Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 1

Solving the temperature problem under relativistic conditions within the frame of the first principle of thermodynamics

Veitsman EV

Research and Production Enterprise ?Tekhnolazer?, Moscow , Russia

Correspondence: Emil Viktorovich Weizmann, Research and Production Enterprise ?Tekhnolazer?, Moscow, 121108, Russia

Received: January 27, 2018 | Published: February 14, 2018

Citation: Veitsman EV. Solving the temperature problem under relativistic conditions within the frame of the first principle of thermodynamics. Phys Astron Int J. 2018;2(1):92-100. DOI: 10.15406/paij.2018.02.00053

Download PDF

Abstract

The first principles of thermodynamics under relativistic conditions and with allowance for surface tension were formulated. Two cases were studied - for Minkowski and Euclidean spaces. With the help of these laws, the temperature of the system was shown to vary according to Ott H at the adiabatic and non-adiabatic acceleration, i.e., the temperature increases for an observer in the laboratory reference frame as the velocity of the object increases. A Einstein considered that the temperature had, on the contrary, to decrease under these conditions as the velocity increased. It was shown where he had made an error.

Keywords: special relativity, relativistic thermodynamics, surface tension, temperature

Introduction

Relativistic thermodynamics was created more than century ago-in 1907 when von Mosengeil’s article was published.1 He was Planck’s disciple. According to von Mosengeil and Planck’s conclusions, the temperature T of the system under study has to vary proportionally to 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWba aSqabKqaGeaajugWaiaaikdaaaaaleqaaaaa@4019@ under relativistic conditions and at an adiabatic acceleration β=v/c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjabg2da9iaadAhacaGGVaGaam4yaaaa@3E8B@ ; v is the velocity of the system in the reference frame at rest; c is the speed of light. Einstein came to a similar conclusion.2

While studying the first principle of thermodynamics under relativistic conditions, nobody in the 20th century took into consideration a surface tension; meanwhile this thermodynamic parameter is as important as the pressure p. Both Planck with his disciple and Einstein wrote down the first principle of thermodynamics under relativistic conditions neglecting the surface tension as well. Besides, both of the great scientists made an error integrating Gibbs’ equation; we shall show it below, in section 2.

Veitsman EV3–5 was the first researcher who understood an importance of the surface tension for relativistic thermodynamics. He showed that the surface tension is a Lorentz invariant,3 at any rate up to a velocity. He also showed that the interface equations of state were correct under relativistic conditions providing the temperature of system under study varied in inverse proportion to 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWba aSqabKqaGeaajugWaiaaikdaaaaaleqaaaaa@4019@ .4 Veitsman5 also obtained expressions for specific thermodynamic functions (J·cm-2) under relativistic conditions (the internal energy U, the enthalpy H, the free energy F, and free enthalpy G). These functions are correct if T~1/ 1 β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaGG+bGaaGymaiaac+cajuaGdaGcaaGcbaqcLbsa caaIXaGaeyOeI0IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikdaaa aaleqaaKqzGeGaaiOlaaaa@44A4@  Thus, the results obtained by Veitsman are in a full accordance with the result obtained by Ott6 for the relativistic temperature T , i.e., T= T 0 / 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacqGH9aqpcaWGubqcfa4aaSbaaKqaGeaajugWaiaa icdaaSqabaqcLbsacaGGVaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgk HiTiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaWcbeaa aaa@476E@  ; (here and below the symbol "0" denotes that this quantity is at rest). All above results are completely correct for an adiabatic acceleration of the system.

Callen & Horwitz7 consider that the temperature T, in general, is a relativistic invariant. Finally, Eckart8 comes to a conclusion that temperature θ=const θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjabg2da9iaadogacaWGVbGaamOBaiaadohacaWG 0bGaeqiUde3cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaaa@44E8@ . We will show below in section 3, that this assumption is incorrect.

M .Planck writes down the first principle of thermodynamics

dU=dQ+dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGvbGaeyypa0JaamizaiaadgfacqGHRaWkcaWG KbGaamyqaaaa@4067@ ,  (1)

As

d U 0 =d Q 0 p 0 d V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGvbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasa baqcLbsacqGH9aqpcaWGKbGaamyuaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaeyOeI0IaamiCaSWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqzGeGaamizaiaadAfajuaGdaWgaaqcbasaaKqzad GaaGimaaWcbeaaaaa@4D2D@ ,  (2)

Where is the heat supplied to the system or removed from it (J); A the work done by the system or with it (J).

Under relativistic conditions the work A is written down by M. Planck as

dA=pdV+v·dG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGbbGaeyypa0JaeyOeI0IaamiCaiaadsgacaWG wbGaey4kaSceaaaaaaaaa8qacaWH2bGaai4TaiaadsgacaWHhbaaaa@449E@ ,  (3)

G=v U 0 + p 0 V 0 c 2 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaC4raiabg2da9iaahAhajuaGpaWaaSaa aOqaaKqzGeGaamyvaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaK qzGeGaey4kaSIaamiCaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaaGcba qcLbsacaWGJbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcfa4a aOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqaba qcLbmacaaIYaaaaaWcbeaaaaaaaa@54EB@ ,  (4)

Where V is the vector of the system velocity; the momentum, the symbol “·” means vector multiplication.1

and

i c ( U+pV ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGPbaakeaajugibiaadogaaaqcfa4a aeWaaOqaaKqzGeGaamyvaiabgUcaRiaadchacaWGwbaakiaawIcaca GLPaaaaaa@42AB@ ,  (5)

Form the four-dimensional vector (4-vector) of energy-momentum, which has an invariant length equal to

i c ( U 0 + p 0 V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGPbaakeaajugibiaadogaaaqcfa4a aeWaaOqaaKqzGeGaamyvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaey4kaSIaamiCaSWaaSbaaKqaGeaajugWaiaaicdaaKqa GeqaaKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaa GccaGLOaGaayzkaaaaaa@4B01@ ,  (6)

i is the imaginary unit.

Evidently, we can write down the first principle of thermodynamics in view of the surface tension (normal case) as

d U 0 =d Q 0 p 0 d V 0 + σ 0 d ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGvbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baqcLbsacqGH9aqpcaWGKbGaamyuaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaeyOeI0IaamiCaSWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqzGeGaamizaiaadAfalmaaBaaajeaibaqcLbmaca aIWaaajeaibeaajugibiabgUcaRiabeo8aZTWaaSbaaKqaGeaajugW aiaaicdaaKqaGeqaaKqzGeGaamizaiabeM8a3TWaaSbaaKqaGeaaju gWaiaaicdaaKqaGeqaaaaa@5876@ ,  (7)

Where ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaaaa @3D83@ is the element of area (cm2).

Then the relations (3) and (4) are written down as

dA=pdV+σdω+v·dG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGbbGaeyypa0JaeyOeI0IaamiCaiaadsgacaWG wbGaey4kaSIaeq4WdmNaamizaiabeM8a3jabgUcaRabaaaaaaaaape GaaCODaiaacElacaWGKbGaaC4raaaa@49F9@ ,  (8)

G=v U 0 + p 0 V 0 σ 0 ω 0 c 2 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaC4raiabg2da9iaahAhajuaGpaWaaSaa aOqaaKqzGeGaamyvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaK qzGeGaey4kaSIaamiCaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqa aKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGe GaeyOeI0Iaeq4Wdm3cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqc LbsacqaHjpWDjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaOqaaK qzGeGaam4yaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqbaoaakaaa keaajugibiaaigdacqGHsislcqaHYoGylmaaCaaajeaibeqaaKqzad GaaGOmaaaaaSqabaaaaaaa@5F2C@ .  (9)

Consequently, the relations (5) and (6) should have the form

i c ( U+pVσω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGPbaakeaajugibiaadogaaaqcfa4a aeWaaOqaaKqzGeGaamyvaiabgUcaRiaadchacaWGwbGaeyOeI0Iaeq 4WdmNaeqyYdChakiaawIcacaGLPaaaaaa@4728@ ,  (10)

i c ( U 0 + p 0 V 0 σ 0 ω 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGPbaakeaajugibiaadogaaaqcfa4a aeWaaOqaaKqzGeGaamyvaKqbaoaaBaaajeaibaqcLbmacaaIWaaale qaaKqzGeGaey4kaSIaamiCaSWaaSbaaKqaGeaajugWaiaaicdaaKqa GeqaaKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaK qzGeGaeyOeI0Iaeq4Wdm3cdaWgaaqcbasaaKqzadGaaGimaaqcbasa baqcLbsacqaHjpWDlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaO GaayjkaiaawMcaaaaa@55D0@ .  (11)

Here we have to note that the quantity ω will transform as vc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgk ziUkaadogaaaa@39C7@  in different ways: depending on the orientation of the surface in space3,9 and Figures 1 & 2. Attempting to obtain the transformation law of the temperature as vc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcaWGJbaaaa@3D1E@ , M.Planck used dependences (3) and (4) but not (10) and (11). Other researchers did the same taking no account of a surface tension, therefore the results obtained by them were incorrect. Thus, the main goals of this paper are:

  1. Obtaining the first principle of thermodynamics under relativistic conditions in 3-D and 4-D versions taking into consideration the surface tension.
  2. Obtaining the temperature transformation under these conditions from the above mentioned principle at the adiabatic and non-adiabatic acceleration.

Solving the problem: 3-D case

Write down the first principle of thermodynamics (normal conditions; Euclidean case) in view of the surface tension as

dQ=dU+d E kin + p 0 dVσdωd A ac  v·dG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbGaeyypa0JaamizaiaadwfacqGHRaWkcaWG KbGaamyraSWaaSbaaKqaGeaajugWaiaadUgacaWGPbGaamOBaaqcba sabaqcLbsacqGHRaWkcaWGWbqcfa4aaSbaaKqaGeaajugWaiaaicda aSqabaqcLbsacaWGKbGaamOvaiabgkHiTiabeo8aZjaadsgacqaHjp WDcqGHsislcaWGKbGaamyqaKqbaoaaBaaajeaibaqcLbmacaWGHbGa am4yaaqcbasabaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWH2b Gaai4TaiaadsgacaWHhbaaaa@5F23@   (12)

Where E kin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacaWGRbGaamyAaiaad6ga aKqaGeqaaaaa@3E97@  is the macro kinetic energy of the object under study; A ac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgealmaaBaaajeaibaqcLbmacaWGHbGaam4yaaqcbasa baaaaa@3D90@  the work done against the system acceleration up to a velocity v<<c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGH8aapcqGH8aapcaWGJbaaaa@3D39@ ; E kin = A ac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacaWGRbGaamyAaiaad6ga aKqaGeqaaKqzGeGaeyypa0JaamyqaSWaaSbaaKqaGeaajugWaiaadg gacaWGJbaajeaibeaaaaa@446E@ . The momentum G is taken here according to (9).

We will adiabatically accelerate the object up to a relativistic velocity v now and will integrate (12) term by term from state 1 of the system to state 2 for the case represented in Figure 1 taking into account (8), (9) and the equalities p= p 0 ,σ= σ 0 ,ω= ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacqGH9aqpcaWGWbqcfa4aaSbaaKqaGeaajugWaiaa icdaaSqabaqcLbsacaGGSaGaeq4WdmNaeyypa0Jaeq4Wdm3cdaWgaa qcbasaaKqzadGaaGimaaqcbasabaqcLbsacaGGSaGaeqyYdCNaeyyp a0JaeqyYdC3cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaaa@4F84@ ; it also should be noted that here and below we study not a whole object but only its part (a subsystem):

1 2 dQ = 1 2 dU + p 0 1 2 dV σ 0 1 2 dω 1 2 vdG , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbGcbaqcLbsacaWGKbGaamyuaaqcbasaaKqzadGaaGym aaqcbasaaKqzadGaaGOmaaqcLbsacqGHRiI8aiabg2da9Kqbaoaape hakeaajugibiaadsgacaWGvbaajeaibaqcLbmacaaIXaaajeaibaqc LbmacaaIYaaajugibiabgUIiYdGaey4kaSIaamiCaKqbaoaaBaaaje aibaqcLbmacaaIWaaaleqaaKqbaoaapehakeaajugibiaadsgacaWG wbGaeyOeI0Iaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaaicdaaSqaba aajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaajugibiabgUIi Ydqcfa4aa8qCaOqaaKqzGeGaamizaiabeM8a3bqcbasaaKqzadGaaG ymaaqcbasaaKqzadGaaGOmaaqcLbsacqGHRiI8aiabgkHiTKqbaoaa pehakeaajugibiaadAhacaWGKbGaam4raaqcbasaaKqzadGaaGymaa qcbasaaKqzadGaaGOmaaqcLbsacqGHRiI8aiaacYcaaaa@7913@   (13)

Q 2 (v) Q (0)1 = U 2 U (0)1 + p 0 V 2 p 0 V (0)1 1 2 v dv c 2 ( 1 v 2 c 2 ) 3 { U 0 + p 0 V 0 σ 0 ω 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biaacIcacaWG2bGaaiykaiabgkHiTiaadgfalmaaBaaajeaibaqcLb macaGGOaGaaGimaiaacMcacaaIXaaajeaibeaajugibiabg2da9iaa dwfalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabgkHiTi aadwfalmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIXaaa jeaibeaajugibiabgUcaRiaadchalmaaBaaajeaibaqcLbmacaaIWa aajeaibeaajugibiaadAfalmaaBaaajeaibaqcLbmacaaIYaaajeai beaajugibiabgkHiTiaadchalmaaBaaajeaibaqcLbmacaaIWaaaje aibeaajugibiaadAfalmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaa cMcacaaIXaaajeaibeaajugibiabgkHiTKqbaoaapehakeaajugibi aadAhajuaGdaWcaaGcbaqcLbsacaWGKbGaamODaaGcbaqcLbsacaWG Jbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcfa4aaOaaaOqaaK qbaoaabmaakeaajugibiaaigdacqGHsisljuaGdaWcaaGcbaqcLbsa caWG2bqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakeaajugibi aadogajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawIca caGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaG4maaaaaSqabaaaaK qbaoaacmaakeaajugibiaadwfalmaaBaaajeaibaqcLbmacaaIWaaa jeaibeaajugibiabgUcaRiaadchalmaaBaaajeaibaqcLbmacaaIWa aajeaibeaajugibiaadAfalmaaBaaajeaibaqcLbmacaaIWaaajeai beaajugibiabgkHiTiabeo8aZLqbaoaaBaaajeaibaqcLbmacaaIWa aaleqaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaaGimaaqcbasa baaakiaawUhacaGL9baaaKqaGeaajugWaiaaigdaaKqaGeaajugWai aaikdaaKqzGeGaey4kIipaaaa@A215@ .  (14)

Figure 1 The moving flat interface; the velocity v of its motion is perpendicular to the flat one. ΔL is the thickness of the surface.

Now we take the integral in (14).

1 2 v dv c 2 ( 1 v 2 c 2 ) 3 { U 0 + p 0 V 0 σ 0 ω 0 }={ U 0 + p 0 V 0 σ 0 ω 9 } 1 2 β dβ (1 β 2 ) 3 = ={ U 0 + p 0 V 0 σ 0 ω 0 } 1 1 β 2 | 1 2 ={ U 0 + p 0 V 0 σ 0 ω 0 }( 1 1 β 2 1 ),β=v/c. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqbaoaapehakeaajugibiaadAhajuaGdaWcaaGcbaqcLbsa caWGKbGaamODaaGcbaqcLbsacaWGJbWcdaahaaqcbasabeaajugWai aaikdaaaqcfa4aaOaaaOqaaKqbaoaabmaakeaajugibiaaigdacqGH sisljuaGdaWcaaGcbaqcLbsacaWG2bqcfa4aaWbaaSqabKqaGeaaju gWaiaaikdaaaaakeaajugibiaadogalmaaCaaajeaibeqaaKqzadGa aGOmaaaaaaaakiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzadGaaG 4maaaaaSqabaaaaKqbaoaacmaakeaajugibiaadwfalmaaBaaajeai baqcLbmacaaIWaaajeaibeaajugibiabgUcaRiaadchalmaaBaaaje aibaqcLbmacaaIWaaajeaibeaajugibiaadAfalmaaBaaajeaibaqc LbmacaaIWaaajeaibeaajugibiabgkHiTiabeo8aZLqbaoaaBaaaje aibaqcLbmacaaIWaaaleqaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqz adGaaGimaaqcbasabaaakiaawUhacaGL9baajugibiabg2da9Kqbao aacmaakeaajugibiaadwfalmaaBaaajeaibaqcLbmacaaIWaaajeai beaajugibiabgUcaRiaadchalmaaBaaajeaibaqcLbmacaaIWaaaje aibeaajugibiaadAfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaa jugibiabgkHiTiabeo8aZTWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaaGyoaaqcbasabaaa kiaawUhacaGL9baajuaGdaWdXbGcbaqcLbsacqaHYoGyjuaGdaWcaa GcbaqcLbsacaWGKbGaeqOSdigakeaajuaGdaGcaaGcbaqcLbsacaGG OaGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYa aaaKqzGeGaaiykaKqbaoaaCaaaleqajeaibaqcLbmacaaIZaaaaaWc beaaaaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaajugibi abgUIiYdaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaajugi biabgUIiYdGaeyypa0dakeaajugibiabg2da9Kqbaoaacmaakeaaju gibiaadwfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiab gUcaRiaadchalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibi aadAfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiabgkHi Tiabeo8aZTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq yYdC3cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaakiaawUhacaGL 9baajuaGdaabcaGcbaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcfa 4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aILqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaaWcbeaaaaaakiaawIa7aKqbaoaaDaaaje aibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaeyypa0tc fa4aaiWaaOqaaKqzGeGaamyvaKqbaoaaBaaajeaibaqcLbmacaaIWa aaleqaaKqzGeGaey4kaSIaamiCaKqbaoaaBaaajeaibaqcLbmacaaI WaaaleqaaKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaeyOeI0Iaeq4Wdm3cdaWgaaqcbasaaKqzadGaaGimaaqc basabaqcLbsacqaHjpWDjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbe aaaOGaay5Eaiaaw2haaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsa caaIXaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaleqaaaaajugibiab gkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaaiilaiabek7aIjabg2 da9iaadAhacaGGVaGaam4yaiaac6caaaaa@063B@   (15)

According to M. Planck,8

U= 1 1 β 2 { U 0 + β 2 p 0 V 0 }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwfacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIXaaakeaa juaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWbaaS qabKqaGeaajugWaiaaikdaaaaaleqaaaaajugibiaacUhacaWGvbqc fa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGHRaWkcqaHYo GylmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadchalmaaBaaa jeaibaqcLbmacaaIWaaajeaibeaajugibiaadAfajuaGdaWgaaqcba saaKqzadGaaGimaaWcbeaajugibiaac2hacaGGSaaaaa@596D@   (16)

In view of the surface tension we have:

U= U 0 + β 2 p 0 V 0 + σ 0 ω 0 ( 1 β 2 1 ) 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwfacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGvbqcfa4a aSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGHRaWkcqaHYoGylm aaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadchajuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaajugibiaadAfajuaGdaWgaaqcbasaaK qzadGaaGimaaWcbeaajugibiabgUcaRiabeo8aZTWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaKqzGeGaeqyYdCxcfa4aaSbaaKqaGeaaju gWaiaaicdaaSqabaqcfa4aaeWaaOqaaKqbaoaakaaakeaajugibiaa igdacqGHsislcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aaaSqabaqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaaaeaajuaG daGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqcbasabe aajugWaiaaikdaaaaaleqaaaaaaaa@6B30@ .  (17)

Then taking into consideration (16), we can write down (14) as

Q 2 (v) Q (0)1 = 1 1 β 2 { U 0 + β 2 p 0 V 0 + σ 0 ω 0 ( 1 β 2 1) } U 0 + p 0 V 0 1 β 2 p 0 V 0 { U 0 + p 0 V 0 σ 0 ω 0 }( 1 1 β 2 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamyuaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqa aKqzGeGaaiikaiaadAhacaGGPaGaeyOeI0IaamyuaKqbaoaaBaaaje aibaqcLbmacaGGOaGaaGimaiaacMcacaaIXaaaleqaaKqzGeGaeyyp a0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcfa4aaOaaaOqaaKqzGe GaaGymaiabgkHiTiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaI YaaaaaWcbeaaaaqcfa4aaiWaaOqaaKqzGeGaamyvaSWaaSbaaKqaGe aajugWaiaaicdaaKqaGeqaaKqzGeGaey4kaSIaeqOSdi2cdaahaaqc basabeaajugWaiaaikdaaaqcLbsacaWGWbWcdaWgaaqcbasaaKqzad GaaGimaaqcbasabaqcLbsacaWGwbWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcLbsacqGHRaWkcqaHdpWClmaaBaaajeaibaqcLbmaca aIWaaajeaibeaajugibiabeM8a3TWaaSbaaKqaGeaajugWaiaaicda aKqaGeqaaKqzGeGaaiikaKqbaoaakaaakeaajugibiaaigdacqGHsi slcqaHYoGylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaqcLbsa cqGHsislcaaIXaGaaiykaaGccaGL7bGaayzFaaqcLbsacqGHsislca WGvbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqGHRaWk caWGWbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWGwb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcfa4aaOaaaOqaaKqz GeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYa aaaaWcbeaajugibiabgkHiTaGcbaqcLbsacqGHsislcaWGWbqcfa4a aSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaWGwbWcdaWgaaqcba saaKqzadGaaGimaaqcbasabaqcLbsacqGHsisljuaGdaGadaGcbaqc LbsacaWGvbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacq GHRaWkcaWGWbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsa caWGwbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGHsi slcqaHdpWClmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiab eM8a3TWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaaGccaGL7bGaay zFaaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqb aoaakaaakeaajugibiaaigdacqGHsislcqaHYoGylmaaCaaajeaibe qaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaeyOeI0IaaGymaaGccaGL OaGaayzkaaaaaaa@C1E2@ .  (18)

If we do not input the heat in an accelerated system from its source, then the left side of (18) equals zero, and we cannot obtain any dependences of the kind T=T( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacqGH9aqpcaWGubqcfa4aaeWaaOqaaKqzGeGaamOD aaGccaGLOaGaayzkaaaaaa@3FBB@ ; at first sight the dependence (18) does not contain the temperature. However, this relationship contains it-in a latent form. Show it. Let an object be, e.g., the liquid moving with a relativistic velocity v. For the observer being at rest in a laboratory reference frame the temperature of this liquid depends on the cooperative velocity v of the microparticles in the object relative to its centre of mass. Then the velocity components of the total velocity w of a certain microparticle in the moving liquid equal:10

w 1  = w 1 ' +v 1+ v w 1 ' c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4DaKqbaoaaBaaajeaibaqcLbmacaaI XaaaleqaaKqzGeGaaiiOaiabg2da9Kqba+aadaWcaaGcbaqcLbsaca WG3bWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaai4jaaaa jugibiabgUcaRiaadAhaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaala aakeaajugibiaadAhacaWG3bWcdaqhaaqcbasaaKqzadGaaGymaaqc basaaKqzadGaai4jaaaaaOqaaKqzGeGaam4yaSWaaWbaaKqaGeqaba qcLbmacaaIYaaaaaaaaaaaaa@564A@ ,  (19a)

w 2   = w 2 ' 1 β 2 1+ v w 1 ' c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4DaKqbaoaaBaaajeaibaqcLbmacaaI YaaaleqaaKqba+aadaWgaaWcbaqcLbsapeGaaiiOaaWcpaqabaqcLb sapeGaeyypa0tcfa4damaalaaakeaajugibiaadEhalmaaDaaajeai baqcLbmacaaIYaaajeaibaqcLbmacaGGNaaaaKqbaoaakaaakeaaju gibiaaigdacqGHsislcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGa aGOmaaaaaSqabaaakeaajugibiaaigdacqGHRaWkjuaGdaWcaaGcba qcLbsacaWG2bGaam4DaKqbaoaaDaaajeaibaqcLbmacaaIXaaaleaa jugibiaacEcaaaaakeaajugibiaadogajuaGdaahaaWcbeqcbasaaK qzadGaaGOmaaaaaaaaaaaa@5D1F@ ,  (19b)

w 3 = w 3 ' 1 β 2 1+ v w 1 ' c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4DaSWaaSbaaKqaGeaajugWaiaaioda aKqaGeqaaKqzGeGaeyypa0tcfa4damaalaaakeaajugibiaadEhalm aaDaaajeaibaqcLbmacaaIZaaajeaibaqcLbmacaGGNaaaaKqbaoaa kaaakeaajugibiaaigdacqGHsislcqaHYoGylmaaCaaajeaibeqaaK qzadGaaGOmaaaaaSqabaaakeaajugibiaaigdacqGHRaWkjuaGdaWc aaGcbaqcLbsacaWG2bGaam4DaSWaa0baaKqaGeaajugWaiaaigdaaK qaGeaajugWaiaacEcaaaaakeaajugibiaadogajuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaaaaaaaaaa@59B4@ ,  (19c)

Where w i ' ( i=1,2,3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEhalmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbma caGGNaaaaKqbaoaabmaakeaajugibiaadMgacqGH9aqpcaaIXaGaai ilaiaaikdacaGGSaGaaG4maaGccaGLOaGaayzkaaaaaa@4702@  are the velocity components of the microparticle in the moving reference frame.

Taking into consideration the dependences (19), it is easy to understand that the heat in the moving system increases as vc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcaWGJbaaaa@3D1E@ , since the cooperative velocity of the microparticles increases in the system moving relative to its mass centre. If the heat increases, so does the temperature. However, S= S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofacqGH9aqpcaWGtbWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaaaaa@3E6C@ in our case, this means dQ=SdT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbGaeyypa0Jaam4uaiaadsgacaWGubaaaa@3EAD@ , and (18) takes the form

Q 2 (v) Q (0)1 = 1 2 SdT= { U 0 + p 0 V 0 σ 0 ω 0 }( 1 1 β 2 1 )= = 1 1 β 2 { U 0 + β 2 p 0 V 0 + σ 0 ω 0 ( 1 β 2 1 ) } U 0 + p 0 V 0 1 β 2 p 0 V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamyuaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqa aKqzGeGaaiikaiaadAhacaGGPaGaeyOeI0IaamyuaKqbaoaaBaaaje aibaqcLbmacaGGOaGaaGimaiaacMcacaaIXaaaleqaaKqzGeGaeyyp a0tcfa4aa8qCaOqaaKqzGeGaam4uaiaadsgacaWGubGaeyypa0daje aibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaajugibiabgUIiYdqc fa4aaiWaaOqaaKqzGeGaamyvaSWaaSbaaKqaGeaajugWaiaaicdaaK qaGeqaaKqzGeGaey4kaSIaamiCaSWaaSbaaKqaGeaajugWaiaaicda aKqaGeqaaKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaeyOeI0Iaeq4Wdm3cdaWgaaqcbasaaKqzadGaaGimaaqc basabaqcLbsacqaHjpWDlmaaBaaajeaibaqcLbmacaaIWaaajeaibe aaaOGaay5Eaiaaw2haaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsa caaIXaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaleqaaaaajugibiab gkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaeyypa0dakeaajugibi abg2da9KqbaoaalaaakeaajugibiaaigdaaOqaaKqbaoaakaaakeaa jugibiaaigdacqGHsislcqaHYoGylmaaCaaajeaibeqaaKqzadGaaG OmaaaaaSqabaaaaKqbaoaacmaakeaajugibiaadwfalmaaBaaajeai baqcLbmacaaIWaaajeaibeaajugibiabgUcaRiabek7aITWaaWbaaK qaGeqabaqcLbmacaaIYaaaaKqzGeGaamiCaSWaaSbaaKqaGeaajugW aiaaicdaaKqaGeqaaKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaey4kaSIaeq4Wdm3cdaWgaaqcbasaaKqzadGa aGimaaqcbasabaqcLbsacqaHjpWDlmaaBaaajeaibaqcLbmacaaIWa aajeaibeaajuaGdaqadaGcbaqcfa4aaOaaaOqaaKqzGeGaaGymaiab gkHiTiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaWcbe aajugibiabgkHiTiaaigdaaOGaayjkaiaawMcaaaGaay5Eaiaaw2ha aKqzGeGaeyOeI0IaamyvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaey4kaSIaamiCaSWaaSbaaKqaGeaajugWaiaaicdaaKqa GeqaaKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaK qbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGylmaaCaaajeai beqaaKqzadGaaGOmaaaaaSqabaqcLbsacqGHsislcaWGWbWcdaWgaa qcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWGwbWcdaWgaaqcbasa aKqzadGaaGimaaqcbasabaaaaaa@CD7D@ ,  (20)

i.e., the integral in (20) gives an increment of enthalpy at the adiabatic acceleration of the system from velocity v=0 up to a velocity v for the observer being in the laboratory reference frame.

Equation (20) is completely consistent; it is correct in the range of velocities 0-v for Q 2 ( v )= Q 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajuaG daqadaGcbaqcLbsacaWG2baakiaawIcacaGLPaaajugibiabg2da9K qbaoaalaaakeaajugibiaadgfalmaaBaaajeaibaqcLbmacaaIWaaa jeaibeaaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYo GyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqabaaaaaaa@4DB1@ . As a result, T= T 0 / 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacqGH9aqpcaWGubqcfa4aaSbaaKqaGeaajugWaiaa icdaaSqabaqcLbsacaGGVaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgk HiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaaaaa@46E0@ , in accordance to Ott.6 If it were Q 2 ( v )= Q 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajuaG daqadaGcbaqcLbsacaWG2baakiaawIcacaGLPaaajugibiabg2da9i aadgfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajuaGdaGcaaGc baqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaaju gWaiaaikdaaaaaleqaaaaa@4C70@ , we would сome to absurdity as vc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcaWGJbaaaa@3D1E@ . Indeed, the left side of (20) vanishes but the right side of (20) tends to  . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabg6HiLkaac6caaaa@3B71@

M.Planck as well as A. Einstein, were mistaken considering that the temperature had to transform, at adiabatic acceleration, according to the law

T= T 0 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacqGH9aqpcaWGubWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aIT WaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaajugibiaacYcaaaa@4679@   (21)

As v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcqGHEisPaaa@3DA7@ . The reason of this mistake will be shown below, in Discussion. Now we study the second case (Figure 2).

Figure 2 The moving flat interface; the velocity v of its motion is parallel to the flat one. ΔL is the thickness of the surface.

The relation (14) should now be written down in view of the relation

ω= ω 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3jabg2da9iabeM8a3TWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYo GylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaaaa@4722@ ,  (22)

As

1 2 dQ= U 2 U (0)1 + p 0 V 2 p 0 V (0)1 σ 0 ω 2 + σ 0 ω (0)1 1 2 v dv c 2 ( 1 v 2 c 2 ) 3 { U 0 + p 0 V 0 σ 0 ω 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbGcbaqcLbsacaWGKbGaamyuaiabg2da9iaadwfalmaa BaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabgkHiTiaadwfalm aaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIXaaajeaibeaa aeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaKqzGeGaey4kIipacq GHRaWkcaWGWbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsa caWGwbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacqGHsi slcaWGWbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWG wbWcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaaGymaaqcba sabaqcLbsacqGHsislcqaHdpWClmaaBaaajeaibaqcLbmacaaIWaaa jeaibeaajugibiabeM8a3TWaaSbaaKqaGeaajugWaiaaikdaaKqaGe qaaKqzGeGaey4kaSIaeq4Wdm3cdaWgaaqcbasaaKqzadGaaGimaaqc basabaqcLbsacqaHjpWDlmaaBaaajeaibaqcLbmacaGGOaGaaGimai aacMcacaaIXaaajeaibeaajugibiabgkHiTKqbaoaapehakeaajugi biaadAhajuaGdaWcaaGcbaqcLbsacaWGKbGaamODaaGcbaqcLbsaca WGJbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcfa4aaOaaaOqa aKqbaoaabmaakeaajugibiaaigdacqGHsisljuaGdaWcaaGcbaqcLb sacaWG2bWcdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugibiaa dogajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawIcaca GLPaaalmaaCaaajeaibeqaaKqzadGaaG4maaaaaSqabaaaaKqbaoaa cmaakeaajugibiaadwfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbe aajugibiabgUcaRiaadchalmaaBaaajeaibaqcLbmacaaIWaaajeai beaajugibiaadAfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaju gibiabgkHiTiabeo8aZTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaki aawUhacaGL9baaaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikda aKqzGeGaey4kIipaaaa@B3F2@ .  (23)

Since instead of the ratio (17), we have now

U= U 0 + β 2 ( p 0 V 0 σ 0 ω 0 ) 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwfacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGvbWcdaWg aaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqGHRaWkcqaHYoGylm aaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaacIcacaWGWbWcdaWg aaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWGwbqcfa4aaSbaaK qaGeaajugWaiaaicdaaSqabaqcLbsacqGHsislcqaHdpWClmaaBaaa jeaibaqcLbmacaaIWaaajeaibeaajugibiabeM8a3LqbaoaaBaaaje aibaqcLbmacaaIWaaaleqaaKqzGeGaaiykaaGcbaqcfa4aaOaaaOqa aKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmaca aIYaaaaaWcbeaaaaaaaa@60A9@ ,  (24)

Then formula (18) takes the form:

Q 2 (v) Q (0)1 ={ U 0 + p 0 V 0 σ 0 ω 0 }( 1 1 β 2 1 )= 1 1 β 2 { U 0 + β 2 ( p 0 V 0 σ 0 ω 0 ) } U 0 + p 0 V 0 1 β 2 p 0 V 0 σ 0 ω 0 1 β 2 + σ 0 ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamyuaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqa aKqzGeGaaiikaiaadAhacaGGPaGaeyOeI0IaamyuaSWaaSbaaKqaGe aajugWaiaacIcacaaIWaGaaiykaiaaigdaaKqaGeqaaKqzGeGaeyyp a0tcfa4aaiWaaOqaaKqzGeGaamyvaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaey4kaSIaamiCaSWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqzGeGaamOvaSWaaSbaaKqaGeaajugWaiaaicdaaK qaGeqaaKqzGeGaeyOeI0Iaeq4Wdm3cdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcLbsacqaHjpWDlmaaBaaajeaibaqcLbmacaaIWaaaje aibeaaaOGaay5Eaiaaw2haaKqbaoaabmaakeaajuaGdaWcaaGcbaqc LbsacaaIXaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0Iaeq OSdi2cdaahaaqcbasabeaajugWaiaaikdaaaaaleqaaaaajugibiab gkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaeyypa0dakeaajuaGda WcaaGcbaqcLbsacaaIXaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGa eyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaale qaaaaajuaGdaGadaGcbaqcLbsacaWGvbWcdaWgaaqcbasaaKqzadGa aGimaaqcbasabaqcLbsacqGHRaWkcqaHYoGylmaaCaaajeaibeqaaK qzadGaaGOmaaaajugibiaacIcacaWGWbWcdaWgaaqcbasaaKqzadGa aGimaaqcbasabaqcLbsacaWGwbWcdaWgaaqcbasaaKqzadGaaGimaa qcbasabaqcLbsacqGHsislcqaHdpWClmaaBaaajeaibaqcLbmacaaI WaaajeaibeaajugibiabeM8a3TWaaSbaaKqaGeaajugWaiaaicdaaK qaGeqaaKqzGeGaaiykaaGccaGL7bGaayzFaaqcLbsacqGHsislcaWG vbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqGHRaWkca WGWbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWGwbWc daWgaaqcbasaaKqzadGaaGimaaqcbasabaqcfa4aaOaaaOqaaKqzGe GaaGymaiabgkHiTiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaI YaaaaaWcbeaajugibiabgkHiTaGcbaqcLbsacqGHsislcaWGWbWcda WgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWGwbqcfa4aaSba aKqaGeaajugWaiaaicdaaSqabaqcLbsacqGHsislcqaHdpWClmaaBa aajeaibaqcLbmacaaIWaaajeaibeaajugibiabeM8a3TWaaSbaaKqa GeaajugWaiaaicdaaKqaGeqaaKqbaoaakaaakeaajugibiaaigdacq GHsislcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqa baqcLbsacqGHRaWkcqaHdpWClmaaBaaajeaibaqcLbmacaaIWaaaje aibeaajugibiabeM8a3LqbaoaaBaaajeaibaqcLbmacaaIWaaaleqa aaaaaa@D4F9@ .  (25)

Taking into consideration (20), we have now:

Q 2 (v)= 1 1 β 2 { U 0 + β 2 ( p 0 V 0 σ 0 ω 0 ) }+ p 0 V 0 1 β 2 σ 0 ω 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugi biaacIcacaWG2bGaaiykaiabg2da9Kqbaoaalaaakeaajugibiaaig daaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGylmaa CaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaaaKqbaoaacmaakeaaju gibiaadwfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiab gUcaRiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaai ikaiaadchalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiaa dAfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabgkHiTi abeo8aZTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeqyY dC3cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaGGPaaaki aawUhacaGL9baajugibiabgUcaRiaadchalmaaBaaajeaibaqcLbma caaIWaaajeaibeaajugibiaadAfalmaaBaaajeaibaqcLbmacaaIWa aajeaibeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2c daahaaqcbasabeaajugWaiaaikdaaaaaleqaaKqzGeGaeyOeI0Iaeq 4Wdm3cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaHjpWD lmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajuaGdaGcaaGcbaqcLb sacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikda aaaaleqaaaaa@8A4E@ .  (26)

Equation (26) is correct, as and in case 1, Q 2 ( v )= Q 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajuaG daqadaGcbaqcLbsacaWG2baakiaawIcacaGLPaaajugibiabg2da9K qbaoaalaaakeaajugibiaadgfajuaGdaWgaaqcbasaaKqzadGaaGim aaWcbeaaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYo GylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaaaaaa@4D87@ if; it is incorrect if Q 2 ( v )= Q 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajuaG daqadaGcbaqcLbsacaWG2baakiaawIcacaGLPaaajugibiabg2da9i aadgfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajuaGdaGcaaGc baqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaaju gWaiaaikdaaaaaleqaaaaa@4C70@ .

There are more complicated cases than those represented in Figures 1 & 2, in particular, the cases of droplet or bubble, however, we do not study them in this paper.

It should be added that we come to the absurdity considering the temperature T to be a Lorentz-invariant. Now determine, how the temperature and heat have to transform under relativistic conditions when the heat is input into the system from the outside. To solve this problem, we should take into consideration that the thermodynamical state of the system is independent of the way of its transition to it. Let there be two states of the system (1 and 2) and two its intermediate ones (1' and 2'). In state 1 the system is at rest and contains some quantity of heat, which is equal to Q 01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIWaGaaGymaaqcbasa baaaaa@3D47@ . We input into the system an additional quantity of the heat Δ Q 01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadgfalmaaBaaajeaibaqcLbmacaaIWaGaaGym aaqcbasabaaaaa@3EAD@ ; now the system is in state 1'. The heat in the system equals Q 01 +Δ Q 01 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIWaGaaGymaaqcbasa baqcLbsacqGHRaWkcqqHuoarcaWGrbqcfa4aaSbaaKqaGeaajugWai aaicdacaaIXaaaleqaaKqzGeGaaiOlaaaa@45BC@  Accelerate adiabatic the system up to velocity v. Now the system is in state 2; the heat of the system is

Q 2 = Q 01 +Δ Q 01 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiaadgfalmaaBaaajeaibaqcLb macaaIWaGaaGymaaqcbasabaqcLbsacqGHRaWkcqqHuoarcaWGrbWc daWgaaqcbasaaKqzadGaaGimaiaaigdaaKqaGeqaaaGcbaqcfa4aaO aaaOqaaKqzGeGaaGymaiabgkHiTiabek7aILqbaoaaCaaaleqajeai baqcLbmacaaIYaaaaaWcbeaaaaaaaa@5187@ .  (27)

However, the system can go to state 2 otherwise: through state 2'. To do that, we must accelerate adiabatically the system being in state 1 up to the velocity v. Then the system will be in state 2'. Its heat equals

Q 2 ' = Q 01 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIYaWcdaahaaqccasa beaajugWaiaacEcaaaaajeaibeaajugibiabg2da9Kqbaoaalaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIWaGaaGymaaqcbasa baaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cda ahaaqcbasabeaajugWaiaaikdaaaaaleqaaaaaaaa@4C5A@ .  (28)

Further, we input a quantity of heat into the system Δ Q 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadgfalmaaBaaajeaibaqcLbmacaaIYaWcdaah aaqccasabeaajugWaiaacEcaaaaajeaibeaaaaa@4025@ and transfer it to state 2. Then the quantity of heat in the system Q 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaDaaajeaibaqcLbmacaaIYaaajeaibaqcLbma caGGNaaaaaaa@3E68@ equals

Q 2 = Q 2 ' +Δ Q 2 ' = Q 01 1 β 2 +Δ Q 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabg2da9iaadgfalmaaBaaajeaibaqcLbmacaaIYaWcdaahaaqcca sabeaajugWaiaacEcaaaaajeaibeaajugibiabgUcaRiabfs5aejaa dgfalmaaBaaajeaibaqcLbmacaaIYaWcdaahaaqccasabeaajugWai aacEcaaaaajeaibeaajugibiabg2da9Kqbaoaalaaakeaajugibiaa dgfalmaaBaaajeaibaqcLbmacaaIWaGaaGymaaqcbasabaaakeaaju aGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaaaleqaaaaajugibiabgUcaRiabfs5aej aadgfalmaaBaaajeaibaqcLbmacaaIYaWcdaahaaqccasabeaajugW aiaacEcaaaaajeaibeaaaaa@624D@ .  (29)

Evidently,

Q 01 +Δ Q 1 1 β 2 = Q 01 1 β 2 +Δ Q 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGrbWcdaWgaaqcbasaaKqzadGaaGim aiaaigdaaKqaGeqaaKqzGeGaey4kaSIaeuiLdqKaamyuaSWaaSbaaK qaGeaajugWaiaaigdaaKqaGeqaaaGcbaqcfa4aaOaaaOqaaKqzGeGa aGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaa WcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGrbqcfa4a aSbaaKqaGeaajugWaiaaicdacaaIXaaaleqaaaGcbaqcfa4aaOaaaO qaaKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbma caaIYaaaaaWcbeaaaaqcLbsacqGHRaWkcqqHuoarcaWGrbqcfa4aaS baaKqaGeaajugWaiaaikdalmaaCaaajiaibeqaaKqzadGaai4jaaaa aSqabaaaaa@6186@ ,  (30)

From equations (30) it follows that

Δ Q 01 1 β 2 =Δ Q 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqqHuoarcaWGrbWcdaWgaaqcbasaaKqz adGaaGimaiaaigdaaKqaGeqaaaGcbaqcfa4aaOaaaOqaaKqzGeGaaG ymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWc beaaaaqcLbsacqGH9aqpcqqHuoarcaWGrbWcdaWgaaqcbasaaKqzad GaaGOmaSWaaWbaaKGaGeqabaqcLbmacaGGNaaaaaqcbasabaaaaa@4E97@ ,  (31)

Now we can formulate the first principle of thermodynamics under relativistic conditions (3-D formalism):

dE=d Q s +d Q T +d A d +v dG  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGfbGaeyypa0JaamizaiaadgfajuaGdaWgaaqc basaaKqzadGaam4CaaWcbeaajugibiabgUcaRiaadsgacaWGrbWcda WgaaqcbasaaKqzadGaamivaaqcbasabaqcLbsacqGHRaWkcaWGKbGa amyqaSWaaSbaaKqaGeaajugWaiaadsgaaKqaGeqaaKqzGeGaey4kaS ceaaaaaaaaa8qacaWH2bGaaeiiaiabgwSixlaadsgacaWHhbGaaiiO aaaa@5498@ ,  (32)

Where E( =U+ E kin ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraKqba+aadaqadaGcbaqcLbsapeGa eyypa0JaamyvaiabgUcaRiaadweal8aadaWgaaqcbasaaKqzadWdbi aadUgacaWGPbGaamOBaaqcbaYdaeqaaaGccaGLOaGaayzkaaaaaa@454A@  is the energy of the system, Q s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaa@3CCA@  the heat changing the entropy of the system (entropic heat). i.e., dQ=TdS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbGaeyypa0JaamivaiaadsgacaWGtbaaaa@3EAD@ ; Q T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaWGubaajeaibeaaaaa@3CAB@  the heat not changing the entropy of the system (relativistic heat) for the observer being at rest in the reference frame, i.e., dQ=SdT=v d G s   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbGaeyypa0Jaam4uaiaadsgacaWGubGaeyyp a0deaaaaaaaaa8qacaWH2bGaaeiiaiabgwSixlaadsgacaWHhbWcpa WaaSbaaKqaGeaajugWa8qacaWGZbaajeaipaqabaqcLbmapeGaaiiO aaaa@4AAE@ ; A d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgealmaaBaaajeaibaqcLbmacaWGKbaajeaibeaaaaa@3CAB@  the work of deformation, e.g., d A d =pdV+σdω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGbbqcfa4aaSbaaKqaGeaajugWaiaadsgaaSqa baqcLbsacqGH9aqpcqGHsislcaWGWbGaamizaiaadAfacqGHRaWkcq aHdpWCcaWGKbGaeqyYdChaaa@488E@ .

v d G s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiaabccacqGHflY1caWGKbGaaC4r aSWdamaaBaaajeaibaqcLbmapeGaam4CaaqcbaYdaeqaaaaa@41E7@  the increment of the work expended on the increasing of microparticles; velocity of the system moving (the microparticles) relative to its mass centre; v dG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiaabccacqGHflY1caWGKbGaaC4r aaaa@3F13@ the increment of the work expended on the increasing of the system velocity from zero up to .

If v=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiabg2da9iaaicdaaaa@3C2D@ , the law (32) will be transformed in the law (1).

Taking into consideration the relations (9) - (11), we can write down:

G s ={ ( U 0 + p 0 V 0 σ 0 ω 0 ) c 2 1 β 2 v; i( U+pVσω ) c } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaC4raSWdamaaBaaajeaibaqcLbmapeGa am4CaaqcbaYdaeqaaKqzGeGaeyypa0tcfa4aaiqaaOqaaKqbaoaala aakeaajuaGdaqadaGcbaqcLbsacaWGvbWcdaWgaaqcbasaaKqzadGa aGimaaqcbasabaqcLbsacqGHRaWkcaWGWbWcdaWgaaqcbasaaKqzad GaaGimaaqcbasabaqcLbsacaWGwbqcfa4aaSbaaKqaGeaajugWaiaa icdaaSqabaqcLbsacqGHsislcqaHdpWClmaaBaaajeaibaqcLbmaca aIWaaajeaibeaajugibiabeM8a3TWaaSbaaKqaGeaajugWaiaaicda aKqaGeqaaaGccaGLOaGaayzkaaaabaqcLbsacaWGJbWcdaahaaqcba sabeaajugWaiaaikdaaaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHi Tiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaaaaaaki aawUhaaKqzGeWdbiaahAhacaGG7aqcfa4damaaciaakeaajuaGdaWc aaGcbaqcLbsacaWGPbqcfa4aaeWaaOqaaKqzGeGaamyvaiabgUcaRi aadchacaWGwbGaeyOeI0Iaeq4WdmNaeqyYdChakiaawIcacaGLPaaa aeaajugibiaadogaaaaakiaaw2haaaaa@7784@   (33)

The quantities in braces of (33) form, in Minkowski space, a vector of energy-momentum having invariant lengths equal to

i( U 0 + p 0 V 0 σ 0 ω 0 ) c , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGPbqcfa4aaeWaaOqaaKqzGeGaamyv aSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaey4kaSIaam iCaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaamOvaSWa aSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeyOeI0Iaeq4Wdm 3cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaHjpWDlmaa BaaajeaibaqcLbmacaaIWaaajeaibeaaaOGaayjkaiaawMcaaaqaaK qzGeGaam4yaaaacaGGSaaaaa@5676@   (34)

MØller11 represents a quantity Δ Q s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadgfalmaaBaaajeaibaqcLbmacaWGZbaajeai beaaaaa@3E30@  as

ΔQ={ G (h) , i c ΔQ} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadgfacqGH9aqpcaGG7baeaaaaaaaaa8qacaWH hbWcpaWaaWbaaKqaGeqabaqcLbmacaGGOaWdbiaadIgapaGaaiykaa aajugib8qacaGGSaqcfa4damaalaaakeaajugibiaadMgaaOqaaKqz GeGaam4yaaaacqqHuoarcaWGrbGaaiyFaaaa@4AB9@ ,  (35)

Where Δ G ( h ) = ΔQ c 2 v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aebbaaaaaaaaapeGaaC4raSWdamaaCaaajeaibeqa aSWaaeWaaKqaGeaajugWa8qacaWGObaajeaipaGaayjkaiaawMcaaa aajugibiabg2da9Kqbaoaalaaakeaajugibiabfs5aejaadgfaaOqa aKqzGeGaam4yaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaju gibiaadAhaaaa@4B0E@ ; ΔQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadgfaaaa@3B8A@ is the amount of the heat transferred to the system during the process; in fact. ΔQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadgfaaaa@3B8A@ = d Q s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbWcdaWgaaqcbasaaKqzadGaam4Caaqcbasa baaaaa@3DB3@  (see above the law (32)).

The relation (35) was obtained by MØller11 with taking into account the influence of the vessel walls, containing our substance, i.e., for a system consisting of two subsystems: substance and the vessel with its walls. It is important to note that the law (32) was obtained without accounting for the influence of the walls of the vessel.

The law (32) is correct in Euclidean space up to the velocity of system motion v max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhalmaaBaaajeaibaqcLbmaciGGTbGaaiyyaiaacIha aKqaGeqaaaaa@3ECB@ . If v> v max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGH+aGpcaWG2bqcfa4aaSbaaKqaGeaajugWaiGa c2gacaGGHbGaaiiEaaWcbeaaaaa@4132@ , the micro particle velocities begin to prevail in the direction X1 over those in the directions X2 and X3 for the observer in the laboratory reference frame, in accordance to the relativistic law of the velocity composition. Now both the heat and temperature are not already scalars they are vectors. Then we can write down the law (32) as

dE=d Q k(s) k+d Q k(T) k+d A d +v ·dG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGfbGaeyypa0JaamizaiaadgfalmaaBaaajeai baqcLbmacaWGRbGaaiikaiaadohacaGGPaaajeaibeaajugibiaadU gacqGHRaWkcaWGKbGaamyuaSWaaSbaaKqaGeaajugWaiaadUgacaGG OaGaamivaiaacMcaaKqaGeqaaKqzGeGaam4AaiabgUcaRiaadsgaca WGbbWcdaWgaaqcbasaaKqzadGaamizaaqcbasabaqcLbsacqGHRaWk qaaaaaaaaaWdbiaahAhacaqGGaGaeS4JPFMaamizaiaahEeaaaa@59A8@ ,  (36)

Where

k=( 1 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4Aa8aacqGH9aqpjuaGdaqadaGcbaqc LbsafaqabeWabaaakeaajugibiaaigdaaOqaaKqzGeGaaGymaaGcba qcLbsacaaIXaaaaaGccaGLOaGaayzkaaaaaa@4238@ ,  (37)

Is the dimensionless vector; Q k(s) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaWGRbGaaiikaiaadoha caGGPaaajeaibeaaaaa@3F13@ and Q k(T) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaWGRbGaaiikaiaadsfa caGGPaaajeaibeaaaaa@3EF4@ are the vectors; k=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4Aaiabg2da9iaaigdacaGGSaGaaGOm aiaacYcacaaIZaaaaa@3EF8@ .

Solving the problem: 4D-case

Solve now the problem for 4-D case, to obtain the first principle of thermodynamics in Minkowski space. First of all, it should be noted that there were attempts to solve the problem for 4-D case, e.g.., by Eckart.,8 he wrote the first principle of thermodynamics as

mDε+(1/c)[( q α / x α + q α D u α )]+ w αβ ( u β / x α )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacaWGebGaeqyTduMaey4kaSIaaiikaiaaigdacaGG VaGaam4yaiaacMcacaGGBbGaaiikaiabgkGi2kaadghalmaaCaaaje aibeqaaKqzadGaeqySdegaaKqzGeGaai4laiabgkGi2kaadIhalmaa CaaajeaibeqaaKqzadGaeqySdegaaKqzGeGaey4kaSIaamyCaSWaaW baaKqaGeqabaqcLbmacqaHXoqyaaqcLbsacaWGebGaamyDaSWaaSba aKqaGeaajugWaiabeg7aHbqcbasabaqcLbsacaGGPaGaaiyxaiabgU caRiaadEhalmaaCaaajeaibeqaaKqzadGaeqySdeMaeqOSdigaaKqz GeGaaiikaiabgkGi2kaadwhalmaaBaaajeaibaqcLbmacqaHYoGyaK qaGeqaaKqzGeGaai4laiabgkGi2kaadIhalmaaCaaajeaibeqaaKqz adGaeqySdegaaKqzGeGaaiykaiabg2da9iaaicdaaaa@73AE@ ,  (38)

m= ( g αβ m α m β ) 1/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGH9aqpcaGGOaGaeyOeI0Iaam4zaKqbaoaaBaaa jeaibaqcLbmacqaHXoqycqaHYoGyaSqabaqcLbsacaWGTbWcdaahaa qcbasabeaajugWaiabeg7aHbaajugibiaad2galmaaCaaajeaibeqa aKqzadGaeqOSdigaaKqzGeGaaiykaSWaaWbaaKqaGeqabaqcLbmaca aIXaGaai4laiaaikdaaaqcLbsacaGGSaaaaa@5293@   (39)

Where g αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgalmaaBeaajeaibaqcLbmacqaHXoqycqaHYoGyaKqa Geqaaaaa@3F29@  is the fundamental tensor; m α ( m β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2galmaaCaaajeaibeqaaKqzadGaeqySdegaaKqzGeGa aiikaiaad2gajuaGdaahaaWcbeqcbasaaKqzadGaeqOSdigaaKqzGe Gaaiykaaaa@4481@ a four-vector which has the units gcm-3, and depends only on the molecular weight and the motion of molecules; u α = m α /m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhalmaaCaaajeaibeqaaKqzadGaeqySdegaaKqzGeGa eyypa0JaamyBaSWaaWbaaKqaGeqabaqcLbmacqaHXoqyaaqcLbsaca GGVaGaamyBaaaa@454B@ ; D the unique differential operator corresponding closely to the classical operator D/Dt; ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTdugaaa@3B15@  the internal energy (Jkg-1; ergg-1); q α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghalmaaCaaajeaibeqaaKqzadGaeqySdegaaaaa@3D68@ heat flow

(Jcm-2 s-1); w αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEhalmaaCaaajeaibeqaaKqzadGaeqySdeMaeqOSdiga aaaa@3F0F@ the stress tensor (Ncm-2; Jcm-3).

In fact, the relation (38) is an attempt to obtain the first principle of thermodynamics in a differential 4D-form. It should be noted that the term (1/c) q α D u α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaacIcacaaIXaGaai4laiaadogacaGGPaGaamyCaSWaaWba aKqaGeqabaqcLbmacqaHXoqyaaqcLbsacaWGebGaamyDaSWaaSbaaK qaGeaajugWaiabeg7aHbqcbasabaaaaa@46B6@  does not appear in the classical case. This term is very small in all ordinary cases, and may be interpreted as a work done by a heat flow through accelerated matter, in the direction opposite to the acceleration. It may be explained as due to the inertia of energy.

The expression (38) is incorrect. The different terms in it have different units. If the relation (38) is written down as

mDε+c[ q α / x α + w αβ ( u β / x α )]+(1/c) q α D u α =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacaWGebGaeqyTduMaey4kaSIaam4yaiaacUfacqGH ciITcaWGXbWcdaahaaqcbasabeaajugWaiabeg7aHbaajugibiaac+ cacqGHciITcaWG4bWcdaahaaqcbasabeaajugWaiabeg7aHbaajugi biabgUcaRiaadEhalmaaCaaajeaibeqaaKqzadGaeqySdeMaeqOSdi gaaKqzGeGaaiikaiabgkGi2kaadwhajuaGdaWgaaqcbasaaKqzadGa eqOSdigaleqaaKqzGeGaai4laiabgkGi2kaadIhalmaaCaaajeaibe qaaKqzadGaeqySdegaaKqzGeGaaiykaiaac2facqGHRaWkcaGGOaGa aGymaiaac+cacaWGJbGaaiykaiaadghalmaaCaaajeaibeqaaKqzad GaeqySdegaaKqzGeGaamiraiaadwhalmaaBaaajeaibaqcLbmacqaH XoqyaKqaGeqaaKqzGeGaeyypa0JaaGimaaaa@73A1@ ,  (40)

Then all terms will have the same units. They have to transform identically under relativistic conditions, and we do not come to absurdity.

We have to obtain the first principle of thermodynamics in Minkowski space under relativistic conditions having taken relation (32) as a basis. To solve the problem, each term on the right side of (32) should be represented in a 4D-form. Having done it, we automatically represent, in turn, the term on the left side of (32), i.e., internal energy as 4-D physical object. Such representation of internal energy follows from the principle of two observers we formulated.

Begin the representation with the work of acceleration, i.e., v·dG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiabl+y6NjaadsgacaWHhbaaaa@3E96@ .

In our case the velocity components v 2(3) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhalmaaBaaajeaibaqcLbmacaaIYaGaaiikaiaaioda caGGPaaajeaibeaajugibiabg2da9iaaicdaaaa@4118@ . Then we have for components 1 and 4:

u 1 d p 1 = v 1 1 β 2 d m 0 v 1 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaSWdamaaBaaajeaibaqcLbmapeGa aGymaaqcbaYdaeqaaKqzGeWdbiaadsgacaWGWbWcpaWaaSbaaKqaGe aajugWa8qacaaIXaaajeaipaqabaqcLbsacqGH9aqpjuaGdaWcaaGc baqcLbsacaWG2bqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaaaOqaaK qbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGylmaaCaaajeai beqaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaamizaKqbaoaalaaake aajugibiaad2gajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biaadAhalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaOqaaKqbao aakaaakeaajugibiaaigdacqGHsislcqaHYoGyjuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaaiilaaaa@61C2@   (41)

And after the subsequent integration we have

I 1 = С 1 m 0 v 1 2 2( 1 β 2 ) | 0 v 1 = С 1 m 0 v 1 2 2( 1 β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biabg2da9KqbaoaaeiaakeaajugibiaadgcblmaaBaaajeaibaqcLb macaaIXaaajeaibeaajuaGdaWcaaGcbaqcLbsacaWGTbqcfa4aaSba aKqaGeaajugWaiaaicdaaSqabaqcLbsacaWG2bWcdaqhaaqcbasaaK qzadGaaGymaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGOmaKqb aoaabmaakeaajugibiaaigdacqGHsislcqaHYoGylmaaCaaajeaibe qaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaaaaaiaawIa7aKqbaoaa DaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaWG2bWcdaWgaaqcca saaKqzadGaaGymaaqccasabaaaaKqzGeGaeyypa0JaamyieKqbaoaa BaaajeaibaqcLbmacaaIXaaaleqaaKqbaoaalaaakeaajugibiaad2 gajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaadAhalmaa DaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaaGcbaqcLb sacaaIYaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTiabek7aITWa aWbaaKqaGeqabaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaaaaaaa@794E@ ,  (42)

Where C 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4qaKqba+aadaWgaaqcbasaaKqzadWd biaaigdaaSWdaeqaaaaa@3D31@ is the normalization coefficient; u1 the component of the 4-velocity of our object in the direction X1.

The essence of this coefficient presented as follows. There are some of thermodynamical parameters in Relativistic Thermodynamics that equally transform in Euclidean and Minkowski spaces, e.g., the interval of time Δt or element of length Δl which is parallel to X1. According to the energy conservation law, the energy has to vary in Euclidean and Minkowski spaces equelly, i.e., in inverse proportion to 1 β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqc basabeaajugWaiaaikdaaaaaleqaaKqzGeGaaiOlaaaa@40CC@

We can find this coefficient from a condition: when the velocity of the system equals v1, then its kinetic energy I 1 = m 0 v 1 2 2 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biabg2da9Kqbaoaalaaakeaajugibiaad2galmaaBaaajeaibaqcLb macaaIWaaajeaibeaajugibiaadAhalmaaDaaajeaibaqcLbmacaaI XaaajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaaIYaqcfa4aaOaaaO qaaKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbma caaIYaaaaaWcbeaaaaaaaa@50AA@ . In this case C 1 = 1 β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biabg2da9KqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGylm aaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaqcLbsacaGGUaaaaa@4621@  For v<<c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamODaiabgYda8iabgYda8iaadogaaaa@3D59@ we obtain the well-known expression for the kinetic energy of a moving body for this case: I 1 = m 0 v 1 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMeajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugi biabg2da9Kqbaoaalaaakeaajugibiaad2galmaaBaaajeaibaqcLb macaaIWaaajeaibeaajugibiaadAhalmaaDaaajeaibaqcLbmacaaI XaaajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaaIYaaaaaaa@4A42@ .

For the component 4 (0) we have:

u 4 d p 4 = c 1 β 2 d m 0 c 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaKqba+aadaWgaaqcbasaaKqzadWd biaaisdaaSWdaeqaaKqzGeWdbiaadsgacaWGWbWcpaWaaSbaaKqaGe aajugWa8qacaaI0aaajeaipaqabaqcLbsacqGH9aqpjuaGdaWcaaGc baqcLbsacaWGJbaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0 IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaleqaaaaa jugibiaadsgajuaGdaWcaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaK qzadGaaGimaaqcbasabaqcLbsacaWGJbaakeaajuaGdaGcaaGcbaqc LbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaaaleqaaaaajugibiaacYcaaaa@5DB8@   (43)

And after the subsequent integration we have, in turn:

I 4 = C 2 m 0 c 2 2( 1 β 2 ) | 1 2 = C 2 [ m 0 c 2 2( 1 β 2 ) m 0 c 2 2 ] = C 2 m 0 c 2 2 [ 1 1 β 2 1 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaaI0aaajeaibeaajugi biabg2da9iaadoealmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaju aGdaabcaGcbaqcfa4aaSaaaOqaaKqzGeGaamyBaSWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaKqzGeGaam4yaSWaaWbaaKqaGeqabaqcLb macaaIYaaaaaGcbaqcLbsacaaIYaqcfa4aaeWaaOqaaKqzGeGaaGym aiabgkHiTiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaa GccaGLOaGaayzkaaaaaaGaayjcSdWcdaqhaaqcbasaaKqzadGaaGym aaqcbasaaKqzadGaaGOmaaaajugibiabg2da9iaadoealmaaBaaaje aibaqcLbmacaaIYaaajeaibeaajuaGdaWabaGcbaqcfa4aaSaaaOqa aKqzGeGaamyBaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGe Gaam4yaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaI Yaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTiabek7aILqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaaaaKqzGeGa eyOeI0scfa4aamGaaOqaaKqbaoaalaaakeaajugibiaad2gajuaGda WgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaadogalmaaCaaajeai beqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGOmaaaaaOGaayzxaaaaca GLBbaajugibiabg2da9KqbaoaalaaakeaajugibiaadoealmaaBaaa jeaibaqcLbmacaaIYaaajeaibeaajugibiaad2galmaaBaaajeaiba qcLbmacaaIWaaajeaibeaajugibiaadogalmaaCaaajeaibeqaaKqz adGaaGOmaaaaaOqaaKqzGeGaaGOmaaaajuaGdaWadaGcbaqcfa4aaS aaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2c daahaaqcbasabeaajugWaiaaikdaaaaaaKqzGeGaeyOeI0IaaGymaa GccaGLBbGaayzxaaqcLbsacaGGSaaaaa@9D3C@   (44)

If the initial state is the state at β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjabg2da9iaaicdaaaa@3CAF@ . C2 is the normalization constant for this case. It can be found from the condition: I 4 = m 0 c 2 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamysaSWdamaaBaaajeaibaqcLbmapeGa aGinaaqcbaYdaeqaaKqzGeWdbiabg2da9Kqba+aadaWcaaGcbaqcLb sacaWGTbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWG JbWcdaahaaqcbasabeaajugWaiaaikdaaaaakeaajuaGdaGcaaGcba qcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugW aiaaikdaaaaaleqaaaaaaaa@4E37@  if the velocity of our system equals v1. Then C 2 = 2 1 β 2 β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoealmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiaaikdajuaGdaGcaaGcbaqcLb sacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWaiaa ikdaaaaaleqaaaGcbaqcLbsacqaHYoGyjuaGdaahaaWcbeqcbasaaK qzadGaaGOmaaaaaaqcLbsacaGGUaaaaa@4DAC@  At v=0 I 4 = m 0 c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMeajuaGdaWgaaqcbasaaKqzadGaaGinaaWcbeaajugi biabg2da9iaad2galmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaju gibiaadogalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaacYca aaa@46D2@  i.e., we have the well known ratio.

We can also represent components 1 and 4 using other representation of them in Minkowski space:

u 1 d G 1 = C 1 u (0)1 iβ u (0)4 1 β 2 d m 0 ( u (0)1 iβ u (0)4 ) 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaadsgacaWGhbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacqGH9aqpcaWGdbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc fa4aaSaaaOqaaKqzGeGaamyDaSWaaSbaaKqaGeaajugWaiaacIcaca aIWaGaaiykaiaaigdaaKqaGeqaaKqzGeGaeyOeI0IaamyAaiabek7a IjaadwhalmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaI0a aajeaibeaaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaH YoGylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaam izaKqbaoaalaaakeaajugibiaad2galmaaBaaajeaibaqcLbmacaaI WaaajeaibeaajuaGdaqadaGcbaqcLbsacaWG1bWcdaWgaaqcbasaaK qzadGaaiikaiaaicdacaGGPaGaaGymaaqcbasabaqcLbsacqGHsisl caWGPbGaeqOSdiMaamyDaSWaaSbaaKqaGeaajugWaiaacIcacaaIWa GaaiykaiaaisdaaKqaGeqaaaGccaGLOaGaayzkaaaabaqcfa4aaOaa aOqaaKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLb macaaIYaaaaaWcbeaaaaaaaa@7BB4@ ,  (45)

I 1 = C 1 m 0 ( u ( 0 )1 iβ u ( 0 )4 ) 2( 1 β 2 ) | 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biabg2da9iaadoealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaju aGdaabcaGcbaqcfa4aaSaaaOqaaKqzGeGaamyBaSWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaKqbaoaabmaakeaajugibiaadwhalmaaBa aajeaibaWcdaqadaqcbasaaKqzadGaaGimaaqcbaIaayjkaiaawMca aKqzadGaaGymaaqcbasabaqcLbsacqGHsislcaWGPbGaeqOSdiMaam yDaSWaaSbaaKqaGeaalmaabmaajeaibaqcLbmacaaIWaaajeaicaGL OaGaayzkaaqcLbmacaaI0aaajeaibeaaaOGaayjkaiaawMcaaaqaaK qzGeGaaGOmaKqbaoaabmaakeaajugibiaaigdacqGHsislcqaHYoGy juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaa aaaiaawIa7aSWaa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaa ikdaaaaaaa@6BA9@ ,  (46)

u 4 d G 4 = C 2 u (0)4 +iβ u (0)1 1 β 2 d m 0 ( u (0)4 +iβ u (0)1_ ) 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhalmaaBaaajeaibaqcLbmacaaI0aaajeaibeaajugi biaadsgacaWGhbWcdaWgaaqcbasaaKqzadGaaGinaaqcbasabaqcLb sacqGH9aqpcaWGdbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqc fa4aaSaaaOqaaKqzGeGaamyDaSWaaSbaaKqaGeaajugWaiaacIcaca aIWaGaaiykaiaaisdaaKqaGeqaaKqzGeGaey4kaSIaamyAaiabek7a IjaadwhalmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIXa aajeaibeaaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaH YoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqabaaaaKqzGe GaamizaKqbaoaalaaakeaajugibiaad2galmaaBaaajeaibaqcLbma caaIWaaajeaibeaajuaGdaqadaGcbaqcLbsacaWG1bWcdaWgaaqcba saaKqzadGaaiikaiaaicdacaGGPaGaaGinaaqcbasabaqcLbsacqGH RaWkcaWGPbGaeqOSdiMaamyDaSWaaSbaaKqaGeaajugWaiaacIcaca aIWaGaaiykaiaaigdacaGGFbaajeaibeaaaOGaayjkaiaawMcaaaqa aKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGyjuaGdaahaa WcbeqcbasaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaaiilaaaa@7EE3@   (47)

I 4 = C 2 m 0 ( u ( 0 )4 +iβ u ( 0 )1 ) 2 2( 1 β 2 ) | 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaaI0aaajeaibeaajugi biabg2da9iaadoealmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaju aGdaabcaGcbaqcfa4aaSaaaOqaaKqzGeGaamyBaSWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaKqbaoaabmaakeaajugibiaadwhalmaaBa aajeaibaWcdaqadaqcbasaaKqzadGaaGimaaqcbaIaayjkaiaawMca aKqzadGaaGinaaqcbasabaqcLbsacqGHRaWkcaWGPbGaeqOSdiMaam yDaSWaaSbaaKqaGeaalmaabmaajeaibaqcLbmacaaIWaaajeaicaGL OaGaayzkaaqcLbmacaaIXaaajeaibeaaaOGaayjkaiaawMcaaSWaaW baaKqaGeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaIYaqcfa4aaeWa aOqaaKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLb macaaIYaaaaaGccaGLOaGaayzkaaaaaaGaayjcSdWcdaqhaaqcbasa aKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaacYcaaaa@6E9E@   (48)

Where β=v/c. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjabg2da9iaadAhacaGGVaGaam4yaiaac6caaaa@3F3D@

Now write down the expression for the work done by the pressure when the component v 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3CB2@  of the velocity v much exceeds the components v 2(3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhalmaaBaaajeaibaqcLbmacaaIYaGaaiikaiaaioda caGGPaaajeaibeaaaaa@3EC9@ , and we cannot already consider that the pressure is a relativistic invariant.

In case v<<c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamODaiabgYda8iabgYda8iaadogaaaa@3D59@ , the increment of the work dW is written down in the real space as

d W 0 =pd V 0 Δ V 0 =Δ x (0)1 Δ x (0)2 Δ x (0)3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamizaiaadEfalmaaBaaajeaibaqcLbmacaaIWaaa jeaibeaajugibiabg2da9iaadchacaWGKbGaamOvaSWaaSbaaKqaGe aajugWaiaaicdaaKqaGeqaaaGcbaqcLbsacqqHuoarcaWGwbWcdaWg aaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqGH9aqpcqqHuoarca WG4bWcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaaGymaaqc basabaqcLbsacqqHuoarcaWG4bWcdaWgaaqcbasaaKqzadGaaiikai aaicdacaGGPaGaaGOmaaqcbasabaqcLbsacqqHuoarcaWG4bWcdaWg aaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaaG4maaqcbasabaqcLb sacaGGUaaaaaa@620E@   (49)

For the relativistic case we have, in turn:

dW= p ij Vd ε ij ;i,j=1,2,3,4, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGxbGaeyypa0JaamiCaSWaaSbaaKqaGeaajugW aiaadMgacaWGQbaajeaibeaajugibiaadAfacaWGKbGaeqyTduwcfa 4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqzGeGaai4oaiaa dMgacaGGSaGaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcaca aIZaGaaiilaiaaisdacaGGSaaaaa@5315@   (50)

Where p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchalmaaBaaajeaibaqcLbmacaWGPbGaamOAaaqcbasa baaaaa@3DCE@ is the tensor of pressure, ε ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLTWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeai beaaaaa@3E80@  the tensor of deformation (%).

ΔV=Δ x 1 Δ x 2 Δ x 3 Δt=Δ x (0)1 1 β 2 Δ x (0)2 Δ x (0)3 Δ t 0 1 β 2 =Δ V 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadAfacqGH9aqpcqqHuoarcaWG4bWcdaWgaaqc basaaKqzadGaaGymaaqcbasabaqcLbsacqqHuoarcaWG4bWcdaWgaa qcbasaaKqzadGaaGOmaaqcbasabaqcLbsacqqHuoarcaWG4bWcdaWg aaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacqqHuoarcaWG0bGaey ypa0JaeuiLdqKaamiEaSWaaSbaaKqaGeaajugWaiaacIcacaaIWaGa aiykaiaaigdaaKqaGeqaaKqbaoaakaaakeaajugibiaaigdacqGHsi slcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqabaqc LbsacqqHuoarcaWG4bWcdaWgaaqcbasaaKqzadGaaiikaiaaicdaca GGPaGaaGOmaaqcbasabaqcLbsacqqHuoarcaWG4bWcdaWgaaqcbasa aKqzadGaaiikaiaaicdacaGGPaGaaG4maaqcbasabaqcfa4aaSaaaO qaaKqzGeGaeuiLdqKaamiDaKqbaoaaBaaajeaibaqcLbmacaaIWaaa leqaaaGcbaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aIL qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaWcbeaaaaqcLbsacqGH 9aqpcqqHuoarcaWGwbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasaba qcLbsacaGGSaaaaa@8269@   (51)

Where Δ t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadshalmaaBaaajeaibaqcLbmacaaIWaaajeai beaaaaa@3E15@  is a fixed time interval which is the element of a 4D-hypercube.

Now taking into consideration (49)-(51), we will represent all terms included in the expression of the work connected with pressure.

p 44 d V 44 = μ 44 V 0 d ε 44 ; μ 44 = δ m 44 δ V (0)44 = δ( m (0)44 с 2 1 β 2 ) δ V (0)44 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchalmaaBaaajeaibaqcLbmacaaI0aGaaGinaaqcbasa baqcLbsacaWGKbGaamOvaSWaaSbaaKqaGeaajugWaiaaisdacaaI0a aajeaibeaajugibiabg2da9iabeY7aTTWaaSbaaKqaGeaajugWaiaa isdacaaI0aaajeaibeaajugibiaadAfalmaaBaaajeaibaqcLbmaca aIWaaajeaibeaajugibiaadsgacqaH1oqzlmaaBaaajeaibaqcLbma caaI0aGaaGinaaqcbasabaqcLbsacaGG7aGaeqiVd02cdaWgaaqcba saaKqzadGaaGinaiaaisdaaKqaGeqaaKqzGeGaeyypa0tcfa4aaSaa aOqaaKqzGeGaeqiTdqMaamyBaSWaaSbaaKqaGeaajugWaiaaisdaca aI0aaajeaibeaaaOqaaKqzGeGaeqiTdqMaamOvaSWaaSbaaKqaGeaa jugWaiaacIcacaaIWaGaaiykaiaaisdacaaI0aaajeaibeaaaaqcLb sacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaH0oazjuaGdaqadaGcbaqc fa4aaSaaaOqaaKqzGeGaamyBaSWaaSbaaKqaGeaajugWaiaacIcaca aIWaGaaiykaiaaisdacaaI0aaajeaibeaajugibiaadgebjuaGdaah aaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqbaoaakaaakeaajugibi aaigdacqGHsislcqaHYoGylmaaCaaajeaibeqaaKqzadGaaGOmaaaa aSqabaaaaaGccaGLOaGaayzkaaaabaqcLbsacqaH0oazcaWGwbWcda WgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaaGinaiaaisdaaKqa Geqaaaaaaaa@8BD7@ ,  (52)

δ m (0)44 c 2 ( 1 β 2 ) 1 δ V (0)44 d V (0)44 =d m (0)44 c 2 1 β 2 =d Ζ 44 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqaH0oazcaWGTbWcdaWgaaqcbasaaKqz adGaaiikaiaaicdacaGGPaGaaGinaiaaisdaaKqaGeqaaKqzGeGaam 4yaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaiikaKqbaoaa kaaakeaajugibiaaigdacqGHsislcqaHYoGylmaaCaaajeaibeqaaK qzadGaaGOmaaaaaSqabaqcLbsacaGGPaWcdaahaaqcbasabeaajugW aiabgkHiTiaaigdaaaaakeaajugibiabes7aKjaadAfalmaaBaaaje aibaqcLbmacaGGOaGaaGimaiaacMcacaaI0aGaaGinaaqcbasabaaa aKqzGeGaamizaiaadAfajuaGdaWgaaqcbasaaKqzadGaaiikaiaaic dacaGGPaGaaGinaiaaisdaaSqabaqcLbsacqGH9aqpcaWGKbqcfa4a aSaaaOqaaKqzGeGaamyBaKqbaoaaBaaajeaibaqcLbmacaGGOaGaaG imaiaacMcacaaI0aGaaGinaaWcbeaajugibiaadogalmaaCaaajeai beqaaKqzadGaaGOmaaaaaOqaaKqbaoaakaaakeaajugibiaaigdacq GHsislcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqa baaaaKqzGeGaeyypa0JaamizaiabfA5aATWaaSbaaKqaGeaajugWai aaisdacaaI0aaajeaibeaajugibiaacYcaaaa@8005@   (53)

I 44 = 1 2 p 44 V 44 = Ζ 44 | 1 2 = m (0)44 c 2 ( 1 1 β 2 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaaI0aGaaGinaaqcbasa baqcLbsacqGH9aqpjuaGdaWdXbGcbaqcLbsacaWGWbqcfa4aaSbaaK qaGeaajugWaiaaisdacaaI0aaaleqaaKqzGeGaamOvaSWaaSbaaKqa GeaajugWaiaaisdacaaI0aaajeaibeaajugibiabg2da9Kqbaoaaei aakeaajugibiabfA5aATWaaSbaaKqaGeaajugWaiaaisdacaaI0aaa jeaibeaaaOGaayjcSdWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaK qzadGaaGOmaaaajugibiabg2da9iaad2galmaaBaaajeaibaqcLbma caGGOaGaaGimaiaacMcacaaI0aGaaGinaaqcbasabaqcLbsacaWGJb WcdaahaaqcbasabeaajugWaiaaikdaaaqcfa4aaeWaaOqaaKqbaoaa laaakeaajugibiaaigdaaOqaaKqbaoaakaaakeaajugibiaaigdacq GHsislcqaHYoGylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaa aKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaGGUaaaje aibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaajugibiabgUIiYdaa aa@775F@   (54)

As seen, the relation (54) defines the energy of substance in the whole object under study minus the energy of substance in the surface layer of the object.

p 11 d V 11 = p 11 V 0 d ε 11 = μ 11 V 0 d ε 11 ; μ 11 = δ( ζ (0)11 1 β 2 ) δ V (0)11 ; V (0)11 = V 0 ε 11 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchalmaaBaaajeaibaqcLbmacaaIXaGaaGymaaqcbasa baqcLbsacaWGKbGaamOvaSWaaSbaaKqaGeaajugWaiaaigdacaaIXa aajeaibeaajugibiabg2da9iaadchalmaaBaaajeaibaqcLbmacaaI XaGaaGymaaqcbasabaqcLbsacaWGwbWcdaWgaaqcbasaaKqzadGaaG imaaqcbasabaqcLbsacaWGKbGaeqyTdu2cdaWgaaqcbasaaKqzadGa aGymaiaaigdaaKqaGeqaaKqzGeGaeyypa0JaeqiVd02cdaWgaaqcba saaKqzadGaaGymaiaaigdaaKqaGeqaaKqzGeGaamOvaKqbaoaaBaaa jeaibaqcLbmacaaIWaaaleqaaKqzGeGaamizaiabew7aLTWaaSbaaK qaGeaajugWaiaaigdacaaIXaaajeaibeaajugibiaacUdacqaH8oqB lmaaBaaajeaibaqcLbmacaaIXaGaaGymaaqcbasabaqcLbsacqGH9a qpjuaGdaWcaaGcbaqcLbsacqaH0oazjuaGdaqadaGcbaqcfa4aaSaa aOqaaKqzGeGaeqOTdOxcfa4aaSbaaKqaGeaajugWaiaacIcacaaIWa GaaiykaiaaigdacaaIXaaaleqaaaGcbaqcfa4aaOaaaOqaaKqzGeGa aGymaiabgkHiTiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaIYa aaaaWcbeaaaaaakiaawIcacaGLPaaaaeaajugibiabes7aKjaadAfa lmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIXaGaaGymaa qcbasabaaaaKqzGeGaai4oaiaadAfalmaaBaaajeaibaqcLbmacaGG OaGaaGimaiaacMcacaaIXaGaaGymaaqcbasabaqcLbsacqGH9aqpca WGwbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH1oqz lmaaBaaajeaibaqcLbmacaaIXaGaaGymaaqcbasabaqcLbsacaGG7a aaaa@9B66@   (55)

δ ζ (0)11 ( 1 β 2 ) 1 δ V (0)11 d V (0)11 =d ζ (0)11 1 β 2 =d Ζ 11 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqaH0oazcqaH2oGElmaaBaaajeaibaqc LbmacaGGOaGaaGimaiaacMcacaaIXaGaaGymaaqcbasabaqcfa4aae WaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGyjuaG daahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqabaaakiaawIcacaGLPa aalmaaCaaajeaibeqaaKqzadGaeyOeI0IaaGymaaaaaOqaaKqzGeGa eqiTdqMaamOvaSWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykai aaigdacaaIXaaajeaibeaaaaqcLbsacaWGKbGaamOvaSWaaSbaaKqa GeaajugWaiaacIcacaaIWaGaaiykaiaaigdacaaIXaaajeaibeaaju gibiabg2da9iaadsgajuaGdaWcaaGcbaqcLbsacqaH2oGElmaaBaaa jeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIXaGaaGymaaqcbasaba aakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4a aWbaaSqabKqaGeaajugWaiaaikdaaaaaleqaaaaajugibiabg2da9i aadsgacqqHwoGwlmaaBaaajeaibaqcLbmacaaIXaGaaGymaaqcbasa baqcLbsacaGGSaaaaa@7987@   (56)

1 2 p 11 d V 11 = Ζ 11 | 1 2 = ζ ( 0 )11 ( 1 1 β 2 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbGcbaqcLbsacaWGWbWcdaWgaaqcbasaaKqzadGaaGym aiaaigdaaKqaGeqaaKqzGeGaamizaiaadAfalmaaBaaajeaibaqcLb macaaIXaGaaGymaaqcbasabaaabaqcLbmacaaIXaaajeaibaqcLbma caaIYaaajugibiabgUIiYdGaeyypa0tcfa4aaqGaaOqaaKqzGeGaeu OLdO1cdaWgaaqcbasaaKqzadGaaGymaiaaigdaaKqaGeqaaaGccaGL iWoalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaK qzGeGaeyypa0JaeqOTdO3cdaWgaaqcbauaaSWaaeWaaKqaafaajugW aiaaicdaaKqaajaawIcacaGLPaaajugWaiaaigdacaaIXaaajeaqbe aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcfa4a aOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqaba qcLbmacaaIYaaaaaWcbeaaaaqcLbsacqGHsislcaaIXaaakiaawIca caGLPaaajugibiaacYcaaaa@7045@   (57)

Where ζ (0)11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA7a6TWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiyk aiaaigdacaaIXaaajeaibeaaaaa@4042@  is the energy expended on the increment of the hypercube volume in the direction X1 at rest.

We can formally represent the expression (54) in another form using the 4D-force F 1 (4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbma caGGOaGaaGinaiaacMcaaaaaaa@3FC8@ (N) and this force action distance. Then we can, in turn, write down

p 1 d V 1 = F 1 (4) S 0 d x 1 = F 1 ' i v c F τ ' 1 β 2 S 0 d x (0)1 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaadsgacaWGwbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacqGH9aqpcaWGgbWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqz adGaaiikaiaaisdacaGGPaaaaKqzGeGaam4uaSWaaSbaaKqaGeaaju gWaiaaicdaaKqaGeqaaKqzGeGaamizaiaadIhalmaaBaaajeaibaqc LbmacaaIXaaajeaibeaajugibiabg2da9Kqbaoaalaaakeaajugibi aadAealmaaDaaajeaibaqcLbmacaaIXaaaleaajugWaiaacEcaaaqc LbsacqGHsislcaWGPbqcfa4aaSaaaOqaaKqzGeGaamODaaGcbaqcLb sacaWGJbaaaiaadAealmaaDaaajeaibaqcLbmacqaHepaDaKqaGeaa jugWaiaacEcaaaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0 IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikdaaaaaleqaaaaajugi biaadofajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaads gacaWG4bWcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaaGym aaqcbasabaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aIL qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaWcbeaajugibiaacYca aaa@80A7@   (58)

Where F 1 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbma caGGNaaaaaaa@3E5C@  is the component of the force F 1 (4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbma caGGOaGaaGinaiaacMcaaaaaaa@3FC8@  in the direction X1 in the moving reference frame; F τ ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaDaaajeaibaqcLbmacqaHepaDaKqaGeaajugW aiaacEcaaaaaaa@3F66@  the component of the force F 1 (4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbma caGGOaGaaGinaiaacMcaaaaaaa@3FC8@  in the direction 4.

However it is not convenient to use the expressions of the type (58) for solving our problems, therefore further we will use the expressions of the type (52)-(56).

p 22 d V 22 = p 22 V 0 d ε 22 = μ 22 V 0 d ε 22 ; μ 22 = δ( ζ (0)22 1 β 2 ) δ V (0)22 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchalmaaBaaajeaibaqcLbmacaaIYaGaaGOmaaqcbasa baqcLbsacaWGKbGaamOvaSWaaSbaaKqaGeaajugWaiaaikdacaaIYa aajeaibeaajugibiabg2da9iaadchalmaaBaaajeaibaqcLbmacaaI YaGaaGOmaaqcbasabaqcLbsacaWGwbWcdaWgaaqcbasaaKqzadGaaG imaaqcbasabaqcLbsacaWGKbGaeqyTdu2cdaWgaaqcbasaaKqzadGa aGOmaiaaikdaaKqaGeqaaKqzGeGaeyypa0JaeqiVd02cdaWgaaqcba saaKqzadGaaGOmaiaaikdaaKqaGeqaaKqzGeGaamOvaKqbaoaaBaaa jeaibaqcLbmacaaIWaaaleqaaKqzGeGaamizaiabew7aLTWaaSbaaK qaGeaajugWaiaaikdacaaIYaaajeaibeaajugibiaacUdacqaH8oqB lmaaBaaajeaibaqcLbmacaaIYaGaaGOmaaqcbasabaqcLbsacqGH9a qpjuaGdaWcaaGcbaqcLbsacqaH0oazjuaGdaqadaGcbaqcfa4aaSaa aOqaaKqzGeGaeqOTdO3cdaWgaaqcbasaaKqzadGaaiikaiaaicdaca GGPaGaaGOmaiaaikdaaKqaGeqaaaGcbaqcfa4aaOaaaOqaaKqzGeGa aGymaiabgkHiTiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaIYa aaaaWcbeaaaaaakiaawIcacaGLPaaaaeaajugibiabes7aKjaadAfa lmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIYaGaaGOmaa qcbasabaaaaKqbakaacYcaaaa@8972@   (59)

δ ζ (0)22 ( 1 β 2 ) 1 δ V (0)22 d V (0)22 =d ζ (0)22 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqaH0oazcqaH2oGEjuaGdaWgaaqcbasa aKqzadGaaiikaiaaicdacaGGPaGaaGOmaiaaikdaaSqabaqcfa4aae WaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGylmaa CaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaakiaawIcacaGLPaaalm aaCaaajeaibeqaaKqzadGaeyOeI0IaaGymaaaaaOqaaKqzGeGaeqiT dqMaamOvaSWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykaiaaik dacaaIYaaajeaibeaaaaqcLbsacaWGKbGaamOvaSWaaSbaaKqaGeaa jugWaiaacIcacaaIWaGaaiykaiaaikdacaaIYaaajeaibeaajugibi abg2da9iaadsgajuaGdaWcaaGcbaqcLbsacqaH2oGElmaaBaaajeai baqcLbmacaGGOaGaaGimaiaacMcacaaIYaGaaGOmaaqcbasabaaake aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqc basabeaajugWaiaaikdaaaaaleqaaaaajugibiaacYcaaaa@71B7@   (60)

1 2 p 22 d V 22 = Ζ 22 | 1 2 = ζ (0)22 ( 1 1 β 2 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbGcbaqcLbsacaWGWbWcdaWgaaqcbasaaKqzadGaaGOm aiaaikdaaKqaGeqaaKqzGeGaamizaiaadAfalmaaBaaajeaibaqcLb macaaIYaGaaGOmaaqcbasabaaabaqcLbmacaaIXaaajeaibaqcLbma caaIYaaajugibiabgUIiYdGaeyypa0tcfa4aaqGaaOqaaKqzGeGaeu OLdO1cdaWgaaqcbasaaKqzadGaaGOmaiaaikdaaKqaGeqaaaGccaGL iWoalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaK qzGeGaeyypa0JaeqOTdOxcfa4aaSbaaKqaGeaajugWaiaacIcacaaI WaGaaiykaiaaikdacaaIYaaaleqaaKqbaoaabmaakeaajuaGdaWcaa GcbaqcLbsacaaIXaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOe I0IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaleqaaa aajugibiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa @6F02@   (61)

The analogous expressions will be obtained for the case p 33 d V 33 , p 12 d V 12 = p 21 d V 21 , p 13 d V 13 = p 31 d V 31 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchajuaGdaWgaaqcbasaaKqzadGaaG4maiaaiodaaSqa baqcLbsacaWGKbGaamOvaSWaaSbaaKqaGeaajugWaiaaiodacaaIZa aajeaibeaajugibiaacYcacaWGWbWcdaWgaaqcbasaaKqzadGaaGym aiaaikdaaKqaGeqaaKqzGeGaamizaiaadAfalmaaBaaajeaibaqcLb macaaIXaGaaGOmaaqcbasabaqcLbsacqGH9aqpcaWGWbWcdaWgaaqc basaaKqzadGaaGOmaiaaigdaaKqaGeqaaKqzGeGaamizaiaadAfalm aaBaaajeaibaqcLbmacaaIYaGaaGymaaqcbasabaqcLbsacaGGSaGa amiCaSWaaSbaaKqaGeaajugWaiaaigdacaaIZaaajeaibeaajugibi aadsgacaWGwbWcdaWgaaqcbasaaKqzadGaaGymaiaaiodaaKqaGeqa aKqzGeGaeyypa0JaamiCaSWaaSbaaKqaGeaajugWaiaaiodacaaIXa aajeaibeaajugibiaadsgacaWGwbWcdaWgaaqcbasaaKqzadGaaG4m aiaaigdaaKqaGeqaaKqzGeGaaiilaaaa@707D@   and so on.

If our system is closed one then all its components of the kind p 14 d V 14 = p 41 d V 41 , p 24 d V 24 = p 42 d V 42 , p 43 d V 43 = p 34 V 34 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchalmaaBaaajeaibaqcLbmacaaIXaGaaGinaaqcbasa baqcLbsacaWGKbGaamOvaSWaaSbaaKqaGeaajugWaiaaigdacaaI0a aajeaibeaajugibiabg2da9iaadchalmaaBaaajeaibaqcLbmacaaI 0aGaaGymaaqcbasabaqcLbsacaWGKbGaamOvaSWaaSbaaKqaGeaaju gWaiaaisdacaaIXaaajeaibeaajugibiaacYcacaWGWbWcdaWgaaqc basaaKqzadGaaGOmaiaaisdaaKqaGeqaaKqzGeGaamizaiaadAfalm aaBaaajeaibaqcLbmacaaIYaGaaGinaaqcbasabaqcLbsacqGH9aqp caWGWbWcdaWgaaqcbasaaKqzadGaaGinaiaaikdaaKqaGeqaaKqzGe GaamizaiaadAfajuaGdaWgaaqcbasaaKqzadGaaGinaiaaikdaaSqa baqcLbsacaGGSaGaamiCaSWaaSbaaKqaGeaajugWaiaaisdacaaIZa aajeaibeaajugibiaadsgacaWGwbWcdaWgaaqcbasaaKqzadGaaGin aiaaiodaaKqaGeqaaKqzGeGaeyypa0JaamiCaKqbaoaaBaaajeaiba qcLbmacaaIZaGaaGinaaWcbeaajugibiaadAfalmaaBaaajeaibaqc LbmacaaIZaGaaGinaaqcbasabaaaaa@79FA@ will be equal to zero.

Now we should obtain the expressions of the work connected with surface tension, i.e., with

W= 1 2 σdS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEfacqGH9aqpjuaGdaWdXbGcbaqcLbsacqaHdpWCcaWG KbGaam4uaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaqcLb sacqGHRiI8aaaa@46E2@ .  (62)

As we have seen above, the work of the surface tension is a function of the observation angle of the object under study (Figures 1 & 2). However, the cases represented on the figures are the simplest. A more complicated case is represented on Figure 3.12

Figure 3 Object under investigations in case velocity v is not parallel and not perpendicular to the interfacial region. A'B'DC denoted by the dashed line is a transition region between contacting phases, as Vc(ΔL→ 0); a0 and b0 are the length and width of the surface for v=0; is the width of the same surface for Vc.

As seen from Figure 3, the work done by the surface tension depends (the work) on the location of the observer in the laboratory reference frame. If the coordinate axis Y is an observation line at the moment t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3CAF@ , the observation angle θ=π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjabg2da9iabec8aWjaac+cacaaIYaaaaa@3F36@ , and the observer is removed to very long distance ΔY from the object, then ( B ' D ) 2 = ( 0 B ' ) 2 + ( 0D ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWGcbWcdaahaaqcbasabeaajugWaiaa cEcaaaqcLbsacaWGebaakiaawIcacaGLPaaalmaaCaaajeaibeqaaK qzadGaaGOmaaaajugibiabg2da9Kqbaoaabmaakeaajugibiaaicda caWGcbWcdaahaaqabeaajugWaiaacEcaaaaakiaawIcacaGLPaaalm aaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRKqbaoaabmaa keaajugibiaaicdacaWGebaakiaawIcacaGLPaaalmaaCaaajeaibe qaaKqzadGaaGOmaaaaaaa@540F@ , as vс, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcaWGbrGaaiilaaaa@3DB0@  and we have two areas: the first area is parallel to the velocity of the object movement v, the second one is perpendicular to it. Evidently, the first area depends on the velocity according to the law S= S 0 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofacqGH9aqpcaWGtbWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aIT WaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaajugibiaacYcaaaa@4677@ where S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3C8E@ is the area at v=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiabg2da9iaaicdaaaa@3C2D@ . The second one is independent of v. The first area shows what part of the area of the flat object ABCD depends on v.

Evidently, if we turn our object horizontally by an angle, then we shall already have three projections of the object on the planes formed by the coordinate axes. The areas of two of them will vary according to the above law; the third area will be independent of the velocity v for our observer. However, in the most common cases the object under study has a bent surface. What to do?

In this case we can break down the surface of the object into infinitely great numbers of infinitely small flat elements. The area of each element has projections on the planes formed by the coordinate axes. Taking that into consideration, we can solve the problem connected with the work of surface tension when the surface of the object is bent. In this case the work can be represented as done by surface tension on three planes which are mutually perpendicular. Two planes are parallel to, the third one is perpendicular. Therefore the areas, lying in the parallel planes, will vary in proportion to 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWba aSqabKqaGeaajugWaiaaikdaaaaaleqaaaaa@4019@  as vс MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcaWGbraaaa@3D00@ ; in turn, the areas, lying in perpendicular plane, will not vary under these conditions. Now, having given the all needed explanations, we can represent the expressions for the work of the surface tension forces having begun with the component σ 44 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaisdacaaI0aaajeai beaaaaa@3E3B@ being in the planes formed by the coordinate axes.

σ 44 d S = ρ S d ε 44 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaisdacaaI0aaajeai beaajugibiaadsgacaWGtbqcfa4aaSbaaKqaGeaajugWaiabgwQiEb Wcbeaajugibiabg2da9iabeg8aYLqbaoaaBaaajeaibaqcLbmacqGH LkIxaSqabaqcLbsacaWGtbqcfa4aaSbaaKqaGeaajugWaiabgwQiEb WcbeaajugibiaadsgacqaH1oqzlmaaBaaajeaibaqcLbmacaaI0aGa aGinaaqcbasabaqcLbsacaGG7aaaaa@5827@   (63)

ρ = δ( m (0) с 2 1 β 2 ) δ S ; δ m 0 c 2 ( 1 β 2 ) 1 δ S (0) d 4 S (0) = d 4 m 0 c 2 1 β 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiabgwQiEbqcbasabaqc LbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaH0oazjuaGdaqadaGcba qcfa4aaSaaaOqaaKqzGeGaamyBaKqbaoaaBaaajeaibaqcLbmacaGG OaGaaGimaiaacMcacqGHLkIxaSqabaqcLbsacaWGbrWcdaahaaqcba sabeaajugWaiaaikdaaaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGa eyOeI0IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikdaaaaaleqaaa aaaOGaayjkaiaawMcaaaqaaKqzGeGaeqiTdqMaam4uaSWaaSbaaKqa GeaajugWaiabgwQiEbqcbasabaaaaKqzGeGaai4oaKqbaoaalaaake aajugibiabes7aKjaad2galmaaBaaajeaibaqcLbmacaaIWaGaeyyP I4fajeaibeaajugibiaadogalmaaCaaajeaibeqaaKqzadGaaGOmaa aajuaGdaqadaGcbaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiab ek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaaaOGaayjkai aawMcaaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaaaaGcbaqc LbsacqaH0oazcaWGtbWcdaWgaaqcbasaaKqzadGaaiikaiaaicdaca GGPaGaeyyPI4fajeaibeaaaaqcLbsacaWGKbWcdaWgaaqcbasaaKqz adGaaGinaaqcbasabaqcLbsacaWGtbWcdaWgaaqcbasaaKqzadGaai ikaiaaicdacaGGPaGaeyyPI4fajeaibeaajugibiabg2da9iaadsga lmaaBaaajeaibaqcLbmacaaI0aaajeaibeaajuaGdaWcaaGcbaqcLb sacaWGTbWcdaWgaaqcbasaaKqzadGaaGimaiabgwQiEbqcbasabaqc LbsacaWGJbWcdaahaaqcbasabeaajugWaiaaikdaaaaakeaajuaGda GcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqcbasabeaa jugWaiaaikdaaaaaleqaaaaajugibiaacUdaaaa@A141@   (64)

I 2 = 1 2 σ 44 d S (0) = Μ 0 c 2 | 1 2 = m 0 c 2 1 β 2 m 0 c 2 = m 0 c 2 ( 1 1 β 2 1 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabg2da9Kqbaoaapehakeaajugibiabeo8aZTWaaSbaaKqaGeaaju gWaiaaisdacaaI0aaajeaibeaajugibiaadsgacaWGtbWcdaWgaaqc basaaKqzadGaaiikaiaaicdacaGGPaGaeyyPI4fajeaibeaajugibi abg2da9aqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaqcLbsa cqGHRiI8aKqbaoaaeiaakeaajugibiabfY5anTWaaSbaaKqaGeaaju gWaiaaicdacqGHLkIxaKqaGeqaaKqzGeGaam4yaSWaaWbaaKqaGeqa baqcLbmacaaIYaaaaaGccaGLiWoalmaaDaaajeaibaqcLbmacaaIXa aajeaibaqcLbmacaaIYaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqz GeGaamyBaSWaaSbaaKqaGeaajugWaiaaicdacqGHLkIxaKqaGeqaaK qzGeGaam4yaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqc fa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGe qabaqcLbmacaaIYaaaaaWcbeaaaaqcLbsacqGHsislcaWGTbWcdaWg aaqcbasaaKqzadGaaGimaiabgwQiEbqcbasabaqcLbsacaWGJbWcda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGH9aqpcaWGTbWcdaWg aaqcbasaaKqzadGaaGimaiabgwQiEbqcbasabaqcLbsacaWGJbWcda ahaaqcbasabeaajugWaiaaikdaaaqcfa4aaeWaaOqaaKqbaoaalaaa keaajugibiaaigdaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsi slcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqabaaa aKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaGG7aaaaa@9B80@   (65a)

Δ S =Δ x (0)2 Δ x (0)3 Δ t 0 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadofalmaaBaaajeaibaqcLbmacqGHLkIxaKqa GeqaaKqzGeGaeyypa0JaeuiLdqKaamiEaSWaaSbaaKqaGeaajugWai aacIcacaaIWaGaaiykaiaaikdaaKqaGeqaaKqzGeGaeuiLdqKaamiE aSWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykaiaaiodaaKqaGe qaaKqbaoaalaaakeaajugibiabfs5aejaadshajuaGdaWgaaqcbasa aKqzadGaaGimaaWcbeaaaOqaaKqbaoaakaaakeaajugibiaaigdacq GHsislcqaHYoGylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaa aKqzGeGaaiilaaaa@5D47@   (65b)

Where S (0) , S (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofalmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMca aKqaGeqaaKqzGeGaaiilaiaadofalmaaBaaajeaibaqcLbmacaGGOa GaaGimaiaacMcacqGHLkIxaKqaGeqaaaaa@4570@ are the values of the 3D-space-time object, the spatial area of which is perpendicular to the velocity v<<c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiabgYda8iabgYda8iaadogaaaa@3D5D@ and as vс MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODa8aacqGHsgIRcaWGbraaaa@3D33@ ; ρ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiyk aiabgwQiEbqcbasabaaaaa@4080@ is the specific density per time unit (g·cm-2s-1) of substance in this object; m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2galmaaBaaajeaibaqcLbmacaaIWaGaeyyPI4fajeai beaaaaa@3E59@ the substance mass in the surface layer located perpendicularly to the velocity.

In turn, we obtain the expressions for the work of the surface tension forces for the planes parallel to the velocity v:

σ 44 d S (0) // = ρ // c 2 d S (0)// = ρ (0)// c 2 1 β 2 S (0)// d ε 44 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaisdacaaI0aaajeai beaajugibiaadsgacaWGtbWcdaWgaaqcbasaaKqzadGaaiikaiaaic dacaGGPaaajeaibeaalmaaBaaajeaibaqcLbmacaGGVaGaai4laaqc basabaqcLbsacqGH9aqpcqaHbpGClmaaBaaajeaibaqcLbmacaGGVa Gaai4laaqcbasabaqcLbsacaWGJbqcfa4aaWbaaSqabKqaGeaajugW aiaaikdaaaqcLbsacaWGKbGaam4uaSWaaSbaaKqaGeaajugWaiaacI cacaaIWaGaaiykaiaac+cacaGGVaaajeaibeaajugibiabg2da9Kqb aoaalaaakeaajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaacIcaca aIWaGaaiykaiaac+cacaGGVaaajeaibeaajugibiaadogalmaaCaaa jeaibeqaaKqzadGaaGOmaaaaaOqaaKqbaoaakaaakeaajugibiaaig dacqGHsislcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa aSqabaaaaKqzGeGaam4uaKqbaoaaBaaajeaibaqcLbmacaGGOaGaaG imaiaacMcacaGGVaGaai4laaWcbeaajugibiaadsgacqaH1oqzlmaa BaaajeaibaqcLbmacaaI0aGaaGinaaqcbasabaqcLbsacaGG7aaaaa@7CDE@   (66)

ρ // = δ( m 0// 1 β 2 ) δ S (0)// ; δ( m 0// c 2 / 1 β 2 ) δ S (0)// d 4 S (0)// = d 4 ( m 0// c 2 / 1 β 2 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaac+cacaGGVaaajeai beaajugibiabg2da9Kqbaoaalaaakeaajugibiabes7aKLqbaoaabm aakeaajuaGdaWcaaGcbaqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGa aGimaiaac+cacaGGVaaajeaibeaaaOqaaKqbaoaakaaakeaajugibi aaigdacqGHsislcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaaaSqabaaaaaGccaGLOaGaayzkaaaabaqcLbsacqaH0oazcaWGtb WcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaai4laiaac+ca aKqaGeqaaaaajugibiaacUdajuaGdaWcaaGcbaqcLbsacqaH0oazca GGOaGaamyBaKqbaoaaBaaajeaibaqcLbmacaaIWaGaai4laiaac+ca aSqabaqcLbsacaWGJbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLb sacaGGVaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aITWa aWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaajugibiaacMcaaOqaaK qzGeGaeqiTdqMaam4uaSWaaSbaaKqaGeaajugWaiaacIcacaaIWaGa aiykaiaac+cacaGGVaaajeaibeaaaaqcLbsacaWGKbWcdaWgaaqcba saaKqzadGaaGinaaqcbasabaqcLbsacaWGtbWcdaWgaaqcbasaaKqz adGaaiikaiaaicdacaGGPaGaai4laiaac+caaKqaGeqaaKqzGeGaey ypa0JaamizaKqbaoaaBaaajeaibaqcLbmacaaI0aaaleqaaKqzGeGa aiikaiaad2galmaaBaaajeaibaqcLbmacaaIWaGaai4laiaac+caaK qaGeqaaKqzGeGaam4yaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaai4laKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGyju aGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqabaqcLbsacaGGPaGa ai4oaaaa@9D8F@   (67)

I 3 = 1 2 σ 44 d S (0)// = Μ // | 1 2 = m 0// c 2 1 β 2 m 0// c 2 = m 0// c 2 ( 1 1 β 2 1 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugi biabg2da9Kqbaoaapehakeaajugibiabeo8aZTWaaSbaaKqaGeaaju gWaiaaisdacaaI0aaajeaibeaajugibiaadsgacaWGtbqcfa4aaSba aKqaGeaajugWaiaacIcacaaIWaGaaiykaiaac+cacaGGVaaaleqaaK qzGeGaeyypa0dajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaa jugibiabgUIiYdqcfa4aaqGaaOqaaKqzGeGaeuiNd00cdaWgaaqcba saaKqzadGaai4laiaac+caaKqaGeqaaaGccaGLiWoalmaaDaaajeai baqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaeyypa0tcfa 4aaSaaaOqaaKqzGeGaamyBaSWaaSbaaKqaGeaajugWaiaaicdacaGG VaGaai4laaqcbasabaqcLbsacaWGJbWcdaahaaqcbasabeaajugWai aaikdaaaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOS diwcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaleqaaaaajugibi abgkHiTiaad2galmaaBaaajeaibaqcLbmacaaIWaGaai4laiaac+ca aKqaGeqaaKqzGeGaam4yaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaK qzGeGaeyypa0JaamyBaSWaaSbaaKqaGeaajugWaiaaicdacaGGVaGa ai4laaqcbasabaqcLbsacaWGJbWcdaahaaqcbasabeaajugWaiaaik daaaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqb aoaakaaakeaajugibiaaigdacqGHsislcqaHYoGyjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaeyOeI0IaaGymaaGc caGLOaGaayzkaaqcLbsacaGG7aaaaa@95FC@   (68)

Δ S // =Δ x (0)1 1 β 2 Δ x (0)2 Δ t 0 1 β 2 =Δ S (0)// MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadofalmaaBaaajeaibaqcLbmacaGGVaGaai4l aaqcbasabaqcLbsacqGH9aqpcqqHuoarcaWG4bWcdaWgaaqcbasaaK qzadGaaiikaiaaicdacaGGPaGaaGymaaqcbasabaqcfa4aaOaaaOqa aKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmaca aIYaaaaaWcbeaajugibiabfs5aejaadIhalmaaBaaajeaibaqcLbma caGGOaGaaGimaiaacMcacaaIYaaajeaibeaajuaGdaWcaaGcbaqcLb sacqqHuoarcaWG0bqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaa keaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cdaahaa qcbasabeaajugWaiaaikdaaaaaleqaaaaajugibiabg2da9iabfs5a ejaadofalmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaGGVa Gaai4laaqcbasabaaaaa@6B81@   (69a)

And

Δ S // =Δ x (0)1 Δ x (0)3 Δ t 0 =Δ S (0)// , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadofalmaaBaaajeaibaqcLbmacaGGVaGaai4l aaqcbasabaqcLbsacqGH9aqpcqqHuoarcaWG4bWcdaWgaaqcbasaaK qzadGaaiikaiaaicdacaGGPaGaaGymaaqcbasabaqcLbsacqqHuoar caWG4bWcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaaG4maa qcbasabaqcLbsacqqHuoarcaWG0bWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcLbsacqGH9aqpcqqHuoarcaWGtbWcdaWgaaqcbasaaK qzadGaaiikaiaaicdacaGGPaGaai4laiaac+caaKqaGeqaaKqzGeGa aiilaaaa@5E13@   (69b)

where S (0)// , S // MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofalmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMca caGGVaGaai4laaqcbasabaqcLbsacaGGSaGaam4uaKqbaoaaBaaaje aibaqcLbmacaGGVaGaai4laaWcbeaaaaa@44DC@  are the volumes of the 3D-space-time object, the spatial areas of which is parallel to the velocity v<<c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiabgYda8iabgYda8iaadogaaaa@3D5D@ and as vс MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcaWGbraaaa@3D00@ ; ρ (0)// MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiyk aiaac+cacaGGVaaajeaibeaaaaa@4035@ is the specific density per time unit (g·cm-2s-1) of substance in this object; m 0// MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2galmaaBaaajeaibaqcLbmacaaIWaGaai4laiaac+ca aKqaGeqaaaaa@3E0E@ the substance mass in the surface layer located parallel to the velocity at rest; the values Δ S // MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadofajuaGdaWgaaqcbasaaKqzadGaai4laiaa c+caaSqabaaaaa@3F04@ in (69a) and (69b) are not equal to one another in common case. Evidently, the increments of the kind (63) and (66) are already in the dependence (43) therefore they will not further be taken into consideration.

For the real work of the surface tension forces we have the following relations (the plane is perpendicular to the velocity v):

σ 23 d S = σ 32 d S = ρ S (0) 1 β 2 d ε 23 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaikdacaaIZaaajeai beaajugibiaadsgacaWGtbWcdaWgaaqcbasaaKqzadGaeyyPI4faje aibeaajugibiabg2da9iabeo8aZTWaaSbaaKqaGeaajugWaiaaioda caaIYaaajeaibeaajugibiaadsgacaWGtbWcdaWgaaqcbasaaKqzad GaeyyPI4fajeaibeaajugibiabg2da9iabeg8aYTWaaSbaaKqaGeaa jugWaiabgwQiEbqcbasabaqcfa4aaSaaaOqaaKqzGeGaam4uaKqbao aaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacqGHLkIxaSqabaaa keaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cdaahaa qcbasabeaajugWaiaaikdaaaaaleqaaaaajugibiaadsgacqaH1oqz lmaaBaaajeaibaqcLbmacaaIYaGaaG4maaqcbasabaqcLbsacaGG7a aaaa@6D18@   (70)

ρ = δ ξ 23 δ S = δ( ξ (0)23 1 β 2 ) δ( S (0) 1 β 2 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYLqbaoaaBaaajeaibaqcLbmacqGHLkIxaSqabaqc LbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaH0oazcqaH+oaEjuaGda WgaaqcbasaaKqzadGaaGOmaiaaiodaaSqabaaakeaajugibiabes7a KjaadofajuaGdaWgaaqcbasaaKqzadGaeyyPI4faleqaaaaajugibi abg2da9Kqbaoaalaaakeaajugibiabes7aKLqbaoaabmaakeaajuaG daWcaaGcbaqcLbsacqaH+oaElmaaBaaajeaibaqcLbmacaGGOaGaaG imaiaacMcacaaIYaGaaG4maaqcbasabaaakeaajuaGdaGcaaGcbaqc LbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaaaleqaaaaaaOGaayjkaiaawMcaaaqaaKqzGeGaeqiTdqwc fa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadofalmaaBaaajeaiba qcLbmacaGGOaGaaGimaiaacMcacqGHLkIxaKqaGeqaaaGcbaqcfa4a aOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aILqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaaWcbeaaaaaakiaawIcacaGLPaaaaaqcLbsa caGG7aaaaa@7A2F@   (71)

δ ξ 23 δ S d S = δ( ξ (0)23 1 β 2 ) δ( S (0) 1 β 2 ) d S (0) 1 β 3 =d ξ (0)23 1 β 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqaH0oazcqaH+oaEjuaGdaWgaaqcbasa aKqzadGaaGOmaiaaiodaaSqabaaakeaajugibiabes7aKjaadofaju aGdaWgaaqcbasaaKqzadGaeyyPI4faleqaaaaajugibiaadsgacaWG tbWcdaWgaaqcbasaaKqzadGaeyyPI4fajeaibeaajugibiabg2da9K qbaoaalaaakeaajugibiabes7aKLqbaoaabmaakeaajuaGdaWcaaGc baqcLbsacqaH+oaElmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacM cacaaIYaGaaG4maaqcbasabaaakeaajuaGdaGcaaGcbaqcLbsacaaI XaGaeyOeI0IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikdaaaaale qaaaaaaOGaayjkaiaawMcaaaqaaKqzGeGaeqiTdqwcfa4aaeWaaOqa aKqbaoaalaaakeaajugibiaadofalmaaBaaajeaibaqcLbmacaGGOa GaaGimaiaacMcacqGHLkIxaKqaGeqaaaGcbaqcfa4aaOaaaOqaaKqz GeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYa aaaaWcbeaaaaaakiaawIcacaGLPaaaaaqcLbsacaWGKbqcfa4aaSaa aOqaaKqzGeGaam4uaSWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaai ykaiabgwQiEbqcbasabaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGa eyOeI0IaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWaiaaiodaaaaale qaaaaajugibiabg2da9iaadsgajuaGdaWcaaGcbaqcLbsacqaH+oaE lmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIYaGaaG4maa qcbasabaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOS di2cdaahaaqcbasabeaajugWaiaaikdaaaaaleqaaaaajugibiaacU daaaa@9901@   (72)

1 2 σ 23 d S = ξ (0)23 1 β 2 | 1 2 =Ξ 23 | 1 2 = ξ (0)23 ( 1 1 β 2 1 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbGcbaqcLbsacqaHdpWClmaaBaaajeaibaqcLbmacaaI YaGaaG4maaqcbasabaqcLbsacaWGKbGaam4uaSWaaSbaaKqaGeaaju gWaiabgwQiEbqcbasabaaabaqcLbmacaaIXaaajeaibaqcLbmacaaI YaaajugibiabgUIiYdGaeyypa0tcfa4aaqGaaOqaaKqbaoaalaaake aajugibiabe67a4TWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiyk aiaaikdacaaIZaaajeaibeaaaOqaaKqbaoaakaaakeaajugibiaaig dacqGHsislcqaHYoGylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqa baaaaaGccaGLiWoalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLb macaaIYaaaaKqzGeGaeyypa0JaeuONdGvcfa4aaqGaaKaaGeaalmaa BaaajeaibaqcLbmacaaIYaGaaG4maaqcbasabaaakiaawIa7aSWaa0 baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGH 9aqpcqaH+oaElmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcaca aIYaGaaG4maaqcbasabaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugi biaaigdaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYo GylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaeyOe I0IaaGymaaGccaGLOaGaayzkaaqcLbsacaGG7aaaaa@85ED@   (73)

Δ S =Δ x (0)2 Δ x (0)3 Δ t 0 1 β 2 = Δ S (0) 1 β 2 ; F 3 Δ L 3 Δ L 2 Δ L 3 + F 2 Δ L 2 Δ L 2 Δ L 3 = σ 23 Δ S 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeuiLdqKaam4uaKqbaoaaBaaajeaibaqcLbmacqGH LkIxaSqabaqcLbsacqGH9aqpcqqHuoarcaWG4bWcdaWgaaqcbasaaK qzadGaaiikaiaaicdacaGGPaGaaGOmaaqcbasabaqcLbsacqqHuoar caWG4bWcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaaG4maa qcbasabaqcfa4aaSaaaOqaaKqzGeGaeuiLdqKaamiDaKqbaoaaBaaa jeaibaqcLbmacaaIWaaaleqaaaGcbaqcfa4aaOaaaOqaaKqzGeGaaG ymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWc beaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacqqHuoarcaWGtb WcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaeyyPI4fajeai beaaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGyju aGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaai4o aaGcbaqcfa4aaSaaaOqaaKqzGeGaamOraKqbaoaaBaaajeaibaqcLb macaaIZaaaleqaaKqzGeGaeuiLdqKaamitaSWaaSbaaKqaGeaajugW aiaaiodaaKqaGeqaaaGcbaqcLbsacqqHuoarcaWGmbWcdaWgaaqcba saaKqzadGaaGOmaaqcbasabaqcLbsacqqHuoarcaWGmbWcdaWgaaqc basaaKqzadGaaG4maaqcbasabaaaaKqzGeGaey4kaSscfa4aaSaaaO qaaKqzGeGaamOraSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqz GeGaeuiLdqKaamitaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaa GcbaqcLbsacqqHuoarcaWGmbqcfa4aaSbaaKqaGeaajugWaiaaikda aSqabaqcLbsacqqHuoarcaWGmbWcdaWgaaqcbasaaKqzadGaaG4maa qcbasabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeq4Wdm3c daWgaaqcbasaaKqzadGaaGOmaiaaiodaaKqaGeqaaaGcbaqcLbsacq qHuoarcaWGtbWcdaWgaaqcbasaaKqzadGaaGOmaiaaiodaaKqaGeqa aaaaaaaa@A80C@ ,  (74)

Where σ 23 = σ 32 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaikdacaaIZaaajeai beaajugibiabg2da9iabeo8aZTWaaSbaaKqaGeaajugWaiaaiodaca aIYaaajeaibeaaaaa@44B7@ is the surface tension per time unit on the real surface (X2X3), the whose 3D-space-time object (the surface) is perpendicular to the velocity v; S (0) , S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofalmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMca cqGHLkIxaKqaGeqaaKqzGeGaaiilaiaadofalmaaBaaajeaibaqcLb macqGHLkIxaKqaGeqaaaaa@450E@  are the volumes of the 3D-space-time object, the spatial area of which is perpendicular to the velocity v<<c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiabgYda8iabgYda8iaadogaaaa@3D5D@ and as vс MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcaWGbraaaa@3D00@   δ ξ (0)23 =δ ξ (0)32 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabes7aKjabe67a4TWaaSbaaKqaGeaajugWaiaacIcacaaI WaGaaiykaiaaikdacaaIZaaajeaibeaajugibiabg2da9iabes7aKj abe67a4TWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykaiaaioda caaIYaaajeaibeaaaaa@4C27@  is the energy expended on the increment of the area perpendicular to the velocity v; F 2 , F 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biaacYcacaWGgbWcdaWgaaqcbasaaKqzadGaaG4maaqcbasabaaaaa@40F8@  are the surface tension forces in direction 2 and 3 acting (the forces) in the plane perpendicular to the velocity v; Δ L 2 ,Δ L 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadYeajuaGdaWgaaqcbasaaKqzadGaaGOmaaWc beaajugibiaacYcacqqHuoarcaWGmbWcdaWgaaqcbasaaKqzadGaaG 4maaqcbasabaaaaa@4434@  distances in directions 2 and 3 on which the forces 2 and 3 are acting.

σ 12 d S // = σ 21 d S (0)// = ρ // S (0)12 d ε 12 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaaIXaGaaGOmaaWc beaajugibiaadsgacaWGtbWcdaWgaaqcbasaaKqzadGaai4laiaac+ caaKqaGeqaaKqzGeGaeyypa0Jaeq4Wdm3cdaWgaaqcbasaaKqzadGa aGOmaiaaigdaaKqaGeqaaKqzGeGaamizaiaadofalmaaBaaajeaiba qcLbmacaGGOaGaaGimaiaacMcacaGGVaGaai4laaqcbasabaqcLbsa cqGH9aqpcqaHbpGCjuaGdaWgaaqcbasaaKqzadGaai4laiaac+caaS qabaqcLbsacaWGtbWcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGG PaGaaGymaiaaikdaaKqaGeqaaKqzGeGaamizaiabew7aLTWaaSbaaK qaGeaajugWaiaaigdacaaIYaaajeaibeaajugibiaacUdaaaa@66F0@   (75)

ρ // = δ ξ // δ S (0)12 = δ( ξ (0)12 1 β 2 ) δ S (0)12 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaac+cacaGGVaaajeai beaajugibiabg2da9Kqbaoaalaaakeaajugibiabes7aKjabe67a4T WaaSbaaKqaGeaajugWaiaac+cacaGGVaaajeaibeaaaOqaaKqzGeGa eqiTdqMaam4uaSWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykai aaigdacaaIYaaajeaibeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqc LbsacqaH0oazjuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqOVdG xcfa4aaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykaiaaigdacaaI YaaaleqaaaGcbaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek 7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaaaaaakiaawIca caGLPaaaaeaajugibiabes7aKjaadofalmaaBaaajeaibaqcLbmaca GGOaGaaGimaiaacMcacaaIXaGaaGOmaaqcbasabaaaaKqzGeGaai4o aaaa@6F52@   (76)

δ( ξ (0)12 1 β 2 ) δ S (0)12 d S (0)12 =d ξ (0)12 1 β 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqaH0oazjuaGdaqadaGcbaqcfa4aaSaa aOqaaKqzGeGaeqOVdG3cdaWgaaqcbasaaKqzadGaaiikaiaaicdaca GGPaGaaGymaiaaikdaaKqaGeqaaaGcbaqcfa4aaOaaaOqaaKqzGeGa aGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaa WcbeaaaaaakiaawIcacaGLPaaaaeaajugibiabes7aKjaadofalmaa BaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIXaGaaGOmaaqcba sabaaaaKqzGeGaamizaiaadofalmaaBaaajeaibaqcLbmacaGGOaGa aGimaiaacMcacaaIXaGaaGOmaaqcbasabaqcLbsacqGH9aqpcaWGKb qcfa4aaSaaaOqaaKqzGeGaeqOVdG3cdaWgaaqcbasaaKqzadGaaiik aiaaicdacaGGPaGaaGymaiaaikdaaKqaGeqaaaGcbaqcfa4aaOaaaO qaaKqzGeGaaGymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbma caaIYaaaaaWcbeaaaaqcLbsacaGG7aaaaa@6F6E@   (77)

1 2 σ 12 d S (0)12 = ξ (0)12 1 β 2 | 1 2 = Ξ 12 | 1 2 = ξ (0)12 ( 1 1 β 2 1 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbGcbaqcLbsacqaHdpWClmaaBaaajeaibaqcLbmacaaI XaGaaGOmaaqcbasabaqcLbsacaWGKbGaam4uaSWaaSbaaKqaGeaaju gWaiaacIcacaaIWaGaaiykaiaaigdacaaIYaaajeaibeaajugibiab g2da9KqbaoaaeiaakeaajuaGdaWcaaGcbaqcLbsacqaH+oaElmaaBa aajeaibaqcLbmacaGGOaGaaGimaiaacMcacaaIXaGaaGOmaaqcbasa baaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa 4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaleqaaaaaaOGaayjcSdWc daqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibi abg2da9aqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaqcLbsa cqGHRiI8aKqbaoaaeiaakeaajugibiabf65ayLqbaoaaBaaajeaiba qcLbmacaaIXaGaaGOmaaWcbeaaaOGaayjcSdWcdaqhaaqcbasaaKqz adGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiabg2da9iabe67a4T WaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykaiaaigdacaaIYaaa jeaibeaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcba qcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aILqbaoaaCaaa leqajeaibaqcLbmacaaIYaaaaaWcbeaaaaqcLbsacqGHsislcaaIXa aakiaawIcacaGLPaaajugibiaacUdaaaa@8A67@   (78)

Δ S // =Δ x (0)1 Δ x (0)2 Δ t 0 =Δ S (0)// ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadofalmaaBaaajeaibaqcLbmacaGGVaGaai4l aaqcbasabaqcLbsacqGH9aqpcqqHuoarcaWG4bWcdaWgaaqcbasaaK qzadGaaiikaiaaicdacaGGPaGaaGymaaqcbasabaqcLbsacqqHuoar caWG4bWcdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaaGOmaa qcbasabaqcLbsacqqHuoarcaWG0bqcfa4aaSbaaKqaGeaajugWaiaa icdaaSqabaqcLbsacqGH9aqpcqqHuoarcaWGtbWcdaWgaaqcbasaaK qzadGaaiikaiaaicdacaGGPaGaai4laiaac+caaKqaGeqaaKqzGeGa ai4oaaaa@5E85@   (79)

F 1 Δ L 1 Δ L 1 Δ L 2 + F 2 Δ L 2 Δ L 1 Δ L 2 = σ 12 Δ S 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGgbWcdaWgaaqcKfaG=haajugWaiaa igdaaKqaGeqaaKqzGeGaeuiLdqKaamitaSWaaSbaaKqaGeaajugWai aaigdaaKqaGeqaaaGcbaqcLbsacqqHuoarcaWGmbqcfa4aaSbaaKqa GeaajugWaiaaigdaaSqabaqcLbsacqqHuoarcaWGmbWcdaWgaaqcba saaKqzadGaaGOmaaqcbasabaaaaKqzGeGaey4kaSscfa4aaSaaaOqa aKqzGeGaamOraSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGe GaeuiLdqKaamitaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaaGc baqcLbsacqqHuoarcaWGmbWcdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacqqHuoarcaWGmbWcdaWgaaqcbasaaKqzadGaaGOmaaqc basabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeq4Wdm3cda WgaaqcbasaaKqzadGaaGymaiaaikdaaKqaGeqaaaGcbaqcLbsacqqH uoarcaWGtbWcdaWgaaqcbasaaKqzadGaaGymaiaaikdaaKqaGeqaaa aaaaa@7273@ ,  (80)

Where σ 12 = σ 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaigdacaaIYaaajeai beaajugibiabg2da9iabeo8aZTWaaSbaaKqaGeaajugWaiaaikdaca aIXaaajeaibeaaaaa@44B3@ is the surface tension per time unit on the real surface (X1X2), the whose 3D-space-time object is parallel to the velocity v; S (0) , S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofajuaGdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGG PaGaeyyPI4faleqaaKqzGeGaaiilaiaadofalmaaBaaajeaibaqcLb macqGHLkIxaKqaGeqaaaaa@4572@  are the volumes of the 3D-space-time object, the spatial area of which is parallel to the velocity v<<c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiabgYda8iabgYda8iaadogaaaa@3D5D@ and as vс MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacqGHsgIRcaWGbraaaa@3D00@   δ ζ (0)12 =δ ζ (0)21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabes7aKjabeA7a6TWaaSbaaKqaGeaajugWaiaacIcacaaI WaGaaiykaiaaigdacaaIYaaajeaibeaajugibiabg2da9iabes7aKj abeA7a6TWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykaiaaikda caaIXaaajeaibeaaaaa@4C17@  is the energy expended on the increment of the area parallel to the velocity v; F 1 , F 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaacYcacaWGgbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaaaaa@40F6@  are the surface tension forces in directions 2 and 3 acting (the forces) in the plane parallel to the velocity v; Δ L 1 ,Δ L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejaadYealmaaBaaajeaibaqcLbmacaaIXaaajeai beaajugibiaacYcacqqHuoarcaWGmbWcdaWgaaqcbasaaKqzadGaaG Omaaqcbasabaaaaa@43CE@  distances in directions 2 and 3 on which the forces 1 and 2 are acting.

The case σ 13 = σ 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaigdacaaIZaaajeai beaajugibiabg2da9iabeo8aZTWaaSbaaKqaGeaajugWaiaaiodaca aIXaaajeaibeaaaaa@44B5@ does not fundamentally different from the previous one. Now we are going to convert the heat. First of all, we should take into consideration that in this case we use 4D-velocity including the velocities of microparticles. In 3D-formalism the energy of acceleration varies in inverse proportion to 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdiwcfa4aaWba aSqabKqaGeaajugWaiaaikdaaaaaleqaaaaa@4019@ , and this energy has also to convert in heat in the inverse proportion to 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqa bKqaGeaajugWaiaaikdaaaaaleqaaaaa@3F8B@ for the observer being in the laboratory reference frame at rest. Therefore we have for the relativistic heat

Q (T) = 1 2 d Q (T) κλ g κλ ;κ,λ=1,2,3,4;κλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaGGOaGaamivaiaacMca aKqaGeqaaKqzGeGaeyypa0tcfa4aa8qCaOqaaKqzGeGaamizaiaadg falmaaDaaajeaibaqcLbmacaGGOaGaamivaiaacMcaaKqaGeaajugW aiabeQ7aRjabeU7aSbaajugibiaadEgalmaaBaaajeaibaqcLbmacq aH6oWAcqaH7oaBaKqaGeqaaaqaaKqzadGaaGymaaqcbasaaKqzadGa aGOmaaqcLbsacqGHRiI8aiaacUdacqaH6oWAcaGGSaGaeq4UdWMaey ypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaGinaiaa cUdacqaH6oWAcqGHGjsUcqaH7oaBaaa@6929@ ,  (81)

Where Q (T) κλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaDaaajeaibaqcLbmacaGGOaGaamivaiaacMca aKqaGeaajugWaiabeQ7aRjabeU7aSbaaaaa@4299@  is the tensor of the relativistic heat; g κλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgalmaaBaaajeaibaqcLbmacqaH6oWAcqaH7oaBaKqa Geqaaaaa@3F4E@  the fundamental tensor of rank 2.

Q (T) = Q 0(T) 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaGGOaGaamivaiaacMca aKqaGeqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyuaSWaaS baaKqaGeaajugWaiaaicdacaGGOaGaamivaiaacMcaaKqaGeqaaaGc baqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aILqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaaWcbeaaaaqcLbsacaGGSaaaaa@4EE3@   (82)

Where Q 0(T) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaaIWaGaaiikaiaadsfa caGGPaaajeaibeaaaaa@3EBE@  is the Q (T) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaGGOaGaamivaiaacMca aKqaGeqaaaaa@3E04@ at rest.

To some extent, the quantity Q (T) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaGGOaGaamivaiaacMca aKqaGeqaaaaa@3E04@ is similar to the term (1/c) q α D u α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaacIcacaaIXaGaai4laiaadogacaGGPaGaamyCaSWaaWba aKqaGeqabaqcLbmacqaHXoqyaaqcLbsacaWGebGaamyDaKqbaoaaBa aajeaibaqcLbmacqaHXoqyaSqabaaaaa@471A@  in the above expression (38). Such terms can be only in relativistic thermodynamics.

From the aforesaid on the thermo dynamical heat Q (s) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaGGOaGaam4CaiaacMca aKqaGeqaaaaa@3E23@ including the expressions (27)-(31), we can represent this quantity as

Q (s) = 1 2 d Q (s) κλ g κλ ;κ,λ=1,2,3,4;κλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaGGOaGaam4CaiaacMca aKqaGeqaaKqzGeGaeyypa0tcfa4aa8qCaOqaaKqzGeGaamizaiaadg falmaaDaaajeaibaqcLbmacaGGOaGaam4CaiaacMcaaKqaGeaajugW aiabeQ7aRjabeU7aSbaajugibiaadEgajuaGdaWgaaqcbasaaKqzad GaeqOUdSMaeq4UdWgaleqaaaqcbasaaKqzadGaaGymaaqcbasaaKqz adGaaGOmaaqcLbsacqGHRiI8aiaacUdacqaH6oWAcaGGSaGaeq4UdW Maeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaGin aiaacUdacqaH6oWAcqGHGjsUcqaH7oaBaaa@69F5@ ,  (83)

And

Q (s) = Q 0(s) 1 β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfalmaaBaaajeaibaqcLbmacaGGOaGaam4CaiaacMca aKqaGeqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyuaKqbao aaBaaaleaajugWaiaaicdajugibiaacIcacaWGZbGaaiykaaWcbeaa aOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGylmaaCa aajeaibeqaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaaiOlaaaa@4F69@   (84)

Can we obtain expressions similar to the relations (81) - (84) for the internal energy not taking into consideration the expressions obtained above for 4D-work and heat? Evidently, no, since we cannot determine the increment of internal energy without the calculation of the energy put into the system or removed from it by means of work and heat. The internal energy cannot accurately be determined by physical devices. Taking into consideration the all above expressions for the transformation of heat and work in 4D formalism, we can conclude that the internal energy U has to transform under relativistic conditions as

U= U 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwfacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGvbWcdaWg aaqcbasaaKqzadGaaGimaaqcbasabaaakeaajuaGdaGcaaGcbaqcLb sacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikda aaaaleqaaaaaaaa@467D@ ,  (85)

And the first principle of thermodynamics in 4D-formalism can be written as

D E 1 β 2 =D Q 0(s) 1 β 2 +D Q 0(T) 1 β 2 +D m 0 c 2 1 β 2 +D κ,λ=1,2,3 ( ζ (0)κλ / 1 β 2 ) + D κ,λ=1,2.3 ( ξ (0)κλ / 1 β 2 )+D m 0 v 1 2 1 β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamiraKqbaoaalaaakeaajugibiaadweaaOqaaKqb aoaakaaakeaajugibiaaigdacqGHsislcqaHYoGyjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaeyypa0JaamiraKqb aoaalaaakeaajugibiaadgfalmaaBaaajeaibaqcLbmacaaIWaGaai ikaiaadohacaGGPaaajeaibeaaaOqaaKqbaoaakaaakeaajugibiaa igdacqGHsislcqaHYoGylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaS qabaaaaKqzGeGaey4kaSIaamiraKqbaoaalaaakeaajugibiaadgfa lmaaBaaajeaibaqcLbmacaaIWaGaaiikaiaadsfacaGGPaaajeaibe aaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGyjuaG daahaaWcbeqcbasaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaey4kaS IaamiraKqbaoaalaaakeaajugibiaad2galmaaBaaajeaibaqcLbma caaIWaaajeaibeaajugibiaadogalmaaCaaajeaibeqaaKqzadGaaG OmaaaaaOqaaKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGy lmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaey4kaS IaamiraKqbaoaaqafakeaajugibiaacIcacqaH2oGElmaaBaaajeai baqcLbmacaGGOaGaaGimaiaacMcacqaH6oWAcqaH7oaBaKqaGeqaaK qzGeGaai4laKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGy lmaaCaaajeaibeqaaKqzadGaaGOmaaaaaSqabaqcLbsacaGGPaaaje aibaqcLbmacqaH6oWAcaGGSaGaeq4UdWMaeyypa0JaaGymaiaacYca caaIYaGaaiilaiaaiodaaSqabKqzGeGaeyyeIuoacqGHRaWkaOqaaK qzGeGaeyOeI0IaamiraKqbaoaaqafakeaajugibiaacIcacqaH+oaE lmaaBaaajeaibaqcLbmacaGGOaGaaGimaiaacMcacqaH6oWAcqaH7o aBaKqaGeqaaaqaaKqzadGaeqOUdSMaaiilaiabeU7aSjabg2da9iaa igdacaGGSaGaaGOmaiaac6cacaaIZaaaleqajugibiabggHiLdGaai 4laKqbaoaakaaakeaajugibiaaigdacqGHsislcqaHYoGylmaaCaaa jeaibeqaaKqzadGaaGOmaaaaaSqabaqcLbsacaGGPaGaey4kaSIaam iraKqbaoaalaaakeaajugibiaad2galmaaBaaajeaibaqcLbmacaaI WaaajeaibeaajugibiaadAhalmaaDaaajeaibaqcLbmacaaIXaaaje aibaqcLbmacaaIYaaaaaGcbaqcfa4aaOaaaOqaaKqzGeGaaGymaiab gkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWcbeaaaa qcLbsacaGGUaaaaaa@CF62@ ,  (86)

Where E( = U 0 + E kin ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraKqba+aadaqadaGcbaqcLbsapeGa eyypa0JaamyvaSWdamaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdae qaaKqzGeWdbiabgUcaRiaadweal8aadaWgaaqcbasaaKqzadWdbiaa dUgacaWGPbGaamOBaaqcbaYdaeqaaaGccaGLOaGaayzkaaaaaa@487F@ is the energy of the system, D is differential sign in 4D-formalism.

Obtaining (86), we have taken into consideration the relations (20), (41), (43), (55), (59), (70), (75) and the equality I 4 = I 44 + I 2 + I 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMeajuaGdaWgaaqcbasaaKqzadGaaGinaaWcbeaajugi biabg2da9iaadMealmaaBaaajeaibaqcLbmacaaI0aGaaGinaaqcba sabaqcLbsacqGHRaWkcaWGjbWcdaWgaaqcbasaaKqzadGaaGOmaaqc basabaqcLbsacqGHRaWkcaWGjbWcdaWgaaqcbasaaKqzadGaaG4maa qcbasabaaaaa@4BCC@ .

The relation (86) is quite correct in the velocity interval 0-v of the object under study. The both sides of its transform identically under relativistic conditions - we do not come to absurdity, as vc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCODaiabgkziUkaadogaaaa@3D42@ , since the both sides of these relations become infine.

The law (86) is the first 4D-principle of thermodynamics without taking into consideration of the work of the electromagnetic forces, and in case the vector v of the system motion is parallel to the coordinate axis X1. The relation (86) is the fundamental one, its left and right sides transform identically under relativistic conditions but we can determine the transformation of the left side of the relation only by means of the transformation of the right side. In the general case the fundamental nature of this or that dependence can be determined by means of the principle of two observers. The principle is formulated below anticipating by an example. Let a process of heat transfer take place in our system. In the simplest case the process can be described in several ways: first, by the formula of heat transfer I q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaWGXbaajeaibeaaaaa@3CC0@ (Jcm-2 s-1) Fourier, second, by the formula of the heat transfer taken from irreversible thermodynamics,13 third, by Veitsman’s formula.12 Here they:

I q =λ T x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaWGXbaajeaibeaajugi biabg2da9iabgkHiTiabeU7aSLqbaoaalaaakeaajugibiabgkGi2k aadsfaaOqaaKqzGeGaeyOaIyRaamiEaaaacaGGSaaaaa@4818@   (87)

I q = a q T T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacaWGXbaajeaibeaajugi biabg2da9iabgkHiTiaadggalmaaBaaajeaibaqcLbmacaWGXbaaje aibeaajuaGdaWcaaGcbaqcLbsacqGHhis0caWGubaakeaajugibiaa dsfaaaGaaiilaaaa@4884@   (88)

I α = D αβ q x β ;α,β=1,2,3;α=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMealmaaBaaajeaibaqcLbmacqaHXoqyaKqaGeqaaKqz GeGaeyypa0JaeyOeI0IaamiraSWaaSbaaKqaGeaajugWaiabeg7aHj abek7aIbqcbasabaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamyCaaGc baqcLbsacqGHciITcaWG4bqcfa4aaSbaaKqaGeaajugWaiabek7aIb WcbeaaaaqcLbsacaGG7aGaeqySdeMaaiilaiabek7aIjabg2da9iaa igdacaGGSaGaaGOmaiaacYcacaaIZaGaai4oaiabeg7aHjabg2da9i abek7aIjaacYcaaaa@5F71@   (89)

Where λ is the thermal conductivity coefficient (Jcm-1s-1grad-1; scalar); a q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaajeaibaWcdaWgaaqccasaaKqzadGaamyC aaqccasabaaajeaibeaaaaa@3D5A@ the phenomenological thermal conductivity coefficient (Jcm-1s-1; scalar); D αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadseajuaGdaWgaaqcbasaaKqzadGaeqySdeMaeqOSdiga leqaaaaa@3F69@  the coefficient of thermal diffusion (cm2∙s-1; tensor of rank 2); q the specific density of heat (Jcm-3).

Let two observers be in a laboratory reference frame. The first observer is measuring the quantities being on the left side of the expressions (87)-(89) by devices under relativistic conditions. In turn, the second observer is measuring the parameters being on the right side of these relations under the same ones. If these measured quantities are substituted in the above expressions, then we do not lead to absurdity only in the case (89).12 In the cases (87) and (88) the left sides of these formulae will transform differently from their right ones. It means that relations (87) and (88) are not the fundamental physical dependences.

Now we can formulate the principle of two observers: “A physical dependence will be truly fundamental one only in case the parameters, obtained by the first and the second independent observers for the left and right sides of this dependence, do not lead to absurdity and contradictions under relativistic conditions by being accordingly substituted in the left and right sides of the physical formula”.

4D-space component

G sp =u ( U 0 + α,β=1,2,3 Ζ (0)αβ κ,λ=1,2,3 Ξ (0)κλ ) с 2 1 Β 2 ,   κλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaC4raSWdamaaBaaajeaibaqcLbmapeGa aC4CaiaahchaaKqaG8aabeaajugib8qacqGH9aqpcaWG1bqcfa4dam aalaaakeaajuaGdaqadaGcbaqcLbsacaWGvbWcdaWgaaqcbasaaKqz adGaaGimaaqcbasabaqcLbsacqGHRaWkjuaGdaaeqbGcbaqcLbsacq qHwoGwjuaGdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaeqyS deMaeqOSdigaleqaaKqzGeGaeyOeI0scfa4aaabuaOqaaKqzGeGaeu ONdG1cdaWgaaqcbasaaKqzadGaaiikaiaaicdacaGGPaGaeqOUdSMa eq4UdWgajeaibeaaaeaajugWaiabeQ7aRjaacYcacqaH7oaBcqGH9a qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maaWcbeqcLbsacqGHris5 aaqcbasaaKqzadGaeqySdeMaaiilaiabek7aIjabg2da9iaaigdaca GGSaGaaGOmaiaacYcacaaIZaaaleqajugibiabggHiLdaakiaawIca caGLPaaaaeaajugibiaadgeblmaaCaaajeaibeqaaKqzadGaaGOmaa aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeuOKdi0cdaahaaqc basabeaajugWaiaaikdaaaaaleqaaaaajugibiaacYcapeGaaiiOai aacckacaGGGcWdaiabeQ7aRjabgcMi5kabeU7aSbaa@8B52@ ,  (90)

And 4D-time component

G t = i c ( U+ α,β=1,2,3 Ζ αβ κ,λ=1,2,3 Ξ κλ ),  κλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaC4raSWdamaaBaaajeaibaqcLbmapeGa amiDaaqcbaYdaeqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaam yAaaGcbaqcLbsacaWGJbaaaKqbaoaabmaakeaajugibiaadwfacqGH RaWkjuaGdaaeqbGcbaqcLbsacqqHwoGwjuaGdaWgaaqcbasaaKqzad GaeqySdeMaeqOSdigaleqaaaqcbasaaKqzadGaeqySdeMaaiilaiab ek7aIjabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaaleqaju gibiabggHiLdGaeyOeI0scfa4aaabuaOqaaKqzGeGaeuONdG1cdaWg aaqcbasaaKqzadGaeqOUdSMaeq4UdWgajeaibeaaaeaajugWaiabeQ 7aRjaacYcacqaH7oaBcqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGa aG4maaWcbeqcLbsacqGHris5aaGccaGLOaGaayzkaaqcLbsacaGGSa WdbiaacckacaGGGcWdaiabeQ7aRjabgcMi5kabeU7aSbaa@7944@ ,  (91)

Forms an invariant quantity

G= i c ( U (0) + α,β=1,2,3 Ζ (0)αβ κ,λ=1,2,3 Ξ (0)κλ ),   κλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaC4ra8aacqGH9aqpjuaGdaWcaaGcbaqc LbsacaWGPbaakeaajugibiaadogaaaqcfa4aaeWaaOqaaKqzGeGaam yvaSWaaSbaaKqaGeaajugWaiaacIcacaaIWaGaaiykaaqcbasabaqc LbsacqGHRaWkjuaGdaaeqbGcbaqcLbsacqqHwoGwlmaaBaaajeaiba qcLbmacaGGOaGaaGimaiaacMcacqaHXoqycqaHYoGyaKqaGeqaaaqa aKqzadGaeqySdeMaaiilaiabek7aIjabg2da9iaaigdacaGGSaGaaG OmaiaacYcacaaIZaaaleqajugibiabggHiLdGaeyOeI0scfa4aaabu aOqaaKqzGeGaeuONdG1cdaWgaaqcbasaaKqzadGaaiikaiaaicdaca GGPaGaeqOUdSMaeq4UdWgajeaibeaaaeaajugWaiabeQ7aRjaacYca cqaH7oaBcqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maaWcbe qcLbsacqGHris5aaGccaGLOaGaayzkaaqcLbsacaGGSaWdbiaaccka caGGGcGaaiiOa8aacqaH6oWAcqGHGjsUcqaH7oaBaaa@7EFB@ ,  (92)

Where Β=u/c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfk5acjabg2da9abaaaaaaaaapeGaamyDaiaac+cacaWG Jbaaaa@3E6B@ , u is the 4-velocity vector in real space.

Discussion

As seen above, the temperature of the system is present in the first principle of thermodynamics in a latent form - by means of the second principle of thermodynamics

δS= δQ T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabes7aKjaadofacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaH 0oazcaWGrbaakeaajugibiaadsfaaaGaaiilaaaa@42A5@   (93)

Where S is the entropy, which is Lorentz-invariant according to Planck, i.e.,

S= S 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofacqGH9aqpcaWGtbWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcLbsacaGGUaaaaa@3FAD@   (94)

 If we write down the transformation of heat Q under relativistic conditions as

Q= Q 0 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfacqGH9aqpcaWGrbWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aIL qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaWcbeaajugibiaacYca aaa@4701@   (95)

Then the temperature has to transform under these conditions according to (21), i.e., according to M.Planck. However, if we write down the transformation of Q as

Q= Q 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgfacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGrbqcfa4a aSbaaKqaGeaajugWaiaaicdaaSqabaaakeaajuaGdaGcaaGcbaqcLb sacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikda aaaaleqaaaaaaaa@46D9@ ,  (96)

Then the temperature T has to transform under these conditions according to the following formula

T= T 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGubqcfa4a aSbaaKqaGeaajugWaiaaicdaaSqabaaakeaajuaGdaGcaaGcbaqcLb sacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikda aaaaleqaaaaaaaa@46DF@ ,  (97)

i.e., according to Ott H6 As we have seen above, the relations (96) and (97) do not lead to the absurdity, the relations (21) and (40), on the contrary, do. Where were Planck and Einstein mistaken? We make an attempt to show it starting from (2). Einstein proceeds from Gibb’s equation taken in the form (normal state):

TdS=dE+pdVvdG, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGKbGaam4uaiabg2da9iaadsgacaWGfbGaey4k aSIaamiCaiaadsgacaWGwbGaeyOeI0IaamODaiaadsgacaWGhbGaai ilaaaa@4689@   (98)

Where E is the internal energy.

Accelerate adiabatically our system up to the velocity v. Further, integrate (98) term by term from state 1 (v=0) up to state 2 (v→∞):

1 2 TdS= 1 2 dE+ 1 2 pdV 1 2 vdG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbGcbaqcLbsacaWGubGaamizaiaadofacqGH9aqpjuaG daWdXbGcbaqcLbsacaWGKbGaamyraiabgUcaRKqbaoaapehakeaaju gibiaadchacaWGKbGaamOvaiabgkHiTKqbaoaapehakeaajugibiaa dAhacaWGKbGaam4raaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaG OmaaqcLbsacqGHRiI8aaqcbasaaKqzadGaaGymaaqcbasaaKqzadGa aGOmaaqcLbsacqGHRiI8aaqcbasaaKqzadGaaGymaaqcbasaaKqzad GaaGOmaaqcLbsacqGHRiI8aaqcbasaaKqzadGaaGymaaqcbasaaKqz adGaaGOmaaqcLbsacqGHRiI8aaaa@6602@ .  (99)

Since S 0 =S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biabg2da9iaadofaaaa@3EFB@ , then in view of (16)

E 2 E 1 + p 0 V p 0 V 0 ( U 0 + p 0 V 0 )( 1 1 β 2 1 )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabgkHiTiaadwealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaju gibiabgUcaRiaadchalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaa jugibiaadAfacqGHsislcaWGWbWcdaWgaaqcbasaaKqzadGaaGimaa qcbasabaqcLbsacaWGwbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasa baqcLbsacqGHsisljuaGdaqadaGcbaqcLbsacaWGvbWcdaWgaaqcba saaKqzadGaaGimaaqcbasabaqcLbsacqGHRaWkcaWGWbWcdaWgaaqc basaaKqzadGaaGimaaqcbasabaqcLbsacaWGwbqcfa4aaSbaaKqaGe aajugWaiaaicdaaSqabaaakiaawIcacaGLPaaajuaGdaqadaGcbaqc fa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcfa4aaOaaaOqaaKqzGeGaaG ymaiabgkHiTiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaWc beaaaaqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiabg2 da9iaaicdacaGGUaaaaa@702C@   (100)

However, Einstein meanwhile operates with TdS, when there is no any input of heat in the system! We cannot use the above Gibbs ratio here, we are to use only the first principle of thermodynamics under condition that dQ= S 0 dT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbGaeyypa0Jaam4uaSWaaSbaaKqaGeaajugW aiaaicdaaKqaGeqaaKqzGeGaamizaiaadsfaaaa@41A4@ (see above)! If we input the heat in our system accelerated up to a velocity v, then the increment of the heat dQ will contain the term TdS, however the heart of the matter has not to change. As before, we come to absurdity considering that the temperature will be transformed according to Planck-Einstein’s law. Taking the transformation of the temperature according to H. Ott under these conditions, we have no contradictions.

The transformation of heat and temperature under relativistic conditions is considered to depend on the velocity of the source of heat putting into the system.14 In this regard the author of14 examines two cases: (i) when the object under study and the source of heat are moving with the same velocity, (ii) when they have different velocities. The problem is solved in Minkowski space under some assumptions. In particular, van Kampen proceeds from the assumption that the internal energy U will not transform under relativistic conditions of the system by formula (16), but as

U= U 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwfacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGvbqcfa4a aSbaaKqaGeaajugWaiaaicdaaSqabaaakeaajuaGdaGcaaGcbaqcLb sacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqcbasabeaajugWaiaaikda aaaaleqaaaaaaaa@46E1@ .  (101)

Then in the first case the heat had to transform in an adiabatic acceleration of the system according to (96) and the temperature had to transform according to (97) if entropy S= S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofacqGH9aqpcaWGtbqcfa4aaSbaaKqaGeaajugWaiaa icdaaSqabaaaaa@3ED0@ .

In the second case the heat transforms under relativistic conditions according to complicated laws. In order to find them, van Kampen uses an imaginary model. There are two black bodies a and b separated by a thin metallic sheet. Relative to the laboratory frame, a and b have velocities ua and ub parallel to the sheet. The heat may be leaking from the subsystem a to the subsystem b. Of course, such a system does not exist in nature and cannot be created artificially. According to van Kampen, the heat Q in the subsystems a and b has to transform under relativistic conditions as

d Q a = ρ a +γ ρ b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbWcdaahaaqcbasabeaajugWaiaadggaaaqc LbsacqGH9aqpcqGHsislcqaHbpGClmaaBaaajeaibaqcLbmacaWGHb aajeaibeaajugibiabgUcaRiabeo7aNjabeg8aYLqbaoaaBaaajeai baqcLbmacaWGIbaaleqaaaaa@4C1F@ ,  (102)

d Q b = ρ b +γ ρ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbWcdaahaaqcbasabeaajugWaiaadkgaaaqc LbsacqGH9aqpcqGHsislcqaHbpGCjuaGdaWgaaqcbasaaKqzadGaam OyaaWcbeaajugibiabgUcaRiabeo7aNjabeg8aYTWaaSbaaKqaGeaa jugWaiaadggaaKqaGeqaaaaa@4C20@ ,  (103)

Where ρ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaadggaaKqaGeqaaaaa @3DA2@ and ρ b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaadkgaaKqaGeqaaaaa @3DA3@ are the energy density in the subsystems multiplied by 1 4 ΔAΔt,γ= ( 1 u 2 ) 1/2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaisdaaaGaeuiL dqKaamyqaiabfs5aejaadshacaGGSaGaeq4SdCMaeyypa0tcfa4aae WaaOqaaKqzGeGaaGymaiabgkHiTiaadwhalmaaCaaajeaibeqaaKqz adGaaGOmaaaaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmacq GHsislcaaIXaGaai4laiaaikdaaaqcLbsacaGG7aaaaa@5177@   ΔAis the area of a small hole through which the heat goes from the subsystem a to the subsystem b, ΔT the interval of time when the hole is open; u=v/c, c is the velocity of light adopted equal to 1. Then we have for the whole system

d Q a +d Q b =( γ1 )( ρ a + ρ b )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGrbqcfa4aaSbaaKqaGeaajugWaiaadggaaSqa baqcLbsacqGHRaWkcaWGKbGaamyuaKqbaoaaBaaajeaibaqcLbmaca WGIbaaleqaaKqzGeGaeyypa0tcfa4aaeWaaOqaaKqzGeGaeq4SdCMa eyOeI0IaaGymaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGaeq yWdi3cdaWgaaqcbasaaKqzadGaamyyaaqcbasabaqcLbsacqGHRaWk cqaHbpGCjuaGdaWgaaqcbasaaKqzadGaamOyaaWcbeaaaOGaayjkai aawMcaaKqzGeGaeyOpa4JaaGimaaaa@5B55@ ,  (104)

 It should be noted that, using the above model, van Kampen has obtained a complicated law of the heat transformation under relativistic conditions.

However, using of different imaginary models, we can obtain some special relations of no fundamental importance.

Conclusion

  1. The first principle of thermodynamics was obtained under relativistic conditions in view of the surface tension.
  2. Using the first principle of thermodynamics, it was shown that the temperature varied under relativistic conditions in adiabatic acceleration according to Ott H6, i.e., in inverse proportion to 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacaaIXaGaeyOeI0IaeqOSdi2cdaahaaqc basabeaajugWaiaaikdaaaaaleqaaaaa@3F8B@ .
  3. It was shown where A. Einstein made the mistake which led afterwards to the incorrect dependence T= T 0 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacqGH9aqpcaWGubWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcfa4aaOaaaOqaaKqzGeGaaGymaiabgkHiTiabek7aIL qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaWcbeaaaaa@45C8@ .

Acknowledgments

None.

Conflicts of interest

Author declares there is no conflict of interest.

References

  1. Mosengeil KV. Theorie der stationären Strahlung in einem gleichförmig bewegten Hohlraum. Annalen der Physics. 1907;327(5): 867–904.
  2. Einstein A. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch deutsche Radioaktivitaet und Elektronik. 1907;4:411–462.
  3. Veitsman EV. On relativistic surface tension. Journal of Colloid and Interface Science. 2003;265(1):174–178.
  4. Veitsman EV. Corrigendum to “Relativistic state equations for the interface”. Journal of Colloid and Interface Science. 2005;295(2):592.
  5. Veitsman EV. ibid, 2009;337:355–357.
  6. Ott H. Lorentz-Transformation der Wärme und der Temperatur. Zeitschrift für Physik. 1963;175(1):70–104.
  7. Callen H, Horwitz G. Relativistic Thermodynamics. American Journal of Physics. 1971;39:938–947.
  8. Eckart C. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Physical Review. 1940;58: 919–924.
  9. Veitsman EV. Some problems in relativistic thermodynamics. Journal of Experimental and Theoretical Physics. 2007;105(5):1057–1067.  
  10. Levich VG. The Course of Theoretical Physics. Fizmatgiz, Moscow, Russia. 1962.
  11. MØller C. Relativistic Thermodynamics. A strange Incident in History of Physics. Munksgaard Publisher, Denmark, 1967. p. 1–27.
  12. Madelung E. Die matematische Hilfsmittel des Physikers. Springer-Verlag, Berlin, Germany. 1957.
  13. Haase R. Thermodynamik der irreversiblen prozesse. Dr. Dietrich Steinkopff Verlag, Darmstadt, Germany. 1963.
  14. Kampen NGV. Relativistic Thermodynamics of Moving Systems. Physical Review Journals Archeive. 1968;173(1):295–301.
Creative Commons Attribution License

©2018 Veitsman. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.