Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 3

Solutions of the schrödinger equation with the harmonic oscillator potential (HOP) in cylindrical basis

Akaninyene D Antia, Christian C Eze, Louis E Akpabio

Department of Physics, University of Uyo, Nigeria

Correspondence: Akaninyene Daniel Antia, Theoretical Physics Group, Department of Physics, University of Uyo, Nigeria

Received: November 28, 2017 | Published: May 18, 2018

Citation: Antia AD, Eze CC, Akpabio LE. Solutions of the schrödinger equation with the harmonic oscillator potential (HOP) in cylindrical basis. Phys Astron Int J. 2018;2(3):187-191. DOI: 10.15406/paij.2018.02.00084

Download PDF

Abstract

In this paper, we have studied the Schrodinger equation in the cylindrical basis with harmonic oscillator using a Nikiforov–Uvarov technique. The energy eigenvalues and the normalized wave function for this system are also obtained. We have equally evaluated the probability current and the result shows that the oscillator propagates along the axis of symmetry of HOP.

Keywords: schrödinger equation, harmonic oscillator potential, probability current, NU method, hermite polynomials.

Introduction

Over the years, the Schrodinger Equation (SE) has proved an excellent tool for the study of quantum systems. The SE is solved in the non–relativistic limit both exactly and approximately. It is solved approximately for an arbitrary non–vanishing angular momentum quantum number, l0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYgacqGHGjsUcaaIWaaaaa@3CC0@ and solved exactly for an s–wave ( l=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWGSbGaeyypa0JaaGimaaGccaGLOaGa ayzkaaaaaa@3E2A@ by the path integral method,1 operator algebraic method,2 or power series method.3–4These are however traditional methods of solving the SE analytically.

Alternatively, it can be solved by the NU method,5 shifted 1/N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaGGVaGaamOtaaaa@3B8F@ expression,6 supersymmetric quantum mechanics,7 and a host of other methods.8–9 We use the NU method in this work and compare our results with those obtained by Greiner et al.10

Various authors have studied the Harmonic Oscillator Potential (HOP). For example, Ikot et al.11 derived the energy eigenvalues and eigenfunctions for the two–dimensional HOP in Cartessian and Polar coordinates using NU method. Wang et al.12 determined the viral theorem for a class of quantum nonlinear harmonic oscillators, Amore & Fernandez13 studied the two–particle harmonic oscillator in a one–dimensional box and Greiner & Maruhn10 obtained the energy eigenvalues and eigenfunctions of the HOP in cylindrical basis by factorization method.

However, it must be noted that the choice of basis set is a matter of whether the spin–orbit coupling or the deformation of the potential is more important. In practice this depends on deformation near spherical shapes. But the spin–orbit coupling splits the levels much more than the deformation, while for large deformation the cylindrical basis is closer to the true states.10 In cylindrical basis ( ρ,ϕ,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacqaHbpGCcaGGSaGaaGPaVlabew9aMjaa cYcacaaMc8UaamOEaaGccaGLOaGaayzkaaaaaa@4476@ , the HOP is of the form:10

V( ρ,z )= ω 2 2 ( z 2 + ρ 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfajuaGdaqadaGcbaqcLbsacqaHbpGCcaGGSaGaaGPa VlaadQhaaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaSaaaOqaaK qzGeGaeqyYdCxcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakeaa jugibiaaikdaaaqcfa4aaeWaaOqaaKqzGeGaamOEaKqbaoaaCaaale qajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyWdi3cdaahaaqc basabeaajugWaiaaikdaaaaakiaawIcacaGLPaaajuaGcaGGSaaaaa@57D2@ (1)

Where w is the frequency of the oscillator.

The Nikiforov–Uvarov (NU) method

The NU method5 is used for solving any linear, second–order differential equation of the hypergeometric type:

ψ n ( s )+ τ ˜ ( s ) σ( s ) ψ n ( s )+ σ ˜ ( s ) σ 2 ( s ) ψ n ( s )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqbeI8a5zaagaWcdaWgaaqcbasaaKqzadGaamOBaaqcbasa baqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaqcLbsacq GHRaWkjuaGdaWcaaGcbaqcLbsacuaHepaDgaacaKqbaoaabmaakeaa jugibiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaeq4Wdmxcfa4aae WaaOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaaaaKqzGeGafqiYdKNb auaalmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajuaGdaqadaGcba qcLbsacaWGZbaakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaa keaajugibiqbeo8aZzaaiaqcfa4aaeWaaOqaaKqzGeGaam4CaaGcca GLOaGaayzkaaaabaqcLbsacqaHdpWClmaaCaaajeaibeqaaKqzadGa aGOmaaaajuaGdaqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaaaa qcLbsacqaHipqElmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajuaG daqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaajugibiabg2da9i aaicdacaGGSaaaaa@748A@ (2)

Where σ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaaaa@3EC3@ and τ ˜ ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqbes8a0zaaiaqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGL OaGaayzkaaaaaa@3ED4@ are polynomials of at most, second–degree and τ ˜ ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqbes8a0zaaiaqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGL OaGaayzkaaaaaa@3ED4@ is a first degree polynomial. The primes denote derivatives with respect to the variable s. The function ψ n ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI8a5TWaaSbaaKqaGeaajugWaiaad6gaaKqaGeqaaKqb aoaabmaakeaajugibiaadohaaOGaayjkaiaawMcaaaaa@416F@ can be decomposed as

ψ n ( s )= φ n ( s ) y n ( s ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake Gabaa0xKqzGeGaeqiYdK3cdaWgaaqcbasaaKqzadGaamOBaaqcbasa baqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaqcLbsacq GH9aqpcqaHgpGAjuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajuaG daqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaajugibiaadMhaju aGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajuaGdaqadaGcbaqcLbsa caWGZbaakiaawIcacaGLPaaajugibiaacYcaaaa@55E5@ (3)

So that equation (2) takes the hyper geometric from

σ( s ) y n ( s )+τ( s ) y n ( s )+λ y n ( s )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGabmyEayaagaWcdaWgaaqcbasaaKqzadGaamOBaaqcba sabaqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaqcLbsa cqGHRaWkcqaHepaDjuaGdaqadaGcbaqcLbsacaWGZbaakiaawIcaca GLPaaajugibiqadMhagaqbaSWaaSbaaKqaGeaajugWaiaad6gaaKqa GeqaaKqbaoaabmaakeaajugibiaadohaaOGaayjkaiaawMcaaKqzGe Gaey4kaSIaeq4UdWMaamyEaKqbaoaaBaaajeaibaqcLbmacaWGUbaa leqaaKqbaoaabmaakeaajugibiaadohaaOGaayjkaiaawMcaaKqzGe Gaeyypa0JaaGimaaaa@62AD@ (4)

Where the function φ n ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQTWaaSbaaKqaGeaajugWaiaad6gaaKqaGeqaaKqb aoaabmaakeaajugibiaadohaaOGaayjkaiaawMcaaaaa@415E@ is obtained from the logarithmic derivative

φ ( s ) φ n ( s ) = π( s ) σ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacuaHgpGAgaqbaKqbaoaabmaakeaajugi biaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaeqOXdOwcfa4aaSbaaK qaGeaajugWaiaad6gaaSqabaqcfa4aaeWaaOqaaKqzGeGaam4CaaGc caGLOaGaayzkaaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeq iWdaxcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaaabaqc LbsacqaHdpWCjuaGdaqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPa aaaaaaaa@56B3@ (5)

Here, π( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaaaa@3EBD@ is a first–degree polynomial defined as

π( s )= σ ( s ) τ ˜ ( s ) 2 ± ( σ ( s ) τ ˜ ( s ) 2 ) 2 σ ˜ ( s )+kσ( s ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGafq4WdmNbauaaju aGdaqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaajugibiabgkHi Tiqbes8a0zaaiaqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGLOaGaay zkaaaabaqcLbsacaaIYaaaaiabgglaXMqbaoaakaaakeaajuaGdaqa daGcbaqcfa4aaSaaaOqaaKqzGeGafq4WdmNbauaajuaGdaqadaGcba qcLbsacaWGZbaakiaawIcacaGLPaaajugibiabgkHiTiqbes8a0zaa iaqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaaabaqcLb sacaaIYaaaaaGccaGLOaGaayzkaaWcdaahaaqcbasabeaajugWaiaa ikdaaaqcLbsacqGHsislcuaHdpWCgaacaKqbaoaabmaakeaajugibi aadohaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaam4Aaiabeo8aZLqb aoaabmaakeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaaiilaa Wcbeaaaaa@757E@ (6)

Where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgaaaa@3A3E@ is obtained under the condition that the discriminant of the root function of order 2 is set to zero, so as to ensure that π( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaaaa@3EBD@ is a first degree polynomial.

The other part y n ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajuaG daqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaaaaa@409F@ is the hypergeometric type function whose polynomial solutions are given by the Rodrigues relation

y n ( s )= B n ρ( s ) d n d s n [ σ n ( s )ρ( s ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajuaG daqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaajugibiabg2da9K qbaoaalaaakeaajugibiaadkealmaaBaaajeaibaqcLbmacaWGUbaa jeaibeaaaOqaaKqzGeGaeqyWdixcfa4aaeWaaOqaaKqzGeGaam4Caa GccaGLOaGaayzkaaaaaKqbaoaalaaakeaajugibiaadsgajuaGdaah aaWcbeqcbasaaKqzadGaamOBaaaaaOqaaKqzGeGaamizaiaadohalm aaCaaajeaibeqaaKqzadGaamOBaaaaaaqcfa4aamWaaOqaaKqzGeGa eq4Wdm3cdaahaaqcbasabeaajugWaiaad6gaaaqcfa4aaeWaaOqaaK qzGeGaam4CaaGccaGLOaGaayzkaaqcLbsacqaHbpGCjuaGdaqadaGc baqcLbsacaWGZbaakiaawIcacaGLPaaaaiaawUfacaGLDbaajugibi aacYcaaaa@693C@ (7)

Where B n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkealmaaBaaajeaibaqcLbmacaWGUbaajeaibeaaaaa@3CB6@ is a normalization constant and ρ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaaaa@3EC0@ is the weight function given by

ρ( s )=exp[ ( τ( s ) σ ( s ) σ( s ) ) ds ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaciyzaiaacIhacaGGWbqcfa4aamWaaOqaaK qbaoaapeaakeaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqiX dqxcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaqcLbsacq GHsislcuaHdpWCgaqbaKqbaoaabmaakeaajugibiaadohaaOGaayjk aiaawMcaaaqaaKqzGeGaeq4Wdmxcfa4aaeWaaOqaaKqzGeGaam4Caa GccaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaWcbeqabKqzGeGaey4k IipacaWGKbGaam4CaaGccaGLBbGaayzxaaaaaa@608A@ (8)

By computing

τ( s )=τ( s )+2π( s ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabes8a0LqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaeqiXdqxcfa4aaeWaaOqaaKqzGeGaam4Caa GccaGLOaGaayzkaaqcLbsacqGHRaWkcaaIYaGaeqiWdaxcfa4aaeWa aOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaqcLbsacaGGSaaaaa@4EAC@ (9)

Subject to the condition

τ ( s )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqbes8a0zaafaqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGL OaGaayzkaaqcLbsacqGH8aapcaaIWaaaaa@411E@ (10)

and equating

λ= λ n =nτ( s ) n( n1 ) 2 σ ( s ),n=0,1,2,..., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSjabg2da9iabeU7aSTWaaSbaaKqaGeaajugWaiaa d6gaaKqaGeqaaKqzGeGaeyypa0JaeyOeI0IaamOBaiabes8a0Lqbao aabmaakeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyOeI0sc fa4aaSaaaOqaaKqzGeGaamOBaKqbaoaabmaakeaajugibiaad6gacq GHsislcaaIXaaakiaawIcacaGLPaaaaeaajugibiaaikdaaaGafq4W dmNbayaajuaGdaqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaaju gibiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaamOBaiabg2da9iaa icdacaGGSaGaaGPaVlaaigdacaGGSaGaaGPaVlaaikdacaGGSaGaaG PaVlaac6cacaGGUaGaaiOlaiaacYcaaaa@6E1D@ (11)

λ=k+ π ( s ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSjabg2da9iaadUgacqGHRaWkcuaHapaCgaqbaKqb aoaabmaakeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaaiilaa aa@4494@ (12)

the energy eigenvalues equation is obtained.

Solutions of the Schrödinger equation (SE) in cylindrical coordinates

In orthogonal curvilinear coordinates q i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CE0@ , with scale factors h i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIgalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CD7@ the SE for a particle of mass M having energy E, interacting with a potential V( q i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfajuaGdaqadaGcbaqcLbsacaWGXbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaaakiaawIcacaGLPaaaaaa@4075@  is given by

2 2M [ ( i=1 n h i ) 1 i=1 n q i ( i=1 n h i h i 2 ψ( q i ) q i ) ]+V( q i )ψ( q i )=Eψ( q i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHsislcqWIpecAlmaaCaaajeaibeqa aKqzadGaaGOmaaaaaOqaaKqzGeGaaGOmaiaad2eaaaqcfa4aamWaaO qaaKqbaoaabmaakeaajuaGdaqeWbGcbaqcLbsacaWGObWcdaWgaaqc basaaKqzadGaamyAaaqcbasabaaabaqcLbmacaWGPbGaeyypa0JaaG ymaaqcbasaaKqzadGaamOBaaqcLbsacqGHpis1aaGccaGLOaGaayzk aaWcdaahaaqcbasabeaajugWaiabgkHiTiaaigdaaaqcfa4aaabCaO qaaKqbaoaalaaakeaajugibiabgkGi2cGcbaqcLbsacqGHciITcaWG XbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaKqbaoaabmaake aajuaGdaWcaaGcbaqcfa4aaebCaOqaaKqzGeGaamiAaSWaaSbaaKqa GeaajugWaiaadMgaaKqaGeqaaaqaaKqzadGaamyAaiabg2da9iaaig daaKqaGeaajugWaiaad6gaaKqzGeGaey4dIunaaOqaaKqzGeGaamiA aSWaa0baaKqaGeaajugWaiaadMgaaKqaGeaajugWaiaaikdaaaaaaK qbaoaalaaakeaajugibiabgkGi2kabeI8a5Lqbaoaabmaakeaajugi biaadghalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaOGaayjkai aawMcaaaqaaKqzGeGaeyOaIyRaamyCaKqbaoaaBaaajeaibaqcLbma caWGPbaaleqaaaaaaOGaayjkaiaawMcaaaqcbasaaKqzadGaamyAai abg2da9iaaigdaaKqaGeaajugWaiaad6gaaKqzGeGaeyyeIuoaaOGa ay5waiaaw2faaKqzGeGaey4kaSIaamOvaKqbaoaabmaakeaajugibi aadghalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaOGaayjkaiaa wMcaaKqzGeGaeqiYdKxcfa4aaeWaaOqaaKqzGeGaamyCaSWaaSbaaK qaGeaajugWaiaadMgaaKqaGeqaaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpcaWGfbGaeqiYdKxcfa4aaeWaaOqaaKqzGeGaamyCaSWaaSbaaK qaGeaajugWaiaadMgaaKqaGeqaaaGccaGLOaGaayzkaaaaaa@AA6D@  (13)

With the identifications14 h 1 =1, h 2 =ρ, h 3 =1, q 1 =ρ, q 2j =ϕ, q 3 = z j n=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugi biabg2da9iaaigdacaGGSaGaaGPaVlaadIgalmaaBaaajeaibaqcLb macaaIYaaajeaibeaajugibiabg2da9iabeg8aYjaacYcacaaMc8Ua amiAaKqbaoaaBaaajeaibaqcLbmacaaIZaaaleqaaKqzGeGaeyypa0 JaaGymaiaacYcacaaMc8UaamyCaSWaaSbaaKqaGeaajugWaiaaigda aKqaGeqaaKqzGeGaeyypa0JaeqyWdiNaaiilaiaaykW7caWGXbqcfa 4aaSbaaKqaGeaajugWaiaaikdacaWGQbaaleqaaKqzGeGaeyypa0Ja eqy1dyMaaiilaiaaykW7caWGXbWcdaWgaaqcbasaaKqzadGaaG4maa qcbasabaqcLbsacqGH9aqpcaWG6bqcfa4aaSbaaKqaGeaajugWaiaa dQgaaSqabaqcLbsacaaMc8UaamOBaiabg2da9iaaiodaaaa@73C1@  and with the potential (1), Equation (13) takes the form10

  [ 2 2M ( 2 z 2 + 1 ρ 2 2 ρ 2 + 1 ρ ρ + 2 ϕ 2 )+ ω 2 2 ( z 2 + ρ 2 ) ]ψ( ρ,ϕ,z )=Eψ( ρ,ϕ,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOeI0IaeS4dHG2c daahaaqcbasabeaajugWaiaaikdaaaaakeaajugibiaaikdacaWGnb aaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqGHciITlmaaCaaa jeaibeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaeyOaIyRaamOEaSWaaW baaKqaGeqabaqcLbmacaaIYaaaaaaajugibiabgUcaRKqbaoaalaaa keaajugibiaaigdaaOqaaKqzGeGaeqyWdixcfa4aaWbaaSqabKqaGe aajugWaiaaikdaaaaaaKqbaoaalaaakeaajugibiabgkGi2UWaaWba aKqaGeqabaqcLbmacaaIYaaaaaGcbaqcLbsacqGHciITcqaHbpGClm aaCaaajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkjuaGdaWc aaGcbaqcLbsacaaIXaaakeaajugibiabeg8aYbaajuaGdaWcaaGcba qcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaeqyWdihaaiabgUcaRKqb aoaalaaakeaajugibiabgkGi2UWaaWbaaKqaGeqabaqcLbmacaaIYa aaaaGcbaqcLbsacqGHciITcqaHvpGzlmaaCaaajeaibeqaaKqzadGa aGOmaaaaaaaakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaake aajugibiabeM8a3TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaGcbaqc LbsacaaIYaaaaKqbaoaabmaakeaajugibiaadQhalmaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiabgUcaRiabeg8aYTWaaWbaaKqaGeqa baqcLbmacaaIYaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaqcLb sacqaHipqEjuaGdaqadaGcbaqcLbsacqaHbpGCcaGGSaGaaGPaVlab ew9aMjaacYcacaaMc8UaamOEaaGccaGLOaGaayzkaaqcLbsacqGH9a qpcaWGfbGaeqiYdKxcfa4aaeWaaOqaaKqzGeGaeqyWdiNaaiilaiaa ykW7cqaHvpGzcaGGSaGaaGPaVlaadQhaaOGaayjkaiaawMcaaaaa@ABFE@ (14)

By using the decomposition

ψ( ρ,ϕ,z )=ζ( z )χ( ρ )η( ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI8a5Lqbaoaabmaakeaajugibiabeg8aYjaacYcacaaM c8Uaeqy1dyMaaiilaiaaykW7caWG6baakiaawIcacaGLPaaajugibi abg2da9iabeA7a6LqbaoaabmaakeaajugibiaadQhaaOGaayjkaiaa wMcaaKqzGeGaeq4Xdmwcfa4aaeWaaOqaaKqzGeGaeqyWdihakiaawI cacaGLPaaajugibiabeE7aOLqbaoaabmaakeaajugibiabew9aMbGc caGLOaGaayzkaaaaaa@5B5B@  (15)

Equation (14) reduces to the following equations:

  ( d 2 d ϕ 2 + μ 2 )η( ϕ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaKqbaoaaCaaa leqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGKbGaeqy1dy2cda ahaaqcbasabeaajugWaiaaikdaaaaaaKqzGeGaey4kaSIaeqiVd0wc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakiaawIcacaGLPaaaju gibiabeE7aOLqbaoaabmaakeaajugibiabew9aMbGccaGLOaGaayzk aaqcLbsacqGH9aqpcaaIWaaaaa@5466@ (16)

  ( d 2 d ρ 2 + 1 ρ d dρ M 2 ω 2 ρ 2 μ 2 ρ 2 + 2MΛ 2 )χ( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaSWaaWbaaKqa GeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaWGKbGaeqyWdi3cdaahaa qcbasabeaajugWaiaaikdaaaaaaKqzGeGaey4kaSscfa4aaSaaaOqa aKqzGeGaaGymaaGcbaqcLbsacqaHbpGCaaqcfa4aaSaaaOqaaKqzGe GaamizaaGcbaqcLbsacaWGKbGaeqyWdihaaiabgkHiTKqbaoaalaaa keaajugibiaad2ealmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi abeM8a3TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqyWdi3c daahaaqcbasabeaajugWaiaaikdaaaaakeaajugibiabl+qiObaacq GHsisljuaGdaWcaaGcbaqcLbsacqaH8oqBlmaaCaaajeaibeqaaKqz adGaaGOmaaaaaOqaaKqzGeGaeqyWdi3cdaahaaqcbasabeaajugWai aaikdaaaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGOmaiaa d2eacqqHBoataOqaaKqzGeGaeS4dHG2cdaahaaqcbasabeaajugWai aaikdaaaaaaaGccaGLOaGaayzkaaqcLbsacqaHhpWyjuaGdaqadaGc baqcLbsacqaHbpGCaOGaayjkaiaawMcaaaaa@7B35@ (17)

( d 2 d z 2 M 2 ω 2 z 2 2 + 2M( EΛ ) 2 )ζ( z )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaSWaaWbaaKqa GeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaWGKbGaamOEaSWaaWbaaK qaGeqabaqcLbmacaaIYaaaaaaajugibiabgkHiTKqbaoaalaaakeaa jugibiaad2ealmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabeM 8a3TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamOEaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaaGcbaqcLbsacqWIpecAjuaGdaahaa WcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkjuaGdaWcaaGc baqcLbsacaaIYaGaamytaKqbaoaabmaakeaajugibiaadweacqGHsi slcqqHBoataOGaayjkaiaawMcaaaqaaKqzGeGaeS4dHG2cdaahaaqc basabeaajugWaiaaikdaaaaaaaGccaGLOaGaayzkaaqcLbsacqaH2o GEjuaGdaqadaGcbaqcLbsacaWG6baakiaawIcacaGLPaaajugibiab g2da9iaaicdacaGGSaaaaa@6DE9@  (18)

Where and are separation constants.

Solution of the ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqy1dygaaa@3B36@ – equation
The   ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqy1dygaaa@3B36@ equation is easily solved to give

η μ ( ϕ )= 1 2π e iμϕ ,μ=0,±1,±2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOTWaaSbaaKqaGeaalmaaBaaajiaibaqcLbmacqaH 8oqBaKGaGeqaaaqcbasabaqcfa4aaeWaaOqaaKqzGeGaeqy1dygaki aawIcacaGLPaaajugibiabg2da9Kqbaoaalaaakeaajugibiaaigda aOqaaKqbaoaakaaakeaajugibiaaikdacqaHapaCaSqabaaaaKqzGe GaamyzaSWaaWbaaKqaGeqabaqcLbmacaWGPbGaeqiVd0Maeqy1dyga aKqzGeGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7cqaH8oqBcqGH9a qpcaaIWaGaaiilaiaaykW7cqGHXcqScaaIXaGaaiilaiaaykW7caaM c8UaeyySaeRaaGOmaiaacYcacaaMc8UaaiOlaiaac6cacaGGUaaaaa@6C9E@  (19)

Solution of the r – equation
By using the transformation ρ 2 s, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa eyOKH4Qaam4CaiaacYcaaaa@4173@  Equation (17) reduces to the hyper geometric form

χ ( s )+ χ ( s ) s + 1 s 2 [ β 2 δ 2 μ 2 4 +αs ]χ( s )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaOuKqzGeGafq4XdmMbayaajuaGdaqadaGcbaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaakeaajugibiqbeE 8aJzaafaqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGLOaGaayzkaaaa baqcLbsacaWGZbaaaiabgUcaRKqbaoaalaaakeaajugibiaaigdaaO qaaKqzGeGaam4CaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajuaG daWadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOeI0IaeqOSdi2cdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacqaH0oazlmaaCaaajeaibeqa aKqzadGaaGOmaaaajugibiabgkHiTiabeY7aTTWaaWbaaKqaGeqaba qcLbmacaaIYaaaaaGcbaqcLbsacaaI0aaaaiabgUcaRiabeg7aHjaa ykW7caWGZbaakiaawUfacaGLDbaajugibiabeE8aJLqbaoaabmaake aajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaiaa cYcaaaa@7199@  (20)

Where

β= Mω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjabg2da9Kqbaoaalaaakeaajugibiaad2eacqaH jpWDaOqaaKqzGeGaeS4dHGgaaaaa@418D@

α= MΛ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjabg2da9Kqbaoaalaaakeaajugibiaad2eacqqH BoataOqaaKqzGeGaaGOmaiabl+qiOTWaaWbaaKqaGeqabaqcLbmaca aIYaaaaaaaaaa@4430@

Comparing Equation (20) with Equation (2), we obtain the following polynomials

  σ( s )=s, τ ˜ ( s )=1, σ ˜ ( s )= β 2 s 2 μ 2 4 +αs,π( s )=± β 2 s 2 μ 2 4 αs+ks MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0Jaam4CaiaacYcacuaHepaDgaacaKqbaoaabm aakeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGym aiaacYcacuaHdpWCgaacaKqbaoaabmaakeaajugibiaadohaaOGaay jkaiaawMcaaKqzGeGaeyypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGa eqOSdi2cdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGZbWcda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaH8oqBlmaaCaaajeai beqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGinaaaacqGHRaWkcqaHXo qycaWGZbGaaiilaiabec8aWLqbaoaabmaakeaajugibiaadohaaOGa ayjkaiaawMcaaKqzGeGaeyypa0JaeyySaeBcfa4aaOaaaOqaaKqbao aalaaakeaajugibiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaam4CaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeq iVd02cdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugibiaaisda aaaaleqaaKqzGeGaeyOeI0IaeqySdeMaam4CaiabgUcaRiaadUgaca WGZbaaaa@84B3@ (21)

On setting the discriminate of π( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaaaa@3EBD@ to zero, we obtain the following expressions for π( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaaaa@3EBD@

  π( s )=±{ βs+μ 2 ,for k + =α+ βμ 2 βsμ 2 ,for k =α βμ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaeyySaeBcfa4aaiqaaOqaaKqzGeqbaeqabi qaaaabaeqakeaajuaGdaWcaaGcbaqcLbsacqaHYoGycaWGZbGaey4k aSIaeqiVd0gakeaajugibiaaikdaaaGaaiilaiaaykW7caWGMbGaam 4BaiaadkhacaaMb8UaaGzaVlaaygW7caaMc8Uaam4AaKqbaoaaBaaa jeaibaqcLbmacqGHRaWkaSqabaqcLbsacqGH9aqpcqaHXoqycqGHRa WkjuaGdaWcaaGcbaqcLbsacqaHYoGycqaH8oqBaOqaaKqzGeGaaGOm aaaaaOqaaaaabaqcfa4aaSaaaOqaaKqzGeGaeqOSdiMaam4Caiabgk HiTiabeY7aTbGcbaqcLbsacaaIYaaaaiaacYcacaaMc8UaamOzaiaa d+gacaWGYbGaaGzaVlaaygW7caaMb8UaaGPaVlaadUgalmaaBaaaje aibaqcLbmacqGHsislaKqaGeqaaKqzGeGaeyypa0JaeqySdeMaeyOe I0scfa4aaSaaaOqaaKqzGeGaeqOSdiMaeqiVd0gakeaajugibiaaik daaaaaaaGccaGL7baaaaa@8618@  (22)

so that

π( s )= βs+μ 2 ,k= k =α βμ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGaeqOSdi Maam4CaiabgUcaRiabeY7aTbGcbaqcLbsacaaIYaaaaiaacYcacaaM c8Uaam4Aaiabg2da9iaadUgajuaGdaWgaaqcbasaaKqzadGaeyOeI0 caleqaaKqzGeGaeyypa0JaeqySdeMaeyOeI0scfa4aaSaaaOqaaKqz GeGaeqOSdiMaeqiVd0gakeaajugibiaaikdaaaaaaa@5B20@  (23)

and

τ( s )=1+μβs, τ ( s )=β<0, sinceβ>0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabes8a0LqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaaGymaiabgUcaRiabeY7aTjabgkHiTiabek 7aIjaadohacaGGSaGafqiXdqNbauaajuaGdaqadaGcbaqcLbsacaWG ZbaakiaawIcacaGLPaaajugibiabg2da9iabgkHiTiabek7aIbbaaa aaaaaapeGaeyipaWJaaGimaiaacYcacaqGGaGaam4CaiaadMgacaWG UbGaam4yaiaadwgapaGaeqOSdi2dbiabg6da+iaaicdacaGGGcaaaa@5E0B@  (24)

Thus,

λ=α βμ 2 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSjabg2da9iabeg7aHjabgkHiTKqbaoaalaaakeaa jugibiabek7aIjabeY7aTbGcbaqcLbsacaaIYaaaaiabgkHiTKqbao aalaaakeaajugibiabek7aIbGcbaqcLbsacaaIYaaaaiaacYcaaaa@4A41@ (25)

and using (11),

λ= λ n =nβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSjabg2da9iabeU7aSLqbaoaaBaaajeaibaqcLbma caWGUbaaleqaaKqzGeGaeyypa0JaamOBaiabek7aIbaa@44EA@ (26)

Equating (25) and (26) yields the condition for Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfU5ambaa@3AC3@ :

Λ=ω( 2n+| μ |+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfU5amjabg2da9iabl+qiOjabeM8a3Lqbaoaabmaakeaa jugibiaaikdacaWGUbGaey4kaSscfa4aaqWaaOqaaKqzGeGaeqiVd0 gakiaawEa7caGLiWoajugibiabgUcaRiaaigdaaOGaayjkaiaawMca aaaa@4C3F@  (27)

Using Equations (21, 23 & 5), we obtain the function ϕ(s) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqy1dyMaaiikaiaadohacaGGPaaaaa@3D87@ as

φ( s )= α μ s | μ |/2 e βs/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaeqySde2cdaWgaaqcbasaaKqzadGaeqiVd0 gajeaibeaajugibiaadohalmaaCaaajeaibeqaaSWaaSGbaKqaGeaa lmaaemaajeaibaqcLbmacqaH8oqBaKqaGiaawEa7caGLiWoaaeaaju gWaiaaikdaaaaaaKqzGeGaamyzaSWaaWbaaKqaGeqabaWcdaWcgaqc basaaKqzadGaeqOSdiMaam4CaaqcbasaaKqzadGaaGOmaaaaaaaaaa@57C3@ , (28)
Where α μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHTWaaSbaaKqaGeaajugWaiabeY7aTbqcbasabaaa aa@3E51@

is the integration constant. The weight function is obtained using Equations (24, 21 & 8) as

ρ( s )= b μ e βs s | μ | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaamOyaSWaaSbaaKqaGeaajugWaiabeY7aTb qcbasabaqcLbsacaWGLbWcdaahaaqcbasabeaajugWaiabgkHiTiab ek7aIjaadohaaaqcLbsacaWGZbWcdaahaaqcbasabeaalmaaemaaje aibaqcLbmacqaH8oqBaKqaGiaawEa7caGLiWoaaaaaaa@5367@ ,                (29)

Thus, we obtain the other part of the wave function y n ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajuaG daqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaaaaa@409F@ as

y n ( s )=N e βs s | μ | d n d s n [ s n+| μ | e βs ]= N nρ L nρ | μ | ( βs ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajuaG daqadaGcbaqcLbsacaWGZbaakiaawIcacaGLPaaajugibiabg2da9i aad6eacaaMc8UaamyzaSWaaWbaaKqaGeqabaqcLbmacqaHYoGycaWG ZbaaaKqzGeGaam4CaSWaaWbaaKqaGeqabaqcLbmacqGHsisllmaaem aajeaibaqcLbmacqaH8oqBaKqaGiaawEa7caGLiWoaaaqcfa4aaSaa aOqaaKqzGeGaamizaSWaaWbaaKqaGeqabaqcLbmacaWGUbaaaaGcba qcLbsacaWGKbGaam4CaKqbaoaaCaaaleqajeaibaqcLbmacaWGUbaa aaaajuaGdaWadaGcbaqcLbsacaWGZbWcdaahaaqcbasabeaajugWai aad6gacqGHRaWklmaaemaajeaibaqcLbmacqaH8oqBaKqaGiaawEa7 caGLiWoaaaqcLbsacaWGLbqcfa4aaWbaaSqabKqaGeaajugWaiabgk HiTiabek7aIjaadohaaaaakiaawUfacaGLDbaajugibiabg2da9iaa d6ealmaaBaaajeaibaqcLbmacaWGUbGaeqyWdihajeaibeaajugibi aadYealmaaDaaajeaibaqcLbmacaWGUbGaeqyWdihajeaibaWcdaab daqcbasaaKqzadGaeqiVd0gajeaicaGLhWUaayjcSdaaaKqbaoaabm aakeaajugibiabek7aIjaadohaaOGaayjkaiaawMcaaaaa@8B3F@ , (30)

Where L n | μ | ( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYealmaaDaaajeaibaqcLbmacaWGUbaajeaibaWcdaab daqcbasaaKqzadGaeqiVd0gajeaicaGLhWUaayjcSdaaaKqbaoaabm aakeaajugibiabe67a4bGccaGLOaGaayzkaaaaaa@47A3@ are the associated Laquerre polynomials.

Thus,

χ( s )= N n ρ s | μ |/2 e βs/2 L n ρ | μ | ( βs ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaamOtaKqbaoaaBaaajeaibaqcLbmacaWGUb WcdaWgaaqccasaaKqzadGaeqyWdihajiaibeaaaSqabaqcLbsacaaM c8Uaam4CaSWaaWbaaKqaGeqabaWcdaabdaqcbasaaKqzadGaeqiVd0 gajeaicaGLhWUaayjcSdqcLbmacaGGVaGaaGOmaaaajugibiaadwga lmaaCaaajeaibeqaaKqzadGaeyOeI0IaeqOSdiMaam4Caiaac+caca aIYaaaaKqzGeGaamitaSWaa0baaKqaGeaajugWaiaad6galmaaBaaa jiaibaqcLbmacqaHbpGCaKGaGeqaaaqcbasaaSWaaqWaaKqaGeaaju gWaiabeY7aTbqcbaIaay5bSlaawIa7aaaajuaGdaqadaGcbaqcLbsa cqaHYoGycaWGZbaakiaawIcacaGLPaaaaaa@6F1C@ , (31)

or

χ( ρ )= N n ρ ρ | μ |/2 e βρ/2 L n ρ | μ | ( β ρ 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJLqbaoaabmaakeaajugibiabeg8aYbGccaGLOaGa ayzkaaqcLbsacqGH9aqpcaWGobWcdaWgaaqcbasaaKqzadGaamOBaS WaaSbaaKGaGeaajugWaiabeg8aYbqccasabaaajeaibeaajugibiaa ykW7cqaHbpGClmaaCaaajeaibeqaaSWaaqWaaKqaGeaajugWaiabeY 7aTbqcbaIaay5bSlaawIa7aKqzadGaai4laiaaikdaaaqcLbsacaWG Lbqcfa4aaWbaaSqabKqaGeaajugWaiabgkHiTiabek7aIjabeg8aYj aac+cacaaIYaaaaKqzGeGaamitaSWaa0baaKqaGeaajugWaiaad6ga lmaaBaaajiaibaqcLbmacqaHbpGCaKGaGeqaaaqcbasaaSWaaqWaaK qaGeaajugWaiabeY7aTbqcbaIaay5bSlaawIa7aaaajuaGdaqadaGc baqcLbsacqaHYoGycqaHbpGClmaaCaaajeaibeqaaKqzadGaaGOmaa aaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@75E6@  (32)

Where n p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaamiCaaWcbeaaaaa@3D48@ is the number of quanta in the ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYbaa@3B0E@ direction.

Solution of the z–equation
By using the transformation z 2 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiab gkziUkaadohaaaa@4002@ , Equation (18) reads

ξ ( s )+ ξ ( s ) 2s + 1 4 s 2 [ β 2 s 2 +ys ]ξ( s )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqbe67a4zaagaqcfa4aaeWaaOqaaKqzGeGaam4CaaGccaGL OaGaayzkaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacuaH+oaEga qbaKqbaoaabmaakeaajugibiaadohaaOGaayjkaiaawMcaaaqaaKqz GeGaaGOmaiaadohaaaGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGymaa GcbaqcLbsacaaI0aGaam4CaSWaaWbaaKqaGeqabaqcLbmacaaIYaaa aaaajuaGdaWadaGcbaqcLbsacqGHsislcqaHYoGylmaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiaadohalmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabgUcaRiaadMhacaWGZbaakiaawUfacaGLDbaaju gibiabe67a4LqbaoaabmaakeaajugibiaadohaaOGaayjkaiaawMca aKqzGeGaeyypa0JaaGimaiaacYcaaaa@68C4@  (33)

with the identification

γ= 2M( EΛ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNjabg2da9KqbaoaalaaakeaajugibiaaikdacaWG nbqcfa4aaeWaaOqaaKqzGeGaamyraiabgkHiTiabfU5ambGccaGLOa GaayzkaaaabaqcLbsacqWIpecAlmaaCaaajeaibeqaaKqzadGaaGOm aaaaaaaaaa@489F@

Following the same procedure in subsection, we obtain the following:

σ( s )=2s, τ ˜ σ( s )= β 2 s 2 +γs, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaaGOmaiaadohacaGGSaGaaGPaVlaaykW7cu aHepaDgaacaiabeo8aZLqbaoaabmaakeaajugibiaadohaaOGaayjk aiaawMcaaKqzGeGaeyypa0JaeyOeI0IaeqOSdi2cdaahaaqcbasabe aajugWaiaaikdaaaqcLbsacaWGZbWcdaahaaqcbasabeaajugWaiaa ikdaaaqcLbsacqGHRaWkcqaHZoWzcaWGZbGaaiilaaaa@5C07@  (34)

with

π( s )= 1 2 ±{ βs+ 1 2 ,for k + = γ+β 2 βs 1 2 ,for k = γβ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLb sacaaIYaaaaiabgglaXMqbaoaaceaajugibqaabeGcbaqcLbsacqaH YoGycaWGZbGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLb sacaaIYaaaaiaacYcacaaMc8UaaGPaVlaadAgacaWGVbGaamOCaiaa ykW7caaMc8Uaam4AaKqbaoaaBaaajeaibaqcLbmacqGHRaWkaSqaba qcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaHZoWzcqGHRaWkcqaH YoGyaOqaaKqzGeGaaGOmaaaaaOqaaKqzGeGaeqOSdiMaam4Caiabgk HiTKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaacaGG SaGaaGPaVlaaykW7caWGMbGaam4BaiaadkhacaaMc8UaaGPaVlaadU galmaaBaaajeaibaqcLbmacqGHsislaKqaGeqaaKqzGeGaeyypa0tc fa4aaSaaaOqaaKqzGeGaeq4SdCMaeyOeI0IaeqOSdigakeaajugibi aaikdaaaaaaOGaay5EaaqcLbsacaaMc8UaaGPaVdaa@85A9@  (35)

so that

π( s )=βs+1,τ( s )=32βs. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaeyOeI0IaeqOSdiMaam4CaiabgUcaRiaaig dacaGGSaGaaGPaVlaaykW7cqaHepaDjuaGdaqadaGcbaqcLbsacaWG ZbaakiaawIcacaGLPaaajugibiabg2da9iaaiodacqGHsislcaaIYa GaeqOSdiMaam4Caiaac6caaaa@55F8@  (36)

Thus,

λ=k+ π ( s )= γβ 2 β= λ n =2nβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSjabg2da9iaadUgacqGHRaWkcuaHapaCgaqbaKqb aoaabmaakeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0 tcfa4aaSaaaOqaaKqzGeGaeq4SdCMaeyOeI0IaeqOSdigakeaajugi biaaikdaaaGaeyOeI0IaeqOSdiMaeyypa0Jaeq4UdW2cdaWgaaqcKf aG=haajugWaiaad6gaaKazba4=beaajugibiabg2da9iaaikdacaWG UbGaeqOSdigaaa@5BFF@

and

EΛ=ω( 2n+ 3 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadweacqGHsislcqqHBoatcqGH9aqpcqWIpecAcqaHjpWD juaGdaqadaGcbaqcLbsacaaIYaGaamOBaiabgUcaRKqbaoaalaaake aajugibiaaiodaaOqaaKqzGeGaaG4maaaaaOGaayjkaiaawMcaaaaa @490B@ (37)

Using the condition (27), the energy eigenvalues of the system become

   E=ω( n z +2 n ρ +| μ | 3 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadweacqGH9aqpcqWIpecAcqaHjpWDjuaGdaqadaGcbaqc LbsacaWGUbqcfa4aaSbaaKqaGeaajugWaiaadQhaaSqabaqcLbsacq GHRaWkcaaIYaGaamOBaSWaaSbaaKqaGeaajugWaiabeg8aYbqcbasa baqcLbsacqGHRaWkjuaGdaabdaGcbaqcLbsacqaH8oqBaOGaay5bSl aawIa7aKqbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGaaGOmaaaa aOGaayjkaiaawMcaaaaa@5623@ (38)

where

n 2 =2 n ρ +1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugi biabg2da9iaaikdacaWGUbWcdaWgaaqcbasaaKqzadGaeqyWdihaje aibeaajugibiabgUcaRiaaigdacaGGUaaaaa@469F@

This is a unique result and we note that n ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaeqyWdihaleqaaaaa @3E13@ counts twice because it contains two oscillator directions and the angular momentum projection, μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0gaaa@3B24@ contributes to the energy because of the centrifugal potential.

The wave function φ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaaaa@3EBD@  is obtained as

φ( s )= a n i e βs/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaamyyaSWaaSbaaKqaGeaajugWaiaad6galm aaBaaajiaibaqcLbmacaWGPbaajiaibeaaaKqaGeqaaKqzGeGaamyz aSWaaWbaaKqaGeqabaqcLbmacqGHsislcqaHYoGycaWGZbGaai4lai aaikdaaaaaaa@4E6A@   (39)

and the weight function

ρ( s )= b n i s e βs , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYLqbaoaabmaakeaajugibiaadohaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaamOyaSWaaSbaaKqaGeaajugWaiaad6galm aaBaaajiaibaqcLbmacaWGPbaajiaibeaaaKqaGeqaaKqbaoaakaaa keaajugibiaadohaaSqabaqcLbsacaWGLbWcdaahaaqcbasabeaaju gWaiabgkHiTiabek7aIjaadohaaaqcLbsacaGGSaaaaa@5078@  (40)

so that

Y n i ( s )=N e βs/2 L n z 1/2 ( βs ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMfajuaGdaWgaaqcbasaaKqzadGaamOBaSWaaSbaaKGa GeaajugWaiaadMgaaKGaGeqaaaWcbeaajuaGdaqadaGcbaqcLbsaca WGZbaakiaawIcacaGLPaaajugibiabg2da9iaad6eacaWGLbWcdaah aaqcbasabeaajugWaiabgkHiTiabek7aIjaadohacaGGVaGaaGOmaa aajugibiaadYealmaaDaaajeaibaqcLbmacaWGUbWcdaWgaaqccasa aKqzadGaamOEaaqccasabaaajeaibaqcLbmacaaIXaGaai4laiaaik daaaqcfa4aaeWaaOqaaKqzGeGaeqOSdiMaam4CaaGccaGLOaGaayzk aaqcLbsacaGGUaaaaa@5DEA@ (41)

Consequently,

ζ( z )=Nz e β z 2 /2 L n z 1/2 ( β z 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA7a6LqbaoaabmaakeaajugibiaadQhaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaamOtaiaadQhacaWGLbWcdaahaaqcbasabe aajugWaiabgkHiTiabek7aIjaadQhalmaaCaaajiaibeqaaKqzadGa aGOmaaaacaGGVaGaaGOmaaaajugibiaadYealmaaDaaajeaibaqcLb macaWGUbWcdaWgaaqccasaaKqzadGaamOEaaqccasabaaajeaibaqc LbmacaaIXaGaai4laiaaikdaaaqcfa4aaeWaaOqaaKqzGeGaeqOSdi MaamOEaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaGccaGLOaGaayzk aaqcLbsacaGGUaaaaa@5EBD@  (42)

Using the relation15,16

H 2n+1 ( x )= ( 1 ) n 2 2n+1 n!x L n 1/2 ( x 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaaIYaGaamOBaiabgUca RiaaigdaaKqaGeqaaKqbaoaabmaakeaajugibiaadIhaaOGaayjkai aawMcaaKqzGeGaeyypa0tcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGym aaGccaGLOaGaayzkaaWcdaahaaqcbasabeaajugWaiaad6gaaaqcLb sacaaIYaWcdaahaaqcbasabeaajugWaiaaikdacaWGUbGaey4kaSIa aGymaaaajugibiaad6gacaGGHaGaaGPaVlaadIhacaWGmbWcdaqhaa qcbasaaKqzadGaamOBaaqcbasaaKqzadGaaGymaiaac+cacaaIYaaa aKqbaoaabmaakeaajugibiaadIhalmaaCaaajeaibeqaaKqzadGaaG OmaaaaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@6408@ (43)

we obtain

ζ( z )= N n i e β z 2 /2 H n z ( βz ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA7a6LqbaoaabmaakeaajugibiaadQhaaOGaayjkaiaa wMcaaKqzGeGaeyypa0JaamOtaSWaaSbaaKqaGeaajugWaiaad6galm aaBaaajiaibaqcLbmacaWGPbaajiaibeaaaKqaGeqaaKqzGeGaamyz aKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcqaHYoGycaWG6bWcda ahaaqccasabeaajugWaiaaikdaaaGaai4laiaaikdaaaqcLbsacaWG ibWcdaWgaaqcbasaaKqzadGaamOBaSWaaSbaaKGaGeaajugWaiaadQ haaKGaGeqaaaqcbasabaqcfa4aaeWaaOqaaKqbaoaakaaakeaajugi biabek7aIjaadQhaaSqabaaakiaawIcacaGLPaaajugibiaacYcaaa a@5F2D@ (44)

Where H n z ( ζ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaWGUbWcdaWgaaqccasa aKqzadGaamOEaaqccasabaaajeaibeaajuaGdaqadaGcbaqcLbsacq aH2oGEaOGaayjkaiaawMcaaaaa@43E2@ are the Hermite Polynomials of order n z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaamOEaaWcbeaaaaa@3D52@ .

Thus, the complete wave function for the HOP in cylindrical basis is expressed as

ψ n z n ρ μ ( z,ρ,ϕ )= N n z n ρ μ e β/2( z 2 + ρ 2 ) H n z ( ρz ) ρ | μ | L n ρ | μ | ( β ρ 2 ) e iμϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI8a5LqbaoaaBaaaleaajugWaiaad6galmaaBaaameaa jugWaiaadQhaaWqabaqcLbmacaWGUbWcdaWgaaadbaqcLbmacqaHbp GCaWqabaqcLbmacqaH8oqBaSqabaqcfa4aaeWaaOqaaKqzGeGaamOE aiaacYcacaaMc8UaeqyWdiNaaiilaiaaykW7cqaHvpGzaOGaayjkai aawMcaaKqzGeGaeyypa0JaamOtaKqbaoaaBaaaleaajugWaiaad6ga lmaaBaaameaajugWaiaadQhaaWqabaqcLbmacaWGUbWcdaWgaaadba qcLbmacqaHbpGCaWqabaqcLbmacqaH8oqBaSqabaqcLbsacaWGLbqc fa4aaWbaaSqabeaajugibiabgkHiTKqzadGaeqOSdiMaai4laiaaik dalmaabmaabaqcLbmacaWG6bWcdaahaaadbeqaaKqzadGaaGOmaaaa cqGHRaWkcqaHbpGClmaaCaaameqabaqcLbmacaaIYaaaaaWccaGLOa GaayzkaaaaaKqzGeGaamisaSWaaSbaaeaajugWaiaad6galmaaBaaa meaajugWaiaadQhaaWqabaaaleqaaKqbaoaabmaakeaajuaGdaGcaa GcbaqcLbsacqaHbpGCcaWG6baaleqaaaGccaGLOaGaayzkaaqcLbsa cqaHbpGClmaaCaaajeaibeqaaSWaaqWaaKqaGeaajugWaiabeY7aTb qcbaIaay5bSlaawIa7aaaajugibiaadYealmaaDaaajeaibaqcLbma caWGUbWcdaWgaaqccasaaKqzadGaeqyWdihajiaibeaaaKqaGeaalm aaemaajeaibaqcLbmacqaH8oqBaKqaGiaawEa7caGLiWoaaaqcfa4a aeWaaOqaaKqzGeGaeqOSdiMaeqyWdi3cdaahaaqcbasabeaajugWai aaikdaaaaakiaawIcacaGLPaaajugibiaadwgalmaaCaaajeaibeqa aKqzadGaamyAaiabeY7aTjabew9aMbaaaaa@A9F2@ (45)

Equations (45, 38 & 27) are the same as those obtained by Greiner et al.10 By using the normalization condition17–19

| ψ | 2 dτ=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdbaGcbaqcfa4aaqWaaOqaaKqzGeGaeqiYdKhakiaawEa7 caGLiWoaaSqabeqajugibiabgUIiYdWcdaahaaqcbasabeaajugWai aaikdaaaqcLbsacaWGKbGaeqiXdqNaeyypa0JaaGymaiaacYcaaaa@49E4@ (46)

together with the relations16,20

0 dx e x x m L n m ( x ) = ( n+m )! n! δ n n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbqaaKqzGeGaamizaiaadIhacaWGLbWcdaahaaqcfasa beaajugWaiabgkHiTiaadIhaaaqcLbsacaWG4bWcdaahaaqcfasabe aajugWaiaad2gaaaqcLbsacaWGmbWcdaqhaaqcfasaaKqzadGaamOB aaqcfasaaKqzadGaamyBaaaajuaGdaqadaqaaKqzGeGaamiEaaqcfa OaayjkaiaawMcaaaqcfasaaKqzadGaaGimaaqcfasaaKqzadGaeyOh IukajugibiabgUIiYdGaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaake aajugibiaad6gacqGHRaWkcaWGTbaakiaawIcacaGLPaaajugibiaa cgcaaOqaaKqzGeGaamOBaiaacgcaaaGaeqiTdq2cdaWgaaqcbasaaK qzadGabmOBayaafaGaamOBaaqcbasabaaaaa@661D@ (47)

dx e x 2 H n ( x ) H n ( x ) = 2 n n! x δ n n , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWdXbqaaKqzGeGaamizaiaadIhacaWGLbWcdaahaaqcfasa beaajugWaiabgkHiTiaadIhalmaaCaaajuaibeqaaKqzadGaaGOmaa aaaaqcLbsacaWGibWcdaWgaaqcfasaaKqzadGabmOBayaafaaajuai beaajuaGdaqadaqaaKqzGeGaamiEaaqcfaOaayjkaiaawMcaaKqzGe GaamisaSWaaSbaaKqbGeaajugWaiaad6gaaKqbGeqaaKqbaoaabmaa baqcLbsacaWG4baajuaGcaGLOaGaayzkaaaajuaibaqcLbmacqGHsi slcqGHEisPaKqbGeaajugWaiabg6HiLcqcLbsacqGHRiI8aiabg2da 9iaaikdalmaaCaaajeaibeqaaKqzadGaamOBaaaajugibiaad6gaca GGHaqcfa4aaOaaaOqaaKqzGeGaamiEaaWcbeaajugibiabes7aKTWa aSbaaKqaGeaajugWaiqad6gagaqbaiaad6gaaKqaGeqaaKqzadGaai ilaaaa@6C95@ (48)

we obtain the normalization constant N nz n υ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaabaqcLbmacaWGUbGaamOEaiaaykW7caWG UbWcdaWgaaadbaqcLbmacqaHfpqDaWqabaqcLbmacqaH8oqBaSqaba aaaa@4613@ as

N n z n ρ μ = ( n ρ +| μ | )! 2 n z +2 β | μ |+1/2 π 3/2 n ρ ! n z ! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6ealmaaBaaabaqcLbmacaWGUbWcdaWgaaadbaqcLbma caWG6bGaaGPaVdadbeaajugWaiaad6galmaaBaaameaajugWaiabeg 8aYbadbeaajugWaiabeY7aTbWcbeaajugibiabg2da9Kqbaoaakaaa keaajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamOBaKqbaoaaBa aajeaibaqcLbmacqaHbpGCaSqabaqcLbsacqGHRaWkjuaGdaabdaGc baqcLbsacqaH8oqBaOGaay5bSlaawIa7aaGaayjkaiaawMcaaKqzGe GaaiyiaaGcbaqcLbsacaaIYaWcdaahaaqcbasabeaajugWaiaad6ga lmaaBaaajiaibaqcLbmacaWG6baajiaibeaajugWaiabgUcaRiaaik daaaqcLbsacqaHYoGylmaaCaaajeaibeqaaSWaaqWaaKqaGeaajugW aiabeY7aTbqcbaIaay5bSlaawIa7aKqzadGaey4kaSIaaGymaiaac+ cacaaIYaaaaKqzGeGaeqiWda3cdaahaaqcbasabeaajugWaiaaioda caGGVaGaaGOmaaaajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaeq yWdihaleqaaKqzGeGaaiyiaiaad6galmaaBaaajeaibaqcLbmacaWG 6baajeaibeaajugibiaacgcaaaaaleqaaaaa@8386@  (49)

Thus,

ψ n z n ρ μ ( z,ρ,ϕ )= ( n ρ +| μ | )! 2 n z +2 β | μ |+1/2 π 3/2 n ρ ! n z ! e β/2( z 2 + ρ 2 ) H n z ( βz ) ρ | μ | L n ρ | μ | ( β ρ 2 ) e iμϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI8a5TWaaSbaaeaajugWaiaad6galmaaBaaameaajugW aiaadQhacaaMc8oameqaaKqzadGaamOBaSWaaSbaaWqaaKqzadGaeq yWdihameqaaKqzadGaeqiVd0galeqaaKqbaoaabmaakeaajugibiaa dQhacaGGSaGaaGPaVlabeg8aYjaacYcacaaMc8Uaeqy1dygakiaawI cacaGLPaaajugibiabg2da9KqbaoaakaaakeaajuaGdaWcaaGcbaqc fa4aaeWaaOqaaKqzGeGaamOBaSWaaSbaaKqaGeaajugWaiabeg8aYb qcbasabaqcLbsacqGHRaWkjuaGdaabdaGcbaqcLbsacqaH8oqBaOGa ay5bSlaawIa7aaGaayjkaiaawMcaaKqzGeGaaiyiaaGcbaqcLbsaca aIYaWcdaahaaqabeaajugWaiaad6galmaaBaaajiaibaqcLbmacaWG 6baajiaibeaajugWaiabgUcaRiaaikdaaaqcLbsacqaHYoGyjuaGda ahaaWcbeqcbasaaSWaaqWaaKqaGeaajugWaiabeY7aTbqcbaIaay5b SlaawIa7aKqzadGaey4kaSIaaGymaiaac+cacaaIYaaaaKqzGeGaeq iWda3cdaahaaqcbasabeaajugWaiaaiodacaGGVaGaaGOmaaaajugi biaad6galmaaBaaajeaibaqcLbmacqaHbpGCaKqaGeqaaKqzGeGaai yiaiaad6galmaaBaaajeaibaqcLbmacaWG6baajeaibeaajugibiaa cgcaaaaaleqaaKqzGeGaamyzaSWaaWbaaeqabaqcLbmacqGHsislcq aHYoGycaGGVaGaaGOmaSWaaeWaaeaajugWaiaadQhalmaaCaaameqa baqcLbmacaaIYaaaaiabgUcaRiabeg8aYTWaaWbaaWqabeaajugWai aaikdaaaaaliaawIcacaGLPaaaaaqcLbsacaWGibWcdaWgaaqcbasa aKqzadGaamOBaSWaaSbaaKGaGeaajugWaiaadQhaaKGaGeqaaaqcba sabaqcfa4aaeWaaOqaaKqbaoaakaaakeaajugibiabek7aIjaadQha aSqabaaakiaawIcacaGLPaaajugibiabeg8aYTWaaWbaaKqaGeqaba WcdaabdaqcbasaaKqzadGaeqiVd0gajeaicaGLhWUaayjcSdaaaKqz GeGaamitaSWaa0baaKqaGeaajugWaiaad6galmaaBaaajiaibaqcLb macqaHbpGCaKGaGeqaaaqcbasaaSWaaqWaaKqaGeaajugWaiabeY7a TbqcbaIaay5bSlaawIa7aaaajuaGdaqadaGcbaqcLbsacqaHYoGycq aHbpGClmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawMca aKqzGeGaamyzaSWaaWbaaKqaGeqabaqcLbmacaWGPbGaeqiVd0Maeq y1dygaaaaa@D4BA@  (50)

The probability current

The probability current is defined as17

J= i 2M ( ψψ*ψ*ψ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQeacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGPbGaeS4d HGgakeaajugibiaaikdacaWGnbaaaKqbaoaabmaakeaajugibiabeI 8a5jaaykW7cqGHhis0cqaHipqEcaGGQaGaeyOeI0IaeqiYdKNaaiOk aiabgEGirlaaykW7cqaHipqEaOGaayjkaiaawMcaaaaa@52F5@ (51)

or in cylindrical coordinates

J( z,ρ,ϕ )= i 2M { ( ψ ρ * ψ * ρ ) ρ ^ + 1 ρ ( ψ ϕ * ψ * ϕ ) ϕ ^ +( ψ z * ψ * z ) z ^ }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQeajuaGdaqadaGcbaqcLbsacaWG6bGaaiilaiaaykW7 cqaHbpGCcaGGSaGaaGPaVlabew9aMbGccaGLOaGaayzkaaqcLbsacq GH9aqpjuaGdaWcaaGcbaqcLbsacaWGPbGaeS4dHGgakeaajugibiaa ikdacaWGnbaaaKqbaoaacmaakeaajuaGdaqadaGcbaqcLbsacqaHip qEcqGHciITlmaaDaaajeaibaqcLbmacqaHbpGCaKqaGeaajugWaiaa cQcaaaqcLbsacqGHsislcqaHipqElmaaCaaajeaibeqaaKqzadGaai OkaaaajugibiabgkGi2MqbaoaaBaaajeaibaqcLbmacqaHbpGCaSqa baaakiaawIcacaGLPaaajugibiqbeg8aYzaajaGaey4kaSscfa4aaS aaaOqaaKqzGeGaaGymaaGcbaqcLbsacqaHbpGCaaqcfa4aaeWaaOqa aKqzGeGaeqiYdKNaeyOaIy7cdaqhaaqcbasaaKqzadGaeqy1dygaje aibaqcLbmacaGGQaaaaKqzGeGaeyOeI0IaeqiYdK3cdaahaaqcbasa beaajugWaiaacQcaaaqcLbsacqGHciITlmaaBaaajeaibaqcLbmacq aHvpGzaKqaGeqaaaGccaGLOaGaayzkaaqcLbsacuaHvpGzgaqcaiab gUcaRKqbaoaabmaakeaajugibiabeI8a5jabgkGi2UWaa0baaKqaGe aajugWaiaadQhaaKqaGeaajugWaiaacQcaaaqcLbsacqGHsislcqaH ipqElmaaCaaajeaibeqaaKqzadGaaiOkaaaajugibiabgkGi2UWaaS baaKqaGeaajugWaiaadQhaaKqaGeqaaaGccaGLOaGaayzkaaqcLbsa ceWG6bGbaKaaaOGaay5Eaiaaw2haaKqzGeGaaiilaaaa@9EA0@ (52)

where we have adopted the notation

a ψ a , a * ψ * a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkGi2UWaaSbaaKqaGeaajugWaiaadggaaKqaGeqaaKqz GeGaeyyyIOBcfa4aaSaaaOqaaKqzGeGaeyOaIyRaeqiYdKhakeaaju gibiabgkGi2kaadggaaaGaaiilaiaaykW7caaMc8UaeyOaIy7cdaqh aaqcbasaaKqzadGaamyyaaqcbasaaKqzadGaaiOkaaaajugibiabgg Mi6MqbaoaalaaakeaajugibiabgkGi2kabeI8a5LqbaoaaCaaaleqa jeaibaqcLbmacaGGQaaaaaGcbaqcLbsacqGHciITcaWGHbaaaaaa@5CF6@ (53)

Using the relations16,20

d m d x m { H n ( x ) }= 2 m n! ( nm )! H nm ( x ),form<n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGKbqcfa4aaWbaaSqabKqaGeaajugW aiaad2gaaaaakeaajugibiaadsgacaWG4bWcdaahaaqcbasabeaaju gWaiaad2gaaaaaaKqbaoaacmaakeaajugibiaadIealmaaBaaajeai baqcLbmacaWGUbaajeaibeaajuaGdaqadaGcbaqcLbsacaWG4baaki aawIcacaGLPaaaaiaawUhacaGL9baajugibiabg2da9Kqbaoaalaaa keaajugibiaaikdalmaaCaaajeaibeqaaKqzadGaamyBaaaajugibi aad6gacaGGHaaakeaajuaGdaqadaGcbaqcLbsacaWGUbGaeyOeI0Ia amyBaaGccaGLOaGaayzkaaqcLbsacaGGHaaaaiaadIealmaaBaaaba qcLbmacaWGUbGaeyOeI0IaamyBaaWcbeaajuaGdaqadaGcbaqcLbsa caWG4baakiaawIcacaGLPaaajugibiaacYcacaaMc8UaaGPaVlaadA gacaWGVbGaamOCaiaaykW7caaMc8UaaGPaVlaad2gacqGH8aapcaWG Ubaaaa@73B7@ (54)

and

d dx { L n m ( x ) }= L n1 m+1 ( x ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGKbaakeaajugibiaadsgacaWG4baa aKqbaoaacmaakeaajugibiaadYealmaaDaaajeaibaqcLbmacaWGUb aajeaibaqcLbmacaWGTbaaaKqbaoaabmaakeaajugibiaadIhaaOGa ayjkaiaawMcaaaGaay5Eaiaaw2haaKqzGeGaeyypa0JaeyOeI0Iaam itaSWaa0baaKqaGeaajugWaiaad6gacqGHsislcaaIXaaajeaibaqc LbmacaWGTbGaey4kaSIaaGymaaaajuaGdaqadaGcbaqcLbsacaWG4b aakiaawIcacaGLPaaajugibiaacYcaaaa@5A50@ (55)

we obtain the following derivatives:

ρ * = ψ * ( βρ+ | μ | ρ )2β N n z n ρ μ ρ | μ |+1 e β/2( z 2 + ρ 2 ) H n z ( βz ) L n ρ 1 | μ |+1 ( β ρ 2 ) e iμρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkGi2UWaa0baaKqaGeaajugWaiabeg8aYbqcbasaaKqz adGaaiOkaaaajugibiabg2da9iabeI8a5TWaaWbaaKqaGeqabaqcLb macaGGQaaaaKqbaoaabmaakeaajugibiabgkHiTiabek7aIjabeg8a YjabgUcaRKqbaoaalaaakeaajuaGdaabdaGcbaqcLbsacqaH8oqBaO Gaay5bSlaawIa7aaqaaKqzGeGaeqyWdihaaaGccaGLOaGaayzkaaqc LbsacqGHsislcaaIYaGaeqOSdiMaamOtaKqbaoaaBaaaleaajugWai aad6galmaaBaaameaajugWaiaadQhacaaMc8oameqaaKqzadGaamOB aSWaaSbaaWqaaKqzadGaeqyWdihameqaaKqzadGaaGPaVlabeY7aTb WcbeaajugibiaaykW7cqaHbpGClmaaCaaajeaibeqaaSWaaqWaaKqa GeaajugWaiabeY7aTbqcbaIaay5bSlaawIa7aKqzadGaey4kaSIaaG ymaaaajugibiaaykW7caWGLbqcfa4aaWbaaSqabKqaGeaajugWaiab gkHiTiabek7aIjaac+cacaaIYaWcdaqadaqcbasaaKqzadGaamOEaS WaaWbaaKGaGeqabaqcLbmacaaIYaaaaiabgUcaRiabeg8aYTWaaWba aKGaGeqabaqcLbmacaaIYaaaaaqcbaIaayjkaiaawMcaaaaajugibi aadIealmaaBaaajeaibaqcLbmacaWGUbWcdaWgaaqccasaaKqzadGa amOEaaqccasabaaajeaibeaajuaGdaqadaGcbaqcfa4aaOaaaOqaaK qzGeGaeqOSdiMaamOEaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaamit aSWaa0baaKqaGeaajugWaiaad6galmaaBaaajiaqbaqcLbmacqaHbp GCaKGaafqaaKqzadGaeyOeI0IaaGymaaqcbasaaSWaaqWaaKqaGeaa jugWaiabeY7aTbqcbaIaay5bSlaawIa7aKqzadGaey4kaSIaaGymaa aajuaGdaqadaGcbaqcLbsacqaHYoGycqaHbpGClmaaCaaajeaibeqa aKqzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaamyzaSWaaWbaaK qaGeqabaqcLbmacqGHsislcaWGPbGaeqiVd0MaeqyWdihaaaaa@BE9B@ (56)

ρ * ρ = i| μ | ρ ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITlmaaDaaajeaibaqcLbmacqaH bpGCaKqaGeaajugWaiaacQcaaaaakeaajugibiabeg8aYbaacqGH9a qpjuaGdaWcaaGcbaqcLbsacaWGPbqcfa4aaqWaaOqaaKqzGeGaeqiV d0gakiaawEa7caGLiWoaaeaajugibiabeg8aYbaacqaHipqEaaa@5051@ (57)

z * = ψ * βz+2n β e β/2( z 2 + ρ 2 ) N n z n ρ μ ρ | μ | L n | μ | ( β ρ 2 ) H n1 ( βρ ) e iμϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkGi2UWaa0baaKqaGeaajugWaiaadQhaaKqaGeaajugW aiaacQcaaaqcLbsacqGH9aqpcqGHsislcqaHipqElmaaCaaajeaibe qaaKqzadGaaiOkaaaajugibiabek7aIjaadQhacaaMc8Uaey4kaSIa aGOmaiaad6gajuaGdaGcaaGcbaqcLbsacqaHYoGyaSqabaqcLbsaca aMc8UaamyzaSWaaWbaaKqaGeqabaqcLbmacqGHsislcqaHYoGycaGG VaGaaGOmaSWaaeWaaKqaGeaajugWaiaadQhalmaaCaaajiaibeqaaK qzadGaaGOmaaaacqGHRaWkcqaHbpGClmaaCaaajiaibeqaaKqzadGa aGOmaaaaaKqaGiaawIcacaGLPaaaaaqcLbsacaaMc8UaamOtaKqbao aaBaaaleaajugWaiaad6gacaaMc8+cdaWgaaadbaqcLbmacaWG6baa meqaaKqzadGaaGPaVlaad6gacaaMc8+cdaWgaaadbaqcLbmacqaHbp GCaWqabaqcLbmacaaMc8UaeqiVd0galeqaaKqzGeGaaGPaVlabeg8a YTWaaWbaaKqaGeqabaWcdaabdaqcbasaaKqzadGaeqiVd0gajeaica GLhWUaayjcSdaaaKqzGeGaamitaSWaa0baaKqaGeaajugWaiaad6ga aKqaGeaalmaaemaajeaibaqcLbmacqaH8oqBaKqaGiaawEa7caGLiW oaaaqcfa4aaeWaaOqaaKqzGeGaeqOSdiMaeqyWdi3cdaahaaqcbasa beaajugWaiaaikdaaaaakiaawIcacaGLPaaajugibiaadIealmaaBa aajeaibaqcLbmacaWGUbGaeyOeI0IaaGymaaqcbasabaqcfa4aaeWa aOqaaKqbaoaakaaakeaajugibiabek7aIjabeg8aYbWcbeaaaOGaay jkaiaawMcaaKqzGeGaamyzaSWaaWbaaKqaGeqabaqcLbmacqGHsisl caWGPbGaeqiVd0Maeqy1dygaaaaa@AC7A@ (58)

Taking the conjugate of the above derivatives, we obtain expressing for ρ , 1 ρ ϕ , z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkGi2UWaaSbaaKqaGeaajugWaiabeg8aYbqcbasabaqc LbsacaGGSaGaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacaaIXaaake aajugibiabeg8aYbaacqGHciITlmaaBaaajeaibaqcLbmacqaHvpGz aKqaGeqaaKqzGeGaaiilaiaaykW7caaMc8UaeyOaIy7cdaWgaaqcba saaKqzadGaamOEaaqcbasabaaaaa@5406@ . Thus, the probability current for the harmonic oscillator in cylindrical basis becomes

J ( z,ρ,ϕ )= | μ | Mρ | ψ n z n ρ μ | 2 ϕ ^ = | μ | Mρ ( ( nρ+| μ | )! 2 n z +2 β | μ |+1/2 π 3/2 nρ! ) e β( z 2 + ρ 2 ) ρ | μ | H n z ( βz ) L n ρ | μ | ( β ρ 2 ) ϕ ^ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadQeagaWcaKqbaoaabmaakeaajugibiaadQhacaGGSaGa aGPaVlabeg8aYjaacYcacaaMc8Uaeqy1dygakiaawIcacaGLPaaaju gibiabg2da9KqbaoaalaaakeaajuaGdaabdaGcbaqcLbsacqaH8oqB aOGaay5bSlaawIa7aKqzGeGaeS4dHGgakeaajugibiaad2eacqaHbp GCaaqcfa4aaqWaaOqaaKqzGeGaeqiYdKxcfa4aaSbaaSqaaKqzadGa amOBaSWaaSbaaWqaaKqzadGaamOEaaadbeaajugWaiaad6galmaaBa aameaajugWaiabeg8aYbadbeaajugWaiabeY7aTbWcbeaaaOGaay5b SlaawIa7aSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGafqy1dy MbaKaacaaMc8Uaeyypa0tcfa4aaSaaaOqaaKqbaoaaemaakeaajugi biabeY7aTbGccaGLhWUaayjcSdqcLbsacqWIpecAaOqaaKqzGeGaam ytaiabeg8aYbaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqbaoaabmaa keaajugibiaad6gacqaHbpGCcqGHRaWkjuaGdaabdaGcbaqcLbsacq aH8oqBaOGaay5bSlaawIa7aaGaayjkaiaawMcaaKqzGeGaaiyiaaGc baqcLbsacaaIYaqcfa4aaWbaaSqabKqaGeaajugWaiaad6galmaaBa aajiaibaqcLbmacaWG6baajiaibeaajugWaiabgUcaRiaaikdaaaqc LbsacqaHYoGylmaaCaaajeaibeqaaSWaaqWaaKqaGeaajugWaiabeY 7aTbqcbaIaay5bSlaawIa7aKqzadGaey4kaSIaaGymaiaac+cacaaI YaaaaKqzGeGaeqiWda3cdaahaaqcbasabeaajugWaiaaiodacaGGVa GaaGOmaaaajugibiaad6gacqaHbpGCcaGGHaaaaaGccaGLOaGaayzk aaqcLbsacaWGLbqcfa4aaWbaaSqabeaajugWaiabgkHiTiabek7aIT WaaeWaaeaajugWaiaadQhalmaaCaaameqabaqcLbmacaaIYaaaaiab gUcaRiabeg8aYTWaaWbaaWqabeaajugWaiaaikdaaaaaliaawIcaca GLPaaaaaqcLbsacqaHbpGClmaaCaaajeaibeqaaSWaaqWaaKqaGeaa jugWaiabeY7aTbqcbaIaay5bSlaawIa7aaaajugibiaadIealmaaBa aajeaibaqcLbmacaWGUbWcdaWgaaqccasaaKqzadGaamOEaaqccasa baaajeaibeaajuaGdaqadaGcbaqcfa4aaOaaaOqaaKqzGeGaeqOSdi MaamOEaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaamitaSWaa0baaKqa GeaajugWaiaad6galmaaBaaajiaibaqcLbmacqaHbpGCaKGaGeqaaa qcbasaaSWaaqWaaKqaGeaajugWaiabeY7aTbqcbaIaay5bSlaawIa7 aaaajuaGdaqadaGcbaqcLbsacqaHYoGycqaHbpGClmaaCaaajeaibe qaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGafqy1dyMbaKaa kmaalaaabaGaaGymaaqaaiaaikdaaaaaaa@EB53@ (59)

This indicates that the oscillator propagates along the axis of symmetry of the HOP.

Conclusion

We have obtained analytically the energy eigenvalues and normalized eigenfunctions of the SE with the HOP in cylindrical basis using a quite different powerful mathematical tool: Nikiforov–Uvarov method. Our results are in good agreement with those obtained by Greiner et al.10 As an application of our results we have also determined the probability current of the HOP in cylindrical basis.

Acknowledgements

The authors are grateful to kind referees.

Conflict of interest

Authors declare that there is no conflict of interest.

References

  1. Cai JM, Cai PY, Inomata A. Path–integral treatment of the Hulthen potential. Physical Review A. 1986;34(6).
  2. Cooke TH, Wood JL. An algebraic method for solving central problems. American Journal of Physics. 2002;70(9):945–950.
  3. Rajabi AA. A method to solve the Schrodinger equation for any power hypercentral potentials. Communications in Theoretical Physics. 2007;48(1).
  4. Griffiths DJ. Introduction to quantum mechanics. 2nd ed. USA: Pearson Education; 2005.
  5. Nikiforov AF, Uvarov VB. Special functions of mathematical physics. Switzerland: Birkhäuser Verlag; 1998.
  6. Bag M, Panja MM, Dutt R, et al. Modified shifted large–N approach to the Morse potential. Physical Review A. 1992;46(9):6059–6065
  7. Cooper F, Khare A, Sukhatme UP. Supersymmetry in quantum mechanics. Singapore: World Scientific; 2001. p. 52.
  8. Ciftci H, Hall RL, Saad N. Asymptotic iteration method for eigenvalue problems. Journal of Physics A: Mathematical and General. 2003;36(47):11807–11818.
  9. Ma ZQ, Xu BW. Quantum correction in exact quantization rules. EPL (Europhysics Letters). 2005;69(5).
  10. Greiner W, Maruhn JA. Nuclear models. Germany: Springer; 1996. p. 240–243.
  11. Ikot AN, Antia AD, Akpabio LE, et al. Analytical solutions of the schrodinger equation with two–dimensional harmonic potential in Cartesian and polar coordinates via Nikiforov–Uvarov method. Vector Relation. 2011;6(65).
  12. Wang XH, Guo JY, Lui Y. Integrable deformations of the (2+1)–dimensional Heisenberg ferromagnetic model. Communications in Theoretical Physics. 2012;58(4).
  13. Amore P, Fernandez FM. Harmonic Oscillator in a one–dimensional box. USA: Cornell University Library; 2009.
  14. Arfken GB, Weber J. Mathematical methods for physicists. UK: Academic Press; 1995. p. 100–121.
  15. Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing. USA: Dover Publication; 1972. p. 771–802.
  16. Andrews GE, Askey R, Roy R. Special functions, Cambridge. England: Cambridge University press; 1999. p. 278–282.
  17. Ikot AN, Akpabio lE, Obu JA. Exact solutions of the schrödinger equation with five parameter potentials. Journal of Vector Relations. 2011;6:1–14.
  18. Antia AD, Essien IE, Umoren EB, et al. Approximate solutions of the non–relativistic schrödinger equation with the inversely quadratic Yukawa plus Mobius square potential via parametric Nikiforov–Uvarov method. Advances in Physics Theories and Applications. 2015;44:1–13.
  19. Landau lD, Lifshitz EM. Quantum mechanics, non–relativistic theory. UK: Pergamon Press; 1977.
  20. Jeffreys HM, Jeffreys BS. Methods of mathematical physics. 3rd ed. England: Cambridge University press; 1998. p. 620–622.
Creative Commons Attribution License

©2018 Antia, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.