0.7869

20/28

18/30

88

40/48

38/50

89

40/49

38/5l

4

37

24

0.6486

12/12

10/14

40

20/20

18/22

41

20/21

18/23

3

19

12

0.6316

6/6

5/7

16

8/8

 

17

8/9

 

2

7

4

0.5714

2/2

 

4

2/2

 

5

2/3

 

1

1

 

 

1

 

 

 

 

1

 

 

Table 1 Table of Nuclide Shell Structure
1) Δ N i = i 3 ( i1 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaad6eal8aadaWgaaqcbasaaKqzadWdbiaadMga aKqaG8aabeaajugib8qacqGH9aqpcaWGPbWcpaWaaWbaaKqaGeqaba qcLbmapeGaaG4maaaajugibiabgkHiTKqba+aadaqadaGcbaqcLbsa peGaamyAaiabgkHiTiaaigdaaOWdaiaawIcacaGLPaaalmaaCaaaje aibeqaaKqzadWdbiaaiodaaaaaaa@49E8@ is the geometric space of the“ ”shell indicated by the nucleonic number.
2) Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeal8aadaWgaaqcbasaaKqzadWdbiaadMga aKqaG8aabeaaaaa@3B9B@ is the maximal number of nucleons contained in the “ ” shell. The determination of and p/n is the basis for compilation of Table of Nuclide Shell Structure.
3) The combinations of “I” type belong to the category of full-filled protons while those of “II” type are of the category of full-filled neutrons.
4) The even-A nuclides are of the hollow type and are indicated with“o ”.the odd-A nuclides are of the neutron-filled type and mad are indicated with “”.

Binding energy of a nuclear and characteristics of nuclear force

The mass average of a nuclear is lighter than the mass sum of free nucleons of the nuclear. The difference between the two is called mass loss. Take Δm( Z, A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaad2gajuaGpaWaaeWaaOqaaKqzGeWdbiaadQfa caGGSaGaaeiiaiaadgeaaOWdaiaawIcacaGLPaaaaaa@3EDD@ for an example,

Δm(Z,A)Z m p +(AZ) m n m(Z,A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaacbiqcLbsaca WFuoGaa8xBaiaabIcacaWFAbGaaeilaiaa=feacaqGPaGaeyyyIORa a8Nwaiaa=1galmaaBaaajeaibaWexLMBb50ujbqegquy15guL5gAaG qbcKqzadGae4hCaahajeaibeaajugibiabgUcaRiaacIcacaWGbbGa eyOeI0IaamOwaiaacMcacaWFTbWcdaWgaaqcbasaaKqzadGaamOBaa qcbasabaqcLbsacqGHsislcaWGTbGaaiikaiaa=PfacaGGSaGaamyq aiaacMcaaaa@59B1@ ,  (10)

In the formula, m( Z, A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2gajuaGpaWaaeWaaOqaaKqzGeWdbiaadQfacaGGSaGa aeiiaiaadgeaaOWdaiaawIcacaGLPaaaaaa@3D77@ is the mass of the nuclide. All nuclears suffer mass loss, i.e. Δm( Z, A )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaad2gajuaGpaWaaeWaaOqaaKqzGeWdbiaadQfa caGGSaGaaeiiaiaadgeaaOWdaiaawIcacaGLPaaajugibiabg6da+i aaicdaaaa@412E@ .

When the nuclear mass is represented by M( Z, A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eajuaGpaWaaeWaaOqaaKqzGeWdbiaadQfacaGGSaGa aeiiaiaadgeaaOWdaiaawIcacaGLPaaaaaa@3D57@ ,

Δm( Z,A )=ΔM( Z,A )=Z ( 1 H)+(AZ) m n M( Z,A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaad2gajuaGpaWaaeWaaOqaaKqzGeWdbiaadQfa caGGSaGaamyqaaGcpaGaayjkaiaawMcaaKqzGeWdbiabg2da9iabfs 5aejaad2eajuaGpaWaaeWaaOqaaKqzGeWdbiaadQfacaGGSaGaamyq aaGcpaGaayjkaiaawMcaaKqzGeWdbiabg2da9iaadQfapaGaaiikaS WaaWbaaKqaGeqabaqcLbmapeGaaGymaaaajugibiaadIeapaGaaiyk a8qacqGHRaWkpaGaaiika8qacaWGbbWexLMBbXgBd9gzLbvyNv2Cae HbcfgDH52zaGqbciaa=1W=caWGAbWdaiaacMcapeGaamyBaKqba+aa daWgaaqcbasaaKqzadWdbiaad6gaaSWdaeqaaKqzGeWdbiaa=1W=ca WGnbqcfa4damaabmaakeaajugib8qacaWGAbGaaiilaiaadgeaaOWd aiaawIcacaGLPaaaaaa@694E@   (11)

In the formula (1H) stands for the mass of atom hydrogen. According to the relationship between mass and energy in relativity theory, the binding energy of an atom is

BZ, AΔmZ, A c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkeatCvAUfeBSn0BKvguHDwzZbqegiuy0fMBNbacfiGa a8hc=laadQfacaGGSaGaaeiiaiaadgeacaWFj8VaeyyyIORaeuiLdq KaamyBaiaa=HW=caWGAbGaaiilaiaabccacaWGbbGaa8xc=laadoga l8aadaahaaqcbasabeaajugWa8qacaaIYaaaaaaa@531F@   (12)

The nucleonic radium calculated by the mass formula is R=1.21 (F), but it is R=0.8 (F) according to the test conducted by R. Hofstadter in his experiment on electronic scattering. This proves that in the nucleon is a rim with a thickness of t=0.4 (F).6

The binding energy of a nuclide increases as the nucleonic number grows larger. The binding energy difference between different nuclides is great, but no regularity is discovered. Theoretically, the average binding energy of each nuclide is used to represent the level of tightness of the binding energy. The specific binding energy is

εZ, A= BZ, A/A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLnXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuGa caWFi8VaamOwaiaacYcacaqGGaGaamyqaiaa=LW=cqGH9aqpcaqGGa GaamOqaiaa=HW=caWGAbGaaiilaiaabccacaWGbbGaa8xc=laac+ca caWGbbaaaa@507F@   (13)

It represents the average work done on each nucleon when the nuclear with mass number A and electric charge number Z is fragmented into free nucleons. Graph of specific binding energy obtained from experiments is shown in Figure 5.7

Figure 5 ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabgkHiTaaa@3939@ A Curve (Note the change of coordinate scale after a30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGHLjYScaaIZaGaaGimaaaa@3AC8@ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaahaaqabe aatCvAUfeBSn0BKvguHDwzZbqegiuy0fMBNbacfaqcLbmaqaaaaaaa aaWdbiaa=fgjaaaaaa@40AD@ .8

Both theory and experiments prove that the binding energy ε value of an even-A nuclide with full-filled shells is relatively high at its peak value. This rule can be confirmed by working out the binding energy of the last nucleon. The significance of the last nucleon’s binding energy refers to the energy released when a free nucleon and other nucleons of the nuclear combine into a nuclide. In other words, it is the energy needed to separate a nucleon from the nuclear.

The binding energy of the last proton is

S p ( Z,A ) =B( Z,A )(Z1,A1). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaKqaGeaajugWa8qacaWGWbaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamOwaiaacYcacaWGbbaak8aaca GLOaGaayzkaaqcLbsapeGaaeiiaiabg2da9iaadkeajuaGpaWaaeWa aOqaaKqzGeWdbiaadQfacaGGSaGaamyqaaGcpaGaayjkaiaawMcaaK qzGeWdbiabgkHiT8aacaGGOaWdbiaadQfacqGHsislcaaIXaGaaiil aiaadgeacqGHsislcaaIXaWdaiaacMcapeGaaiOlaaaa@51A6@   (14)

The binding energy of the last neutron is

S n ( Z,A ) =B( Z,A )B(Z,A1) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofal8aadaWgaaqcbasaaKqzadWdbiaad6gaaKqaG8aa beaajuaGdaqadaGcbaqcLbsapeGaamOwaiaacYcacaWGbbaak8aaca GLOaGaayzkaaqcLbsapeGaaeiiaiabg2da9iaadkeajuaGpaWaaeWa aOqaaKqzGeWdbiaadQfacaGGSaGaamyqaaGcpaGaayjkaiaawMcaaK qzGeWdbiabgkHiTiaadkeapaGaaiika8qacaWGAbGaaiilaiaadgea cqGHsislcaaIXaWdaiaacMcapeGaaeiiaiaac6caaaa@5102@   (15)

From the value surplus in Δ(Z,A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5ae9aacaGGOaWdbiaadQfacaGGSaGaamyqa8aacaGG Paaaaa@3BE7@  Table of Nuclide Shell Structure, the definition of Δ(Z,A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5ae9aacaGGOaWdbiaadQfacaGGSaGaamyqa8aacaGG Paaaaa@3BE7@ and Formula

Δ(Z,A)= [M( Z,A )A] c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5ae9aacaGGOaWdbiaadQfacaGGSaGaamyqa8aacaGG PaWdbiabg2da9iaabccapaGaai4wa8qacaWGnbqcfa4damaabmaake aajugib8qacaWGAbGaaiilaiaadgeaaOWdaiaawIcacaGLPaaajugi b8qacqGHsislcaWGbbWdaiaac2fapeGaam4yaKqba+aadaahaaWcbe qcbasaaKqzadWdbiaaikdaaaqcLbsacaGGSaaaaa@4D14@   (16)

Can be used to work out the binding energy of a nuclide and that of the last nucleon. 8 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaqGXaGaaeOnaaaaaaa@3AB5@ O8 is a 3-shelled full-filled nuclide of “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablUCjKbaa@388A@ ”category. From the definition of S p S n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaKqaGeaajugWa8qacaWGWbaajeai paqabaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGqbaKqzGeWdbi aa=XW=caWGtbqcfa4damaaBaaajeaibaqcLbmapeGaamOBaaWcpaqa baaaaa@493D@  we can work out the following:

S p ( O 8 16 ) = 12.12MeV,  S n ( O 8 16 ) = 15.66MeV S p ( F 9 17 ) = 0.61MeV,    S n ( O 8 17 ) = 4.15MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaam4uaKqba+aadaWgaaqcbasaaKqzadWdbiaadcha aSWdaeqaaKqzGeGaaiikaSWaa0raaeaajugWaiaabIdaaSqaaKqzad GaaGymaiaaiAdaaaqcLbsapeGaam4ta8aacaGGPaWdbiaabccacqGH 9aqpcaqGGaGaaGymaiaaikdacaGGUaGaaGymaiaaikdacaWGnbGaam yzaiaadAfacaGGSaGaaiiOaiaadofajuaGpaWaaSbaaSqaaKqzGeWd biaad6gaaSWdaeqaaKqzGeGaaiikaSWaa0raaeaajugWaiaabIdaaS qaaKqzadGaaGymaiaaiAdaaaqcLbsapeGaam4ta8aacaGGPaWdbiaa bccacqGH9aqpcaqGGaGaaGymaiaaiwdacaGGUaGaaGOnaiaaiAdaca WGnbGaamyzaiaadAfaaOqaaKqzGeGaam4uaKqba+aadaWgaaqcbasa aKqzadWdbiaadchaaSWdaeqaaKqzGeGaaiikaSWaa0raaKqaGeaaju gWaiaaiMdaaKqaGeaajugWaiaaigdacaaI3aaaaKqzGeWdbiaadAea paGaaiyka8qacaqGGaGaeyypa0JaaeiiaiaaicdacaGGUaGaaGOnai aaigdacaWGnbGaamyzaiaadAfacaGGSaGaaiiOaiaacckacaGGGcGa am4uaKqba+aadaWgaaqcbasaaKqzadWdbiaad6gaaSWdaeqaaKqzGe GaaiikaSWaa0raaKqaGeaajugWaiaabIdaaKqaGeaajugWaiaaigda caaI3aaaaKqzGeWdbiaad+eapaGaaiyka8qacaqGGaGaeyypa0Jaae iiaiaaisdacaGGUaGaaGymaiaaiwdacaWGnbGaamyzaiaadAfaaaaa @8EF7@

20 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaaeinaiaabcdaaaaaaa@3B5F@ Ca20 is a 4-shelled nuclide of “”category. S p , S n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaKqaGeaajugWa8qacaWGWbaal8aa beaajugib8qacaGGSaGaam4uaSWdamaaBaaajeaibaqcLbmapeGaam OBaaqcbaYdaeqaaaaa@3FA8@ values of neighboring nuclides are:

S p ( C 20 40 a) = 8.38MeV,  S n ( C 20 40 a) = 15.68MeV S p ( S 21 42 c)=4.27MeV,   S n ( C 20 41 a)= 8.32MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaam4uaKqba+aadaWgaaqcbasaaKqzadWdbiaadcha aSWdaeqaaKqzGeGaaiikaSWaa0raaKqaGeaajugWaiaaikdacaaIWa aajeaibaqcLbmacaaI0aGaaGimaaaajugib8qacaWGdbGaamyya8aa caGGPaWdbiaabccacqGH9aqpcaqGGaGaaGioaiaac6cacaaIZaGaaG ioaiaad2eacaWGLbGaamOvaiaacYcacaGGGcGaam4uaSWdamaaBaaa jeaibaqcLbmapeGaamOBaaqcbaYdaeqaaKqzGeGaaiikaSWaa0raaK qaGeaajugWaiaaikdacaaIWaaajeaibaqcLbmacaaI0aGaaGimaaaa jugib8qacaWGdbGaamyya8aacaGGPaWdbiaacckacqGH9aqpcaqGGa GaaGymaiaaiwdacaGGUaGaaGOnaiaaiIdacaWGnbGaamyzaiaadAfa aOqaaKqzGeGaam4uaKqba+aadaWgaaqcbasaaKqzadWdbiaadchaaS WdaeqaaKqzGeGaaiikaSWaa0raaKqaGeaajugWaiaaikdacaaIXaaa jeaibaqcLbmacaaI0aGaaGOmaaaajugib8qacaWGtbGaam4ya8aaca GGPaWdbiabg2da9iaaisdacaGGUaGaaGOmaiaaiEdacaWGnbGaamyz aiaadAfacaGGSaGaaiiOaiaacckacaWGtbWcpaWaaSbaaKqaGeaaju gWa8qacaWGUbaajeaipaqabaqcLbsacaGGOaWcdaqhbaqcbasaaKqz adGaaGOmaiaaicdaaKqaGeaajugWaiaaisdacaaIXaaaaKqzGeWdbi aadoeacaWGHbWdaiaacMcapeGaeyypa0JaaeiiaiaaiIdacaGGUaGa aG4maiaaikdacaWGnbGaamyzaiaadAfaaaaa@92AE@

38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiIdaaSqaaKqzadGaaGioaiaaiIdaaaaaaa@3B8E@ Sr50 is a 5-shelled full-filled nuclide of the “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablUCjKbaa@388A@ ” category. S p , S n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaKqaGeaajugWa8qacaWGWbaal8aa beaajugib8qacaGGSaGaam4uaSWdamaaBaaajeaibaqcLbmapeGaam OBaaqcbaYdaeqaaaaa@3FA8@ values of neighboring nuclides are:

S p ( S 38 88 r) = 9.94MeV,  S n ( S 38 88 r ) = 10.45MeV S p ( Y 39 89 ) =7.74MeV,  S n ( S 39 89 )r= 7.03MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaam4uaSWdamaaBaaajeaibaqcLbmapeGaamiCaaqc baYdaeqaaKqzGeGaaiikaSWaa0raaKqaGeaajugWaiaaiodacaaI4a aajeaibaqcLbmacaaI4aGaaGioaaaajugib8qacaWGtbGaamOCa8aa caGGPaWdbiaabccacqGH9aqpcaqGGaGaaGyoaiaac6cacaaI5aGaaG inaiaad2eacaWGLbGaamOvaiaacYcacaGGGcGaam4uaSWdamaaBaaa jeaibaqcLbmapeGaamOBaaqcbaYdaeqaaKqzGeGaaiikaSWaa0raaK qaGeaajugWaiaaiodacaaI4aaajeaibaqcLbmacaaI4aGaaGioaaaa jugib8qacaWGtbGaamOCaiaabccapaGaaiyka8qacaqGGaGaeyypa0 JaaeiiaiaaigdacaaIWaGaaiOlaiaaisdacaaI1aGaamytaiaadwga caWGwbaakeaajugibiaadofal8aadaWgaaqcbasaaKqzadWdbiaadc haaKqaG8aabeaajugibiaacIcalmaaDeaajeaibaqcLbmacaaIZaGa aGyoaaqcbasaaKqzadGaaGioaiaaiMdaaaqcLbsapeGaamywa8aaca GGPaWdbiaabccacqGH9aqpcaaI3aGaaiOlaiaaiEdacaaI0aGaamyt aiaadwgacaWGwbGaaiilaiaacckacaWGtbqcfa4damaaBaaajeaiba qcLbmapeGaamOBaaWcpaqabaqcLbsacaGGOaWcdaqhbaqcbasaaKqz adGaaG4maiaaiMdaaKqaGeaajugWaiaaiIdacaaI5aaaaKqzGeWdbi aadofapaGaaiyka8qacaWGYbGaeyypa0JaaeiiaiaaiEdacaGGUaGa aGimaiaaiodacaWGnbGaamyzaiaadAfaaaaa@91BB@

64 160 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabsdaaSqaaKqzadGaaeymaiaabAdacaqGWaaaaaaa @3C1D@ Gd and 66 160 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabAdaaSqaaKqzadGaaeymaiaabAdacaqGWaaaaaaa @3C1F@ Dy are 6-shelled full-filled nuclides of the “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablUCjKbaa@388A@ ”category. S p , S n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaKqaGeaajugWa8qacaWGWbaal8aa beaajugib8qacaGGSaGaam4uaSWdamaaBaaajeaibaqcLbmapeGaam OBaaqcbaYdaeqaaaaa@3FA8@ values of neighboring nuclides are:

S p ( G 64 158 d) =8.51MeV,  S n ( G 64 160 d)= 7.45MeV S p ( T 65 161 b)=6.81MeV,   S n ( G 64 161 d)=5.63 MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaam4uaSWdamaaBaaajeaibaqcLbmapeGaamiCaaqc baYdaeqaaKqzGeGaaiikaSWaa0raaKqaGeaajugWaiaaiAdacaaI0a aajeaibaqcLbmacaaIXaGaaGynaiaaiIdaaaqcLbsapeGaam4raiaa dsgapaGaaiyka8qacaqGGaGaeyypa0JaaGioaiaac6cacaaI1aGaaG ymaiaad2eacaWGLbGaamOvaiaacYcacaGGGcGaam4uaSWdamaaBaaa jeaibaqcLbmapeGaamOBaaqcbaYdaeqaaKqzGeGaaiikaSWaa0raaK qaGeaajugWaiaabAdacaqG0aaajeaibaqcLbmacaqGXaGaaeOnaiaa bcdaaaqcLbsapeGaam4raiaadsgapaGaaiyka8qacqGH9aqpcaqGGa GaaG4naiaac6cacaaI0aGaaGynaiaad2eacaWGLbGaamOvaaGcbaqc LbsacaWGtbqcfa4damaaBaaajeaibaqcLbmapeGaamiCaaWcpaqaba qcLbsacaGGOaWcdaqhbaqcbasaaKqzadGaaGOnaiaaiwdaaKqaGeaa jugWaiaaigdacaaI2aGaaGymaaaajugib8qacaWGubGaamOya8aaca GGPaWdbiabg2da9iaaiAdacaGGUaGaaGioaiaaigdacaWGnbGaamyz aiaadAfacaGGSaGaaiiOaiaacckacaWGtbWcpaWaaSbaaKqaGeaaju gWa8qacaWGUbaajeaipaqabaqcLbsacaGGOaWcdaqhbaqcbasaaKqz adGaaeOnaiaabsdaaKqaGeaajugWaiaabgdacaqG2aGaaeymaaaaju gib8qacaWGhbGaamiza8aacaGGPaWdbiabg2da9iaaiwdacaGGUaGa aGOnaiaaiodacaqGGaGaamytaiaadwgacaWGwbaaaaa@92AC@

And

S p ( D 66 160 y)=7.43MeV,   S n ( D 66 160 y) = 8.58MeV S p ( H 67 165 o)= 6.22MeV ,  S n ( D 66 161 y) = 6.45MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaam4uaSWdamaaBaaajeaibaqcLbmapeGaamiCaaqc baYdaeqaaKqzGeGaaiikaSWaa0raaKqaGeaajugWaiaaiAdacaaI2a aajeaibaqcLbmacaaIXaGaaGOnaiaaicdaaaqcLbsapeGaamiraiaa dMhapaGaaiyka8qacqGH9aqpcaaI3aGaaiOlaiaaisdacaaIZaGaam ytaiaadwgacaWGwbGaaiilaiaacckacaGGGcGaam4uaKqba+aadaWg aaqcbasaaKqzadWdbiaad6gaaSWdaeqaaKqzGeGaaiikaSWaa0raaK qaGeaajugWaiaaiAdacaaI2aaajeaibaqcLbmacaaIXaGaaGOnaiaa icdaaaqcLbsapeGaamiraiaadMhapaGaaiyka8qacaqGGaGaeyypa0 JaaeiiaiaaiIdacaGGUaGaaGynaiaaiIdacaWGnbGaamyzaiaadAfa aOqaaKqzGeGaam4uaSWdamaaBaaajeaibaqcLbmapeGaamiCaaqcba YdaeqaaKqzGeGaaiikaSWaa0raaKqaGeaajugWaiaaiAdacaaI3aaa jeaibaqcLbmacaaIXaGaaGOnaiaaiwdaaaqcLbsapeGaamisaiaad+ gapaGaaiyka8qacqGH9aqpcaqGGaGaaGOnaiaac6cacaaIYaGaaGOm aiaad2eacaWGLbGaamOvaiaacckacaGGSaGaaeiiaiaadofajuaGpa WaaSbaaKqaGeaajugWa8qacaWGUbaal8aabeaajugibiaacIcalmaa DeaajeaibaqcLbmacaaI2aGaaGOnaaqcbasaaKqzadGaaGymaiaaiA dacaaIXaaaaKqzGeWdbiaadseacaWG5bWdaiaacMcapeGaaeiiaiab g2da9iaabccacaaI2aGaaiOlaiaaisdacaaI1aGaamytaiaadwgaca WGwbaaaaa@957C@

The above results show that the peak values of S p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofal8aadaWgaaqcbasaaKqzadWdbiaadchaaKqaG8aa beaaaaa@3A4E@  and S n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaKqaGeaajugWa8qacaWGUbaal8aa beaaaaa@3AB0@  appear on full-filled nuclides.

Table 2 shows the binding energy of some isotopes S n ( Z,A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaKqaGeaajugWa8qacaWGUbaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamOwaiaacYcacaWGbbaak8aaca GLOaGaayzkaaaaaa@3FDE@ of nuclides with fulfilled shells. We can see that nuclides 8 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaaIXaGaaGOnaaaaaaa@3AC3@ O, 20 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaaeinaiaabcdaaaaaaa@3B5F@ Ca, 38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiIdaaSqaaKqzadGaaGioaiaaiIdaaaaaaa@3B8E@ Sr, 39 89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiMdaaSqaaKqzadGaaGioaiaaiMdaaaaaaa@3B90@ Y and 66 160 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaiAdaaSqaaKqzadGaaGymaiaaiAdacaaIWaaaaaaa @3C40@ Dy show their peak values of S n ( Z,A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGpaWaaSbaaKqaGeaajugWa8qacaWGUbaal8aa beaajuaGdaqadaGcbaqcLbsapeGaamOwaiaacYcacaWGbbaak8aaca GLOaGaayzkaaaaaa@3FDE@ when full-filled.

Nuclides

B(Z,A)(MeV)

Sn(MeV)

Nuclides

B(Z,A)(MeV)

Sn(MeV)

8 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaaIXaGaaGinaaaaaaa@3AC1@ O

98.73

 

39 86 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabMdaaSqaaKqzadGaaeioaiaabAdaaaaaaa@3D9D@ Y

742.87

 

8 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaaIXaGaaGynaaaaaaa@3AC2@ O

111.96

13.23

39 87 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rrpeeu0dXde9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabMdaaSqaaKqzadGaaeioaiaabEdaaaaaaa@3D9E@ Y

754.72

11.85**

8 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaaIXaGaaGOnaaaaaaa@3AC3@ O

127.62

15.66*

39 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabMdaaSqaaKqzadGaaeioaiaabIdaaaaaaa@3B75@ Y

764.07

9.35

8 17 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaaIXaGaaG4naaaaaaa@3AC4@ O

131.77

4.15

39 89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabMdaaSqaaKqzadGaaeioaiaabMdaaaaaaa@3B76@ Y

775.54

11.47*

8 18 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaaIXaGaaGioaaaaaaa@3AC5@ O

139.81

8.04

39 90 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabMdaaSqaaKqzadGaaeyoaiaabcdaaaaaaa@3B6E@ Y

782.40

6.86

8 19 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaaIXaGaaGyoaaaaaaa@3AC6@ O

143.77

3.96

39 91 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabMdaaSqaaKqzadGaaeyoaiaabgdaaaaaaa@3B6F@ Y

790.34

7.94

8 20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeioaaWcbaqcLbmacaaIYaGaaGimaaaaaaa@3ABE@ O

154.37

7.60

39 92 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabMdaaSqaaKqzadGaaeyoaiaabkdaaaaaaa@3B70@ Y

796.88

6.54

20 38 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaae4maiaabIdaaaaaaa@3B66@ Ca

313.13

 

66 157 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabAdaaSqaaKqzadGaaeymaiaabwdacaqG3aaaaaaa @3C25@ Dy

1285.00

 

20 39 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaae4maiaabMdaaaaaaa@3B67@ Ca

362.42

13.29

66 158 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabAdaaSqaaKqzadGaaeymaiaabwdacaqG4aaaaaaa @3C26@ Dy

1294.06

9.06**

20 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaaeinaiaabcdaaaaaaa@3B5F@ Ca

342.06

15.64*

66 159 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabAdaaSqaaKqzadGaaeymaiaabwdacaqG5aaaaaaa @3C27@ Dy

1300.89

6.83

20 41 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaaeinaiaabgdaaaaaaa@3B60@ Ca

350.32

8.26

66 160 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabAdaaSqaaKqzadGaaeymaiaabAdacaqGWaaaaaaa @3C1F@ Dy

1309.47

8.58*

20 42 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaaeinaiaabkdaaaaaaa@3B61@ Ca

361.90

11.58

66 161 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabAdaaSqaaKqzadGaaeymaiaabAdacaqGXaaaaaaa @3C20@ Dy

1315.92

6.45

20 43 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaaeinaiaabodaaaaaaa@3B62@ Ca

369.83

7.93

66 162 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabAdaaSqaaKqzadGaaeymaiaabAdacaqGYaaaaaaa @3C21@ Dy

1324.12

8.20

20 44 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOmaiaabcdaaSqaaKqzadGaaeinaiaabsdaaaaaaa@3B63@ Ca

380.96

11.13

66 163 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaeOnaiaabAdaaSqaaKqzadGaaeymaiaabAdacaqGZaaaaaaa @3C22@ Dy

1330.39

6.27

38 83 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeioaiaabodaaaaaaa@3B6F@ Sr

716.86

 

 

 

 

38 84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeioaiaabsdaaaaaaa@3B70@ Sr

728.91

12.05**

 

 

 

38 85 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeioaiaabwdaaaaaaa@3B71@ Sr

737.44

8.53

 

 

 

38 86 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeioaiaabAdaaaaaaa@3B72@ Sr

748.92

11.48

 

 

 

38 87 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeioaiaabEdaaaaaaa@3B73@ Sr

757.44

8.52

 

 

 

38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeioaiaabIdaaaaaaa@3B74@ Sr

768.47

11.03*

 

 

 

38 89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeioaiaabMdaaaaaaa@3B75@ Sr

774.83

6.36

 

 

 

38 90 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeyoaiaabcdaaaaaaa@3B6D@ Sr

782.63

7.80

 

 

 

38 91 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaae4maiaabIdaaSqaaKqzadGaaeyoaiaabgdaaaaaaa@3B6E@ Sr

788.44

5.81

 

 

 

Table 2 Binding Energy of Isotopes on Full-filled Shells

Criteria of nuclide shell structure and the graph of its growth

Table 1 show that the ratio Δ A i /Δ N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWG Pbaal8aabeaajugib8qacaGGVaGaeuiLdqKaamOtaSWdamaaBaaaje aibaqcLbmapeGaamyAaaqcbaYdaeqaaaaa@4254@  is between 0.571 and 0.803 and increases as the number of shells becomes larger, which is consistent with the fact that the distance between nearby nucleons decreases as the radius of curvature becomes larger.

The full-filled shell nuclide refers to the nuclide, each of whose shells has been filled with Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWG Pbaal8aabeaaaaa@3BFF@ . Only after the inside shells are fully filled, will the outside ones begin to full fill. Therefore, the un full-filled shells only refer to those outside ones whose proton is smaller than Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWG Pbaal8aabeaaaaa@3BFF@ .

The statistical analysis shows that, except for 18 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiIdaaSqaaKqzadGaaGinaiaaicdaaaaaaa@3B80@ Ar, in the stable nuclides of the 2nd, 3rd and 4th shells, the p/n is 1 and the protons and neutrons are very likely to pair with each other. If the shells are naturally stable, the p/n of most outside shells is 1.

When the 5th, 6th and 7th shells are full-filled, the p/n's of the most of their outside shells are 1, showing a big regularity. So we can make out the shell structure table of all the nuclides with the principle of the table, their pairing characteristic and the combining criteria shown in the nuclide structure. The major criteria of nuclide combination are the following 7.

  1. The proton cannot occupy the first shell of a nuclide except for element H.
  2. Every shell of a nuclide is filled with nucleons of even number except the first shell which is either unfilled or filled with a neutron. The nuclide with an unfilled first shell is called hollow nuclide symbolized by “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablUCjKbaa@388A@ ”. The nuclide with a filled first shell is called neutron-filled nuclide symbolized by “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablMPiLbaa@3856@ ”. They are two basic kinds of nuclides. The even A nuclides are “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablUCjKbaa@388A@ ” kind and the odd A nuclides belong to “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablMPiLbaa@3856@ ” kind.
  3. For nucleons show the characteristic of pairing with each, nucleonic number of the most outside shells is even with the exception of element H. The p/n of the most outside shells of stable nuclides is most likely to be 1.
  4. For any nuclides with k shells, there are only 2 kinds of combinations of p/n in full-filled shells except for the 2nd shell, as is shown in the following:
  1. 2nd shell: p/n=2/2, and if k>2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH+aGpcaaIYaaaaa@3959@ , then p2=2, n2=2;
  2. 3rd shell: p/n=6/6, p/n=5/7; and if k>3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH+aGpcaaIZaaaaa@395A@ , then p 3 6, n 3 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiodaaKqaG8aa beaajugib8qacqGHKjYOcaaI2aGaaiilaiaad6gal8aadaWgaaqcba saaKqzadWdbiaaiodaaKqaG8aabeaajugib8qacqGHKjYOcaaI3aaa aa@4498@ ;
  3. 4th shell: p/n=12/12, p/n=10/14; and if k>4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH+aGpcaaI0aaaaa@395B@ , then p 4 12, n 4 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaal8aa beaajugib8qacqGHKjYOcaaIXaGaaGOmaiaacYcacaWGUbqcfa4dam aaBaaajeaibaqcLbmapeGaaGinaaWcpaqabaqcLbsapeGaeyizImQa aGymaiaaisdaaaa@46D1@ ;
  4. 5th shell: p/ =22/28, p/n=18/30; and if k>5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH+aGpcaaI1aaaaa@395C@ , then p 5 20, n 5 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiwdaaKqaG8aa beaajugib8qacqGHKjYOcaaIYaGaaGimaiaacYcacaWGUbWcpaWaaS baaKqaGeaajugWa8qacaaI1aaajeaipaqabaqcLbsapeGaeyizImQa aG4maiaaicdaaaa@4608@ ;
  5. 6th shell: p/n=28/44, p/n=26/46; and if k>6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH+aGpcaaI2aaaaa@395D@ , then p 6 28, n 6 46 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8aa beaajugib8qacqGHKjYOcaaIYaGaaGioaiaacYcacaWGUbWcpaWaaS baaKqaGeaajugWa8qacaaI2aaajeaipaqabaqcLbsapeGaeyizImQa aGinaiaaiAdaaaa@4619@ ;
  6. 7th shell: p/n=44/58, p/n=42/60; and if k>7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgacqGH+aGpcaaI3aaaaa@395E@ , then p 7 44, n 7 60 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqcbasaaKqzadWdbiaaiEdaaKqaG8aa beaajugib8qacqGHKjYOcaaI0aGaaGinaiaacYcacaWGUbWcpaWaaS baaKqaGeaajugWa8qacaaI3aaajeaipaqabaqcLbsapeGaeyizImQa aGOnaiaaicdaaaa@4615@ .
  1. If the p/n of the most outside shell is not 1, generally | pn | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamiCaiabgkHiTiaad6gaaOGaay5bSlaawIa7aaaa@3D1E@ =2. For the nuclide of | pn |2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamiCaiabgkHiTiaad6gaaOGaay5bSlaawIa7aKqzGeGa eyiyIKRaaGOmaaaa@4030@ , the p/n is an even number.
  2. The mode of nuclide decay depends on the nucleonic combination of its most outside shell.
  3. The stability of a nuclide depends on the p/n relationship between shells. Generally, the filling level of the p/n of each shell of a stable nuclide is invariably I, but its shells are full-filled or unfull-filled alternatively in the II kind of nuclides.

To determine values of Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWG Pbaal8aabeaaaaa@3BFF@ and the p/n combinations is the principal basis for the preparation of the nuclide shell structure table. The regularity shown in Δ A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfs5aejaadgeajuaGpaWaaSbaaKqaGeaajugWa8qacaWG Pbaal8aabeaaaaa@3BFF@ and p/n is embedded in the graph of nuclide growth. The developing route of full-filled nuclides is shown in Figure 6(A) & Figure (B). Figure 6(A) is the route of the development of even A full-flied nuclides and Figure 6(B) is that of odd A full-filled nuclides. The 1st, 2nd, 3rd and 4th shells are the same as the shell structure proposed by Mayer, but the 5th, 6th and 7th shells are obviously different in the number of nucleons.8

Figure 6A Developing Route of Even A nuclides.
Even A nuclide belongs to “” category and its first shell is vacant. With the second shell full-filled, its stable nuclide is 2 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaaWcbaqcLbmacaaI0aaaaaaa@3A05@ He2; with the third shell full-filled, its stable nuclide is 8 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaaWcbaqcLbmacaaIXaGaaGOnaaaaaaa@3AC8@ O8; with the fourth shell full-filled, its stable nuclides are 18 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiIdaaSqaaKqzadGaaGinaiaaicdaaaaaaa@3B80@ Ar22 and 30 40 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaicdaaSqaaKqzadGaaGinaiaaicdaaaaaaa@3B7A@ Ca20; with tile fifth shell full -filled, its stable nuclide is 38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiIdaaSqaaKqzadGaaGioaiaaiIdaaaaaaa@3B8E@ Sr50; with the sixth shell full-filled, its stable nuclides are 64 160 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaisdaaSqaaKqzadGaaGymaiaaiAdacaaIWaaaaaaa @3C3E@ Gd96 and 64 160 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaisdaaSqaaKqzadGaaGymaiaaiAdacaaIWaaaaaaa @3C3E@ Dy94; with the seventh shell full- filled, its stable nuclides are 105 262 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI1aaaleaajugWaiaaikdacaaI2aGaaGOm aaaaaaa@3CF7@ Ha157 and 107 262 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI3aaaleaajugWaiaaikdacaaI2aGaaGOm aaaaaaa@3CF9@ Bh155, 105 262 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI1aaaleaajugWaiaaikdacaaI2aGaaGOm aaaaaaa@3CF7@ Ha157 and 107 262 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI3aaaleaajugWaiaaikdacaaI2aGaaGOm aaaaaaa@3CF9@ Bh155 are exactly the nuclides of the seventh shell. This figure derives from Table 1.

Figure 6B Developing Route of Odd A nuclides.
Odd A nuclide belongs to “” category. Except for Element H, the first shell is invariably filled with neutrons. With the second shell full- filled, its nuclide 2 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaaWcbaqcLbmacaaI1aaaaaaa@3A06@ He3 is unstable; with the third shell full- filled, it is the isotope 8 17 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaaWcbaqcLbmacaaIXaGaaG4naaaaaaa@3AC9@ O9 of the lowly full-filled O; with the fourth shell full-filled, the nuclides include stable nuclide 19 41 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiMdaaSqaaKqzadGaaGinaiaaigdaaaaaaa@3B82@ K22 and unstable nuclide 20 41 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaicdaaSqaaKqzadGaaGinaiaaigdaaaaaaa@3B7A@ Ca2; with the fifth shell full -filled, the nuclide is 39 89 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiMdaaSqaaKqzadGaaGioaiaaiMdaaaaaaa@3B90@ Y50 stable; with the sixth shell full- filled, the nuclide 66 161 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOnaiaaiAdaaSqaaKqzadGaaGymaiaaiAdacaaIXaaaaaaa @3C41@ Dy95 is stable. 106 263 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaicdacaaI2aaaleaajugWaiaaikdacaaI2aGaaG4m aaaaaaa@3CF9@ Sg157 is exactly the odd A nuclide of the full-filled seventh shell, The figure derives from Table 1.

Any nuclide is first of all categorized according to the nature of nucleon A, i.e. whether it is odd or even in number, and then it is filled with nucleons one shell after another from inside to outside. The p/n of each shell is determined by the afore-mentioned 7 criteria. For an example, 17 35 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGymaiaaiEdaaSqaaKqzadGaaG4maiaaiwdaaaaaaa@3B83@ Cl18 is an odd A nuclide belonging to “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablMPiLbaa@3856@ ” kind. So its first shell is filled with one neutron and its p/n's on the 2nd, 3rd, 4th and the most outside shells are respectively 2/2, 6/6, 9/9 and 1. It is therefore identified as a stable nuclide.

The second example is 28 60 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGOmaiaaiIdaaSqaaKqzadGaaGOnaiaaicdaaaaaaa@3B83@ Ni32. It is an even A nuclide belonging to “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablUCjKbaa@388A@ ” kind. Its first shell is not filled. Its p/n's of the 2nd, 3rd, 4th, 5th shells are respectively and 6th shells are respectively 2/2, 6/6, 10/14. It is a stable nuclide because p/n on the most outside shell is 1.The third example is the even A nuclide 90 232 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGyoaiaaicdaaSqaaKqzadGaaGOmaiaaiodacaaIYaaaaaaa @3C3F@ Th142 belonging to “ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablUCjKbaa@388A@ ” kind. Its first shell is not filled. Its p/n's of the 2nd, 3rd, 4th, 5th and 6th shells are respectively 2/2, 6/6, 10/14, 20/28 and 26/46. The 7th shell is not full-filled, but its p/n (26/46) is the same as that of the 6th shell. So it is presumed to be stable.

Nuclide shell structures may either be directly indicated or shown in a table. For instance, the shell structures of 8 17 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGioaaWcbaqcLbmacaaIXaGaaG4naaaaaaa@3AC9@ O9, 38 88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaG4maiaaiIdaaSqaaKqzadGaaGioaiaaiIdaaaaaaa@3B8E@ Sr50 and 92 238 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWcdaqhbaqaaK qzadGaaGyoaiaaikdaaSqaaKqzadGaaGOmaiaaiodacaaI4aaaaaaa @3C45@ U146 are illustrated as follows:

Shell structures of stable nuclides are illustrated in Table II which is prepared in accordance with the afore-mentioned criteria. All tile stable nuclides are included and special nuclides are marked with an asterisk “ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGQa aaaa@3733@ ” The clear regularity shown in the shell structures of stable nuclides is the basis for the preparation of this table.9

The Table of Nuclide Shell Structure is completed on the basis of The Table of Shell Structures of Stable Nuclide, giving consideration to the stability and decay modes of nuclides and even to the above-mentioned 7 criteria. Consideration should be given to matching between full-level and unfull level of p/n’s between shells and to decay modes of unstable nuclides in the combination of nucleons on the most outside shells. The Table of Nuclide Shell Structures prepared in this way can very well explain and predict the stability of nuclides and the decay patterns of unstable nuclides. Please refer to the appendix for the shell structures, with special nuclides marked with asterisks. Tables of Shell Structure of Stable Nuclides are included in Appendix One. Tables of Shell Structure of Nuclides are included in Appendix Two.

Conclusion

We’ve arrived at the following conclusions after statistics and analysis of nuclides. The known highest position of nuclides is a structure of 7 shell levels and the structure is composed with the nucleus ratios r0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkhacaaIWaaaaa@3856@ as its unit. Nuclides are categorized into two: odd and even nuclides. Except for hydrogen nuclides, even A are hollow and odd A are neutron-star type. The statistic model based on the fundamental categorization of nuclides and the tables of shell structure of nuclides prepared on the basis of the model reveal the general law governing the stability and decay of nuclides. This law is both the effect and a proof of the fundamental categorization method of nuclides.

Acknowledgments

None.

Conflicts of interest

Author declares there is no conflict of interest.

References

  1. Kezun X, Hongfang C, Zifang Z. Modern Physics. Higher Education Press, Beijing, China. 1993.
  2. Sida X. Nuclear Physics. Qinghua University Press, Beijing, China, 1992. p. 35–55.
  3. Sida X. Nuclear Physics. Qinghua University Press, Beijing, China, 1992. p. 256–263.
  4. Dayou C. On Origin and Characteristics of Electromagnet. Xi’an: Northwest University Press, China, 2008. p. 155–159.
  5. Adams S. For the introduction of the experiment, refer to “Physics of 20th”. Translated by Fuxin Z, Zhihua X & Zhenguo X, Shanghai Science and Technology Press, China, 2006. 121 p.
  6. Hofstadter R. Conducted the experiment on electronic scattering of high energy and discovered that the average radius of charged particles is 0.8 (F) and the rim thickness is t≈0.4 (F). History and Status Quo of the Atomic Theory, Beijing University press, Beijing, China, 1960. 220 p.
  7. Evans RD. The Atomic Nucleus. Tata McGraw Hill Publishing Company Limited, India. 1995.
  8. Krane KS. Introductory Naclear Physics. John Wiley & Sons, New York, USA, 1987. p. 1–858.
  9. The fundamental data of the table come from: Nuclear Physics, P390~P405, Xu Side, published in 1992 by Qinghua university Press, China. 1992.
Creative Commons Attribution License

©2018 Dayou. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.