Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 1

Interacting with the fifth dimension

Robert MD

Theoretical physicist, Wonersh Park, UK

Correspondence: Mark D Roberts, Theoretical physicist, 54 Grantley Avenue, Wonersh Park, GU5 0QN, UK

Received: January 25, 2018 | Published: February 15, 2018

Citation: Roberts MD. Interacting with the fifth dimension. Phys Astron Int J. 2018;2(1):102-106. DOI: 10.15406/paij.2018.02.00054

Download PDF

Abstract

Some new five dimensional minimal scalar-Einstein exact solutions are presented. These new solutions are tested against various criteria used to measure interaction with the fifth dimension. The first type of five dimensional solutions has the fifth dimension entering the scalar field in a similar manner to the null coordinates. The second has d=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaaI9aGaaGinaaaa@3BBC@ spacetime the same as in the d=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaaI9aGaaGinaaaa@3BBC@ solution but has cross terms between the fifth dimension and the null coordinates. The third has a conformal factor multiplying the d=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaaI9aGaaGinaaaa@3BBC@ solution.

Keywords: Dimension; Scalar field; Spacetime; Horizons; Einstein solutions; Vector field

Introduction

The use of the scalar-Einstein field equations and their solutions seems to have gone through four, perhaps related, stages. In the first stage [1] solutions were sought which it was hoped would represent an elementary particle such as a meson. How the scalar field decays from such solutions might effect the Yukawa potential has been discussed by Roberts [2]. In the second stage it was noticed that most scalar-Einstein solutions do not have event horizons. It was shown that no event horizons happen under fairly general conditions in the static case [3]. In the non-static case there are imploding solutions which create curvature singularities out of nothing [4,5], these examples have no overall mass, but there is a mass in the corresponding conformal- scalar solutions [6]. In the third stage exact scalar-Einstein solutions where found to be critical cases in the numerical study of stellar collapse [7]. In thefourth stage exact scalar-Einstein solutions were canonically quantized [8].

Contemporary attempts at quan- tum gravity and unification usually involve more than the observable four dimensions [9,10]. It is possible that models in five dimensions might provide testable cosmological models Randall L & Sundrum R [11,12], or be testable on the scale of the solar system by Wesson, Mashhoon & Lui [13], or perhaps be testable microscopically [14]. To build a five dimensional model in addition to an exact solution one needs to prescribe another piece of information: how the four dimensional spacetime is embedded in the five dimensional spaces. This is typically done by requiring that the four dimensional spacetime is a four dimensional surface in a five dimensional space, this can be achieved by choosing a normal vector field n a = δ χ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6galmaaCaaajeaibeqaaKqzadGaamyyaaaajugibiaa i2dacqaH0oazlmaaDaaajeaibaqcLbmacqaHhpWyaKqaGeaajugWai aadggaaaaaaa@4521@  to the surface. Once five dimensional scalar-Einstein solutions have been found there turns out to be many in equivalent ways of doing this and it is not immediate which the best is. For simplicity here mainly solutions to the field equations R ab =2 φ a φ b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasa baqcLbsacaaI9aGaaGOmaiabeA8aQTWaaSbaaKqaGeaajugWaiaadg gaaKqaGeqaaKqzGeGaeqOXdO2cdaWgaaqcbasaaKqzadGaamOyaaqc basabaaaaa@48E4@ are discussed. In particular these field equations and spherical symmetry require R θθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacqaH4oqCcqaH4oqCaKqa GeqaaKqzGeGaaGypaiaaicdaaaa@414F@ so that there is no self-interaction, such as mass, for the scalar field, and also there is no cosmological constant present, both of these require R θθ α g θθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacqaH4oqCcqaH4oqCaKqa GeqaaKqzGeGaeqySdeMaam4zaSWaaSbaaKqaGeaajugWaiabeI7aXj abeI7aXbqcbasabaaaaa@4773@ . The cosmological con- stant is often taken to be related to a brane tension, so that the examples here are for zero tension.

Most calculations were done using Maple 9.

The Four Dimensional Solutions

In single null coordinates the line element is

d s 4 2 =(1+2σ)d v 2 +2dvdr+r(r2σv)d Σ 2 2 ,d Σ 2 2 =d θ 2 +sin (θ) 2 d φ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaqhaaqcbasaaKqzadGaaGinaaqcbasa aKqzadGaaGOmaaaajugibiaai2dacqGHsislcaaIOaGaaGymaiabgU caRiaaikdacqaHdpWCcaaIPaGaamizaiaadAhalmaaCaaajeaibeqa aKqzadGaaGOmaaaajugibiabgUcaRiaaikdacaWGKbGaamODaiaads gacaWGYbGaey4kaSIaamOCaiaaiIcacaWGYbGaeyOeI0IaaGOmaiab eo8aZjaadAhacaaIPaGaamizaiabfo6atTWaa0baaKqaGeaajugWai aaikdaaKqaGeaajugWaiaaikdaaaqcLbsacaaISaGaamizaiabfo6a tTWaa0baaKqaGeaajugWaiaaikdaaKqaGeaajugWaiaaikdaaaqcLb sacaaI9aGaamizaiabeI7aXTWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaey4kaSIaai4CaiaacMgacaGGUbGaaGikaiabeI7aXjaaiM calmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadsgacqaHgpGA lmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaac6caaaa@7F55@ (1)

The scalar field takes the form

φ= 1 2 ln(1 2σv r ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiaaikdaaaGaaiiBaiaac6gacaaIOaGaaGymaiabgkHiTKqbao aalaaakeaajugibiaaikdacqaHdpWCcaWG2baakeaajugibiaadkha aaGaaGykaiaac6caaaa@4AFB@  (2)

To transformation to double null coordinates use

u(1+2σ)v2r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacqGHHjIUcaaIOaGaaGymaiabgUcaRiaaikdacqaH dpWCcaaIPaGaamODaiabgkHiTiaaikdacaWGYbaaaa@452D@ , (3)

So that the line element becomes

d s 4 2 =dudv+ Y 2 d Σ 2 2 , Y 2 1 4 ((1+2σ)vu)((12σ)vu) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaqhaaqcbasaaKqzadGaaGinaaqcbasa aKqzadGaaGOmaaaajugibiaai2dacqGHsislcaWGKbGaamyDaiaads gacaWG2bGaey4kaSIaamywaSWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaamizaiabfo6atTWaa0baaKqaGeaajugWaiaaikdaaKqaGe aajugWaiaaikdaaaqcLbsacaaISaGaamywaSWaaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaeyyyIOBcfa4aaSaaaOqaaKqzGeGaaGymaa GcbaqcLbsacaaI0aaaaiaaiIcacaaIOaGaaGymaiabgUcaRiaaikda cqaHdpWCcaaIPaGaamODaiabgkHiTiaadwhacaaIPaGaaGikaiaaiI cacaaIXaGaeyOeI0IaaGOmaiabeo8aZjaaiMcacaWG2bGaeyOeI0Ia amyDaiaaiMcaaaa@6E82@  (4)

Where Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMfaaaa@3A2C@ is the luminosity distance. In double null coordinates the scalar field takes the form

φ= 1 2 ln( (12σ)vu (1+2σ)vu ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiaaikdaaaGaaiiBaiaac6gacaaIOaqcfa4aaSaaaOqaaKqzGe GaaGikaiaaigdacqGHsislcaaIYaGaeq4WdmNaaGykaiaadAhacqGH sislcaWG1baakeaajugibiaaiIcacaaIXaGaey4kaSIaaGOmaiabeo 8aZjaaiMcacaWG2bGaeyOeI0IaamyDaaaacaaIPaGaaiOlaaaa@55B3@  (5)

Roughly speaking a Killing vector is a vector which points in a direction that space does not change, so if you go in its direction everything looks the same. Examples are time like killing vectors which is part of the requirement as to whether a spacetime is static and various rotational killing vectors. Homethetic means that where there was a zero for a Killing vector there is now a term proportional to the metric, so that going in the direction of the Killing vector things change by a constant amount. A gradient vector is a vector which is just the derivative of a single scalar, in general several scalars are needed. The solution has a homothetic gradient Killing vector with conformal factor 2c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkHiTiaaikdacaWGJbaaaa@3BDF@ and potential, norm, acceleration, expansion, vorticity and orthogonality

V=cuv, V a V a =2cV, A a =c V a ,Θ=8c,ω=0, V a φ a =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfacaaI9aGaam4yaiaadwhacaWG2bGaaGilaiaadAfa lmaaCaaajeaibeqaaKqzadGaamyyaaaajugibiaadAfalmaaBaaaje aibaqcLbmacaWGHbaajeaibeaajugibiaai2dacaaIYaGaam4yaiaa dAfacaaISaGaamyqaSWaaWbaaKqaGeqabaqcLbmacaWGHbaaaKqzGe GaaGypaiaadogacaWGwbWcdaahaaqcbasabeaajugWaiaadggaaaqc LbsacaaISaGaeuiMdeLaaGypaiabgkHiTiaaiIdacaWGJbGaaGilai abeM8a3jaai2dacaaIWaGaaGilaiaadAfalmaaCaaajeaibeqaaKqz adGaamyyaaaajugibiabeA8aQTWaaSbaaKqaGeaajugWaiaadggaaK qaGeqaaKqzGeGaaGypaiaaicdacaGGUaaaaa@68C3@  (6)

The Ricci tensor is a two index contraction of the four index Riemann tensor, it can be further contracted to give the Ricci scalar. The Riemann tensor is constructed from the first and second derivatives of the metric and is a measure of the curvature. The general relativity field equations which related matter to geometry can be expressed in terms of either the Ricci tensor or Einstein tensor. Here the Ricci scalar is simply expressed

R= 2 σ 2 uv Y 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGOmaiabeo8a ZTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamyDaiaadAhaaO qaaKqzGeGaamywaSWaaWbaaKqaGeqabaqcLbmacaaI0aaaaaaajugi biaac6caaaa@4862@  (7)

The Weyl tensor is constructed from the Riemann tensor. In general relativity its contractions vanish and it is conformally invariant, which means that if the metric is multiplied by a function it remains the same. Using the preferred vector field v a = δ v a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhalmaaCaaajeaibeqaaKqzadGaamyyaaaajugibiaa i2dacqaH0oazlmaaDaaajeaibaqcLbmacaWG2baajeaibaqcLbmaca WGHbaaaaaa@446D@ , the magnetic part of the Weyl tensor vanishes, and the electric part has one component

E [v] vv = 1 3 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadweacaaIBbGaamODaiaai2falmaaBaaajeaibaqcLbma caWG2bGaamODaaqcbasabaqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGe GaaGymaaGcbaqcLbsacaaIZaaaaiaadkfaaaa@45F8@ , (8)

With X v E [v] ab =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIfalmaaBaaajeaibaqcLbmacaWG2baajeaibeaajugi biaadweacaaIBbGaamODaiaai2falmaaBaaajeaibaqcLbmacaWGHb GaamOyaaqcbasabaqcLbsacaaI9aGaaGimaaaa@467F@ . Using the preferred vector field V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfaaaa@3A29@ the square root of the completely transected Bell-Robinson tensor is a measure of the gravitational energy and is

B[V] = 2 2 4 3 c 2 σuvR. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacaWGcbGaaG4waiaadAfacaaIDbaaleqa aKqzGeGaaGypaKqbaoaalaaakeaajuaGdaGcaaGcbaqcLbsacaaIYa aaleqaaKqzGeGaaGOmaSWaaWbaaKqaGeqabaqcLbmacaaI0aaaaaGc baqcLbsacaaIZaaaaiaadogalmaaCaaajeaibeqaaKqzadGaaGOmaa aajugibiabeo8aZjaadwhacaWG2bGaamOuaiaac6caaaa@4F48@  (9)

Substituting into the definition of the Weyl tensor the product invariants obey

Wey l 2 =Ri e 2 4 d2 Ricc i 2 + 2 (d1)(d2) R 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEfacaWGLbGaamyEaiaadYgalmaaCaaabeqaaKqzadGa aGOmaaaajugibiaai2dacaWGsbGaamyAaiaadwgalmaaCaaabeqaaK qzadGaaGOmaaaajugibiabgkHiTKqbaoaalaaakeaajugibiaaisda aOqaaKqzGeGaamizaiabgkHiTiaaikdaaaGaamOuaiaadMgacaWGJb Gaam4yaiaadMgalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiab gUcaRKqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaaGikaiaads gacqGHsislcaaIXaGaaGykaiaaiIcacaWGKbGaeyOeI0IaaGOmaiaa iMcaaaGaamOuaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaai Olaaaa@62D9@ (10)

The product invariants can be expressed in terms of the Ricci scalar

Ri e 2 =3 R 2 ,Ricc i 2 = R 2 ,Wey l 2 = 4 3 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfacaWGPbGaamyzaSWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaaGypaiaaiodacaWGsbWcdaahaaqcbasabeaajugWai aaikdaaaqcLbsacaaISaGaamOuaiaadMgacaWGJbGaam4yaiaadMga lmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaai2dacaWGsbWcda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaISaGaam4vaiaadwga caWG5bGaamiBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaG ypaKqbaoaalaaakeaajugibiaaisdaaOqaaKqzGeGaaG4maaaacaWG sbWcdaahaaqcbasabeaajugWaiaaikdaaaaaaa@5ED4@ , (11)

As can the non-vanishing Carminati-McLenaghan [15] invariants

R 1 =3.2 4 R 2 , R 2 = 3.2 6 R 3 , R 3 =3.7.2 10 R 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaai2dacaaIZaGaaGOlaiaaikdalmaaCaaajeaibeqaaKqzadGaey OeI0IaaGinaaaajugibiaadkfalmaaCaaajeaibeqaaKqzadGaaGOm aaaajugibiaaiYcacaWGsbWcdaWgaaqcbasaaKqzadGaaGOmaaqcba sabaqcLbsacaaI9aGaeyOeI0IaaG4maiaai6cacaaIYaWcdaahaaqc basabeaajugWaiabgkHiTiaaiAdaaaqcLbsacaWGsbWcdaahaaqcba sabeaajugWaiaaiodaaaqcLbsacaaISaGaamOuaSWaaSbaaKqaGeaa jugWaiaaiodaaKqaGeqaaKqzGeGaaGypaiaaiodacaaIUaGaaG4nai aai6cacaaIYaWcdaahaaqcbasabeaajugWaiabgkHiTiaaigdacaaI WaaaaKqzGeGaamOuaSWaaWbaaKqaGeqabaqcLbmacaaI0aaaaaaa@67D7@ , (12)
( W 1 )=3 1 .2 1 R 2 ,( W 2 )=3 2 .2 2 R 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgYriclaaiIcacaWGxbWcdaWgaaqcbasaaKqzadGaaGym aaqcbasabaqcLbsacaaIPaGaaGypaiaaiodalmaaCaaajeaibeqaaK qzadGaeyOeI0IaaGymaaaajugibiaai6cacaaIYaWcdaahaaqcbasa beaajugWaiabgkHiTiaaigdaaaqcLbsacaWGsbWcdaahaaqcbasabe aajugWaiaaikdaaaqcLbsacaaISaGaaGjbVlabgYriclaaiIcacaWG xbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacaaIPaGaaG ypaiaaiodalmaaCaaajeaibeqaaKqzadGaeyOeI0IaaGOmaaaajugi biaai6cacaaIYaWcdaahaaqcbasabeaajugWaiabgkHiTiaaikdaaa qcLbsacaWGsbWcdaahaaqabeaajugWaiaaiodaaaqcLbsacaaISaaa aa@663B@
( M 2 )= M 3 =3 1 .2 5 R 4 , M 4 =3 1 .2 8 R 5 ,( M 5 )=3 2 .2 6 R 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgYriclaaiIcacaWGnbWcdaWgaaqcbasaaKqzadGaaGOm aaqcbasabaqcLbsacaaIPaGaaGypaiaad2ealmaaBaaajeaibaqcLb macaaIZaaajeaibeaajugibiaai2dacaaIZaWcdaahaaqcbasabeaa jugWaiabgkHiTiaaigdaaaqcLbsacaaIUaGaaGOmaSWaaWbaaKqaGe qabaqcLbmacqGHsislcaaI1aaaaKqzGeGaamOuaKqbaoaaCaaaleqa jeaibaqcLbmacaaI0aaaaKqzGeGaaGilaiaad2eajuaGdaWgaaqcba saaKqzadGaaGinaaWcbeaajugibiaai2dacaaIZaWcdaahaaqcbasa beaajugWaiabgkHiTiaaigdaaaqcLbsacaaIUaGaaGOmaSWaaWbaaK qaGeqabaqcLbmacqGHsislcaaI4aaaaKqzGeGaamOuaSWaaWbaaKqa GeqabaqcLbmacaaI1aaaaKqzGeGaaGilaiabgYriclaaiIcacaWGnb WcdaWgaaqcbasaaKqzadGaaGynaaqcbasabaqcLbsacaaIPaGaaGyp aiaaiodalmaaCaaajeaibeqaaKqzadGaeyOeI0IaaGOmaaaajugibi aai6cacaaIYaWcdaahaaqcbasabeaajugWaiabgkHiTiaaiAdaaaqc LbsacaWGsbWcdaahaaqcbasabeaajugWaiaaiwdaaaqcLbsacaaIUa aaaa@7C9B@

The First Five Dimensional Solutions

In double null coordinates the first five dimensional generalization of the four dimensional solution is

d s 5 2 = 1 1αβ dudv+ Y 2 d Σ 2 2 +d χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaqhaaqcbasaaKqzadGaaGynaaqcbasa aKqzadGaaGOmaaaajugibiaai2dacqGHsisljuaGdaWcaaGcbaqcLb sacaaIXaaakeaajugibiaaigdacqGHsislcqaHXoqycqaHYoGyaaGa amizaiaadwhacaWGKbGaamODaiabgUcaRiaadMfalmaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiaadsgacqqHJoWulmaaDaaajeaibaqc LbmacaaIYaaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamizai abeE8aJTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaa@5EA8@ , (13)
4 Y 2 ((1+2σ)vu+2αχ)((12σ)vu+2βχ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaisdacaWGzbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacqGHHjIUcaaIOaGaaGikaiaaigdacqGHRaWkcaaIYaGaeq4Wdm NaaGykaiaadAhacqGHsislcaWG1bGaey4kaSIaaGOmaiabeg7aHjab eE8aJjaaiMcacaaIOaGaaGikaiaaigdacqGHsislcaaIYaGaeq4Wdm NaaGykaiaadAhacqGHsislcaWG1bGaey4kaSIaaGOmaiabek7aIjab eE8aJjaaiMcacaaMe8UaaGilaaaa@5F4B@

φ= 1 2 ln( (12σ)vu+2βχ (1+2σ)vu+2αχ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiaaikdaaaGaaiiBaiaac6gacaaIOaqcfa4aaSaaaOqaaKqzGe GaaGikaiaaigdacqGHsislcaaIYaGaeq4WdmNaaGykaiaadAhacqGH sislcaWG1bGaey4kaSIaaGOmaiabek7aIjabeE8aJbGcbaqcLbsaca aIOaGaaGymaiabgUcaRiaaikdacqaHdpWCcaaIPaGaamODaiabgkHi TiaadwhacqGHRaWkcaaIYaGaeqySdeMaeq4XdmgaaiaaiMcacaaMe8 UaaGilaaaa@612E@

The solution has a homothetic gradient Killing vector with conformal factor c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogaaaa@3A36@ and potential, norm, acceleration and expansion

V= c 2αβ1 uv+ c 2 χ 2 ,norm[V]=2cV, A a =c V a ,Θ=5c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfacaaI9aqcfa4aaSaaaOqaaKqzGeGaam4yaaGcbaqc LbsacaaIYaGaeqySdeMaeqOSdiMaeyOeI0IaaGymaaaacaWG1bGaam ODaiabgUcaRKqbaoaalaaakeaajugibiaadogaaOqaaKqzGeGaaGOm aaaacqaHhpWylmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiY cacaWGUbGaam4BaiaadkhacaWGTbGaaG4waiaadAfacaaIDbGaaGyp aiaaikdacaWGJbGaamOvaiaaiYcacaWGbbWcdaahaaqcbasabeaaju gWaiaadggaaaqcLbsacaaI9aGaam4yaiaadAfalmaaCaaajeaibeqa aKqzadGaamyyaaaajugibiaaiYcacqqHyoqucaaI9aGaaGynaiaado gaaaa@6726@ , (14)

And the vorticity vanishes. Defining

γ(12σ)α(1+2σ)β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNjabggMi6kaaiIcacaaIXaGaeyOeI0IaaGOmaiab eo8aZjaaiMcacqaHXoqycqGHsislcaaIOaGaaGymaiabgUcaRiaaik dacqaHdpWCcaaIPaGaeqOSdigaaa@4BF8@  (15)

The Ricci scalar is given by

R=[16 σ 2 (1αβ)uv+ ((αβ)uγv) 2 +4(1αβ)(2σ((αβ)u+γv)+(αβ)γχ)χ]/(8 Y 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfacaaI9aGaaG4waiaaigdacaaI2aGaeq4Wdm3cdaah aaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGaaGymaiabgkHiTi abeg7aHjabek7aIjaaiMcacaWG1bGaamODaiabgUcaRiaaiIcacaaI OaGaeqySdeMaeyOeI0IaeqOSdiMaaGykaiaadwhacqGHsislcqaHZo WzcaWG2bGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa ey4kaSIaaGinaiaaiIcacaaIXaGaeyOeI0IaeqySdeMaeqOSdiMaaG ykaiaaiIcacaaIYaGaeq4WdmNaaGikaiaaiIcacqaHXoqycqGHsisl cqaHYoGycaaIPaGaamyDaiabgUcaRiabeo7aNjaadAhacaaIPaGaey 4kaSIaaGikaiabeg7aHjabgkHiTiabek7aIjaaiMcacqaHZoWzcqaH hpWycaaIPaGaeq4XdmMaaGyxaiaai+cacaaIOaGaaGioaiaadMfalm aaCaaajeaibeqaaKqzadGaaGinaaaajugibiaaiMcaaaa@8399@ (16)

The product invariants are again completely determined by the Ricci scalar, however contrasting with (11) this time

Ri e 2 =3 R 2 ,Ricc i 2 = R 2 ,Wey l 2 = 11 6 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfacaWGPbGaamyzaSWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaaGypaiaaiodacaWGsbWcdaahaaqcbasabeaajugWai aaikdaaaqcLbsacaaISaGaamOuaiaadMgacaWGJbGaam4yaiaadMga lmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaai2dacaWGsbWcda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaISaGaam4vaiaadwga caWG5bGaamiBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaG ypaKqbaoaalaaakeaajugibiaaigdacaaIXaaakeaajugibiaaiAda aaGaamOuaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaa@5F8F@ , (17)

So that the fraction multiplying the Weyl invariant has increased by 1/2 from 4/3 to 11/6, signifying that there is more gravitational field present.

The relationship between the product invariants (10) is obeyed by both (11) and (17).

Projecting onto a surface

n a = δ a χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6galmaaBaaajeaibaqcLbmacaWGHbaajeaibeaajugi biaai2dacqaH0oazlmaaDaaajeaibaqcLbmacaWGHbaajeaibaqcLb macqaHhpWyaaaaaa@454A@ , (18)

Which has vanishing acceleration and rotation, and expansion, shear and extrinsic curvature given by

Θ= 1 2 Y 2 (α((12σ)vu)+4αβχ+β((1+2σ)vu, σ ab = 1 6 (2 δ ab (uv) g uv + δ ab θθ g θθ + δ ab φφ g φφ )Θ,σ(n)= 10 24 Y 2 Θ, K ab g a c n b;c = 1 2 ( δ ab θθ g θθ + δ ab φφ g φφ )Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeuiMdeLaaGypaiabgkHiTiaaysW7juaGdaWcaaGc baqcLbsacaaIXaaakeaajugibiaaikdacaWGzbqcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaaaaKqzGeGaaGikaiabeg7aHjaaiIcacaaI OaGaaGymaiabgkHiTiaaikdacqaHdpWCcaaIPaGaamODaiabgkHiTi aadwhacaaIPaGaey4kaSIaaGinaiabeg7aHjabek7aIjabeE8aJjab gUcaRiabek7aIjaaiIcacaaIOaGaaGymaiabgUcaRiaaikdacqaHdp WCcaaIPaGaamODaiabgkHiTiaadwhacaaMe8UaaGilaaGcbaqcLbsa cqaHdpWClmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasabaqcLb sacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsa caaI2aaaaiaaiIcacqGHsislcaaIYaGaeqiTdq2cdaqhaaqcbasaaK qzadGaamyyaiaadkgaaKqaGeaajugWaiaaiIcacaWG1bGaamODaiaa iMcaaaqcLbsacaWGNbWcdaWgaaqcbasaaKqzadGaamyDaiaadAhaaK qaGeqaaKqzGeGaey4kaSIaeqiTdq2cdaqhaaqcbasaaKqzadGaamyy aiaadkgaaKqaGeaajugWaiabeI7aXjabeI7aXbaajugibiaadEgalm aaBaaajeaibaqcLbmacqaH4oqCcqaH4oqCaKqaGeqaaKqzGeGaey4k aSIaeqiTdq2cdaqhaaqcbasaaKqzadGaamyyaiaadkgaaKqaGeaaju gWaiabeA8aQjabeA8aQbaajugibiaadEgalmaaBaaajeaibaqcLbma cqaHgpGAcqaHgpGAaKqaGeqaaKqzGeGaaGykaiabfI5arjaaiYcaca aMe8Uaeq4WdmNaaGikaiaad6gacaaIPaGaaGypaiabgkHiTKqbaoaa laaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaaGimaaWcbeaaaOqaaK qzGeGaaGOmaiaaisdacaWGzbWcdaahaaqcbasabeaajugWaiaaikda aaaaaKqzGeGaeuiMdeLaaGilaaGcbaqcLbsacaWGlbWcdaWgaaqcba saaKqzadGaamyyaiaadkgaaKqaGeqaaKqzGeGaeyyyIORaam4zaSWa a0baaKqaGeaajugWaiaadggaaKqaGeaajugWaiaadogaaaqcLbsaca WGUbWcdaWgaaqcbasaaKqzadGaamOyaiaaiUdacaWGJbaajeaibeaa jugibiaai2dacqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaaju gibiaaikdaaaGaaGikaiabes7aKTWaa0baaKqaGeaajugWaiaadgga caWGIbaajeaibaqcLbmacqaH4oqCcqaH4oqCaaqcLbsacaWGNbWcda WgaaqcbasaaKqzadGaeqiUdeNaeqiUdehajeaibeaajugibiabgUca Riabes7aKTWaa0baaKqaGeaajugWaiaadggacaWGIbaajeaibaqcLb macqaHgpGAcqaHgpGAaaqcLbsacaWGNbWcdaWgaaqcbasaaKqzadGa eqOXdOMaeqOXdOgajeaibeaajugibiaaiMcacqqHyoquaaaa@FA1D@ , (19)

Respectively. The projected Weyl tensor is

E ef C acbd n c n d g e a g f b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacaWGLbGaamOzaaqcbasa baqcLbsacqGHHjIUcaWGdbWcdaWgaaqcbasaaKqzadGaamyyaiaado gacaWGIbGaamizaaqcbasabaqcLbsacaWGUbWcdaahaaqcbasabeaa jugWaiaadogaaaqcLbsacaWGUbqcfa4aaWbaaSqabKqaGeaajugWai aadsgaaaqcLbsacaWGNbWcdaqhaaqcbasaaKqzadGaamyzaaqcbasa aKqzadGaamyyaaaajugibiaadEgalmaaDaaajeaibaqcLbmacaWGMb aajeaibaqcLbmacaWGIbaaaaaa@5AC6@ , (20)

Here

E uu = 1 3 R uu , E vv = 1 3 R vv , E uv =+ 1 3 R uv 1 4 R g uv , E θθ = g θθ ( 1 4 R+ 2 3 (1αβ) R uv ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacaWG1bGaamyDaaqcbasa baqcLbsacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcba qcLbsacaaIZaaaaiaadkfalmaaBaaajeaibaqcLbmacaWG1bGaamyD aaqcbasabaqcLbsacaaISaGaamyraSWaaSbaaKqaGeaajugWaiaadA hacaWG2baajeaibeaajugibiaai2dacqGHsisljuaGdaWcaaGcbaqc LbsacaaIXaaakeaajugibiaaiodaaaGaamOuaSWaaSbaaKqaGeaaju gWaiaadAhacaWG2baajeaibeaajugibiaaiYcacaWGfbWcdaWgaaqc basaaKqzadGaamyDaiaadAhaaKqaGeqaaKqzGeGaaGypaiabgUcaRK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaG4maaaacaWGsbWc daWgaaqcbasaaKqzadGaamyDaiaadAhaaKqaGeqaaKqzGeGaeyOeI0 scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaI0aaaaiaadkfa caWGNbWcdaWgaaqcbasaaKqzadGaamyDaiaadAhaaKqaGeqaaKqzGe GaaGilaiaadwealmaaBaaajeaibaqcLbmacqaH4oqCcqaH4oqCaKqa GeqaaKqzGeGaaGypaiaadEgalmaaBaaajeaibaqcLbmacqaH4oqCcq aH4oqCaKqaGeqaaKqzGeGaaGikaKqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaaGinaaaacaWGsbGaey4kaSscfa4aaSaaaOqaaKqzGe GaaGOmaaGcbaqcLbsacaaIZaaaaiaaiIcacaaIXaGaeyOeI0IaeqyS deMaeqOSdiMaaGykaiaadkfalmaaBaaajeaibaqcLbmacaWG1bGaam ODaaqcbasabaqcLbsacaaIPaaaaa@9568@  (21)

Transferring to single null coordinates using (3), further changing coordinates using

r =r+αχ, v =v+ (αβ)χ 2σ ,σ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadkhagaqbaiaai2dacaWGYbGaey4kaSIaeqySdeMaeq4X dmMaaGilaiqadAhagaqbaiaai2dacaWG2bGaey4kaSscfa4aaSaaaO qaaKqzGeGaaGikaiabeg7aHjabgkHiTiabek7aIjaaiMcacqaHhpWy aOqaaKqzGeGaaGOmaiabeo8aZbaacaaISaGaeq4WdmNaeyiyIKRaaG imaaaa@553A@ , (22)

And dropping the primes, the solution becomes

d s 2 = (1+2σ) (1αβ) d v 2 + 2 (1αβ) dvdr+r(r2σv)d Σ 2 2 + (α(1+2σ)β) σ(1αβ) dvdχ (αβ) σ(1αβ) drdχ+(1 (αβ)γ 4 σ 2 (1αβ) )d χ 2 , φ= 1 2 ln(1 2σv r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamizaiaadohajuaGdaahaaWcbeqcbasaaKqzadGa aGOmaaaajugibiaai2dacqGHsisljuaGdaWcaaGcbaqcLbsacaaIOa GaaGymaiabgUcaRiaaikdacqaHdpWCcaaIPaaakeaajugibiaaiIca caaIXaGaeyOeI0IaeqySdeMaeqOSdiMaaGykaaaacaWGKbGaamODaS WaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSscfa4aaSaa aOqaaKqzGeGaaGOmaaGcbaqcLbsacaaIOaGaaGymaiabgkHiTiabeg 7aHjabek7aIjaaiMcaaaGaamizaiaadAhacaWGKbGaamOCaiabgUca RiaadkhacaaIOaGaamOCaiabgkHiTiaaikdacqaHdpWCcaWG2bGaaG ykaiaadsgacqqHJoWulmaaDaaajeaibaqcLbmacaaIYaaajeaibaqc LbmacaaIYaaaaaGcbaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsaca aIOaGaeqySdeMaeyOeI0IaaGikaiaaigdacqGHRaWkcaaIYaGaeq4W dmNaaGykaiabek7aIjaaiMcaaOqaaKqzGeGaeq4WdmNaaGikaiaaig dacqGHsislcqaHXoqycqaHYoGycaaIPaaaaiaadsgacaWG2bGaamiz aiabeE8aJjabgkHiTKqbaoaalaaakeaajugibiaaiIcacqaHXoqycq GHsislcqaHYoGycaaIPaaakeaajugibiabeo8aZjaaiIcacaaIXaGa eyOeI0IaeqySdeMaeqOSdiMaaGykaaaacaWGKbGaamOCaiaadsgacq aHhpWycqGHRaWkcaaIOaGaaGymaiabgkHiTKqbaoaalaaakeaajugi biaaiIcacqaHXoqycqGHsislcqaHYoGycaaIPaGaeq4SdCgakeaaju gibiaaisdacqaHdpWCjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa jugibiaaiIcacaaIXaGaeyOeI0IaeqySdeMaeqOSdiMaaGykaaaaca aIPaGaamizaiabeE8aJTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaaGilaaGcbaqcLbsacqaHgpGAcaaI9aqcfa4aaSaaaOqaaKqzGe GaaGymaaGcbaqcLbsacaaIYaaaaiaacYgacaGGUbGaaGikaiaaigda cqGHsisljuaGdaWcaaGcbaqcLbsacaaIYaGaeq4WdmNaamODaaGcba qcLbsacaWGYbaaaiaaiMcaaaaa@D027@ (23)

With γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNbaa@3AF5@ given by (15). Features of the line element in this form are that 1) it is of the same form as the four dimensional case except for constant factors. Truncating the line element (23) by simply putting everything involving χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ to zero, gives non vanishing R θθ = R φφ =αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacqaH4oqCcqaH4oqCaKqa GeqaaKqzGeGaaGypaiaadkfalmaaBaaajeaibaqcLbmacqaHgpGAcq aHgpGAaKqaGeqaaKqzGeGaaGypaiabeg7aHjabek7aIbaa@4B2A@ and simple relationships between the product invariants, such as (17), are lost; however taking one of α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHbaa@3AED@ or β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIbaa@3AEF@ to vanish gives back (1). Going back to the five dimensional case (23) α=0,β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjaai2dacaaIWaGaaGilaiabek7aIjaai2dacaaI Xaaaaa@4047@ gives Θ=rexp(2φ)/ Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arjaai2dacqGHsislcaWGYbGaaiyzaiaacIhacaGG WbGaaGikaiaaikdacqaHgpGAcaaIPaGaaG4laiaadMfalmaaCaaaje aibeqaaKqzadGaaGOmaaaaaaa@47FF@  so that there is essentially one independent object the scalar field φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQbaa@3B0B@ , the projected Weyl tensor (20) now does not have a dependence on χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ but does not seem to be simply expressible in terms of the scalar field φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQbaa@3B0B@ . 2) χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ does not appear explicitly in the metric, 3) THE scalar field takes exactly the same form as in the four dimensional case, 4)there are no non-vanishing Riemann or Ricci tensor χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ indexed components, but there are Weyl tensor χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ indexed components, also no component depends on χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ . The Ricci scalar is

R=[(αβ ) 2 r 2 4σrv(2σ(1αβ)+α(αβ))+4 σ 2 v 2 ((1+2σ)(1αβ)+ α 2 )]/(2 Y 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfacaaI9aGaaG4waiaaiIcacqaHXoqycqGHsislcqaH YoGycaaIPaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGYb WcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaaI0aGa eq4WdmNaamOCaiaadAhacaaIOaGaaGOmaiabeo8aZjaaiIcacaaIXa GaeyOeI0IaeqySdeMaeqOSdiMaaGykaiabgUcaRiabeg7aHjaaiIca cqaHXoqycqGHsislcqaHYoGycaaIPaGaaGykaiabgUcaRiaaisdacq aHdpWClmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadAhalmaa CaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiIcacaaIOaGaaGymai abgUcaRiaaikdacqaHdpWCcaaIPaGaaGikaiaaigdacqGHsislcqaH XoqycqaHYoGycaaIPaGaey4kaSIaeqySde2cdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacaaIPaGaaGyxaiaai+cacaaIOaGaaGOmaiaa dMfalmaaCaaajeaibeqaaKqzadGaaGinaaaajugibiaaiMcaaaa@8391@ . (24)

Using the same projection vector (18), the acceleration and shear vanish, the extrinsic curvature take the same form as in (19) the expansion is

Θ= 2ασv(α+β)r Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arjaai2dajuaGdaWcaaGcbaqcLbsacaaIYaGaeqyS deMaeq4WdmNaamODaiabgkHiTiaaiIcacqaHXoqycqGHRaWkcqaHYo GycaaIPaGaamOCaaGcbaqcLbsacaWGzbqcfa4aaWbaaSqabKqaGeaa jugWaiaaikdaaaaaaaaa@4D8D@  (25)

And the shear is

σ(n)= 10 12 Θ, σ ab = 1 6 ( δ ab θθ g θθ + δ ab φφ g φφ )Θ + 1 3 ( δ ab rv g rv + δ ab rχ g rχ + δ ab vv g vv + δ ab vχ g vχ + δ ab χχ g χχ (βα)γ 4 σ 2 (1αβ)(αβ)γ )Θ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeq4WdmNaaGikaiaad6gacaaIPaGaaGypaiabgkHi TKqbaoaalaaakeaajuaGdaGcaaGcbaqcLbsacaaIXaGaaGimaaWcbe aaaOqaaKqzGeGaaGymaiaaikdaaaGaeuiMdeLaaGilaiabeo8aZTWa aSbaaKqaGeaajugWaiaadggacaWGIbaajeaibeaajugibiaai2dacq GHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaiAdaaaGa aGikaiabes7aKTWaa0baaKqaGeaajugWaiaadggacaWGIbaajeaiba qcLbmacqaH4oqCcqaH4oqCaaqcLbsacaWGNbWcdaWgaaqcbasaaKqz adGaeqiUdeNaeqiUdehajeaibeaajugibiabgUcaRiabes7aKTWaa0 baaKqaGeaajugWaiaadggacaWGIbaajeaibaqcLbmacqaHgpGAcqaH gpGAaaqcLbsacaWGNbWcdaWgaaqcbasaaKqzadGaeqOXdOMaeqOXdO gajeaibeaajugibiaaiMcacqqHyoquaOqaaKqzGeGaey4kaSscfa4a aSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIZaaaaiaaiIcacqaH0o azlmaaDaaajeaibaqcLbmacaWGHbGaamOyaaqcbasaaKqzadGaamOC aiaadAhaaaqcLbsacaWGNbWcdaWgaaqcbasaaKqzadGaamOCaiaadA haaKqaGeqaaKqzGeGaey4kaSIaeqiTdq2cdaqhaaqcbasaaKqzadGa amyyaiaadkgaaKqaGeaajugWaiaadkhacqaHhpWyaaqcLbsacaWGNb WcdaWgaaqcbasaaKqzadGaamOCaiabeE8aJbqcbasabaqcLbsacqGH RaWkcqaH0oazlmaaDaaajeaibaqcLbmacaWGHbGaamOyaaqcbasaaK qzadGaamODaiaadAhaaaqcLbsacaWGNbWcdaWgaaqcbasaaKqzadGa amODaiaadAhaaKqaGeqaaKqzGeGaey4kaSIaeqiTdq2cdaqhaaqcba saaKqzadGaamyyaiaadkgaaKqaGeaajugWaiaadAhacqaHhpWyaaqc LbsacaWGNbWcdaWgaaqcbasaaKqzadGaamODaiabeE8aJbqcbasaba qcLbsacqGHRaWkcqaH0oazlmaaDaaajeaibaqcLbmacaWGHbGaamOy aaqcbasaaKqzadGaeq4XdmMaeq4XdmgaaKqzGeGaam4zaSWaaSbaaK qaGeaajugWaiabeE8aJjabeE8aJbqcbasabaqcfa4aaSaaaOqaaKqz GeGaaGikaiabek7aIjabgkHiTiabeg7aHjaaiMcacqaHZoWzaOqaaK qzGeGaaGinaiabeo8aZLqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aKqzGeGaaGikaiaaigdacqGHsislcqaHXoqycqaHYoGycaaIPaGaey OeI0IaaGikaiabeg7aHjabgkHiTiabek7aIjaaiMcacqaHZoWzaaGa aGykaiabfI5arjaaiYcaaaaa@EB5C@  (26)

The projected Weyl tensor (20) has χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ components and does not seem to be simply expressible. For σ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZjaai2dacaaIWaaaaa@3C92@ the coordinate transformation (22) and the metric (23) are not defined; defining tvr, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshacqGHHjIUcaWG2bGaeyOeI0IaamOCaiaaiYcaaaa@3FA5@ (14) reduces to

d s 2 = 1 1αβ (d t 2 +d r 2 )+(r+αχ)(r+βχ)d Σ 2 2 +d χ 2 ,φ= 1 2 ln( r+βχ r+αχ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXa GaeyOeI0IaeqySdeMaeqOSdigaaiaaiIcacqGHsislcaWGKbGaamiD aSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamizai aadkhajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaaiMca cqGHRaWkcaaIOaGaamOCaiabgUcaRiabeg7aHjabeE8aJjaaiMcaca aIOaGaamOCaiabgUcaRiabek7aIjabeE8aJjaaiMcacaWGKbGaeu4O dm1cdaqhaaqcbasaaKqzadGaaGOmaaqcbasaaKqzadGaaGOmaaaaju gibiabgUcaRiaadsgacqaHhpWylmaaCaaajeaibeqaaKqzadGaaGOm aaaajugibiaaiYcacqaHgpGAcaaI9aqcfa4aaSaaaOqaaKqzGeGaaG ymaaGcbaqcLbsacaaIYaaaaiaacYgacaGGUbGaaGikaKqbaoaalaaa keaajugibiaadkhacqGHRaWkcqaHYoGycqaHhpWyaOqaaKqzGeGaam OCaiabgUcaRiabeg7aHjabeE8aJbaacaaIPaaaaa@8504@ , (27)

Which does not seem to further simplify. With respect to the vector field t a = δ t a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaCaaajeaibeqaaKqzadGaamyyaaaajugibiaa i2dacqaH0oazlmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmaca WGHbaaaaaa@4469@ , many Lie derivatives vanish, in particular X t Ri e 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIfalmaaBaaajeaibaqcLbmacaWG0baajeaibeaajugi biaadkfacaWGPbGaamyzaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaK qzGeGaaGypaiaaicdaaaa@4461@ . For (27) when α=β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjaai2dacqaHYoGyaaa@3D55@ the metric is flat.

The Second Five Dimensional Solution

In double null coordinates the second five dimensional generalization of the four dimensional solution is

d s 5 2 =dudv+ Y 2 d Σ 2 2 +2β (χ) 2 dχ((1+2σ)dv+du)+α (χ) 2 γ ((12σ)vu) 2 d χ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaqhaaqcbasaaKqzadGaaGynaaqcbasa aKqzadGaaGOmaaaajugibiaai2dacqGHsislcaWGKbGaamyDaiaads gacaWG2bGaey4kaSIaamywaSWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaamizaiabfo6atTWaa0baaKqaGeaajugWaiaaikdaaKqaGe aajugWaiaaikdaaaqcLbsacqGHRaWkcaaIYaGaeqOSdiMaaGikaiab eE8aJjaaiMcalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaads gacqaHhpWycaaIOaGaaGikaiaaigdacqGHRaWkcaaIYaGaeq4WdmNa aGykaiaadsgacaWG2bGaey4kaSIaamizaiaadwhacaaIPaGaey4kaS IaeqySdeMaaGikaiabeE8aJjaaiMcalmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabeo7aNjaaiIcacaaIOaGaaGymaiabgkHiTiaaik dacqaHdpWCcaaIPaGaamODaiabgkHiTiaadwhacaaIPaWcdaahaaqc basabeaajugWaiaaikdaaaqcLbsacaWGKbGaeq4Xdm2cdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacaaISaaaaa@85A9@  (28)

With Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMfalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@3C6D@ given by (4) and γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNbaa@3AF5@ is an arbitrary function which can be set to 1 or 0. The line element is a scalar-Einstein solution when the ordinary differential equation β α χ =2α β χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjabeg7aHLqbaoaaBaaajeaibaqcLbmacqaHhpWy aSqabaqcLbsacaaI9aGaaGOmaiabeg7aHjabek7aITWaaSbaaKqaGe aajugWaiabeE8aJbqcbasabaaaaa@490E@ is obeyed, which happens when either α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHbaa@3AED@ and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIbaa@3AEF@ are independent constants or when β (χ) 2 =Aα(χ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjaaiIcacqaHhpWycaaIPaWcdaahaaqcbasabeaa jugWaiaaikdaaaqcLbsacaaI9aGaamyqaiabeg7aHjaaiIcacqaHhp WycaaIPaaaaa@4723@ , A constant. In the β 2 dχ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aITWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa amizaiabeE8aJbaa@405F@ term the relative size of the du and dv contributions is fixed by the requirement R θθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacqaH4oqCcqaH4oqCaKqa GeqaaKqzGeGaaGypaiaaicdaaaa@414F@ . The scalar field is the same as for the four dimensional minimal scalar (2), the fifth component vanishing identically. The only case where there appears to be a homothetic Killing vector is when β=0,γ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjaai2dacaaIWaGaaGilaiabeo7aNjaai2dacaaI Xaaaaa@404F@ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHbaa@3AED@ is a constant when the situation is similar to the four dimensional case. In general this does not seem to be related to the first five dimensional generalizations (14), because of the factor of 1αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacqGHsislcqaHXoqycqaHYoGyaaa@3E36@ there. The Ricci scalar is

R= 32 σ 2 ((1+2σ ) 2 β 4 v 2 +( α 2 γ 2 +2(1+2σ) β 4 )+ β 4 u 2 ) ((1+2σ)vu) 2 ((12σ)vu) 2 ( α 2 γ 2 +4(1+2σ) β 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfacaaI9aqcfa4aaSaaaOqaaKqzGeGaaG4maiaaikda cqaHdpWCjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaaiI cacaaIOaGaaGymaiabgUcaRiaaikdacqaHdpWCcaaIPaWcdaahaaqc basabeaajugWaiaaikdaaaqcLbsacqaHYoGylmaaCaaajeaibeqaaK qzadGaaGinaaaajugibiaadAhalmaaCaaajeaibeqaaKqzadGaaGOm aaaajugibiabgUcaRiaaiIcacqaHXoqyjuaGdaahaaWcbeqcbasaaK qzadGaaGOmaaaajugibiabeo7aNTWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaey4kaSIaaGOmaiaaiIcacaaIXaGaey4kaSIaaGOmai abeo8aZjaaiMcacqaHYoGylmaaCaaajeaibeqaaKqzadGaaGinaaaa jugibiaaiMcacqGHRaWkcqaHYoGyjuaGdaahaaWcbeqcbasaaKqzad GaaGinaaaajugibiaadwhalmaaCaaajeaibeqaaKqzadGaaGOmaaaa jugibiaaiMcaaOqaaKqzGeGaaGikaiaaiIcacaaIXaGaey4kaSIaaG Omaiabeo8aZjaaiMcacaWG2bGaeyOeI0IaamyDaiaaiMcalmaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiaaiIcacaaIOaGaaGymaiabgk HiTiaaikdacqaHdpWCcaaIPaGaamODaiabgkHiTiaadwhacaaIPaWc daahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGaeqySdewcfa 4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqaHZoWzlmaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaisdacaaIOaGaaG ymaiabgUcaRiaaikdacqaHdpWCcaaIPaGaeqOSdi2cdaahaaqcbasa beaajugWaiaaisdaaaqcLbsacaaIPaaaaaaa@A5EC@  (29)

The product invariants are again completely determined by the Ricci scalar, and are given by (17). The Gauss-Bonnet invariant and tensor vanish in d=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabsgacaaI9aGaaGinaaaa@3BBA@ . In d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabsgaaaa@3A35@ greater than 4 they are objects constructed from products of the Riemann tensor. Here the Gauss-Bonnet invariant (43) and tensor (44) vanish. Projecting using (18) the acceleration and rotation vanish and the expansion, extrinsic curvature and shear are

Θ= 8σ β 2 (u(12σ)v)( α 2 γ 2 +4(1+2σ) β 4 ) , K θθ =sin (θ) 2 K φφ = u(1+2σ)v 8(u(12σ)v) Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arjaai2dajuaGdaWcaaGcbaqcLbsacaaI4aGaeq4W dmNaeqOSdi2cdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugibi aaiIcacaWG1bGaeyOeI0IaaGikaiaaigdacqGHsislcaaIYaGaeq4W dmNaaGykaiaadAhacaaIPaGaaGikaiabeg7aHTWaaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaeq4SdC2cdaahaaqcbasabeaajugWaiaa ikdaaaqcLbsacqGHRaWkcaaI0aGaaGikaiaaigdacqGHRaWkcaaIYa Gaeq4WdmNaaGykaiabek7aITWaaWbaaKqaGeqabaqcLbmacaaI0aaa aKqzGeGaaGykaaaacaaISaGaaGjbVlaadUealmaaBaaajeaibaqcLb macqaH4oqCcqaH4oqCaKqaGeqaaKqzGeGaaGypaiaacohacaGGPbGa aiOBaiaaiIcacqaH4oqCcaaIPaWcdaahaaqcbasabeaajugWaiabgk HiTiaaikdaaaqcLbsacaWGlbWcdaWgaaqcbasaaKqzadGaeqOXdOMa eqOXdOgajeaibeaajugibiaai2dajuaGdaWcaaGcbaqcLbsacaWG1b GaeyOeI0IaaGikaiaaigdacqGHRaWkcaaIYaGaeq4WdmNaaGykaiaa dAhaaOqaaKqzGeGaaGioaiaaiIcacaWG1bGaeyOeI0IaaGikaiaaig dacqGHsislcaaIYaGaeq4WdmNaaGykaiaadAhacaaIPaaaaiabfI5a rbaa@9433@ , (30)

σ ab = 1 3 ( α 4 γ 4 +4(1+2σ) α 2 γ 2 β 4 1 α 2 γ 2 +4(1+2σ) β 4 δ ab χχ +2 δ ab (uv) g uv + δ ab uχ g uχ + δ ab vχ g vχ 1 8 ( δ ab θθ g θθ + δ ab φφ g φφ ))Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaadggacaWGIbaajeai beaajugibiaai2dacqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaake aajugibiaaiodaaaGaaGikaKqbaoaalaaakeaajugibiabeg7aHTWa aWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGaeq4SdCwcfa4aaWbaaS qabKqaGeaajugWaiaaisdaaaqcLbsacqGHRaWkcaaI0aGaaGikaiaa igdacqGHRaWkcaaIYaGaeq4WdmNaaGykaiabeg7aHTWaaWbaaKqaGe qabaqcLbmacaaIYaaaaKqzGeGaeq4SdCwcfa4aaWbaaSqabKqaGeaa jugWaiaaikdaaaqcLbsacqaHYoGylmaaCaaajeaibeqaaKqzadGaaG inaaaajugibiabgkHiTiaaigdaaOqaaKqzGeGaeqySde2cdaahaaqc basabeaajugWaiaaikdaaaqcLbsacqaHZoWzlmaaCaaajeaibeqaaK qzadGaaGOmaaaajugibiabgUcaRiaaisdacaaIOaGaaGymaiabgUca RiaaikdacqaHdpWCcaaIPaGaeqOSdi2cdaahaaqcbasabeaajugWai aaisdaaaaaaKqzGeGaeqiTdq2cdaqhaaqcbasaaKqzadGaamyyaiaa dkgaaKqaGeaajugWaiabeE8aJjabeE8aJbaajugibiabgUcaRiaaik dacqaH0oazlmaaDaaajeaibaqcLbmacaWGHbGaamOyaaqcbasaaKqz adGaaGikaiaadwhacaWG2bGaaGykaaaajugibiaadEgalmaaBaaaje aibaqcLbmacaWG1bGaamODaaqcbasabaqcLbsacqGHRaWkcqaH0oaz lmaaDaaajeaibaqcLbmacaWGHbGaamOyaaqcbasaaKqzadGaamyDai abeE8aJbaajugibiaadEgalmaaBaaajeaibaqcLbmacaWG1bGaeq4X dmgajeaibeaajugibiabgUcaRiabes7aKTWaa0baaKqaGeaajugWai aadggacaWGIbaajeaibaqcLbmacaWG2bGaeq4XdmgaaKqzGeGaam4z aSWaaSbaaKqaGeaajugWaiaadAhacqaHhpWyaKqaGeqaaKqzGeGaey OeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaI4aaaaiaa iIcacqaH0oazlmaaDaaajeaibaqcLbmacaWGHbGaamOyaaqcbasaaK qzadGaeqiUdeNaeqiUdehaaKqzGeGaam4zaSWaaSbaaKqaGeaajugW aiabeI7aXjabeI7aXbqcbasabaqcLbsacqGHRaWkcqaH0oazlmaaDa aajeaibaqcLbmacaWGHbGaamOyaaqcbasaaKqzadGaeqOXdOMaeqOX dOgaaKqzGeGaam4zaSWaaSbaaKqaGeaajugWaiabeA8aQjabeA8aQb qcbasabaqcLbsacaaIPaGaaGykaiabfI5arbaa@E198@

All of which vanish for β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjaai2dacaaIWaaaaa@3C70@ . The shear scalar and the projected Weyl tensor are independent of χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ and do not seem to simply factor.

The Third Five Dimensional Solutions

The solution is

d s 5 2 = χ {dudv+ Y 2 d Σ 2 2 }+d χ 2 , φ 2 = 1 2 3 2 lnχ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaqhaaqcbasaaKqzadGaaGynaaqcbasa aKqzadGaaGOmaaaajugibiaai2dajuaGdaGcaaGcbaqcLbsacqaHhp WyaSqabaqcLbsacaaI7bGaeyOeI0IaamizaiaadwhacaWGKbGaamOD aiabgUcaRiaadMfalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi aadsgacqqHJoWulmaaDaaajeaibaqcLbmacaaIYaaajeaibaqcLbma caaIYaaaaKqzGeGaaGyFaiabgUcaRiaadsgacqaHhpWylmaaCaaaje aibeqaaKqzadGaaGOmaaaajugibiaaiYcacqaHgpGAlmaaBaaajeai baqcLbmacaaIYaaajeaibeaajugibiaai2dajuaGdaWcaaGcbaqcLb sacaaIXaaakeaajugibiaaikdaaaqcfa4aaOaaaOqaaKqbaoaalaaa keaajugibiaaiodaaOqaaKqzGeGaaGOmaaaaaSqabaqcLbsacaGGSb GaaiOBaiabeE8aJbaa@6EF6@ , (31)

With the term in the brackets given by (1) and φ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaa @3D74@ given by (5). The con- formal factor χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacqaHhpWyaSqabaaaaa@3BB8@ fixed by requirement R θθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacqaH4oqCcqaH4oqCaKqa GeqaaKqzGeGaaGypaiaaicdaaaa@414F@ . This is a solution for two scalar fields to the field equations

R ab =2 φ 1,a φ 1,b +2 φ 2,a φ 2,b . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasa baqcLbsacaaI9aGaaGOmaiabeA8aQTWaaSbaaKqaGeaajugWaiaaig dacaaISaGaamyyaaqcbasabaqcLbsacqaHgpGAlmaaBaaajeaibaqc LbmacaaIXaGaaGilaiaadkgaaKqaGeqaaKqzGeGaey4kaSIaaGOmai abeA8aQTWaaSbaaKqaGeaajugWaiaaikdacaaISaGaamyyaaqcbasa baqcLbsacqaHgpGAjuaGdaWgaaqcbasaaKqzadGaaGOmaiaaiYcaca WGIbaaleqaaKqzGeGaaiOlaaaa@5BAE@  (32)

The solution has a conformal Killing vector with conformal factor and expansion

V a =c[2u,0,0,2v, 8 3 χ+A χ 1 4 ],Cf= 1 5 Θ= c 12 (323A χ 3 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfalmaaCaaajeaibeqaaKqzadGaamyyaaaajugibiaa i2dacaWGJbGaaG4waiabgkHiTiaaikdacaWG1bGaaGilaiaaicdaca aISaGaaGimaiaaiYcacqGHsislcaaIYaGaamODaiaaiYcacqGHsisl juaGdaWcaaGcbaqcLbsacaaI4aaakeaajugibiaaiodaaaGaeq4Xdm Maey4kaSIaamyqaiabeE8aJTWaaWbaaKqaGeqabaWcdaWcaaqcbasa aKqzadGaaGymaaqcbasaaKqzadGaaGinaaaaaaqcLbsacaaIDbGaaG ilaiaadoeacaWGMbGaaGypaKqbaoaalaaakeaajugibiaaigdaaOqa aKqzGeGaaGynaaaacqqHyoqucaaI9aGaeyOeI0scfa4aaSaaaOqaaK qzGeGaam4yaaGcbaqcLbsacaaIXaGaaGOmaaaacaaIOaGaaG4maiaa ikdacqGHsislcaaIZaGaamyqaiabeE8aJTWaaWbaaKqaGeqabaqcLb macqGHsisllmaalaaajeaibaqcLbmacaaIZaaajeaibaqcLbmacaaI 0aaaaaaajugibiaaiMcaaaa@74CD@ , (33)

The norm and acceleration of this vector are not simple, the shear and the fifth dimensional components {u,χ} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWG1bGaaGilaiaaysW7cqaHhpWycaaI9baaaa@404E@  and {v,χ} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWG2bGaaGilaiaaysW7cqaHhpWycaaI9baaaa@404F@ of the vorticity are non- vanishing. The Nother current is related to the symmetry properties of a Lagrangian and is typically a vector. Here the Nother current is

j a i( φ * a φφ a φ * )= φ 2 φ 1a φ 1 φ 2a . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQgajuaGdaWgaaqcbasaaKqzadGaamyyaaWcbeaajugi biabggMi6kaadMgacaaIOaGaeqOXdO2cdaahaaqcbasabeaajugWai aaiQcaaaqcLbsacqGHciITjuaGdaWgaaqcbasaaKqzadGaamyyaaWc beaajugibiabeA8aQjabgkHiTiabeA8aQjabgkGi2UWaaSbaaKqaGe aajugWaiaadggaaKqaGeqaaKqzGeGaeqOXdO2cdaahaaqcbasabeaa jugWaiaaiQcaaaqcLbsacaaIPaGaaGypaiabeA8aQTWaaSbaaKqaGe aajugWaiaaikdaaKqaGeqaaKqzGeGaeqOXdO2cdaWgaaqcbasaaKqz adGaaGymaiaadggaaKqaGeqaaKqzGeGaeyOeI0IaeqOXdO2cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacqaHgpGAlmaaBaaajeai baqcLbmacaaIYaGaamyyaaqcbasabaqcLbsacaGGUaaaaa@6FCF@ (34)

Here the Nother current is

j a = 6 8 [ σ χ ln(χ) Y 2 (v δ a u +u δ a v ) 1 χ ln( (12σ)vu (1+2σ)vu )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQgalmaaBaaajeaibaqcLbmacaWGHbaajeaibeaajugi biaai2dajuaGdaWcaaGcbaqcfa4aaOaaaOqaaKqzGeGaaGOnaaWcbe aaaOqaaKqzGeGaaGioaaaacaaIBbqcfa4aaSaaaOqaaKqzGeGaeq4W dmxcfa4aaOaaaOqaaKqzGeGaeq4XdmgaleqaaKqzGeGaaiiBaiaac6 gacaaIOaGaeq4XdmMaaGykaaGcbaqcLbsacaWGzbqcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaaaaKqzGeGaaGikaiabgkHiTiaadAhacq aH0oazlmaaDaaajeaibaqcLbmacaWGHbaajeaibaqcLbmacaWG1baa aKqzGeGaey4kaSIaamyDaiabes7aKTWaa0baaKqaGeaajugWaiaadg gaaKqaGeaajugWaiaadAhaaaqcLbsacaaIPaGaeyOeI0scfa4aaSaa aOqaaKqzGeGaaGymaaGcbaqcLbsacqaHhpWyaaGaaiiBaiaac6gaca aIOaqcfa4aaSaaaOqaaKqzGeGaaGikaiaaigdacqGHsislcaaIYaGa eq4WdmNaaGykaiaadAhacqGHsislcaWG1baakeaajugibiaaiIcaca aIXaGaey4kaSIaaGOmaiabeo8aZjaaiMcacaWG2bGaeyOeI0IaamyD aaaacaaIPaGaaGyxaaaa@8270@  (35)

The size of Nother current is

j a 2 = 1 2 χ R (4) φ 2 2 + 3 8 χ 2 φ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQgalmaaDaaajeaibaqcLbmacaWGHbaajeaibaqcLbma caaIYaaaaKqzGeGaaGypaiabgkHiTKqbaoaalaaakeaajugibiaaig daaOqaaKqzGeGaaGOmaKqbaoaakaaakeaajugibiabeE8aJbWcbeaa aaqcLbsacaWGsbWcdaahaaqcbasabeaajugWaiaaiIcacaaI0aGaaG ykaaaajugibiabeA8aQTWaa0baaKqaGeaajugWaiaaikdaaKqaGeaa jugWaiaaikdaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIZa aakeaajugibiaaiIdacqaHhpWylmaaCaaajeaibeqaaKqzadGaaGOm aaaaaaqcLbsacqaHgpGAlmaaDaaajeaibaqcLbmacaaIXaaajeaiba qcLbmacaaIYaaaaaaa@6246@ , (36)

And this is of undetermined sign, so that the Nother current can be time like, null, or space like.

The scalar invariants are

R= R (4) χ + 3 4 χ 2 ,Wey l 2 = 11 R (4) 2 6χ , Ri e 2 = 3 R (4) 2 χ R (4) 4 χ 5 2 + 21 32 χ 4 ,Ricc i 2 = R (4) 2 χ + 9 16 χ 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamOuaiaai2dajuaGdaWcaaGcbaqcLbsacaWGsbqc fa4aaWbaaSqabKqaGeaajugWaiaaiIcacaaI0aGaaGykaaaaaOqaaK qbaoaakaaakeaajugibiabeE8aJbWcbeaaaaqcLbsacqGHRaWkjuaG daWcaaGcbaqcLbsacaaIZaaakeaajugibiaaisdacqaHhpWylmaaCa aajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacaaISaGaaGjbVlaadEfa caWGLbGaamyEaiaadYgalmaaCaaajeaibeqaaKqzadGaaGOmaaaaju gibiaai2dajuaGdaWcaaGcbaqcLbsacaaIXaGaaGymaiaadkfalmaa CaaajeaibeqaaKqzadGaaGikaiaaisdacaaIPaWcdaahaaqcbasabe aajugWaiaaikdaaaaaaaGcbaqcLbsacaaI2aGaeq4XdmgaaKqbakaa cYcaaOqaaKqzGeGaamOuaiaadMgacaWGLbWcdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaaG4maiaa dkfalmaaCaaajeaibeqaaKqzadGaaGikaiaaisdacaaIPaWcdaahaa qcbasabeaajugWaiaaikdaaaaaaaGcbaqcLbsacqaHhpWyaaGaeyOe I0scfa4aaSaaaOqaaKqzGeGaamOuaSWaaWbaaKqaGeqabaqcLbmaca aIOaGaaGinaiaaiMcaaaaakeaajugibiaaisdaaaGaeq4Xdm2cdaah aaqcbasabeaajugWaiabgkHiTSWaaSaaaKqaGeaajugWaiaaiwdaaK qaGeaajugWaiaaikdaaaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqz GeGaaGOmaiaaigdaaOqaaKqzGeGaaG4maiaaikdacqaHhpWylmaaCa aajeaibeqaaKqzadGaaGinaaaaaaqcLbsacaaISaGaaGjbVlaadkfa caWGPbGaam4yaiaadogacaWGPbWcdaahaaqcbasabeaajugWaiaaik daaaqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaamOuaSWaaWbaaKqa GeqabaqcLbmacaaIOaGaaGinaiaaiMcalmaaCaaajeaibeqaaKqzad GaaGOmaaaaaaaakeaajugibiabeE8aJbaacqGHRaWkjuaGdaWcaaGc baqcLbsacaaI5aaakeaajugibiaaigdacaaI2aGaeq4Xdm2cdaahaa qcbasabeaajugWaiaaisdaaaaaaKqzGeGaaGOlaaaaaa@B0A2@ , (37)

Where R (4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaCaaajeaibeqaaKqzadGaaGikaiaaisdacaaI Paaaaaaa@3DCD@ is given by (7). Using the projection vector (18), the acceleration and rotation vanish and the expansion, extrinsic curvature, shear, and projected Weyl tensor, which for this metric is the same as the electric part of the Weyl tensor are

Θ= 1 χ ,σ(n)= 1 6χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arjaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiabeE8aJbaacaaISaGaaGjbVlabeo8aZjaaiIcacaWGUbGaaG ykaiaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaiAda cqaHhpWyaaaaaa@4BF5@  (38)
K ab = 1 4 ( δ ab uv g uv + δ ab θθ g θθ + δ ab φφ g φφ ), σ ab = 1 3 K ab , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUealmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasa baqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsaca aI0aaaaiaaiIcacqaH0oazlmaaDaaajeaibaqcLbmacaWGHbGaamOy aaqcbasaaKqzadGaamyDaiaadAhaaaqcLbsacaWGNbWcdaWgaaqcba saaKqzadGaamyDaiaadAhaaKqaGeqaaKqzGeGaey4kaSIaeqiTdq2c daqhaaqcbasaaKqzadGaamyyaiaadkgaaKqaGeaajugWaiabeI7aXj abeI7aXbaajugibiaadEgalmaaBaaajeaibaqcLbmacqaH4oqCcqaH 4oqCaKqaGeqaaKqzGeGaey4kaSIaeqiTdq2cdaqhaaqcbasaaKqzad GaamyyaiaadkgaaKqaGeaajugWaiabeA8aQjabeA8aQbaajugibiaa dEgajuaGdaWgaaqcbasaaKqzadGaeqOXdOMaeqOXdOgaleqaaKqzGe GaaGykaiaaysW7caaISaGaaGjbVlabeo8aZTWaaSbaaKqaGeaajugW aiaadggacaWGIbaajeaibeaajugibiaai2dacqGHsisljuaGdaWcaa GcbaqcLbsacaaIXaaakeaajugibiaaiodaaaGaam4saKqbaoaaBaaa jeaibaqcLbmacaWGHbGaamOyaaWcbeaajugibiaaiYcaaaa@8A1D@
E ab = σ 2 χ 6 Y 4 ( v 2 δ ab uu +uv δ ab (uv) u 2 δ ab vv )+ σ 2 uv χ 6 ( δ ab θθ g θθ + δ ab φφ g φφ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasa baqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaeq4Wdm3cdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacqaHhpWyaOqaaKqzGeGaaGOnaiaa dMfalmaaCaaajeaibeqaaKqzadGaaGinaaaaaaqcLbsacaaIOaGaey OeI0IaamODaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqiT dq2cdaqhaaqcbasaaKqzadGaamyyaiaadkgaaKqaGeaajugWaiaadw hacaWG1baaaKqzGeGaey4kaSIaamyDaiaadAhacqaH0oazlmaaDaaa jeaibaqcLbmacaWGHbGaamOyaaqcbasaaKqzadGaaGikaiaadwhaca WG2bGaaGykaaaajugibiabgkHiTiaadwhalmaaCaaajeaibeqaaKqz adGaaGOmaaaajugibiabes7aKTWaa0baaKqaGeaajugWaiaadggaca WGIbaajeaibaqcLbmacaWG2bGaamODaaaajugibiaaiMcacqGHRaWk juaGdaWcaaGcbaqcLbsacqaHdpWClmaaCaaajeaibeqaaKqzadGaaG OmaaaajugibiaadwhacaWG2bqcfa4aaOaaaOqaaKqzGeGaeq4Xdmga leqaaaGcbaqcLbsacaaI2aaaaiaaiIcacqaH0oazlmaaDaaajeaiba qcLbmacaWGHbGaamOyaaqcbasaaKqzadGaeqiUdeNaeqiUdehaaKqz GeGaam4zaSWaaSbaaKqaGeaajugWaiabeI7aXjabeI7aXbqcbasaba qcLbsacqGHRaWkcqaH0oazlmaaDaaajeaibaqcLbmacaWGHbGaamOy aaqcbasaaKqzadGaeqOXdOMaeqOXdOgaaKqzGeGaam4zaSWaaSbaaK qaGeaajugWaiabeA8aQjabeA8aQbqcbasabaqcLbsacaaIPaaaaa@A610@

Five dimensional Vaidya spacetime

A generalization of Vaidya’s spacetime to five dimensions is

d s 2 = χ {(1 2m(v,χ) r )d v 2 +2dvdr+ r 2 d Σ 2 2 }+d χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaaI9aqcfa4aaOaaaOqaaKqzGeGaeq4XdmgaleqaaKqzGeGaaG 4EaiabgkHiTiaaiIcacaaIXaGaeyOeI0scfa4aaSaaaOqaaKqzGeGa aGOmaiaad2gacaaIOaGaamODaiaaiYcacqaHhpWycaaIPaaakeaaju gibiaadkhaaaGaaGykaiaadsgacaWG2bWcdaahaaqcbasabeaajugW aiaaikdaaaqcLbsacqGHRaWkcaaIYaGaamizaiaadAhacaWGKbGaam OCaiabgUcaRiaadkhalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugi biaadsgacqqHJoWulmaaDaaajeaibaqcLbmacaaIYaaajeaibaqcLb macaaIYaaaaKqzGeGaaGyFaiabgUcaRiaadsgacqaHhpWylmaaCaaa jeaibeqaaKqzadGaaGOmaaaaaaa@6D69@ , (39)

Choosing the requirement that R θθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacqaH4oqCcqaH4oqCaKqa GeqaaKqzGeGaaGypaiaaicdaaaa@414F@ fixes the conformal factor as χ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGcaaGcbaqcLbsacqaHhpWyaSqabaqcLbsacaaISaaaaa@3CFD@ (39) has Ricci tensor

R vv = 2 m v r 2 (χ m χ ) χ r χ , R rv = m χ r 2 , R χχ = 3 4 χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaWG2bGaamODaaqcbasa baqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGOmaiaad2gajuaGda WgaaqcbasaaKqzadGaamODaaWcbeaaaOqaaKqzGeGaamOCaKqbaoaa CaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiabgkHiTKqbaoaala aakeaajugibiaaiIcacqaHhpWycaWGTbWcdaWgaaqcbasaaKqzadGa eq4XdmgajeaibeaajugibiaaiMcajuaGdaWgaaqcbasaaKqzadGaeq 4XdmgaleqaaaGcbaqcLbsacaWGYbqcfa4aaOaaaOqaaKqzGeGaeq4X dmgaleqaaaaajugibiaaiYcacaaMe8UaamOuaSWaaSbaaKqaGeaaju gWaiaadkhacaWG2baajeaibeaajugibiaai2dajuaGdaWcaaGcbaqc LbsacaWGTbqcfa4aaSbaaKqaGeaajugWaiabeE8aJbWcbeaaaOqaaK qzGeGaamOCaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugi biaaiYcacaaMe8UaamOuaSWaaSbaaKqaGeaajugWaiabeE8aJjabeE 8aJbqcbasabaqcLbmacaaI9aqcfa4aaSaaaOqaaKqzGeGaaG4maaGc baqcLbsacaaI0aGaeq4Xdm2cdaahaaqcbasabeaajugWaiaaikdaaa aaaaaa@8164@ , (40)

The χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ dependence of m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gaaaa@3A40@ means that the four dimensional stress is no longer that of a null radiation field. The R χχ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacqaHhpWycqaHhpWyaKqa Geqaaaaa@3F41@ component is non vanishing even when m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gaaaa@3A40@ is independent of χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ . The Ricci scalar and product invariants are

R= 3 4 χ 2 ,Wey l 2 = 48 m 2 rχ ,Ricc i 2 = R 2 ,Ri e 2 =Wey l 2 + 7 6 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfacaaI9aqcfa4aaSaaaOqaaKqzGeGaaG4maaGcbaqc LbsacaaI0aGaeq4Xdm2cdaahaaqcbasabeaajugWaiaaikdaaaaaaK qzGeGaaGilaiaadEfacaWGLbGaamyEaiaadYgalmaaCaaajeaibeqa aKqzadGaaGOmaaaajugibiaai2dajuaGdaWcaaGcbaqcLbsacaaI0a GaaGioaiaad2gajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqa aKqzGeGaamOCaiabeE8aJbaacaaISaGaamOuaiaadMgacaWGJbGaam 4yaiaadMgalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaai2da caWGsbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaISaGaam OuaiaadMgacaWGLbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsa caaI9aGaam4vaiaadwgacaWG5bGaamiBaSWaaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaaG4naaGc baqcLbsacaaI2aaaaiaadkfalmaaCaaajeaibeqaaKqzadGaaGOmaa aaaaa@75C2@ , (41)

These do not explicitly involve derivatives of m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaab2gaaaa@3A3E@ with respect to either v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhaaaa@3A49@ or χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE8aJbaa@3B05@ . Using the projection vector (18), the acceleration and rotation vanish and the expansion, extrinsic curvature, shear, and projected Weyl tensor, which for this metric is the same as the electric part of the Weyl tensor are

Θ= 1 χ , K vr = 1 4 χ , K θθ = r 2 4 χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfI5arjaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiabeE8aJbaacaaISaGaaGjbVlaadUealmaaBaaajeaibaqcLb macaWG2bGaamOCaaqcbasabaqcLbsacaaI9aqcfa4aaSaaaOqaaKqz GeGaaGymaaGcbaqcLbsacaaI0aqcfa4aaOaaaOqaaKqzGeGaeq4Xdm galeqaaaaajugibiaaiYcacaaMe8Uaam4saSWaaSbaaKqaGeaajugW aiabeI7aXjabeI7aXbqcbasabaqcLbsacaaI9aqcfa4aaSaaaOqaaK qzGeGaamOCaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqc LbsacaaI0aqcfa4aaOaaaOqaaKqzGeGaeq4Xdmgaleqaaaaaaaa@6178@ , (42)
σ= 1 6χ , σ rv = 1 12 χ , σ θθ = r 2 12 χ , σ vv = 1 12r χ (12χ m χ +r2m) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZjaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiaaiAdacqaHhpWyaaGaaGilaiabeo8aZTWaaSbaaKqaGeaaju gWaiaadkhacaWG2baajeaibeaajugibiaai2dacqGHsisljuaGdaWc aaGcbaqcLbsacaaIXaaakeaajugibiaaigdacaaIYaqcfa4aaOaaaO qaaKqzGeGaeq4XdmgaleqaaaaajugibiaaiYcacqaHdpWClmaaBaaa jeaibaqcLbmacqaH4oqCcqaH4oqCaKqaGeqaaKqzGeGaaGypaiabgk HiTKqbaoaalaaakeaajugibiaadkhalmaaCaaajeaibeqaaKqzadGa aGOmaaaaaOqaaKqzGeGaaGymaiaaikdajuaGdaGcaaGcbaqcLbsacq aHhpWyaSqabaaaaKqzGeGaaGilaiabeo8aZTWaaSbaaKqaGeaajugW aiaadAhacaWG2baajeaibeaajugibiaai2dajuaGdaWcaaGcbaqcLb sacaaIXaaakeaajugibiaaigdacaaIYaGaamOCaKqbaoaakaaakeaa jugibiabeE8aJbWcbeaaaaqcLbsacaaIOaGaaGymaiaaikdacqaHhp WycaWGTbqcfa4aaSbaaKqaGeaajugWaiabeE8aJbWcbeaajugibiab gUcaRiaadkhacqGHsislcaaIYaGaamyBaiaaiMcaaaa@82E2@ ,
E vv = 2 χ 1 4 3r ( χ 1 4 m χ ) χ 2 3 r 2 m v . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadweajuaGdaWgaaWcbaqcLbsacaWG2bGaamODaaWcbeaa jugibiaai2dacqGHsisljuaGdaWcaaGcbaqcLbsacaaIYaGaeq4Xdm 2cdaahaaqcbasabeaajugWaiaaigdaaaqcLbsacaaI0aaakeaajugi biaaiodacaWGYbaaaiaaiIcacqaHhpWylmaaCaaajeaibeqaaSWaaS aaaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaisdaaaaaaKqzGeGa amyBaKqbaoaaBaaajeaibaqcLbmacqaHhpWyaSqabaqcLbsacaaIPa qcfa4aaSbaaKqaGeaajugWaiabeE8aJbWcbeaajugibiabgkHiTKqb aoaalaaakeaajugibiaaikdaaOqaaKqzGeGaaG4maiaadkhalmaaCa aajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacaWGTbWcdaWgaaqcbasa aKqzadGaamODaaqcbasabaqcLbsacaaIUaaaaa@67F0@

The Gauss-Bonnet Invariant

The Gauss-Bonnet invariant

GB= R cdef R cdef 4 R cd R cd + R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEeacaWGcbGaaGypaiaadkfalmaaBaaajeaibaqcLbma caWGJbGaamizaiaadwgacaWGMbaajeaibeaajugibiaadkfalmaaCa aajeaibeqaaKqzadGaam4yaiaadsgacaWGLbGaamOzaaaajugibiab gkHiTiaaisdacaWGsbWcdaWgaaqcbasaaKqzadGaam4yaiaadsgaaK qaGeqaaKqzGeGaamOuaSWaaWbaaKqaGeqabaqcLbmacaWGJbGaamiz aaaajugibiabgUcaRiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaG Omaaaaaaa@58C7@  (43)

And Gauss-Bonnet tensor

G B ab =4 R acde R b cde 8 R cd R ab cd 8 R ac R b c +4R R ab g ab GB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEeacaWGcbWcdaWgaaqcbasaaKqzadGaamyyaiaadkga aKqaGeqaaKqzGeGaaGypaiaaisdacaWGsbWcdaWgaaqcbasaaKqzad GaamyyaiaadogacaWGKbGaamyzaaqcbasabaqcLbsacaWGsbWcdaqh aaqcbasaaKqzadGaamOyaaqcbasaaKqzadGaam4yaiaadsgacaWGLb aaaKqzGeGaeyOeI0IaaGioaiaadkfalmaaBaaajeaibaqcLbmacaWG JbGaamizaaqcbasabaqcLbsacaWGsbWcdaqhaaqcbasaaKqzadGaam yyaiaadkgaaKqaGeaajugWaiaadogacaWGKbaaaKqzGeGaeyOeI0Ia aGioaiaadkfalmaaBaaajeaibaqcLbmacaWGHbGaam4yaaqcbasaba qcLbsacaWGsbWcdaqhaaqcbasaaKqzadGaamOyaaqcbasaaKqzadGa am4yaaaajugibiabgUcaRiaaisdacaWGsbGaamOuaSWaaSbaaKqaGe aajugWaiaadggacaWGIbaajeaibeaajugibiabgkHiTiaadEgalmaa BaaajeaibaqcLbmacaWGHbGaamOyaaqcbasabaqcLbsacaWGhbGaam Oqaaaa@78F0@ (44)

Vanish for the first two solutions (14), (28), and non-vanishing and long for third scalar solution (31) and the Vaidya solution (39). There does not seem a way of reinterpreting the scalar-Einstein solutions as Einstein-Gauss- Bonnet solutions. For the Einstein-Gauss-Bonnet field equations

G ab +kG B ab =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEealmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasa baqcLbsacqGHRaWkcaWGRbGaam4raiaadkealmaaBaaajeaibaqcLb macaWGHbGaamOyaaqcbasabaqcLbsacaaI9aGaaGimaaaa@4714@ , (45)

There is the simple solution

d s 5 2 =exp(± χ k )d s 4flat 2 +d χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaqhaaqcbasaaKqzadGaaGynaaqcbasa aKqzadGaaGOmaaaajugibiaai2dacaGGLbGaaiiEaiaacchacaaIOa GaeyySaeBcfa4aaSaaaOqaaKqzGeGaeq4XdmgakeaajuaGdaGcaaGc baqcLbsacaWGRbaaleqaaaaajugibiaaiMcacaWGKbGaam4CaSWaa0 baaKqaGeaajugWaiaaisdacaWGMbGaamiBaiaadggacaWG0baajeai baqcLbmacaaIYaaaaKqzGeGaey4kaSIaamizaiabeE8aJTWaaWbaaK qaGeqabaqcLbmacaaIYaaaaaaa@5D07@ , (46)

This is the same as the Randall-Sundrum (1999) metric [11] with 2 k =±l, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdajuaGdaGcaaGcbaqcLbsacaWGRbaaleqaaKqzGeGa aGypaiabgglaXkaadYgacaaISaaaaa@4127@ and this allows reinterpretation of the coupling between the Einstein tensor and the Gauss-Bonnet tensor as the cosmological constant. There is the modified Schwarzschild spacetime

d s 5 2 =exp( χ α )d s 4Schwarzschild 2 +d χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaqhaaqcbasaaKqzadGaaGynaaqcbasa aKqzadGaaGOmaaaajugibiaai2dacaGGLbGaaiiEaiaacchacaaIOa qcfa4aaSaaaOqaaKqzGeGaeq4XdmgakeaajuaGdaGcaaGcbaqcLbsa cqaHXoqyaSqabaaaaKqzGeGaaGykaiaadsgacaWGZbWcdaqhaaqcba saaKqzadGaaGinaiaadofacaWGJbGaamiAaiaadEhacaWGHbGaamOC aiaadQhacaWGZbGaam4yaiaadIgacaWGPbGaamiBaiaadsgaaKqaGe aajugWaiaaikdaaaqcLbsacqGHRaWkcaWGKbGaeq4Xdm2cdaahaaqc basabeaajugWaiaaikdaaaaaaa@6427@ . (47)

This has invariants:

R= 5 α ,Ricc i 2 = 1 5 R 2 ,Wey l 2 = 48 m 2 exp( 2χ α ) r 6 ,Ri e 2 = 1 2 Ricc i 2 +Wey l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGyn aaGcbaqcLbsacqaHXoqyaaGaaGilaiaadkfacaWGPbGaam4yaiaado gacaWGPbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaaI 9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaI1aaaaiaadk fajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaaiYcacaWG xbGaamyzaiaadMhacaWGSbqcfa4aaWbaaSqabKqaGeaajugWaiaaik daaaqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGinaiaaiIdacaWG TbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaGGLbGaaiiEai aacchacaaIOaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGOmaiabeE8a JbGcbaqcfa4aaOaaaOqaaKqzGeGaeqySdegaleqaaaaajugibiaaiM caaOqaaKqzGeGaamOCaSWaaWbaaKqaGeqabaqcLbmacaaI2aaaaaaa jugibiaaiYcacaWGsbGaamyAaiaadwgalmaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiaaikdaaaGaamOuaiaadMgacaWGJbGaam4yaiaadMgajuaGda ahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiaadEfacaWG LbGaamyEaiaadYgalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@899C@  (48)

This is a solution to any of three field equations:

  1. the vacuum Bach equations B ab =2 C a.b c.d R cd +4 C a.b;c;d c.d , B ab =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkealmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasa baqcLbsacaaI9aGaaGOmaiaadoealmaaDaaajeaibaqcLbmacaWGHb GaaGOlaiaadkgaaKqaGeaajugWaiaadogacaaIUaGaamizaaaajugi biaadkfalmaaBaaajeaibaqcLbmacaWGJbGaamizaaqcbasabaqcLb sacqGHRaWkcaaI0aGaam4qaSWaa0baaKqaGeaajugWaiaadggacaaI UaGaamOyaiaaiUdacaWGJbGaaG4oaiaadsgaaKqaGeaajugWaiaado gacaaIUaGaamizaaaajugibiaaiYcacaWGcbWcdaWgaaqcbasaaKqz adGaamyyaiaadkgaaKqaGeqaaKqzGeGaaGypaiaaicdacaaISaaaaa@63C4@
  2. The Einstein-Pauli equations P ab :=2 R ;a;b 2R R ab + g ab ( R 2 /22R), G ab +p P ab =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfalmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasa baqcLbsacaaI6aGaaGypaiaaikdacaWGsbWcdaWgaaqcbasaaKqzad GaaG4oaiaadggacaaI7aGaamOyaaqcbasabaqcLbsacqGHsislcaaI YaGaamOuaiaadkfalmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcba sabaqcLbsacqGHRaWkcaWGNbWcdaWgaaqcbasaaKqzadGaamyyaiaa dkgaaKqaGeqaaKqzGeGaaGikaiaadkfalmaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiaai+cacaaIYaGaeyOeI0IaaGOmaiablgAjxjaa dkfacaaIPaGaaGilaiaadEeajuaGdaWgaaqcbasaaKqzadGaamyyai aadkgaaSqabaqcLbsacqGHRaWkcaWGWbGaamiuaSWaaSbaaKqaGeaa jugWaiaadggacaWGIbaajeaibeaajugibiaai2dacaaIWaaaaa@6CEE@  with p=3α/5,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI9aGaeyOeI0IaaG4maiabeg7aHjaai+cacaaI 1aGaaGilaiaaiodacaaIPaaaaa@41F1@  the Einstein-Gauss-Bonnet equations (45) with α=k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjaai2dacaWGRbaaaa@3CA4@ and stress T a ab = δ ab χχ Wey l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacaWGHbWcdaWgaaqcbasaaKqzadGaamyyaiaadkga aKqaGeqaaKqzGeGaaGypaiabgkHiTiabes7aKTWaa0baaKqaGeaaju gWaiaadggacaWGIbaajeaibaqcLbmacqaHhpWycqaHhpWyaaqcLbsa caWGxbGaamyzaiaadMhacaWGSbqcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaaaaa@519B@ .

Conclusion

There at least three criteria one could use to test interaction with the fifth dimension. The first is explicit interaction. The Einstein tensor for a minimal scalar field is G ab =2 φ a φ b φ c 2 g ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEealmaaBaaajeaibaqcLbmacaWGHbGaamOyaaqcbasa baqcLbsacaaI9aGaaGOmaiabeA8aQLqbaoaaBaaajeaibaqcLbmaca WGHbaaleqaaKqzGeGaeqOXdOwcfa4aaSbaaKqaGeaajugWaiaadkga aSqabaqcLbsacqGHsislcqaHgpGAlmaaDaaajeaibaqcLbmacaWGJb aajeaibaqcLbmacaaIYaaaaKqzGeGaam4zaSWaaSbaaKqaGeaajugW aiaadggacaWGIbaajeaibeaaaaa@5651@ , so that with respect to a vector field v a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhajuaGdaWgaaqcbasaaKqzadGaamyyaaWcbeaaaaa@3D41@  there is the momentum transfer π a = v b G ab =2 φ a φv v a φ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabec8aWTWaaSbaaKqaGeaajugWaiaadggaaKqaGeqaaKqz GeGaaGypaiaadAhalmaaCaaajeaibeqaaKqzadGaamOyaaaajugibi aadEeajuaGdaWgaaqcbasaaKqzadGaamyyaiaadkgaaSqabaqcLbsa caaI9aGaaGOmaiabeA8aQTWaaSbaaKqaGeaajugWaiaadggaaKqaGe qaaKqzGeGaeqOXdOMaamODaiabgkHiTiaadAhalmaaBaaajeaibaqc LbmacaWGHbaajeaibeaajugibiabeA8aQTWaa0baaKqaGeaajugWai aadogaaKqaGeaajugWaiaaikdaaaaaaa@5C89@ . Such a momentum transfer seems unavoidable for non vanishing scalar field because of the metric (or second) term in the Einstein tensor; whether this is good or bad depends on ones point of view. It is good if one simply wants any indication of transfer of information. It is bad if one wants only gravity, in the sense that R 5a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaaI1aGaamyyaaqcbasa baqcLbsacaaI9aGaaGimaaaa@3F88@ , to be present in the fifth dimension, because there will also be the scalar field present. For the above examples it is also bad because there is no neat way of characterizing the energy transfer, it is not even clear when it will be time like, null, or space like. The second is implicit interaction. By this is meant that the four dimensional metric takes a different form than would be expected from four dimensional theories and that this difference can somehow be measured. To illustrate this consider (23), except for the factor of 1αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacqGHsislcqaHXoqycqaHYoGyaaa@3E36@ the metric truncated to four dimensions would be of the same form as (1). Roughly the d v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWG2bWcdaahaaqcbasabeaajugWaiaaikdaaaaa aa@3D73@  term suggests a change in the null velocity from cc/γ(1αβ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacqGHsgIRcaWGJbGaaG4laiabeo7aNjaaiIcacaaI XaGaeyOeI0IaeqySdeMaeqOSdiMaaGykaaaa@45B8@ ; how- ever other metric terms change as well and it turns out not to be possible to have only the null velocity change occurring. For σ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZjaai2dacaaIWaaaaa@3C92@ , given by equation (27), similar problems apply. Thethird is Nother criteria. One could image scalar fields as in some way corresponding to a quantum mechanical wave function of some part of a system. A quantum mechanical interaction might be indicated by a non vanishing Nother current between one part of the system and another. To model this one would need exact solutions for two or more scalar fields. It turns out to be simple to produce solutions for linear combinations of scalar fields, however these have vanishing Nother current. Spherical symmetry imposes a high degree of symmetry making finding solutions with a non vanishing Nother current hard to find. An example with a non vanishing Nother current is (31); but prop- erties of this solution include 1) the two scalar fields are disconnected, in the sense that one scalar field de- pends on one set of coordinates {r,v} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWGYbGaaGilaiaaysW7caWG2bGaaGyFaaaa@3F8F@ and the other depends on {χ} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacqaHhpWycaaI9baaaa@3D11@ , 2) the current can be time like, null or spacelike, and 3) there is no simple way of characterizing what happens to any Nother charge. Another problem in general with the Nother criteria is that in quantum cosmology the high degree of symmetry means that there are no Nother currents. To conclude the five dimensional scalar-Einstein equations provide simple exact solutions with which to discuss interaction with the fifth dimension, how ever their interpretation is difficult.

Acknowledgement

None.

Conflict of Interest

Author Declare there is no conflict of interest.

References

  1. Fischer IZ (1947) Scalar mesostatic field with regard for gravitational effects translated Zloshchastiev. Zhurnal Experimental'noj i Teoreticheskoj Fiziki 18: 636-640.
  2. Roberts MD (1998) Spacetime Exterior to a Star. Conell University Library, USA, p. 1-14.
  3. Chase JE (1970) Event Horizons in static scalar-vacuum space-times. Communications in Mathematical Physics 19(4): 276–288.
  4. Roberts MD (1986) Spherically Symmetric Fields in Gravitational Theory. Ph.D.Thesis, University of London, England.
  5. Roberts MD (1989) Scalar Field Counter-Examples to the Cosmic Cen- sorship Hypothesis. General Relativity and Gravitation 21(9): 907-939.
  6. Roberts MD ( 1996)Imploding Scalar Fields. Journal of Mathematical Physics 37(9): 4557-4573.
  7. Choptuik MW (1993) Universality and Scaling in Gravitational Collapse of a Massless Scalar Field.Physical Review Letters70(9): 9-12.
  8. Roberts MD (2017) Quantum Imploding Scalar Fields. Conell University Library, USA, p. 1-12.
  9. Pavsic M, Tapia V (2001) Resource Letter on the Geomtric Results for Embeddings and Branes. Conell University Library, USA, p. 1-40.
  10. Wuensch D (2003) The Fifth Dimension: Theodor Kaluza’s ground breaking idea. Annalen der Physik 12(9): 519-542.
  11. Randall L, Sundrum R (1999) Large Mass Hierarchy from a Small Extra Dimension. Physical Review Letters 83(17).
  12. Randall L, Sundrum R (1999) An Alternative to Compactification. Physical Review Letters 83(23).
  13. Wesson PS, Mashhoon B, Liu H (1997) The (Im) possibility of detecting a fifth dimension. Modern Physics Letters A 12(30):2309-2316.
  14. Roberts MD (2009) New Five Dimensional Spherical Vacuum Solutions. Conell University Library, USA, p. 1-16.
  15. Carminati J, McLenaghan RG (1991) Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space.Journal of Mathematical Physics 32(11): 3135-3140.
Creative Commons Attribution License

©2018 Roberts. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.