Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 1

Investigation of the influence of the field of co-rotation on the possibility of the long-term orbital existence of submicron particles in the plasma-sphere of the earth

Yakovlev AB, Kolesnikov EK, Chernov CV

Saint-Petersburg State University, St. Petersburg, Russia

Correspondence: Yakovlev Andrey Borisovich, Saint-Petersburg State University, St. Petersburg, Russia

Received: September 01, 2017 | Published: January 31, 2018

Citation: Yakovlev AB, Kolesnikov EK, Chernov CV. Investigation of the influence of the field of co-rotation on the possibility of the long-term orbitalexistence of submicron particles in the plasma-sphere of the earth. Phys Astron Int J. 2018;2(1):48-53. DOI: 10.15406/paij.2018.02.00047

Download PDF

Abstract

In this paper, the influence of the electric field of co-rotation on the possibility of long holding of micro-particles with dimensions on the order of tens of nm and quasi-equilibrium charge moving along weakly elliptic orbits in the plasma-sphere of the Earth is considered with the help of analytical and numerical methods. It is shown that, unlike the magnetic field, the electric field of co-rotation causes a slow change in the shape of the orbit.

Keywords: electric field, micro-particles, plasma-sphere, magnetic field, submicron sizes, lorentz force

Introduction

The problems of the dynamics of fine-dispersed particles in near-Earth space (NES) are actively considered for more than 30 years in connection with the problem of manmade pollution of near space by manmade micro-particles (MP). At the same time, the main attention is paid to the determination of the characteristics of man-made MP and the conditions for their injection into NES, capable of long-term holding in near-Earth space. As a result of the conducted researches it was established that the large orbital existence times in the NES can have fairly large particles with dimensions of the order of 1-100μm. At the same time, the fundamental possibility of prolonged holding of manmade particles of submicron sizes in the vicinity of the Earth was questionable, since, as shown by numerical simulation data on the dynamics of particles with dimensions of the order of 0.1-1μm in the NES, the orbital lifetimes of MPs of the indicated sizes, as a rule, when injected at high altitudes by a disturbing effect of the solar pressure force1,2 and in low Earth orbits - by the residual gas resistance of the upper atmosphere.3,4 For the first time studies of the dynamics of smaller particles with dimensions less than 0.1μm were carried out by us in.5,6 Received in5,6 the results of numerical modeling of the motion of these particles in the Earth's plasma-sphere showed that, in contrast to the previously considered submicron particles with dimensions of the order of 0.1-1μm, particles with dimensions less than 0.1μm (on the order of tens of nm) under certain conditions as a result of disturbing effects on their the movement in the NES of the Lorentz force acting on the electric charge accumulating on the MP from the magnetic and electric fields of near-Earth space is able to be held for a long time in the near-Earth space and may be, therefore, an important factor of manmade pollution of near space.

In connection with the foregoing, it became necessary to carry out fundamental theoretical studies of the conditions for the "capture" of submicron particles in the vicinity of the Earth, including, on the basis of the application of appropriate analytical methods. In the work,7 we showed that under certain model assumptions about the number, nature, and method of determining perturbing forces acting on MP, the problem of the dynamics of submicron particles in the plasma-sphere admits a canonical formulation in the form of a Hamiltonian system of equations. In this case a basis for an analytic study of the properties of motion are methods of the qualitative theory of Hamiltonian systems developed in the papers of Kolmogorova AN, Arnold VI and Moser J (the so-called KAM-theory).8,9 Using well-known methods of KAM-theory, we in10,11 proved that in the Earth's plasma-sphere, the weakly elliptic orbits of micro-particles with dimensions on the order of tens of nm and a quasi-equilibrium charge retain their shape. However, in the model used in,10,11 we did not take into account the electric field of co-rotation. In this paper the influence of the electric field of co-rotation on the possibility of prolonged holding of these micro-particles is considered with the help of analytical and numerical methods.

General canonical formulation of the problem of the motion of a particle with a locally equilibrium electric charge in the terrestrial plasma-sphere

A general condition for the correctness of the canonical formulation of the problem of the motion of a micro-particle in the NES is the possibility of representing all forces acting on the MF in the form:12

F j = V j  or   F i j = U j x i + d dt U j x ˙ i   (i=1,2,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWHgb addaahaaqcbasabeaajugWaiaadQgaaaqcLbsacqGH9aqpcqGHsisl cqGHhis0caWGwbaddaahaaqcbasabeaajugWaiaadQgaaaqcLbsaca qGGaGaae4BaiaabkhacaqGGaGaaeiiaiaadAeammaaDaaajeaibaqc LbmacaWGPbaajeaibaqcLbmacaWGQbaaaKqzGeGaeyypa0JaeyOeI0 YcdaWcaaGcbaqcLbsacqGHciITcaWGvbaddaahaaqcbasabeaajugW aiaadQgaaaaakeaajugibiabgkGi2kaadIhammaaBaaajeaibaqcLb macaWGPbaajeaibeaaaaqcLbsacqGHRaWklmaalaaakeaajugibiaa dsgaaOqaaKqzGeGaamizaiaadshaaaWcdaWcaaGcbaqcLbsacqGHci ITcaWGvbWcdaahaaqabKqaGeaajugWaiaadQgaaaaakeaajugibiab gkGi2kqadIhagaGaaSWaaSbaaKqaGeaajugWaiaadMgaaSqabaaaaK qzGeGaaeiiaiaabccacaqGOaGaamyAaiabg2da9iaaigdacaGGSaGa aGOmaiaacYcacaaIZaGaaiykaaaa@71D0@

Where V j = V j ( x 1 , x 2 , x 3 ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb addaahaaqcbasabeaajugWaiaadQgaaaqcLbsacqGH9aqpcaWGwbad daahaaqcbasabeaajugWaiaadQgaaaqcLbsacaGGOaGaamiEaWWaaS baaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaaiilaiaadIhammaa BaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaacYcacaWG4badda WgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacaGGSaGaamiDaiaa cMcaaaa@4FAE@ - ordinary potential U j ( x 1 , x 2 , x 3 , x ˙ 1 , x ˙ 2 , x ˙ 3 ,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcLbsacaWGvb addaahaaqcbasabeaajugWaiaadQgaaaqcLbsacaGGOaGaamiEaWWa aSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaaiilaiaadIhamm aaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaacYcacaWG4bad daWgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacaGGSaGabmiEay aacaaddaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaGGSaGa bmiEayaacaWcdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaacY caceWG4bGbaiaalmaaBaaajeaibaqcLbmacaaIZaaaleqaaKqzGeGa aiilaiaadshacaGGPaaaaa@589A@  is a generalized potential. When the MP moves at sufficiently high altitudes, the resistance force of the background gas of the upper atmosphere can be neglected and, therefore, the main forces acting on the MP are the gravitational force, the solar pressure force, and the Lorentz force. The velocity-independent gravitational force and the solar pressure force (for the spherical MP) are represented by the usual potentials V gr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb addaahaaqcbasabeaajugWaiaadEgacaWGYbaaaaaa@3AE8@ and V sp MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb addaahaaqcbasabeaajugWaiaadohacaWGWbaaaaaa@3AF2@ . In this case, the Lorentz force acting on the generally variable charge of the MP from the magnetic and electric fields of the NES, as shown by us in,7 allows a representation with the help of a generalized potential U L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb addaahaaqcbasabeaajugWaiaadYeaaaaaaa@39D5@ when the corresponding restrictions on the nature of the change in the charge of the MP in the process of its orbital motion are met, and also on the features of the spatial distribution of the magnetic and electric fields of the NES. The first of these limitations consists in fulfilling the quasi-equilibrium condition of the electric charge of the MP, which is determined by the local values ​​of the parameters of the background plasma and depends only on the current coordinates of the MP,

Q=Q( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb Gaeyypa0JaamyuaSWaaeWaaOqaaKqzGeGaaCOCaaGccaGLOaGaayzk aaaaaa@3C87@ ,  (1)

Where r is the radius vector of the current position of the MP. The second restriction (on the geometric characteristics of fields) consists of the following:

Bq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWHcb GaeyyPI4Laey4bIeDcLbmacaWGXbaaaa@3CC9@ ,  (2)

Eq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWHfb GaeSyjIaLaey4bIeDcLbmacaWGXbaaaa@3C43@ .  (3)

As shown in,7 under the conditions (1)-(3), the Lorentz force can be represented by a generalized potential

U L = Y 1 v Y 2 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwfammaaCaaajeaibeqaaKqzadGaamitaaaajugibiab g2da9iaadMfalmaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaey OeI0YcdaWcaaGcbaqcLbsacaWH2bGaeyyXICTaaCywaWWaaSbaaKqa GeaajugWaiaaikdaaKqaGeqaaaGcbaqcLbsacaWGJbaaaaaa@48F9@   (4)

Where Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGzb addaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaa@39EC@ and Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWHzb addaWgaaqcbasaaKqzadGaaGOmaaqcbasabaaaaa@39F1@ are the scalar and vector coordinate functions that satisfy equations

{ Y 1 =Qφ rot Y 2 =QrotA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWcqaaaaaaaaa Wdbmaaceaak8aabaqcLbsafaqabeGabaaakeaajugib8qacqGHhis0 caWGzbWcdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiabg2da9i aadgfacqGHhis0cqaHgpGAaOWdaeaajugib8qaciGGYbGaai4Baiaa cshacaWHzbWcdaWgaaqcbasaaKqzadGaaGOmaaGcbeaajugibiabg2 da9iaadgfaciGGYbGaai4BaiaacshacaWHbbaaaaGccaGL7baaaaa@4FFC@ .  (5)

In (5) φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaHgp GAaaa@3860@ and A–respectively, the scalar and vector potentials acting on the MP electric and magnetic fields of the NES.

As shown in,7 with allowance for (4), the Hamiltonian function describing the dynamics of a micro-particle with a variable charge in the NES is determined by the formula:

H= 1 2m i=1 3 ( P i Y 2i c ) 2 + V gr + V pr + Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeacqGH9aqplmaalaaak8aabaqcLbsapeGaaGymaaGc paqaaKqzGeWdbiaaikdacaWGTbaaaSWaaabCaOqaaSWaaeWaaOWdae aajugib8qacaWGqbWcpaWaaSbaaKqaGeaajugWa8qacaWGPbaak8aa beaajugib8qacqGHsisllmaalaaak8aabaqcLbsapeGaamywaWWdam aaBaaajeaibaqcLbmapeGaaGOmaiaadMgaaKaaG8aabeaaaOqaaKqz GeWdbiaadogaaaaakiaawIcacaGLPaaam8aadaahaaqcbasabeaaju gWa8qacaaIYaaaaaqcbasaaKqzadGaamyAaiabg2da9iaaigdaaKqa GeaajugWaiaaiodaaKqzGeGaeyyeIuoacqGHRaWkcaWGwbWcpaWaaW baaOqabKqaGeaajugWa8qacaWGNbGaamOCaaaajugibiabgUcaRiaa dAfam8aadaahaaqcaasabKqaGeaajugWa8qacaWGWbGaamOCaaaaju gibiabgUcaRiaadMfam8aadaWgaaqcbasaaKqzadWdbiaaigdaaKqa G8aabeaaaaa@663A@ ,  (6)

Where the components of the generalized momentum vector are P i =m x ˙ i + Y 2i c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb addaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbsacqGH9aqpcaWG TbGabmiEayaacaaddaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLb sacqGHRaWklmaalaaakeaajugibiaadMfalmaaBaaajeaibaqcLbma caaIYaGaamyAaaWcbeaaaOqaaKqzGeGaam4yaaaaaaa@47FC@ .

In7 by the results of numerical simulation, it is shown that when the MP moves in the terrestrial plasma-sphere, the condition (1) is fulfilled for micro-particles with radii of more than 0.01μm, whose orbits pass at distances greater than one and a half radii of the Earth from its surface.

The fulfillment of the same geometric conditions (2) & (3) follows from the features of the spatial distribution of the plasma in the plasma-sphere of the Earth. This distribution is described, as is well known, by the model of a two-component plasma,13 consisting of a "cold" component with a density n cold MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb addaWgaaqcbasaaKqzadGaam4yaiaad+gacaWGSbGaamizaaqcbasa baaaaa@3CFC@  and temperature T cold MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub addaWgaaqcbasaaKqzadGaam4yaiaad+gacaWGSbGaamizaaqcbasa baaaaa@3CE2@  and "hot" components with density n hot MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb WcdaWgaaqcbasaaKqzadGaamiAaiaad+gacaWG0baaleqaaaaa@3C00@  and temperature T hot MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub addaWgaaqcbasaaKqzadGaamiAaiaad+gacaWG0baajeaibeaaaaa@3C06@ . In this case, the total density of the plasma n= n cold + n hot MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb Gaeyypa0JaamOBaWWaaSbaaKqaGeaajugWaiaadogacaWGVbGaamiB aiaadsgaaKqaGeqaaKqzGeGaey4kaSIaamOBaSWaaSbaaKqaGeaaju gWaiaadIgacaWGVbGaamiDaaWcbeaaaaa@45C2@ . Options n cold MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb addaWgaaqcbasaaKqzadGaam4yaiaad+gacaWGSbGaamizaaqcbasa baaaaa@3CFC@ , T cold MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGJbGaam4BaiaadYgacaWGKbaabeaaaaa@3AD0@ and n hot MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb addaWgaaqcbasaaKqzadGaamiAaiaad+gacaWG0baajeaibeaaaaa@3C20@ , T hot MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub addaWgaaqcbasaaKqzadGaamiAaiaad+gacaWG0baajeaibeaaaaa@3C06@  are given by the expressions [Hill, J.R., and Wipple, E.C.1985]:

n cold ={ n 1, Τ >1 eV n , Τ <1 eV Τ cold ={ 1 B, Τ >1 eV Τ , Τ <1 eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb addaWgaaqcbasaaKqzadGaam4yaiaad+gacaWGSbGaamizaaqcbasa baqcLbsacqGH9aqplmaaceaajugibqaabeGcbaqcLbsacaWGUbWcda ahaaqabKqaGeaajugWaiabgEHiQaaaliabgkHiTiabggdaXKqzGeGa eyilaWIaeyiiaaIaeyiiaaIaeyiiaaIaeuiPdq1cdaahaaqabKqaGe aajugWaiabgEHiQaaajugibiabg6da+iabggdaXiabgccaGiaadwga caWGwbaakeaajugibiaad6galmaaCaaabeqcbasaaKqzadGaey4fIO caaKqzGeGaeyilaWIaeyiiaaIaeyiiaaIaeyiiaaIaeyiiaaIaeyii aaIaeyiiaaIaeyiiaaIaeyiiaaIaeuiPdq1cdaahaaqabKqaGeaaju gWaiabgEHiQaaajugibiabgYda8iabggdaXiabgccaGiaadwgacaWG wbaaaOGaay5EaaqcLbsacqGHGaaicqGHGaaicqGHGaaicqGHGaaicq GHGaaicqqHKoavmmaaBaaajeaibaqcLbmacaWGJbGaam4BaiaadYga caWGKbaajeaibeaajugibiabg2da9SWaaiqaaKqzGeabaeqakeaaju gibiabggdaXiabgccaGiabg2GiNiaadkeacqGHSaalcqGHGaaicqGH GaaicqGHGaaicqqHKoavmmaaCaaajeaibeqaaKqzadGaey4fIOcaaK qzGeGaeyOpa4JaeyymaeJaeyiiaaIaamyzaiaadAfaaOqaaKqzGeGa euiPdqfddaahaaqcbasabeaajugWaiabgEHiQaaajugibiabgYcaSi abgccaGiabgccaGiabgccaGiabgccaGiabgccaGiabgccaGiabfs6a uXWaaWbaaKqaGeqabaqcLbmacqGHxiIkaaqcLbsacqGH8aapcqGHXa qmcqGHGaaicaWGLbGaamOvaaaakiaawUhaaaaa@9B02@   (7)

n hot ={ 1 CM 3 , Τ >1 eV 0, Τ <1 eV Τ hot = Τ , Τ >1 eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb addaWgaaqcKfaq=haajugWaiaadIgacaWGVbGaamiDaaqcKfaq=hqa aKqzGeGaeyypa0ZcdaGabaqcLbsaeaqabOqaaKqzGeGaeyymaeJaey iiaaIaae4qaiaab2eammaaCaaajiaibeqaaKqzadGaeyOeI0Iaey4m amdaaKqzGeGaeyilaWIaeyiiaaIaeyiiaaIaeyiiaaIaeuiPdqfdda ahaaqcKfaq=hqabaqcLbmacqGHxiIkaaqcLbsacqGH+aGpcqGHXaqm cqGHGaaicaWGLbGaamOvaaGcbaqcLbsacqGHWaamcqGHSaalcqGHGa aicqGHGaaicqGHGaaicqGHGaaicqGHGaaicqGHGaaicqGHGaaicqGH GaaicqGHGaaicqGHGaaicqqHKoavmmaaCaaajqwaa9FabeaajugWai abgEHiQaaajugibiabgYda8iabggdaXiabgccaGiaadwgacaWGwbaa aOGaay5EaaqcLbsacqGHGaaicqGHGaaicqGHGaaicqGHGaaicqGHGa aicqqHKoavmmaaBaaajqwaa9FaaKqzadGaamiAaiaad+gacaWG0baa jqwaa9FabaqcLbsacqGH9aqpcqqHKoavmmaaCaaajqwaa9Fabeaaju gWaiabgEHiQaaajugibiabgYcaSiabgccaGiabgccaGiabgccaGiab fs6auXWaaWbaaKazba0=beqaaKqzadGaey4fIOcaaKqzGeGaeyOpa4 JaeyymaeJaeyiiaaIaamyzaiaadAfaaaa@9048@   (8)

In (7) and (8), the functions n ( L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb addaahaaqcbasabeaajugWaiabgEHiQaaalmaabmaakeaajugibiaa dYeaaOGaayjkaiaawMcaaaaa@3D13@  and T ( L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub addaahaaqcbasabeaajugWaiabgEHiQaaalmaabmaakeaajugibiaa dYeaaOGaayjkaiaawMcaaaaa@3CF9@  are defined by the formulas: 

n ( L )= 10 ( 15L ) 3.5 ,    sm -3 , T ( L )=0.09239 L 2.7073 , eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb addaahaaqcbasabeaajugWaiabgEHiQaaalmaabmaakeaajugibiaa dYeaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGymaiaaicdalmaaCa aabeqcbasaaWWaaSaaaKqaGeaammaabmaajeaibaqcLbmacaaIXaGa aGynaiabgkHiTiaadYeaaKqaGiaawIcacaGLPaaaaeaajugWaiaaio dacaGGUaGaaGynaaaaaaqcLbsacaGGSaGaaeiiaiaabccacaqGGaGa ae4Caiaab2gammaaCaaajeaibeqaaKqzadGaaeylaiaabodaaaqcLb sacaqGSaGaamivaWWaaWbaaKqaGeqabaqcLbmacqGHxiIkaaWcdaqa daGcbaqcLbsacaWGmbaakiaawIcacaGLPaaajugibiabg2da9iaaic dacaGGUaGaaGimaiaaiMdacaaIYaGaaG4maiaaiMdacaWGmbaddaah aaqcbasabeaajugWaiaaikdacaGGUaGaaG4naiaaicdacaaI3aGaaG 4maaaajugibiaacYcacaqGGaGaaeyzaiaabAfaaaa@6B0E@

Where L is parameter of the local magnetic shell. The equilibrium charge of the body, being a function of local density and temperature, does not depend, therefore, on the longitudinal coordinate along the magnetic field line, which corresponds to the fulfillment of condition (2). In this case Q=Q(L) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb Gaeyypa0JaamyuaiaacIcacaWGmbGaaiykaaaa@3B80@ . The main contribution to the geo-electric field at altitudes of the plasma-sphere is made, as we know, by the electric field of co-rotation E cor = 1 c ( r×Ω )×B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaadcaWHfbWaaS baaKqaGeaajugWaiaadogacaWGVbGaamOCaaqcbasabaqcLbsacqGH 9aqplmaalaaakeaajugibiabggdaXaGcbaGaam4yaaaalmaabmaake aajugibiaahkhacqGHxdaTiiaacqWFPoWvaOGaayjkaiaawMcaaKqz GeGaey41aqRaaCOqaaaa@49D9@ , where Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWHPo aaaa@37D8@ is the angular velocity vector of the Earth's rotation. It is easy to verify that if the geomagnetic field is approximated by a dipole magnetic field with a magnetic moment anti-parallel to the Earth's rotation axis, the co-rotation field satisfies the necessary condition (3).

Main result

We make a number of additional simplifying assumptions about the dimensions of the MP, which forms its material and the orbits of the MP in the plasma-sphere. We confine ourselves to the consideration of MPs with radii of the order of some hundredths of micron. For particles of these dimensions, the efficiency of light pressure at the MP is small14 and the influence of the solar pressure forces on the movement of MP in the NES can be neglected. We will consider the MP from a material with a low photoemission yield. For such particles, in the plasma conditions of the plasma-sphere, the potential of the MP (and, accordingly, its charge) varies insignificantly when passing through the Earth's shadow. Thus, in the case under consideration, the dynamic shadowing effect of a part of the orbit of the MP can also be neglected. Finally, we restrict our attention to the cases of the motion of MPs along weakly elongated orbits (with eccentricities less than 0.3-0.4) lying in the near Earth part of the plasma-sphere, with perigee height greater than the Earth's radius. We note that in these orbits one can neglect the disturbing effect of electric field of convection on the motion of the MP.

Under the assumptions made, the problem under consideration reduces to the problem of the motion of a MP with a variable electric charge in the superposition of the central gravitational field and the Lorentz force acting on the electric charge of the MP from the side of the dipole magnetic field of the Earth and the electric field of co-rotation. We note that the dipole approximation is correct for geocentric distances from one and a half to ten Earth radii.15

We will work in a spherical coordinate system r,ϑ,φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb Gaaiilaiabeg9akjaacYcacqaHgpGAaaa@3C5F@  with the origin in the center of the Earth and the polar axis passing through the south magnetic pole. In this case, the Hamiltonian function (8) can be written thus:

H= 1 2m [ P r 2 + P ϑ 2 + 1 r 2 sin 2 ϑ ( P φ Y 2φ rsinϑ c ) 2 ] m μ E r + Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeacqGH9aqplmaalaaak8aabaqcLbsapeGaaGymaaGc paqaaKqzGeWdbiaaikdacaWGTbaaaSWaamWaaOWdaeaajugib8qaca WGqbadpaWaa0baaKqaGeaajugWa8qacaWGYbaajeaipaqaaKqzadWd biaaikdaaaqcLbsacqGHRaWkcaWGqbadpaWaa0baaKqaGeaajugWa8 qacqaHrpGsaKqaG8aabaqcLbmapeGaaGOmaaaajugibiabgUcaRSWa aSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaamOCaWWdam aaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsaciGGZbGaaiyAaiaa c6gam8aadaahaaqcbasabeaajugWa8qacaaIYaaaaKqzGeGaeqy0dO eaaSWaaeWaaOqaaKqzGeGaamiuaSWdamaaBaaajeaibaqcLbmapeGa eqOXdOgal8aabeaajugibiabgkHiTSWdbmaalaaak8aabaqcLbsape GaamywaSWdamaaBaaajeaibaqcLbmapeGaaGOmaiabeA8aQbqcbaYd aeqaaKqzGeWdbiaadkhaciGGZbGaaiyAaiaac6gacqaHrpGsaOWdae aajugib8qacaWGJbaaaaGccaGLOaGaayzkaaWcpaWaaWbaaKqaGeqa baqcLbmapeGaaGOmaaaaaOGaay5waiaaw2faaKqzGeGaeyOeI0Ycda WcaaGcpaqaaKqzGeWdbiaad2gacqaH8oqBl8aadaWgaaqcbasaaKqz adWdbiaadweaaSWdaeqaaaGcbaqcLbsapeGaamOCaaaacqGHRaWkca WGzbWcpaWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaa@8145@ ,  (9)

Where μ E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBmmaaBaaajeaibaqcLbmacaWGfbaajeaibeaaaaa@3AD2@ -geocentric gravitational constant. The magnitude of the electric charge Q(L) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb GaaiikaiaadYeacaGGPaaaaa@39A3@ is determined as a result of a numerical solution of the balance equation of the charging currents

J tot ( Φ eq ) J p e + J p i + J ph + J field-emission =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb addaWgaaqcbasaaKqzadGaamiDaiaad+gacaWG0baajeaibeaajugi biaacIcacqqHMoGrmmaaBaaajeaibaqcLbmacaWGLbGaamyCaaqcba sabaqcLbsacaGGPaGaeyyyIORaamOsaWWaa0baaKqaGeaajugWaiaa dchaaKqaGeaajugWaiaadwgaaaqcLbsacqGHRaWkcaWGkbaddaqhaa qcbasaaKqzadGaamiCaaqcbasaaKqzadGaamyAaaaajugibiabgUca RiaadQeammaaBaaajeaibaqcLbmacaWGWbGaamiAaaqcbasabaqcLb sacqGHRaWkcaWGkbaddaWgaaqcbasaaKqzadGaamOzaiaadMgacaWG LbGaamiBaiaadsgacaGGTaGaamyzaiaad2gacaWGPbGaam4Caiaado hacaWGPbGaam4Baiaad6gaaKqaGeqaaKqzGeGaeyypa0JaaGimaaaa @6AC9@ ,  (10)

Here Φ eq = 1 4π ε 0 Q P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrmmaaBaaajeaibaqcLbmacaWGLbGaamyCaaqcbasabaqcLbsacqGH 9aqplmaalaaakeaajugibiabggdaXaWcbaqcLbsacqGH0aanqaaaaa aaaaWdbiabec8aW9aacqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaa meqaaaaalmaalaaakeaajugibiaadgfaaOqaaKqzGeGaamiuaaaaaa a@4946@  is equilibrium potential, J p e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb addaqhaaqcbasaaKqzadGaamiCaaqcbasaaKqzadGaamyzaaaaaaa@3C2F@  is the current of plasma electrons, J p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb addaqhaaqcbasaaKqzadGaamiCaaqcbasaaKqzadGaamyAaaaaaaa@3C33@  is the total current of plasma ions, J ph MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb addaWgaaqcbasaaKqzadGaamiCaiaadIgaaKqaGeqaaaaa@3B03@  is the current of photoelectrons and J field-emission MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb addaWgaaqcbasaaKqzadGaamOzaiaadMgacaWGLbGaamiBaiaadsga caGGTaGaamyzaiaad2gacaWGPbGaam4CaiaadohacaWGPbGaam4Bai aad6gaaKqaGeqaaaaa@45FE@  is current of field emission, ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzmmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3AB3@  is electrical constant and is radius of micro-particle. In the plasma-sphere, the equilibrium charge is negative, and therefore the charging currents in (10) are determined by the expressions in.7

We approximate the value of the MP charge by the following polynomial

Q( L )= Q 0 [ 1+ k=1 n ξ k ( L L 0 L ) k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgfalmaabmaak8aabaqcLbsapeGaamitaaGccaGLOaGa ayzkaaqcLbsacqGH9aqpcaWGrbadpaWaaSbaaKqaGeaajugWa8qaca aIWaaajeaipaqabaWcpeWaamWaaOWdaeaajugib8qacaaIXaGaey4k aSYcdaaeWbGcbaqcLbsapaGaeqOVdGhddaWgaaqcbasaaKqzadWdbi aadUgaaKaaG8aabeaal8qadaqadaGcpaqaaSWdbmaalaaak8aabaqc LbsapeGaamitaiabgkHiTiaadYeam8aadaWgaaqcbasaaKqzadWdbi aaicdaaKaaG8aabeaaaOqaaKqzGeWdbiaadYeaaaaakiaawIcacaGL Paaam8aadaahaaqcbasabeaajugWa8qacaWGRbaaaaqcbasaaKqzad Gaam4Aaiabg2da9iaaigdaaKqaGeaajugWaiaad6gaaKqzGeGaeyye IuoaaOGaay5waiaaw2faaaaa@5E4C@ ,  (11)

Where Q 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb addaWgaaWcbaqcLbmacaaIWaaaleqaaaaa@39A4@  is charge at L= L 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb Gaeyypa0JaamitaWWaaSbaaSqaaKqzadGaaGimaaWcbeaaaaa@3B76@ . Values of the coefficients ξ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEmmaaBaaajeaibaqcLbmacaWGRbaajeaibeaaaaa@3B05@  can be obtained by substituting expression (11) into equation (10). It is possible to show11 that an increase in the degree of a polynomial significantly improves the accuracy of approximation even for a greater interval of values L.

To obtain expressions for Y 2φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGzb addaWgaaWcbaqcLbmacaaIYaGaeqOXdOgaleqaaaaa@3B6B@  and Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGzb WcdaWgaaqaaKqzadGaaGymaaWcbeaaaaa@39A1@  we use dipole coordinates L,Φ,M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb GaaiilaiabfA6agjaacYcacaWGnbaaaa@3B20@ ,16 formula (11) for the charge and the Lamé coefficients for the dipole coordinates

h L = R E (1+Λ) (1+4Λ) 1/2 , h Φ = R E L (1+Λ) 3/2 h Μ = R E L 3 (1+Λ) 5/2 (1+4Λ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb addaWgaaqcbasaaKqzadGaamitaaqcbasabaqcLbsacqGH9aqplmaa laaakeaajugibiaadkfalmaaBaaajeaibaqcLbmacaWGfbaaleqaaa GcbaqcLbsacaGGOaGaaGymaiabgUcaRiabfU5amjaacMcacqGHflY1 caGGOaGaaGymaiabgUcaRiaaisdacqGHflY1cqqHBoatcaGGPaadda ahaaqcbasabeaammaalyaajeaibaqcLbmacaaIXaaajeaibaqcLbma caaIYaaaaaaaaaWccaGGSaqcLbsacaWGObaddaWgaaqcbasaaKqzad GaeuOPdyeajeaibeaajugibiabg2da9SWaaSaaaOqaaKqzGeGaamOu aWWaaSbaaKqaGeaajugWaiaadweaaKqaGeqaaKqzGeGaeyyXICTaam itaaGcbaqcLbsacaGGOaGaaGymaiabgUcaRiabfU5amjaacMcammaa CaaajeaibeqaaWWaaSGbaKqaGeaajugWaiaaiodaaKqaGeaajugWai aaikdaaaaaaaaajugibiaadIgammaaBaaajeaibaqcLbmacqqHCoqt aKqaGeqaaKqzGeGaeyypa0ZcdaWcaaGcbaqcLbsacaWGsbaddaWgaa qcbasaaKqzadGaamyraaqcbasabaqcLbsacqGHflY1caWGmbaddaah aaqcbasabeaajugWaiaaiodaaaaakeaajugibiaacIcacaaIXaGaey 4kaSIaeu4MdWKaaiykaSWaaWbaaeqajeaibaaddaWcgaqcbasaaKqz adGaaGynaaqcbasaaKqzadGaaGOmaaaaaaqcLbsacqGHflY1caGGOa GaaGymaiabgUcaRiaaisdacqGHflY1cqqHBoatcaGGPaaddaahaaqc basabeaammaalyaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYa aaaaaaaaaaaa@93F2@

Where Λ=ct g 2 ϑ, R E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcqGH9aqpcaWGJbGaamiDaiaadEgammaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabeg9akjaacYcacaWGsbaddaWgaaqcbasaaKqzad Gaamyraaqcbasabaaaaa@4464@  is the radius of the Earth.

Then

Y 2φ h Ф = Q 0 B E R E 2 [ 1+ k=1 n ξ k ( L L 0 L ) k ] 1 L 2 dL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMfal8aadaWgaaqcbasaaKqzadWdbiaaikdacqaHgpGA aSWdaeqaaKqzGeGaamiAaWWaaSbaaKqaGeaajugWa8qacaWGKqaaje aipaqabaqcLbsapeGaeyypa0JaeyOeI0IaamyuaWWdamaaBaaajeai baqcLbmapeGaaGimaaqcbaYdaeqaaKqzGeWdbiaadkeal8aadaWgaa qcbasaaKqzadWdbiaadweaaSWdaeqaaKqzGeWdbiaadkfam8aadaqh aaqcbasaaKqzadWdbiaadweaaKqaG8aabaqcLbmapeGaaGOmaaaal8 aadaqfGaGcbeqabeaajugibiaaygW7aOqaaSWdbmaapeaakeaalmaa dmaak8aabaqcLbsapeGaaGymaiabgUcaRSWaaabCaOqaaKqzGeGaeq OVdGhdpaWaaSbaaKqaGeaajugWa8qacaWGRbaajeaipaqabaWcpeWa aeWaaOWdaeaal8qadaWcaaGcpaqaaKqzGeWdbiaadYeacqGHsislca WGmbadpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaaakeaa jugib8qacaWGmbaaaaGccaGLOaGaayzkaaadpaWaaWbaaKqaGeqaba qcLbmapeGaam4AaaaaaKqaGeaajugWaiaadUgacqGH9aqpcaaIXaaa jeaibaqcLbmacaWGUbaajugibiabggHiLdaakiaawUfacaGLDbaalm aalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaadYeam8aa daahaaqcaasabKqaGeaajugWa8qacaaIYaaaaaaajugibiGacsgaca WGmbaaleqabeqcLbsacqGHRiI8aaaaaaa@7B60@ ,  (12)

Y 1 = Q 0 h L [ 1+ k=1 n ξ k ( L L 0 L ) k ] E kor dL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMfam8aadaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc LbsapeGaeyypa0JaamyuaWWdamaaBaaajeaibaqcLbmapeGaaGimaa qcbaYdaeqaaKqzGeGaamiAaWWaaSbaaKGaGeaajugWaiaadYeaaKGa GeqaaSWaaubiaOqabeqabaqcLbsacaaMb8oakeaal8qadaWdbaGcba WcdaWadaGcpaqaaKqzGeWdbiaaigdacqGHRaWklmaaqahakeaajugi biabe67a4XWdamaaBaaajeaibaqcLbmapeGaam4AaaqcbaYdaeqaaS Wdbmaabmaak8aabaWcpeWaaSaaaOWdaeaajugib8qacaWGmbGaeyOe I0IaamitaWWdamaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqaaa GcbaqcLbsapeGaamitaaaaaOGaayjkaiaawMcaaWWdamaaCaaajeai beqaaKqzadWdbiaadUgaaaaajeaibaqcLbmacaWGRbGaeyypa0JaaG ymaaqcbasaaKqzadGaamOBaaqcLbsacqGHris5aaGccaGLBbGaayzx aaqcLbsacaWGfbaddaWgaaqcbasaaKqzadGaam4Aaiaad+gacaWGYb aajeaibeaajugibiGacsgacaWGmbaaleqabeqcLbsacqGHRiI8aaaa aaa@6EEB@ ,  (13)

Here B E = M E R E 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb addaWgaaqcbasaaKqzadGaamyraaqcbasabaqcLbsacqGH9aqplmaa laaabaqcLbsacaWGnbaddaWgaaqcbasaaKqzadGaamyraaqccasaba aaleaajugibiaadkfammaaDaaajeaibaqcLbmacaWGfbaajeaibaqc LbmacaaIZaaaaaaaaaa@4544@  is induction of a magnetic field in the plane of the magnetic equator ( ϑ= π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaHrp GscqGH9aqplmaalaaakeaajugibiabec8aWbGcbaqcLbsacaaIYaaa aaaa@3D17@ ) on the surface of the Earth,16 M E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb addaWgaaqcbasaaKqzadGaamyraaqcbasabaaaaa@39EE@  is the magnetic moment of the Earth, E cor = C R E r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb addaWgaaqcbasaaKqzadGaam4yaiaad+gacaWGYbaajeaibeaajugi biabg2da9iabgkHiTSWaaSaaaOqaaKqzGeGaam4qaiabgwSixlaadk fammaaBaaajeaibaqcLbmacaWGfbaajeaibeaaaOqaaKqzGeGaamOC aWWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaaaaa@4959@  is the intensity of the co-rotation field, C =92kV.

Without loss of generality, in order to simplify the expressions obtained, we confine ourselves to the case of a small eccentricity of the unperturbed Keplerian elliptic orbit and, correspondingly, the first three terms in the polynomial (11). Then from (12) and (13) we obtain expressions for generalized potentials

Y 2φ = Q 0 B E R E L sin 3 ϑ [ 1+ ξ 1 + ξ 2 L L 0 ( ξ 1 +2 ξ 2 ) 2 L 2 + ξ 2 L 0 2 3 L 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMfam8aadaWgaaqcbasaaKqzadWdbiaaikdacqaHgpGA aKqaG8aabeaajugib8qacqGH9aqplmaalaaak8aabaqcLbsapeGaam yuaSWdamaaBaaajeaibaqcLbmapeGaaGimaaWcpaqabaqcLbsapeGa amOqaWWdamaaBaaajeaibaqcLbmapeGaamyraaqcbaYdaeqaaKqzGe Wdbiaadkfal8aadaWgaaqcbasaaKqzadWdbiaadweaaSWdaeqaaaGc baqcLbsapeGaamitaiGacohacaGGPbGaaiOBaWWdamaaCaaajeaibe qaaKqzadWdbiaaiodaaaqcLbsacqaHrpGsaaWcdaWadaGcpaqaaSWd bmaalaaak8aabaqcLbsapeGaaGymaiabgUcaRiabe67a4XWdamaaBa aajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabgUcaRiab e67a4XWdamaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaaGcba qcLbsapeGaamitaaaacqGHsisllmaalaaak8aabaqcLbsapeGaamit aSWdamaaBaaajeaibaqcLbmapeGaaGimaaWcpaqabaWdbmaabmaak8 aabaqcLbsacqaH+oaEmmaaBaaajeaibaqcLbmapeGaaGymaaqcbaYd aeqaaKqzGeWdbiabgUcaRiaaikdacqaH+oaEm8aadaWgaaqcbasaaK qzadWdbiaaikdaaKqaG8aabeaaaOWdbiaawIcacaGLPaaaa8aabaqc LbsapeGaaGOmaiaadYeal8aadaahaaqabKqaGeaajugWa8qacaaIYa aaaaaajugibiabgUcaRSWaaSaaaOWdaeaajugibiabe67a4XWaaSba aKqaGeaajugWa8qacaaIYaaajeaipaqabaqcLbsapeGaamitaWWdam aaDaaajeaibaqcLbmapeGaaGimaaqcbaYdaeaajugWa8qacaaIYaaa aaGcpaqaaKqzGeWdbiaaiodacaWGmbadpaWaaWbaaKqaGeqabaqcLb mapeGaaG4maaaaaaaakiaawUfacaGLDbaaaaa@8B11@ ,

Y 1 = Q 0 С sinϑ 1+3 cos 2 ϑ [ 1+ ξ 1 + ξ 2 L L 0 ( ξ 1 +2 ξ 2 ) 2 L 2 + ξ 2 L 0 2 3 L 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMfam8aadaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc LbsapeGaeyypa0ZcdaWcaaGcpaqaaKqzGeWdbiaadgfam8aadaWgaa qcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugibiabgwSixlaadgcb aOqaaKqzGeWdbiGacohacaGGPbGaaiOBaiabeg9akjabgwSixVWaaO aaaOqaaKqzGeGaaGymaiabgUcaRiaaiodaciGGJbGaai4Baiaacoha mmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabeg9akbWcbeaaaa WaamWaaOWdaeaal8qadaWcaaGcpaqaaKqzGeWdbiaaigdacqGHRaWk cqaH+oaEm8aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaaju gib8qacqGHRaWkcqaH+oaEm8aadaWgaaqcbasaaKqzadWdbiaaikda aKqaG8aabeaaaOqaaKqzGeWdbiaadYeaaaGaeyOeI0YcdaWcaaGcpa qaaKqzGeWdbiaadYeam8aadaWgaaqcbasaaKqzadWdbiaaicdaaKqa G8aabeaal8qadaqadaGcpaqaaKqzGeGaeqOVdGhddaWgaaqcbasaaK qzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWkcaaIYaGaeqOV dGhdpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaaak8qaca GLOaGaayzkaaaapaqaaKqzGeWdbiaaikdacaWGmbadpaWaaWbaaKqa GeqabaqcLbmapeGaaGOmaaaaaaqcLbsacqGHRaWklmaalaaak8aaba qcLbsacqaH+oaEmmaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqa aKqzGeWdbiaadYeam8aadaqhaaqcbasaaKqzadWdbiaaicdaaKqaG8 aabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaaIZaGaamitaSWd amaaCaaabeqcbasaaKqzadWdbiaaiodaaaaaaaGccaGLBbGaayzxaa aaaa@8DDA@ ,

Which in spherical coordinates have the form

Y 2φ = Q 0 M E sinϑ r [ 1+ ξ 1 + ξ 2 r R E L 0 sin 2 ϑ( ξ 1 +2 ξ 2 ) 2 r 2 + ξ 2 L 0 2 R E 2 sin 4 ϑ 3 r 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMfam8aadaWgaaqcbasaaKqzadWdbiaaikdacqaHgpGA aKqaG8aabeaajugib8qacqGH9aqpcqGHsisllmaalaaak8aabaqcLb sapeGaamyuaWWdamaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqa aKqzGeGaamytaSWaaSbaaKqaGeaajugWa8qacaWGfbaal8aabeaaju gib8qaciGGZbGaaiyAaiaac6gacqaHrpGsaOWdaeaajugib8qacaWG YbaaaSWaamWaaOWdaeaal8qadaWcaaGcpaqaaKqzGeWdbiaaigdacq GHRaWkcqaH+oaEm8aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aa beaajugib8qacqGHRaWkcqaH+oaEm8aadaWgaaqcbasaaKqzadWdbi aaikdaaKqaG8aabeaaaOqaaKqzGeGaamOCaaaapeGaeyOeI0YcdaWc aaGcpaqaaKqzGeWdbiaadkfammaaBaaajeaibaqcLbmacaWGfbaaje aibeaajugibiaadYeammaaBaaajeaibaqcLbmacaaIWaaajeaibeaa jugibiGacohacaGGPbGaaiOBaWWdamaaCaaajeaibeqaaKqzadGaaG Omaaaajugib8qacqaHrpGslmaabmaak8aabaqcLbsacqaH+oaEmmaa BaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabgUcaRi aaikdacqaH+oaEm8aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aa beaaaOWdbiaawIcacaGLPaaaa8aabaqcLbsapeGaaGOmaiaadkham8 aadaahaaqcbasabeaajugWa8qacaaIYaaaaaaajugibiabgUcaRSWa aSaaaOWdaeaajugibiabe67a4TWaaSbaaKqaGeaajugWa8qacaaIYa aal8aabeaajugib8qacaWGmbadpaWaa0baaKqaGeaajugWa8qacaaI WaaajeaipaqaaKqzadWdbiaaikdaaaqcLbsapaGaamOuaWWaa0baaK qaGeaajugWaiaadweaaKqaGeaajugWaiaaikdaaaqcLbsapeGaci4C aiaacMgacaGGUbadpaWaaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGe Wdbiabeg9akbGcpaqaaKqzGeWdbiaaiodacaWGYbadpaWaaWbaaKqa GeqabaqcLbmapeGaaG4maaaaaaaakiaawUfacaGLDbaaaaa@9FD8@ ,

Y 1 = Q 0 С R E sinϑ 1+3 cos 2 ϑ [ 1+ ξ 1 + ξ 2 r L 0 R E sin 2 ϑ( ξ 1 +2 ξ 2 ) 2 r 2 + ξ 2 L 0 2 sin 4 ϑ R E 2 3 r 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMfam8aadaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc LbsapeGaeyypa0ZcdaWcaaGcpaqaaKqzGeWdbiaadgfam8aadaWgaa qcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugibiaadgcbcaWGsbad daWgaaqcbasaaKqzadGaamyraaqcbasabaqcLbsapeGaci4CaiaacM gacaGGUbGaeqy0dOeak8aabaWcpeWaaOaaaOqaaKqzGeGaaGymaiab gUcaRiaaiodaciGGJbGaai4BaiaacohammaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiabeg9akbWcbeaaaaWaamWaaOWdaeaal8qadaWc aaGcpaqaaKqzGeWdbiaaigdacqGHRaWkcqaH+oaEm8aadaWgaaqcba saaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWkcqaH+oaE m8aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaaaOqaaKqzGe GaamOCaaaapeGaeyOeI0YcdaWcaaGcpaqaaKqzGeWdbiaadYeam8aa daWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugibiaadkfamm aaBaaajeaibaqcLbmacaWGfbaajeaibeaajugib8qaciGGZbGaaiyA aiaac6gammaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabeg9akT WaaeWaaOWdaeaajugibiabe67a4XWaaSbaaKqaGeaajugWa8qacaaI XaaajeaipaqabaqcLbsapeGaey4kaSIaaGOmaiabe67a4XWdamaaBa aajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaaGcpeGaayjkaiaawMca aaWdaeaajugib8qacaaIYaGaamOCaWWdamaaCaaajeaibeqaaKqzad WdbiaaikdaaaaaaKqzGeGaey4kaSYcdaWcaaGcpaqaaKqzGeGaeqOV dG3cdaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiaadY eam8aadaqhaaqcbasaaKqzadWdbiaaicdaaKqaG8aabaqcLbmapeGa aGOmaaaajugibiGacohacaGGPbGaaiOBaWWaaWbaaKqaGeqabaqcLb macaaI0aaaaKqzGeGaeqy0dOKaamOuaWWaa0baaKqaGeaajugWaiaa dweaaKqaGeaajugWaiaaikdaaaaak8aabaqcLbsapeGaaG4maiaadk ham8aadaahaaqcbasabeaajugWa8qacaaIZaaaaaaaaOGaay5waiaa w2faaaaa@A5E4@ .

If the co-rotation field is not taken into account, then, as shown in,11 the Hamiltonian of the problem can be represented as the sum

H= H 0 + H 1 + H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeacqGH9aqpcaWGibadpaWaaSbaaKqaGeaajugWa8qa caaIWaaajeaipaqabaqcLbsapeGaey4kaSIaamisaWWdamaaBaaaje aibaqcLbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaadIea m8aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaaaaa@45C7@ ,  (14)

Where

H 0 = 1 2m ( P r 2 + P ϑ 2 + P φ 2 r 2 sin 2 ϑ ) m μ E r ,  H 1 = P φ Q 0 M E η 1 m r 3 c , H 2 = Q 0 2 M E 2 sin 2 ϑ η 2 2m c 2 r 4 +O( 1 r 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamisaWWdamaaBaaajeaibaqcLbmapeGaaGimaaqc baYdaeqaaKqzGeWdbiabg2da9SWaaSaaaOWdaeaajugib8qacaaIXa aak8aabaqcLbsapeGaaGOmaiaad2gaaaWcdaqadaGcbaqcLbsacaWG qbadpaWaa0baaKqaGeaajugWa8qacaWGYbaajeaipaqaaKqzadWdbi aaikdaaaqcLbsacqGHRaWkcaWGqbadpaWaa0baaKqaGeaajugWa8qa cqaHrpGsaKqaG8aabaqcLbmapeGaaGOmaaaajugibiabgUcaRSWaaS aaaOWdaeaajugib8qacaWGqbadpaWaa0baaKqaGeaajugWa8qacqaH gpGAaKqaG8aabaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaWGYb adpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiGacohacaGG PbGaaiOBaWWdamaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacq aHrpGsaaaakiaawIcacaGLPaaajugibiabgkHiTSWaaSaaaOWdaeaa jugib8qacaWGTbGaeqiVd02cpaWaaSbaaKqaGeaajugWa8qacaWGfb aal8aabeaaaOqaaKqzGeWdbiaadkhaaaGaaiilaiaabccacaWGibad paWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaqcLbsapeGaey ypa0ZcdaWcaaGcpaqaaKqzGeWdbiaadcfam8aadaWgaaqcbasaaKqz adWdbiabeA8aQbqcbaYdaeqaaKqzGeWdbiaadgfam8aadaWgaaqcba saaKqzadWdbiaaicdaaKqaG8aabeaajugib8qacaWGnbWcpaWaaSba aeaajugib8qacaWGfbaal8aabeaajugibiabeE7aOXWaaSbaaKqaGe aajugWa8qacaaIXaaajeaipaqabaaakeaajugib8qacaWGTbGaamOC aWWdamaaCaaajeaibeqaaKqzadWdbiaaiodaaaqcLbsacaWGJbaaai aacYcaaOqaaKqzGeGaamisaWWdamaaBaaajeaibaqcLbmapeGaaGOm aaqcbaYdaeqaaKqzGeWdbiabg2da9SWaaSaaaOWdaeaajugib8qaca WGrbadpaWaa0baaKqaGeaajugWa8qacaaIWaaajeaipaqaaKqzadWd biaaikdaaaqcLbsacaWGnbadpaWaa0baaKqaGeaajugWa8qacaWGfb aajeaipaqaaKqzadWdbiaaikdaaaqcLbsaciGGZbGaaiyAaiaac6ga m8aadaahaaqcbasabeaajugWa8qacaaIYaaaaKqzGeGaeqy0dOKaeq 4TdGgdpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaaakeaa jugib8qacaaIYaGaamyBaiaadogam8aadaahaaqcbasabeaajugWa8 qacaaIYaaaaKqzGeGaamOCaWWdamaaCaaajeaibeqaaKqzadWdbiaa isdaaaaaaKqzGeGaey4kaSIaam4taSWaaeWaaOWdaeaal8qadaWcaa GcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaWGYbadpaWaaWba aKqaGeqabaqcLbmapeGaaGinaaaaaaaakiaawIcacaGLPaaajugibi aacYcaaaaa@BE96@

η 1 =1+ ξ 1 + ξ 2 ,  η 2 =1+ ξ 1 2 +2 ξ 2 +2 ξ 1 + ξ 2 2 +2 ξ 1 ξ 2 η 3 ,  η 3 = P φ L 0 R E c Q 0 M E ( ξ 1 +2 ξ 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaH3o aAmmaaBaaajeaibaqcLbmaqaaaaaaaaaWdbiaaigdaaKqaG8aabeaa jugib8qacqGH9aqpcaaIXaGaey4kaSIaeqOVdGhdpaWaaSbaaKqaGe aajugWa8qacaaIXaaajeaipaqabaqcLbsapeGaey4kaSIaeqOVdGhd paWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaqcLbsacaGGSa GaaeiiaiabeE7aOXWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqa baqcLbsapeGaeyypa0JaaGymaiabgUcaRiabe67a4XWdamaaDaaaje aibaqcLbmapeGaaGymaaqcbaYdaeaajugWa8qacaaIYaaaaKqzGeGa ey4kaSIaaGOmaiabe67a4XWdamaaBaaajeaibaqcLbmapeGaaGOmaa qcbaYdaeqaaKqzGeWdbiabgUcaRiaaikdacqaH+oaEm8aadaWgaaqc basaaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWkcqaH+o aEm8aadaqhaaqcbasaaKqzadWdbiaaikdaaKqaG8aabaqcLbmapeGa aGOmaaaajugibiabgUcaRiaaikdacqaH+oaEm8aadaWgaaqcbasaaK qzadWdbiaaigdaaKqaG8aabeaajugibiabe67a4XWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyOeI0Iaeq4TdGgdpa WaaSbaaKqaGeaajugWa8qacaaIZaaajeaipaqabaqcLbsacaGGSaGa aeiiaiabeE7aOXWaaSbaaKqaGeaajugWa8qacaaIZaaajeaipaqaba qcLbsapeGaeyypa0ZcdaWcaaGcpaqaaKqzGeWdbiaadcfam8aadaWg aaqcbasaaKqzadWdbiabeA8aQbqcbaYdaeqaaKqzGeWdbiaadYeam8 aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugib8qacaWG sbWcpaWaaSbaaeaajugib8qacaWGfbaal8aabeaajugWa8qacaWGJb aak8aabaqcLbsapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGaaGim aaWcpaqabaqcLbsapeGaamytaSWdamaaBaaajeaibaqcLbmapeGaam yraaWcpaqabaaaa8qadaqadaGcpaqaaKqzGeGaeqOVdGhddaWgaaqc basaaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWkcaaIYa GaeqOVdG3cpaWaaSbaaKqaGeaajugWa8qacaaIYaaal8aabeaaaOWd biaawIcacaGLPaaajugibiaac6caaaa@AB00@

The first term H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeam8aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aa beaaaaa@3A27@  corresponds to the Hamiltonian of the body motion problem in the Newtonian gravitational field, and the second and third terms are caused by the perturbing action of the magnetic field. For a purely gravitational problem, the osculating elements of the orbit are known to remain constant over an infinite time interval. As shown in,11 act of H 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeam8aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aa beaaaaa@3A28@  and H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeam8aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aa beaaaaa@3A29@  leads to small oscillations of the osculating elements within narrow intervals of quantities. In this connection, the question arises: how can the orbit behavior change the influence of the co-rotation field.

Substituting in Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGzb WcdaWgaaqcbasaaKqzadaeaaaaaaaaa8qacaaIXaaal8aabeaaaaa@39FA@ (9) we obtain:

H= H cor = H 0 + H 1 + H 2 + Q 0 С R E sinϑ 1+3 cos 2 ϑ [ 1+ ξ 1 + ξ 2 r L 0 R E sin 2 ϑ( ξ 1 +2 ξ 2 ) 2 r 2 + ξ 2 L 0 2 sin 4 ϑ R E 2 3 r 3 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamisaiabg2da9iaadIeammaaBaaajeaibaqcLbma caWGJbGaam4BaiaadkhaaKqaGeqaaKqzGeGaeyypa0JaamisaWWdam aaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqaaKqzGeWdbiabgUca RiaadIeam8aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaaju gib8qacqGHRaWkcaWGibadpaWaaSbaaKqaGeaajugWa8qacaaIYaaa jeaipaqabaqcLbsacqGHRaWkaOqaaSWdbmaalaaak8aabaqcLbsape GaamyuaWWdamaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqaaKqz GeGaeyyXICTaamyieiabgwSixlaadkfalmaaBaaajeaibaqcLbmaca WGfbaaleqaaKqzGeGaeyyXIC9dbiGacohacaGGPbGaaiOBaiabeg9a kbGcpaqaaSWdbmaakaaakeaajugibiaaigdacqGHRaWkcaaIZaGaci 4yaiaac+gacaGGZbaddaahaaqcbasabeaajugWaiaaikdaaaqcLbsa cqaHrpGsaSqabaaaamaadmaak8aabaWcpeWaaSaaaOWdaeaajugib8 qacaaIXaGaey4kaSIaeqOVdGhdpaWaaSbaaKqaGeaajugWa8qacaaI XaaajeaipaqabaqcLbsapeGaey4kaSIaeqOVdGhdpaWaaSbaaKqaGe aajugWa8qacaaIYaaajeaipaqabaaakeaajugibiaadkhaaaWdbiab gkHiTSWaaSaaaOWdaeaajugib8qacaWGmbadpaWaaSbaaKqaGeaaju gWa8qacaaIWaaajeaipaqabaqcLbsacqGHflY1caWGsbaddaWgaaqc basaaKqzadGaamyraaqcbasabaqcLbsacqGHflY1peGaci4CaiaacM gacaGGUbaddaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHrpGs lmaabmaak8aabaqcLbsacqaH+oaEmmaaBaaajeaibaqcLbmapeGaaG ymaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaaikdacqaH+oaEm8aadaWg aaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaaaOWdbiaawIcacaGLPa aaa8aabaqcLbsapeGaaGOmaiabgwSixlaadkham8aadaahaaqcbasa beaajugWa8qacaaIYaaaaaaajugibiabgUcaRSWaaSaaaOWdaeaaju gibiabe67a4XWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaqc LbsacqGHflY1peGaamitaWWdamaaDaaajeaibaqcLbmapeGaaGimaa qcbaYdaeaajugWa8qacaaIYaaaaKqzGeWdaiabgwSix=qaciGGZbGa aiyAaiaac6gammaaCaaajeaibeqaaKqzadGaaGinaaaajugibiabeg 9akjabgwSixlaadkfammaaDaaajeaibaqcLbmacaWGfbaajeaibaqc LbmacaaIYaaaaaGcpaqaaKqzGeWdbiaaiodacqGHflY1caWGYbadpa WaaWbaaKqaGeqabaqcLbmapeGaaG4maaaaaaaakiaawUfacaGLDbaa jugibiaac6caaaaa@D0A6@   (15)

In contrast to the previous case, the transition to the Delaunay variables L D , G D , H D , l D , g D , h D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqcbasaaKqzadGaamiraaWcbeaajugibiaacYcacaWGhbWc daWgaaqcbasaaKqzadGaamiraaWcbeaajugibiaacYcacaWGibWcda WgaaqcbasaaKqzadGaamiraaWcbeaajugibiaacYcacaWGSbWcdaWg aaqcbasaaKqzadGaamiraaWcbeaajugibiaacYcacaWGNbWcdaWgaa qcbasaaKqzadGaamiraaWcbeaajugibiaacYcacaWGObWcdaWgaaqc basaaKqzadGaamiraaWcbeaaaaa@5022@ 17 does not lead to a simple decomposition H cor = H 0,cor + H 1,cor + H 2,cor MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeammaaBaaajeaibaqcLbmacaWGJbGaam4Baiaadkha aKqaGeqaaKqzGeGaeyypa0JaamisaSWdamaaBaaajeaibaqcLbmape GaaGimaiaacYcacaWGJbGaam4BaiaadkhaaSWdaeqaaKqzGeWdbiab gUcaRiaadIeal8aadaWgaaqcbasaaKqzadGaaGymaiaacYcacaWGJb Gaam4BaiaadkhaaSqabaqcLbsapeGaey4kaSIaamisaWWdamaaBaaa jeaibaqcLbmapeGaaGOmaiaacYcacaWGJbGaam4BaiaadkhaaKqaG8 aabeaaaaa@5502@  with H 0,cor MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeam8aadaWgaaqcbasaaKqzadWdbiaaicdacaGGSaGa am4yaiaad+gacaWGYbaajeaipaqabaaaaa@3DAA@ , depending only on L D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb addaWgaaqcbasaaKqzadGaamiraaqcbasabaaaaa@39EC@ . Therefore, in the general case ( ϑ π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaHrp GscqGHGjsUlmaalaaakeaajugibiabec8aWbGcbaqcLbsacaaIYaaa aaaa@3DD8@ ) even in the zero order of the expansion of the Hamiltonian with respect to a small parameter, the conservation of the basic orbital parameters is not ensured. However, when ϑ= π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaHrp GscqGH9aqplmaalaaakeaajugibiabec8aWbGcbaqcLbsacaaIYaaa aaaa@3D17@  for the Hamiltonian H cor MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeammaaBaaaleaajugWaiaadogacaWGVbGaamOCaaWc beaaaaa@3BD4@  we can enter an effective parameter, μ E,ef = μ E Q 0 C R E m (1+ ξ 1 + ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBmmaaBaaajeaibaqcLbmacaWGfbGaaiilaiaadwgacaWGMbaajeai beaajugibiabg2da9iabeY7aTXWaaSbaaKqaGeaajugWaiaadweaaK qaGeqaaKqzGeGaeyOeI0YcdaWcaaGcbaqcLbsacaWGrbaddaWgaaqc basaaKqzadGaaGimaaqcbasabaqcLbsacqGHflY1caWGdbGaeyyXIC TaamOuaWWaaSbaaKqaGeaajugWaiaadweaaKqaGeqaaaGcbaqcLbsa caWGTbaaaiaacIcacaaIXaGaey4kaSIaeqOVdGhddaWgaaqcbasaaK qzadGaaGymaaqcbasabaqcLbsacqGHRaWkcqaH+oaEmmaaBaaajeai baqcLbmacaaIYaaajeaibeaajugibiaacMcaaaa@60A1@ which allow recording H 0,cor MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeammaaBaaajeaibaqcLbmacaaIWaGaaiilaiaadoga caWGVbGaamOCaaqcbasabaaaaa@3D7C@  in the same form as H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib addaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaaa@39D9@  in the formula (14), in this case

H 1,cor = Q 0 C L 0 R E 2 ( ξ 1 +2 ξ 2 ) 2 r 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib addaWgaaqcbasaaKqzadGaaGymaiaacYcacaWGJbGaam4Baiaadkha aKqaGeqaaKqzGeaeaaaaaaaaa8qacqGH9aqpcqGHsisllmaalaaak8 aabaqcLbsapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGaaGimaaWc paqabaqcLbsacaWGdbWdbiaadYeam8aadaWgaaqcbasaaKqzadWdbi aaicdaaKqaG8aabeaajugibiaadkfammaaDaaajeaibaqcLbmacaWG fbaajeaibaqcLbmacaaIYaaaaSWdbmaabmaak8aabaqcLbsacqaH+o aEmmaaBaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiab gUcaRiaaikdacqaH+oaEm8aadaWgaaqcbasaaKqzadWdbiaaikdaaK qaG8aabeaaaOWdbiaawIcacaGLPaaaa8aabaqcLbsapeGaaGOmaiaa dkham8aadaahaaqcbasabeaajugWa8qacaaIYaaaaaaajugibiaacY caaaa@6204@

H 2,cor = ξ 2 Q 0 C L 0 2 R E 3 3 r 3 + P φ Q 0 M E η 1 m r 3 c + Q 0 2 M E 2 η 2 2m c 2 r 4 +O( 1 r 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib addaWgaaqcbasaaKqzadGaaGOmaiaacYcacaWGJbGaam4Baiaadkha aKqaGeqaaKqzGeaeaaaaaaaaa8qacqGH9aqplmaalaaak8aabaqcLb sacqaH+oaEmmaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqz GeWdbiaadgfam8aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aabe aajugibiaadoeapeGaamitaWWdamaaDaaajeaibaqcLbmapeGaaGim aaqcbaYdaeaajugWa8qacaaIYaaaaKqzGeGaamOuaWWaa0baaKqaGe aajugWaiaadweaaKqaGeaajugWaiaaiodaaaaak8aabaqcLbsapeGa aG4maiaadkham8aadaahaaqcbasabeaajugWa8qacaaIZaaaaaaaju gibiabgUcaRSWaaSaaaOWdaeaajugib8qacaWGqbadpaWaaSbaaKqa GeaajugWa8qacqaHgpGAaKqaG8aabeaajugib8qacaWGrbadpaWaaS baaKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsapeGaamytaWWd amaaBaaajeaibaqcLbmapeGaamyraaqcbaYdaeqaaKqzGeGaeq4TdG gddaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaaaOqaaKqzGeWd biaad2gacaWGYbadpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaaju gibiaadogaaaGaey4kaSYcdaWcaaGcpaqaaKqzGeWdbiaadgfam8aa daqhaaqcbasaaKqzadWdbiaaicdaaKqaG8aabaqcLbmapeGaaGOmaa aajugibiaad2eam8aadaqhaaqcbasaaKqzadWdbiaadweaaKqaG8aa baqcLbmapeGaaGOmaaaajugibiabeE7aOXWdamaaBaaajeaibaqcLb mapeGaaGOmaaqcbaYdaeqaaaGcbaqcLbsapeGaaGOmaiaad2gacaWG JbadpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiaadkham8 aadaahaaqcbasabeaajugWa8qacaaI0aaaaaaajugibiabgUcaRiaa d+ealmaabmaak8aabaWcpeWaaSaaaOWdaeaajugib8qacaaIXaaak8 aabaqcLbsapeGaamOCaWWdamaaCaaajeaibeqaaKqzadWdbiaaisda aaaaaaGccaGLOaGaayzkaaaaaa@98C1@

That is, when moving in the equatorial plane, taking into account the co-rotation field reduces to the conservation in the zeroth approximation of the semi major axis, eccentricity and inclination angle. Member accounting H 2,kor MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeam8aadaWgaaWcbaqcLbmapeGaaGOmaiaacYcacaWG RbGaam4BaiaadkhaaSWdaeqaaaaa@3D76@ , proportionate r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb addaahaaWcbeqaaKqzadGaeyOeI0IaaG4maaaaaaa@3AAB@ , leads to small oscillations of the semi major axis and eccentricity, as we have shown earlier in,11 for the disturbing action of the magnetic field. But the member H 1,kor MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeam8aadaWgaaWcbaqcLbmacaaIXaGaaiilaiaadUga caWGVbGaamOCaaWcbeaaaaa@3D56@ , proportional r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb addaahaaWcbeqaaKqzadGaeyOeI0IaaGOmaaaaaaa@3AAA@ , stipulates the existence of secular changes in orbital parameters.

To confirm the obtained analytical results, numerical experiments were carried out to simulate the motion of micro-particles in the terrestrial plasma-sphere with radii of the order of some hundredths of micron. Simulation of MP motion was carried out on the basis of a numerical solution of the equations of motion of micro-particles with a locally equilibrium electric charge, determined from the solution of the current balance equation (10), under the same simplifying assumptions under which the Hamiltonian (15) was written. As an example, Figures 1 & 2 shows the calculated dependencies on time, respectively, of the large semi major axis and the eccentricity of the MP orbit from carbon with a radius of 0.033μm injected into the NES at the perigee point of the elliptical orbit with parameters: perigee altitude 9000km, an angle of inclination of 0 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa addaahaaqcbasabeaajugWaiaaicdaaaaaaa@399E@ , starting speed 5,449km/s, longitude of the ascending node of 180 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa GaaGioaiaaicdammaaCaaajeaibeqaaKqzadGaaGimaaaaaaa@3B1B@ , ascending node-perigee angle of 270 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaaG4naiaaicdammaaCaaajeaibeqaaKqzadGaaGimaaaaaaa@3B1B@ . The simulation was carried out at a time interval of 720 hours (1 month), and in this case only two forces were taken into account: gravitational and co-rotation, and did not take into account the effect of shadowing part of the orbit. As can be seen from the data in Figures 1 & 2, in the case under consideration the semi major axis and the eccentricity of the orbit of the MP, as predicted, almost monotonously increase with time. Figures 3–5 show the results of numerical simulation for the same initial conditions, but obtained on the basis of a joint solution of the equation of motion and the equation of micro-particle charging. These results show that there are no fundamental differences in the behavior of the semi major axis and the eccentricity of the orbit for the cases of equilibrium and non-equilibrium charges of MP. The results of the calculations presented in Figures 6–10, allow us to estimate the influence of the initial angle of inclination and shading of a part of the orbit on the character of the orbital parameter change. A nonzero initial angle of inclination causes oscillations of the semi major axis, eccentricity and inclination angle, a monotonic increase in the mean valueand the appearance of an additional frequency of the oscillations of the potential of the MP, which coincides with the frequency of oscillations a, i and e. The shadowing effect of a part of the orbit does not significantly change the behavior of the potential of the MP, the eccentricity and the inclination angle of the orbit, and lubricates the clear character of the behavior of the semi major axis (Figure 8). Numerical calculations for other radii of MP and initial conditions for its injection, also satisfying the conditions of application of the model in question, give similar results.

Figure 1 & 2 Dependences of the semi major axis (1) and the eccentricity (2) of the orbit of the micro-particle with locally equilibrium electric charges on time moving in the equatorial plane for the case of the action of only 2 forces: the gravitational and the Lorentz force component due to the co-rotation field.

Figure 3 & 4 Dependences of the semi major axis (3) and the eccentricity (4) of the orbit of the micro-particle with non-equilibrium electric charges on time moving in the equatorial plane for the case of the action of only 2 forces: the gravitational and the Lorentz force component due to the co-rotation field.

Figure 5 Dependence of the electric potential of a micro-particle with non-equilibrium electric charges on the time moving in the equatorial plane for the case of the action of only two forces: the gravitational and the component of the Lorentz force due to the co-rotation field.

Figure 6 Dependence of the eccentricity of the orbit of a micro-particle with non-equilibrium electric charges on time injected with an initial inclination of 30 degrees for the case of the action of only 2 forces: the gravitational and the Lorentz force component due to the co-rotation field (without shading).

Figure 7 & 8 Dependences of the semi major axis of the micro-particle orbit with the non-equilibrium electric charges on time injected with an initial inclination of 30 degrees for the case of the action of only 2 forces: the gravitational and the Lorentz force component due to the co-rotation field (7 without shading, 8 with shading).

Figure 9 & 10 Dependences of the inclination of the orbit (9) and the electric potential (10) of the micro-particle with non-equilibrium electric charges on time injected with an initial inclination of 30 degrees for the case of only 2 forces: the gravitational and the Lorentz force component due to the co-rotation field (without accounting for shading).

Received in,18 the results allow us to compare the evolution of the semimajor axis and eccentricity under the injection conditions indicated above (Figures 6–10) for two methods of calculation: 1) only two forces: the central Newtonian gravitational force and the magnetic component of the Lorentz force act on a granule whose electric charge is assumed locally equilibrium at each step of the numerical integration of the system of equations of motion of the granule; 2) a complete system of seven forces acts on the granule and numerically integrates a single system of equations of motion and charging the micro-particle.

The complete system of forces includes the central gravitational force, its perturbation caused by the Earth's polar compression, the magnetic component of the Lorentz force, the electric component of the Lorentz force, caused by the electric fields of co-rotation and convection, the solar pressure force and the resistance force of the neutral component of the atmosphere. It is shown that the existing differences are small. Thus, the influence of not only the co-rotation field but all other forces in addition to the Lorentz force due to the interaction of the MP charge with the dipole magnetic field of the Earth does not lead to a significant change in the behavior of the orbital parameters at sufficiently large time intervals (in comparison with the case the actions of only two forces).

Conclusion

Thus, for the micro-particles considered, in contrast to the magnetic field, the electric field of co-rotation causes slow changes in the basic parameters of the orbit. These changes consist of two components: monotonous growth of the mean values ​​of the semi major axis, eccentricity and angle of inclination, and their oscillations at a nonzero initial inclination angle with a period much greater than the period of the orbital motion. At sufficiently large time intervals (of the order of one month), the co-rotation field does not lead to a significant change in orbital parameters, but for even longer times these changes can become significant.

Acknowledgments

None.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. Horanyi M, Houpis HLF, Mendis DA. Charged Dust in the Earth's Magnetosphere. Astrophysics and Space Science. 1988;144(1–4):215–229.
  2. Kolesnikov EK, Chernov SV, Yakovlev AB. Lifetime of Microparticles in a Geosynchronous Orbit. Cosmic Research. 1999;37(4):446–448.
  3. Merzlyakov EG. On the Motion of Submicron Particles in the Low Near-Earth Orbits. Cosmic Research. 1996;34(5):558–560.
  4. Kolesnikov EK, Chernov SV. Microparticle Residence Time in Low Near-Earth Circular Orbits. Cosmic Research. 1997;35(2):221–222.
  5. Kolesnikov EK. Peculiarities of the Orbital Motion of Submicron Particles in the Earth's Plasmasphere. Cosmic Research. 2001;39(1):92–97.
  6. Kolesnikov EK, Chernov SV. Dimensions of Microparticles Trapped by the Earth's Magnetic Field at Various Geomagnetic Activity Levels. Cosmic Research. 2003;41(5):558–560.
  7. Kolesnikov EK, Chernov SV, Yakovlev A. On Correctness of Canonical Formulation of the Problem of Motion of Submicron Particles in the Earth's Plasmasphere. Cosmic Research. 2007;45(6):471–475.
  8. Arnold VI. A proof of the Kolmogorov's theorem on the conservation of conditionally-periodic motions at a small change of the Hamilton function. Uspekhi Matematicheskikh Nauk. 1961;25(1):21–86.
  9. Moser Yu. Some aspects of integrable Hamiltonian systems. Uspekhi Matematicheskikh Nauk. 1981;36(5):109–151.
  10. Yakovlev AB. About the stability of the motion of microparticles of space debris of the Earth's plasmasphere. Sixth European Conference on Space Debris. Abstract Book. ESA, France, 2013. p. 121.
  11. Kolesnikov EK, Yakovlev AB. On preservation of the form of the orbit of a microparticle with a variable charge moving in the Earth plasmasphere. Bulletin of St. Petersburg State University, Russia, 2014. p. 116–123.
  12. Goldstein H. Classical Mechanics. Cambridge (Mass.): Addison-Wesley, USA. 1953.
  13. Hill JR, Wipple EC. Charging of Large Structures in Space with Application to the Solar Sail Spacecraft. Journal of Spacecraft and Rockets. 1985;22:245–253.
  14. Kolesnikov EK, Chernov SV. Development of methods for numerical simulation of the dynamics of fine-dispersed particles in near-Earth space. Models of continuum mechanics. Review reports and lectures of the 17th session of the International School on Models of Continuum Mechanics, Kazan, Russia, 2004. p. 55–83.
  15. Dorman LI, Smirnov VS, Tjasto MI. Cosmic rays in the Earth's magnetic field. Nauka, Russia. 1971.
  16. Braun M. Particle Motion in a Magnetic Field. Journal of Differential Equations. 1970;8(2):294–332.
  17. Duboshin GN. Celestial mechanics, Main tasks and methods. Nauka, Russia. 1964.
  18. Yakovlev AB, Kolesnikov EK, Chernov SV. Analytical research on the possibility of the long orbital existence of submicron particles in the Earth's plasmasphere by the methods of the KAM theory. Journal of Plasma Physics. 2017;83(4):1–17.
Creative Commons Attribution License

©2018 Yakovlev, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.