Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 1

Charged wormholes supported by 2-fluid immiscible matter particle

Islam S,1 Shaikh A,1 Das TK,1 Rahaman F,2 Rahaman M2

1Faculty of Physics, Harish-Chandra Research Institute, India
2Department of Mathematics, Jadavpur University, India

Correspondence: Farook Rahaman, Department of Mathematics, Jadavpur University, Kolkata 700032, India, Tel 9831907279

Received: December 15, 2017 | Published: January 19, 2018

Citation: Islam S, Shaikh A, Das TK, et al. Charged wormholes supported by 2-fluid immiscible matter particle. Phys Astron Int J. 2019;2(1):39-46. DOI: 10.15406/paij.2018.02.00046

Download PDF

Abstract

We provide a 2-fluid immiscible matter source that supplies fuel to construct wormhole spacetime. The exact wormhole solutions are found in the model having, besides real matter or ordinary matter, some quintessence matter along with charge distribution. We intend to derive a general metric of a charged wormhole under some density profiles of galaxies that is also consistent with the observational profile of rotation curve of galaxies. We have shown that the effective mass remains positive as well as the wormhole physics violate the null energy conditions. Some physical features are briefly discussed.

Keywords: general relativity, electric field, wormholes, stability, rotational velocity, energy conditions

Introduction

The existence of Lorentzian wormholes has been a speculative issue though there are views that it can exist at the planck scale of 10-35 meters.1 Though wormholes are designated as tunnels connecting two distinct universes or regions of the same universe but their actual physical significance was first proposed by Morris & Thorne2 and their possible locations in the galactic halo and central regions of galaxies further studied by Rahaman F et al.3,4 Exact solutions of the wormhole with extra fields such as scalar field and static electric charge have been studied by Kim SW et al.,5 and derived self-consistent solutions. We are acquainted with the fact that wormhole spacetimes are predictions of the GTR and need to be supported by observations. The modified extended metric for the charged wormhole model of Kim and Lee has been developed by Kuhfittig PKF6 to represent a charged wormhole that is compatible with quantum field theory. The field equations without the charge Q have been studied by Buchdahl7 who found physically meaningful solutions.

Kuhfittig PKF et al.,8 studied the modified wormhole model in conjunction with a noncommutative-geometry background to overcome certain problems with traversability. Further in view of quantum field theory, the modified metric in6 is studied as a solution of the Einstein fields equations representing a charged wormhole. Stable phantom-energy wormholes admitting conformal motions is discusssed in.9 Here it is shown that the wormhole is stable to linearized radial perturbations whenever 1.5<ω<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa GaaiOlaiaaiwdacqGH8aapcqaHjpWDcqGH8aapcaaIXaaaaa@3F54@ . The author has also studied macroscopic traversable wormholes with zero tidal forces inspired by noncommutative geometry10 where it is shown that whenever the energy density describes a classical wormhole, the resulting solution is incompatible with quantum-field theory.

The Friedmann-Robertson-Walker model with a wormhole has been studied by Kim SW11 and found the total matter to be nonexotic, while it is exotic in the static wormhole or inflating wormhole models, considering the matter distribution of the wormhole shape function as divided into two parts. The flare-out condition for the wormhole with the Einstein equation and the finiteness of the pressure is discussed.12 The possibility that inflation might provide a natural mechanism for the enlargement of Lorentzian wormholes of the Morris-Thorne type to macroscopic laws size has been explored by Roman TA.13 An analytical electrically charged traversable wormhole solution for the Einstein Maxwell-anti-dilaton theory as well as the deflection angle of a light-ray passing close to this wormhole has been discussed by Goulart P.14

The traversability of asymptotically flat wormholes in Rastall gravity with phantom sources is studied in.15 It is also observed16 that cosmic acceleration with traversable wormhole is possible without exotic matter like dark and phantom energy unless the scale factor of the universe obeys a power law dominated by a negative fractional parameter. 7-dimensional universe and the existence of a static traversable wormhole solution in the form of the Lovelock gravity are studied by El-Nabulsi RA.17 The cosmological implications of a four-dimensional cosmology dominated by quintessence with a static traversable wormhole by means of an additional bimetric tensor in Einsteins field equations is discussed in.18 Extra-Dimensional cosmology with a traversable Wormhole has been studied in.19 The author discuss many features of a higher-dimensional cosmology with a static traversable wormhole dominated by a variable effective cosmological constant and depending on the scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb GaaGikaiaadshacaaIPaaaaa@3BDC@ .

Hererra L20 has investigated the conditions under which general relativistic polytropes for anisotropic matter exhibit cracking and/or overturning. The dynamics of test particles in stable circular orbits around static and spherically symmetric wormholes in conformally symmetric spacetimes is discussed in.21 In this paper we thrive to derive a general metric of a charged wormhole under some density profiles of galaxies which should also be consistent with the observational profile of rotation curve of galaxies.

The stress in this paper is on the anisotropic matter distribution where we have considered a combined model of quintessence matter and ordinary matter along with charge distribution. A valid wormhole also exists under the isotropic condition where p t = p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb qcfa4aaSbaaKqaGeaajugWaiaadshaaKqaGeqaaKqzGeGaaGypaiaa dchajuaGdaWgaaqcbasaaKqzadGaamOCaaqcbasabaaaaa@422A@ . We iterate that such a combination could in fact support a wormhole in Einstein-Maxwell gravity. One could also like to invite the prospect of theoretical construction of such wormhole with the assumption of zero tidal forces.

The aim of our paper is envisaged as follows:

In section 2. We have solved the Einstein-Maxwell field equations pertaining to our proposed metric and deduce the wormhole solutions. Section 3. Deals with the profile curve and the embedding diagram. The geodesics study in section 4. Reveal the observational phenomena pertaining to gravity on the galactic scale which is attractive. In section 5 & 6. We study the equilibrium conditions and the effective gravitational mass. Energy conditions and tidal forces are discussed in sections 7. The validity of our metric is further confirmed in our study of wormhole in the Galactic Halo region in section 8. The study ends with a concluding remark.

A particular class of solutions

We propose a general wormhole spacetime metric with charge for circular stable geodesic motion in the equatorial plane to be represented by the line element

d s 2 = e ν eff d t 2 + (1 b eff r ) 1 d r 2 + r 2 (d θ 2 +si n 2 θd ϕ 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaajuaibeqaaKqzadGaaGOmaaaajugibiaai2da cqGHsislcaWGLbGcdaahaaqcfayabKqbGeaajugWaiabe27aULqbao aaBaaajuaibaqcLbmacaWGLbGaamOzaiaadAgaaKqbGeqaaaaajugi biaadsgacaWG0bqcfa4aaWbaaKqbGeqabaqcLbmacaaIYaaaaKqzGe Gaey4kaSIaaGikaiaaigdacqGHsislkmaalaaajuaGbaqcLbsacaWG IbGcdaWgaaqcfasaaKqzadGaamyzaiaadAgacaWGMbaajuaGbeaaae aajugibiaadkhaaaGaaGykaOWaaWbaaKqbagqabaqcLbsacqGHsisl caaIXaaaaiaadsgacaWGYbqcfa4aaWbaaKqbGeqabaqcLbmacaaIYa aaaKqzGeGaey4kaSIaamOCaKqbaoaaCaaajuaibeqaaKqzadGaaGOm aaaajugibiaaiIcacaWGKbGaeqiUdexcfa4aaWbaaKqbGeqabaqcLb macaaIYaaaaKqzGeGaey4kaSIaam4CaiaadMgacaWGUbqcfa4aaWba aKqbGeqabaqcLbmacaaIYaaaaKqzGeGaeqiUdeNaamizaiabew9aMP WaaWbaaKqbagqajuaibaqcLbmacaaIYaaaaKqzGeGaaGykaiaaiYca aaa@7FA8@   (1)

Here ν eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH9o GBjuaGdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaajeaibeaa aaa@3F41@ and b eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaaa aa@3E70@ are the effective redshift function and effective wormhole shape function having functional dependence on the radial coordinate r and

ν eff (r)=Log[( r r s ) l + Q 2 r 2 ] e λ eff (r) =(1 b eff r ) 1 , b eff (r)=b(r) Q 2 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abe27aULqbaoaaBaaajeaibaqcLbmacaWGLbGaamOzaiaadAgaaKqa GeqaaKqzGeGaaGikaiaadkhacaaIPaGaaGypaiaadYeacaWGVbGaam 4zaiaaiUfacaaIOaGcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWG YbGcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaaqcLbsacaaIPaqcfa 4aaWbaaKqaGeqabaqcLbmacaWGSbaaaKqzGeGaey4kaSIcdaWcaaqa aKqzGeGaamyuaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaaaOqaaK qzGeGaamOCaOWaaWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqzGeGa aGyxaaGcbaqcLbsacaWGLbqcfa4aaWbaaKqaGeqabaqcLbmacqaH7o aBjuaGdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaajeaibeaa jugWaiaaiIcacaWGYbGaaGykaaaajugibiaai2dacaaIOaGaaGymai abgkHiTOWaaSaaaeaajugibiaadkgajuaGdaWgaaqcbasaaKqzadGa amyzaiaadAgacaWGMbaajeaibeaaaOqaaKqzGeGaamOCaaaacaaIPa qcfa4aaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaaaKqzGeGaaGil aaGcbaqcLbsacaWGIbqcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMb GaamOzaaqcbasabaqcLbsacaaIOaGaamOCaiaaiMcacaaI9aGaamOy aiaaiIcacaWGYbGaaGykaiabgkHiTOWaaSaaaeaajugibiaadgfakm aaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGYbaaaaaa aa@8F09@   (2)

The effective redshift function and the effective wormhole shape shape function are chosen in such a way that it does not violate the wormhole flare-out conditions as defined below. Also the spacetime is asymptotically flat, i.e b eff (r) r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadkgajuaGdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaa jeaibeaajugibiaaiIcacaWGYbGaaGykaaGcbaqcLbsacaWGYbaaai abgkziUkaaicdaaaa@45A2@  as |r| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI8b GaamOCaiaaiYhacqGHsgIRcqGHEisPaaa@3EF9@ . The presence of charge inflicts a minor change in the graph of b eff (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaqc LbsacaaIOaGaamOCaiaaiMcaaaa@415B@  vs. r as against b(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GaaGikaiaadkhacaaIPaaaaa@3BDB@  vs. r, keeping in parity the desired wormhole flare-out conditions. We further show that for particular choice of the shape function and redshift function, the wormhole metric in the context does not violate the energy condition at or near the wormhole throat.

We consider the geometric units G=c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaaGypaiaadogacaaI9aGaaGymaaaa@3C95@ , in the EM field equations and presumably set the wormhole spacetime with an effective and positive constant electric charge Q. Such a form of charge is valid in the wormhole metric as evident in.5 As the charge is static, there is no radiation by the fields. If Q=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb GaaGypaiaaicdaaaa@3AEF@ , the metric reduces to the form observed by Rahaman F et al.,3 and if also l=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaaIWaaaaa@3A7B@  along with Q=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb GaaGypaiaaicdaaaa@3AEF@ , it reduces to the more generalized form of Morris-Thorne wormhole.2 Further if b(r)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GaaGikaiaadkhacaaIPaGaaGypaiaaicdaaaa@3D5C@ , it reduces to the RN black hole with a vanishing mass. Here r s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaaa@3C15@  denote the characteristic scale radius and l is a constant defined by l=2( v ϕ ) 2 , v ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb GaaGypaiaaikdacaaIOaGaamODaKqbaoaaCaaajeaibeqaaKqzadGa eqy1dygaaKqzGeGaaGykaKqbaoaaCaaaleqajeaibaqcLbmacaaIYa aaaKqbakaacYcajugibiaadAhakmaaCaaaleqajeaibaqcLbmacqaH vpGzaaaaaa@4AB9@ ,  being the rotational velocity of a test particle in the same gravitational field in a stable circular orbit in the galactic halo region.3 The stability of such an orbit depends on the effective positive radial velocity and will be studied later.

The flare-out conditions need to be studied which prevent wormholes to be physical and making it open, thereby paving a way for traversibility. These are as: (1) There should be no event horizon, hence the redshift function, ν eff (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH9o GBjuaGdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaajeaibeaa jugibiaaiIcacaWGYbGaaGykaaaa@422C@  should be finite. (2) The wormhole shape function should obey the conditions, (i) b eff (r)r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaqc LbsacaaIOaGaamOCaiaaiMcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGqbaiab=1Nkekaadkhaaaa@4DA5@  for r 0 r, r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaaGimaaWcbeaatuuDJXwAK1uy0HMmaeHb fv3ySLgzG0uy0HgiuD3BaGqbaKqzGeGae8xFQqOaamOCaiaacYcaca WGYbGcdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaaa@4C9F@  being the throat radius (ii) b eff ( r 0 )= r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GcdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaleqaaKqzGeGa aGikaiaadkhajuaGdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLb sacaaIPaGaaGypaiaadkhajuaGdaWgaaqcbasaaKqzadGaaGimaaqc basabaaaaa@48DB@  (iii) b eff '( r 0 )<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaqc LbsacaaINaGaaGikaiaadkhakmaaBaaajeaibaqcLbmacaaIWaaale qaaKqzGeGaaGykaiaaiYdacaaIXaaaaa@4664@  (iv) b eff '(r)< b eff (r) r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GcdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaleqaaKqzGeGa aG4jaiaaiIcacaWGYbGaaGykaiaaiYdakmaalaaabaqcLbsacaWGIb GcdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaleqaaKqzGeGa aGikaiaadkhacaaIPaaakeaajugibiaadkhaaaaaaa@4C88@  and (v) As r r 0 , b eff (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaeyOKH4QaamOCaKqbaoaaBaaajeaibaqcLbmacaaIWaaajeaibeaa juaGcaGGSaqcLbsacaWGIbqcfa4aaSbaaKqaGeaajugWaiaadwgaca WGMbGaamOzaaqcbasabaqcLbsacaaIOaGaamOCaiaaiMcaaaa@49EE@  approaches 2M, the Schwarzschildt mass,1,22 which is the mass function of the wormhole. Hence b eff (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaqc LbsacaaIOaGaamOCaiaaiMcaaaa@415B@  should be a positive function.

We propose that the matter sources consist of two non-interacting fluids, one being real matter in the form of perfect fluid and the second as anisotropic dark energy which is responsible for the acceleration of the universe.23

The following self consistent Einstein-Maxwell equations for a charged fluid distribution is proposed as,

G ab = R ab 1 2 R g ab =8π T ab eff =8π( T ab + T ab de + T ab c ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaSbaaKqbGeaajugWaiaadggacaWGIbaajuaibeaajugibiaa i2dacaWGsbqcfa4aaSbaaKqbGeaajugWaiaadggacaWGIbaajuaibe aajugibiabgkHiTOWaaSaaaKqbagaajugibiaaigdaaKqbagaajugi biaaikdaaaGaamOuaiaadEgajuaGdaWgaaqcfasaaKqzadGaamyyai aadkgaaKqbGeqaaKqzGeGaaGypaiaaiIdacqaHapaCcaWGubqcfa4a a0baaKqbGeaajugWaiaadggacaWGIbaajuaibaqcLbmacaWGLbGaam OzaiaadAgaaaqcLbsacaaI9aGaaGioaiabec8aWjaaiIcacaWGubqc fa4aaSbaaKqbGeaajugWaiaadggacaWGIbaajuaibeaajugibiabgU caRiaadsfajuaGdaqhaaqcfasaaKqzadGaamyyaiaadkgaaKqbGeaa jugWaiaadsgacaWGLbaaaKqzGeGaey4kaSIaamivaKqbaoaaDaaaju aibaqcLbmacaWGHbGaamOyaaqcfasaaKqzadGaam4yaaaajugibiaa iMcacaaISaaaaa@7867@   (3)

Where T ab , T ab de MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GcdaWgaaqcbasaaKqzadGaamyyaiaadkgaaSqabaGccaGGSaqcLbsa caWGubqcfa4aa0baaKqaGeaajugWaiaadggacaWGIbaajeaibaqcLb macaWGKbGaamyzaaaaaaa@45EE@  and T ab c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aa0baaKqaGeaajugWaiaadggacaWGIbaajeaibaqcLbmacaWG Jbaaaaaa@3F86@ are the contributions to the effective energy-momentum tensor for matter fluid, exotic matter and charge respectively.

The most general energy-momentum tensor compatible with static spherical symmetry for anisotropic distribution of matter (the matter is exotic in nature and is a necessary ingredient for construction of wormhole, thereby violating the energy conditions) is,

T b a(eff) =( ρ eff + p t eff ) u a u b p t eff g b a +( p r eff p t eff ) v a v b , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aa0baaKqaGeaajugWaiaadkgaaKqaGeaajugWaiaadggacaaI OaGaamyzaiaadAgacaWGMbGaaGykaaaajugibiaai2dacaaIOaGaeq yWdixcfa4aaWbaaKqaGeqabaqcLbmacaWGLbGaamOzaiaadAgaaaqc LbsacqGHRaWkcaWGWbqcfa4aa0baaKqaGeaajugWaiaadshaaKqaGe aajugWaiaadwgacaWGMbGaamOzaaaajugibiaaiMcacaWG1bqcfa4a aWbaaKqaGeqabaqcLbmacaWGHbaaaKqzGeGaamyDaOWaaSbaaKqaGe aajugWaiaadkgaaSqabaqcLbsacqGHsislcaWGWbqcfa4aa0baaKqa GeaajugWaiaadshaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaaaju gibiaadEgajuaGdaqhaaqcbasaaKqzadGaamOyaaqcbasaaKqzadGa amyyaaaajugibiabgUcaRiaaiIcacaWGWbqcfa4aa0baaKqaGeaaju gWaiaadkhaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaaajugibiab gkHiTiaadchajuaGdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzad GaamyzaiaadAgacaWGMbaaaKqzGeGaaGykaiaadAhajuaGdaahaaqc basabeaajugWaiaadggaaaqcLbsacaWG2bGcdaWgaaqcbasaaKqzad GaamOyaaWcbeaajugibiaaiYcaaaa@8C54@   (4)

Where ρ eff , p r eff , p t eff , u a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaahaaqcbasabeaajugWaiaadwgacaWGMbGaamOzaaaajuaG caGGSaqcLbsacaWGWbqcfa4aa0baaKqaGeaajugWaiaadkhaaKqaGe aajugWaiaadwgacaWGMbGaamOzaaaajuaGcaGGSaqcLbsacaWGWbqc fa4aa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaadwgacaWGMb GaamOzaaaajuaGcaGGSaqcLbsacaWG1bGcdaWgaaqcbasaaKqzadGa amyyaaWcbeaaaaa@580F@ and v a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaKqaGeaajugWaiaadggaaKqaGeqaaaaa@3CAA@  are respectively, effective matter-energy density, effective radial fluid pressure, effective transverse fluid pressure, four velocity, and radial four vector of the fluid element. The case p t eff = p r eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb qcfa4aa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaadwgacaWG MbGaamOzaaaajugibiaai2dacaWGWbqcfa4aa0baaKqaGeaajugWai aadkhaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaaaaaa@4A08@ , corresponds to the isotropic fluid when the anisotropic force vanishes.

In our consideration, the four velocity and radial four vector satisfy, u a = e ν δ 0 a , u a u a =1, v a = e λ δ 1 a , v a v a =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaWbaaKqaGeqabaqcLbmacaWGHbaaaKqzGeGaaGypaiaadwga juaGdaahaaqcbasabeaajugWaiabgkHiTiabe27aUbaajugibiabes 7aKLqbaoaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaWGHbaa aKqbakaacYcajugibiaadwhajuaGdaahaaqcbasabeaajugWaiaadg gaaaqcLbsacaWG1bqcfa4aaSbaaKqaGeaajugWaiaadggaaKqaGeqa aKqzGeGaaGypaiaaigdacaGGSaGccaWG2bWaaWbaaSqabeaacaWGHb aaaOGaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiabeU7aSbaakiab es7aKnaaDaaaleaacaaIXaaabaGaamyyaaaakiaacYcajugibiaadA hajuaGdaahaaqcbasabeaajugWaiaadggaaaqcLbsacaWG2bqcfa4a aSbaaKqaGeaajugWaiaadggaaKqaGeqaaKqzGeGaaGypaiabgkHiTi aaigdaaaa@6EA6@ .

From equations (3) and (4) we get the following set of equations,

T 0 0 = ρ eff =(ρ+ ρ de + ρ c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aa0baaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaicdaaaqc LbsacaaI9aGaeqyWdixcfa4aaWbaaKqaGeqabaqcLbmacaWGLbGaam OzaiaadAgaaaqcLbsacaaI9aGaaGikaiabeg8aYjabgUcaRiabeg8a YLqbaoaaCaaajeaibeqaaKqzadGaamizaiaadwgaaaqcLbsacqGHRa WkcqaHbpGCjuaGdaahaaqcbasabeaajugWaiaadogaaaqcLbsacaaI Paaaaa@57CB@   (5)

T 1 1 = p r eff =(p+ p r de + p r c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaigdaaaqc LbsacaaI9aGaeyOeI0IaamiCaKqbaoaaDaaajeaibaqcLbmacaWGYb aajeaibaqcLbmacaWGLbGaamOzaiaadAgaaaqcLbsacaaI9aGaeyOe I0IaaGikaiaadchacqGHRaWkcaWGWbqcfa4aa0baaKqaGeaajugWai aadkhaaKqaGeaajugWaiaadsgacaWGLbaaaKqzGeGaey4kaSIaamiC aKqbaoaaDaaajeaibaqcLbmacaWGYbaajeaibaqcLbmacaWGJbaaaK qzGeGaaGykaaaa@5D68@   (6)

T 2 2 = T 3 3 = p t eff =(p+ p t de + p t c ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aa0baaKqaGeaajugWaiaaikdaaKqaGeaajugWaiaaikdaaaqc LbsacaaI9aGaamivaKqbaoaaDaaajeaibaqcLbmacaaIZaaajeaiba qcLbmacaaIZaaaaKqzGeGaaGypaiabgkHiTiaadchajuaGdaqhaaqc basaaKqzadGaamiDaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaaK qzGeGaaGypaiabgkHiTiaaiIcacaWGWbGaey4kaSIaamiCaKqbaoaa DaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaWGKbGaamyzaaaaju gibiabgUcaRiaadchajuaGdaqhaaqcbasaaKqzadGaamiDaaqcbasa aKqzadGaam4yaaaajugibiaaiMcacaaISaaaaa@652F@   (7)

Where ρ c , p r c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCkmaaCaaaleqajeaibaqcLbmacaWGJbaaaOGaaiilaKqzGeGaamiC aKqbaoaaDaaajeaibaqcLbmacaWGYbaajeaibaqcLbmacaWGJbaaaa aa@444C@ , and p t c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb qcfa4aa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaadogaaaaa aa@3ECE@  are the contributions due to the presence of charge.

We consider that the dark energy radial pressure is proportional to the dark energy density24,25 as,

p r de =ω ρ de , 1 3 <ω<1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb qcfa4aa0baaKqaGeaajugWaiaadkhaaKqaGeaajugWaiaadsgacaWG LbaaaKqzGeGaaGypaiabgkHiTiabeM8a3jabeg8aYLqbaoaaCaaaje aibeqaaKqzadGaamizaiaadwgaaaqcLbsacaaISaGaaGiiaiaaicca kmaalaaabaqcLbsacaaIXaaakeaajugibiaaiodaaaGaaGipaiabeM 8a3jaaiYdacaaIXaGaaGilaaaa@537F@   (8)

And the dark energy density is proportional to the mass density as,

ρ de =nρ, n>0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaahaaqcbasabeaajugWaiaadsgacaWGLbaaaKqzGeGaaGyp aiaad6gacqaHbpGCcaaISaGaaGiiaiaaiccacaaIGaGaaGiiaiaad6 gacaaI+aGaaGimaiaaiYcaaaa@48C5@   (9)

As the universe expands at a fixed rate, the curvature of spacetime is constant. Hence the density of dark energy which is responsible for the expansion of the universe is also constant. Also from the first Friedmann equation, we find H 2 =( a ˙ a ) 2 = 8πG 3 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib qcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGypaiaaiIca kmaalaaabaqcLbsaceWGHbGbaiaaaOqaaKqzGeGaamyyaaaacaaIPa qcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGypaOWaaSaa aeaajugibiaaiIdacqaHapaCcaWGhbaakeaajugibiaaiodaaaGaeq yWdihaaa@4D1F@ , Here H is the Hubble parameter related with the expansion rate of the universe. This expansion rate is driven by mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCaaa@3A58@ .

We employ the following standard equation of state (EOS):

p=mρ, 0<m<1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGypaiaad2gacqaHbpGCcaaISaGaaGiiaiaaiccacaaIGaGaaGii aiaaicdacaaI8aGaamyBaiaaiYdacaaIXaGaaGilaaaa@450D@   (10)

Where m is a parameter corresponding to normal matter.It needs to be verified if equation (1) satisfies the Einstein’s equation self-consistently or nor.

The Einstein-Maxwell field equations with matter distribution as equation (3), using equations (5)-(7), are analogous with the transformations,

e λ eff ( λ eff r 1 r 2 )+ 1 r 2 =8π(ρ+ ρ de + ρ c ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb qcfa4aaWbaaKqaGeqabaqcLbmacqGHsislcqaH7oaBjuaGdaWgaaqc basaaKqzadGaamyzaiaadAgacaWGMbaajeaibeaaaaqcLbsacaaIOa GcdaWcaaqaaKqzGeGafq4UdWMbauaajuaGdaWgaaqcbasaaKqzadGa amyzaiaadAgacaWGMbaajeaibeaaaOqaaKqzGeGaamOCaaaacqGHsi slkmaalaaabaqcLbsacaaIXaaakeaajugibiaadkhakmaaCaaaleqa jeaibaqcLbmacaaIYaaaaaaajugibiaaiMcacqGHRaWkkmaalaaaba qcLbsacaaIXaaakeaajugibiaadkhajuaGdaahaaqcbasabeaajugW aiaaikdaaaaaaKqzGeGaaGypaiaaiIdacqaHapaCcaaIOaGaeqyWdi Naey4kaSIaeqyWdixcfa4aaWbaaKqaGeqabaqcLbmacaWGKbGaamyz aaaajugibiabgUcaRiabeg8aYLqbaoaaCaaajeaibeqaaKqzadGaam 4yaaaajugibiaaiMcacaaISaaaaa@702C@   (11)

e λ eff ( ν eff r + 1 r 2 ) 1 r 2 =8π(p+ p r de + p r c ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb qcfa4aaWbaaKqaGeqabaqcLbmacqGHsislcqaH7oaBjuaGdaWgaaqc basaaKqzadGaamyzaiaadAgacaWGMbaajeaibeaaaaqcLbsacaaIOa GcdaWcaaqaaKqzGeGafqyVd4MbauaajuaGdaWgaaqcbasaaKqzadGa amyzaiaadAgacaWGMbaajeaibeaaaOqaaKqzGeGaamOCaaaacqGHRa WkkmaalaaabaqcLbsacaaIXaaakeaajugibiaadkhakmaaCaaaleqa jeaibaqcLbmacaaIYaaaaaaajugibiaaiMcacqGHsislkmaalaaaba qcLbsacaaIXaaakeaajugibiaadkhakmaaCaaaleqajeaibaqcLbma caaIYaaaaaaajugibiaai2dacaaI4aGaeqiWdaNaaGikaiaadchacq GHRaWkcaWGWbqcfa4aa0baaKqaGeaajugWaiaadkhaaKqaGeaajugW aiaadsgacaWGLbaaaKqzGeGaey4kaSIaamiCaKqbaoaaDaaajeaiba qcLbmacaWGYbaajeaibaqcLbmacaWGJbaaaKqzGeGaaGykaiaaiYca aaa@71F4@   (12)

1 2 e λ eff [ 1 2 ν eff ' 2 + ν eff ' 1 2 λ eff ' ν eff '+ 1 r ( ν eff ' λ eff ')]=8π(p+ p t de + p t c ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaKqbag aajugibiaaigdaaKqbagaajugibiaaikdaaaGaamyzaKqbaoaaCaaa juaibeqaaKqzadGaeyOeI0Iaeq4UdWwcfa4aaSbaaKqbGeaajugWai aadwgacaWGMbGaamOzaaqcfasabaaaaKqzGeGaaG4waOWaaSaaaKqb agaajugibiaaigdaaKqbagaajugibiaaikdaaaGaeqyVd4wcfa4aaS baaKqbGeaajugWaiaadwgacaWGMbGaamOzaaqcfasabaqcLbmacaaI Naqcfa4aaWbaaKqbGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeq yVd4wcfa4aaSbaaKqbGeaajugWaiaadwgacaWGMbGaamOzaaqcfasa baqcLbmaceaINaGbauaajugibiabgkHiTOWaaSaaaKqbagaajugibi aaigdaaKqbagaajugibiaaikdaaaGaeq4UdWwcfa4aaSbaaKqbGeaa jugWaiaadwgacaWGMbGaamOzaaqcfasabaqcLbmacaaINaqcLbsacq aH9oGBjuaGdaWgaaqcfasaaKqzadGaamyzaiaadAgacaWGMbaajuai beaajugWaiaaiEcajugibiabgUcaROWaaSaaaKqbagaajugibiaaig daaKqbagaajugibiaadkhaaaGaaGikaiabe27aULqbaoaaBaaajuai baqcLbmacaWGLbGaamOzaiaadAgaaKqbGeqaaKqzadGaaG4jaKqzGe GaeyOeI0Iaeq4UdWwcfa4aaSbaaKqbGeaajugWaiaadwgacaWGMbGa amOzaaqcfasabaqcLbmacaaINaqcLbsacaaIPaGaaGyxaiaai2daca aI4aGaeqiWdaNaaGikaiaadchacqGHRaWkcaWGWbqcfa4aa0baaKqb GeaajugWaiaadshaaKqbGeaajugWaiaadsgacaWGLbaaaKqzGeGaey 4kaSIaamiCaKqbaoaaDaaajuaibaqcLbmacaWG0baajuaibaqcLbma caWGJbaaaKqzGeGaaGykaiaaiYcaaaa@A979@   (13)

Using equations (2), (8), (9) and (10), the above equations (11)-(13) reduce to,

b (r) r 2 + Q 2 r 4 =8π[(1+n)ρ+ ρ c ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiqadkgagaqbaiaaiIcacaWGYbGaaGykaaGcbaqcLbsacaWGYbGc daahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkkmaala aabaqcLbsacaWGrbGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqa aKqzGeGaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGinaaaaaaqcLb sacaaI9aGaaGioaiabec8aWjaaiUfacaaIOaGaaGymaiabgUcaRiaa d6gacaaIPaGaeqyWdiNaey4kaSIaeqyWdixcfa4aaWbaaKqaGeqaba qcLbmacaWGJbaaaKqzGeGaaGyxaiaaiYcaaaa@5B90@   (14)

Q 2 r 4 b(r) r 3 [2 Q 2 l r 2 ( r r s ) l ][ Q 2 +r(rb(r))] r 4 [ Q 2 + r 2 ( r r s ) l ] =8π[(1n)ωρ+ p r c ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugi biaadkhakmaaCaaaleqajeaibaqcLbmacaaI0aaaaaaajugibiabgk HiTOWaaSaaaeaajugibiaadkgacaaIOaGaamOCaiaaiMcaaOqaaKqz GeGaamOCaOWaaWbaaSqabKqaGeaajugWaiaaiodaaaaaaKqzGeGaey OeI0IcdaWcaaqaaKqzGeGaaG4waiaaikdacaWGrbqcfa4aaWbaaKqa GeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamiBaiaadkhajuaGda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGcdaWcaaqaaKqz GeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaajugWaiaado haaKqaGeqaaaaajugibiaaiMcakmaaCaaaleqajeaibaqcLbmacaWG SbaaaKqzGeGaaGyxaiaaiUfacaWGrbqcfa4aaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaey4kaSIaamOCaiaaiIcacaWGYbGaeyOeI0Ia amOyaiaaiIcacaWGYbGaaGykaiaaiMcacaaIDbaakeaajugibiaadk hajuaGdaahaaqcbasabeaajugWaiaaisdaaaqcLbsacaaIBbGaamyu aKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaadk hajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGcdaWc aaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaaju gWaiaadohaaKqaGeqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaa jugWaiaadYgaaaqcLbsacaaIDbaaaiaai2dacaaI4aGaeqiWdaNaaG 4waiaaiIcacaaIXaGaeyOeI0IaamOBaiaaiMcacqaHjpWDcqaHbpGC cqGHRaWkcaWGWbqcfa4aa0baaKqaGeaajugWaiaadkhaaKqaGeaaju gWaiaadogaaaqcLbsacaaIDbGaaGilaaaa@A2EC@   (15)

And

1 4 r 4 ( Q 2 + r 2 ( r r s ) l ) 2 [4 Q 6 + r 5 ( r r s ) 2l (b(r)(2+l l 2 )+( l 2 b (r)(l+2))r)+2 Q 4 r(2b(r) +r(2+2( r r s ) l +l ( r r s ) l + l 2 ( r r s ) l ))+ Q 2 r 3 ( r r s ) l (b(r)(2 l 2 +3l+6)+r( l 2 (2+ ( r r s ) l ) 2l(( r r s ) l 2)4( r r s ) l b (r)(l+2)+8))]=8π[(mρ+ p t de )+ p t c ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaKqzGeGaaGymaaGcbaqcLbsacaaI0aGaamOCaKqbaoaaCaaajeai beqaaKqzadGaaGinaaaajugibiaaiIcacaWGrbqcfa4aaWbaaKqaGe qabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOCaKqbaoaaCaaajeai beqaaKqzadGaaGOmaaaajugibiaaiIcakmaalaaabaqcLbsacaWGYb aakeaajugibiaadkhakmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaa jugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaadYgaaaqcLbsaca aIPaqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugibiaaiUfa caaI0aGaamyuaKqbaoaaCaaajeaibeqaaKqzadGaaGOnaaaajugibi abgUcaRiaadkhajuaGdaahaaqcbasabeaajugWaiaaiwdaaaqcLbsa caaIOaGcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaS baaKqaGeaajugWaiaadohaaKqaGeqaaaaajugibiaaiMcajuaGdaah aaqcbasabeaajugWaiaaikdacaWGSbaaaKqzGeGaaGikaiaadkgaca aIOaGaamOCaiaaiMcacaaIOaGaaGOmaiabgUcaRiaadYgacqGHsisl caWGSbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGykai abgUcaRiaaiIcacaWGSbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaeyOeI0IabmOyayaafaGaaGikaiaadkhacaaIPaGaaGikai aadYgacqGHRaWkcaaIYaGaaGykaiaaiMcacaWGYbGaaGykaiabgUca RiaaikdacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGe GaamOCaiaaiIcacqGHsislcaaIYaGaamOyaiaaiIcacaWGYbGaaGyk aaGcbaqcLbsacqGHRaWkcaWGYbGaaGikaiaaikdacqGHRaWkcaaIYa GaaGikaOWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaOWaaSba aKqaGeaajugWaiaadohaaSqabaaaaKqzGeGaaGykaKqbaoaaCaaaje aibeqaaKqzadGaamiBaaaajugibiabgUcaRiaadYgacaaIOaGcdaWc aaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaaju gWaiaadohaaKqaGeqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaa jugWaiaadYgaaaqcLbsacqGHRaWkcaWGSbqcfa4aaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaaGikaOWaaSaaaeaajugibiaadkhaaOqa aKqzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaa qcLbsacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaKqzGeGa aGykaiaaiMcacqGHRaWkcaWGrbGcdaahaaWcbeqcbasaaKqzadGaaG OmaaaajugibiaadkhajuaGdaahaaqcbasabeaajugWaiaaiodaaaqc LbsacaaIOaGcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbGcda WgaaqcbasaaKqzadGaam4CaaWcbeaaaaqcLbsacaaIPaqcfa4aaWba aKqaGeqabaqcLbmacaWGSbaaaKqzGeGaaGikaiabgkHiTiaadkgaca aIOaGaamOCaiaaiMcacaaIOaGaaGOmaiaadYgakmaaCaaaleqajeai baqcLbmacaaIYaaaaKqzGeGaey4kaSIaaG4maiaadYgacqGHRaWkca aI2aGaaGykaiabgUcaRiaadkhacaaIOaGaamiBaKqbaoaaCaaajeai beqaaKqzadGaaGOmaaaajugibiaaiIcacaaIYaGaey4kaSIaaGikaO WaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaa jugWaiaadohaaSqabaaaaKqzGeGaaGykaKqbaoaaCaaajeaibeqaaK qzadGaamiBaaaajugibiaaiMcaaOqaaKqzGeGaeyOeI0IaaGOmaKqz adGaamiBaKqzGeGaaGikaiaaiIcakmaalaaabaqcLbsacaWGYbaake aajugibiaadkhajuaGdaWgaaqcbasaaKqzadGaam4Caaqcbasabaaa aKqzGeGaaGykaOWaaWbaaSqabKqaGeaajugWaiaadYgaaaqcLbsacq GHsislcaaIYaGaaGykaiabgkHiTiaaisdacaaIOaGcdaWcaaqaaKqz GeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaajugWaiaado haaKqaGeqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaa dYgaaaqcLbsacqGHsislceWGIbGbauaacaaIOaGaamOCaiaaiMcaca aIOaGaamiBaiabgUcaRiaaikdacaaIPaGaey4kaSIaaGioaiaaiMca caaIPaGaaGyxaiaai2dacaaI4aGaeqiWdaNaaG4waiaaiIcacaWGTb GaeqyWdiNaey4kaSIaamiCaKqbaoaaDaaajeaibaqcLbmacaWG0baa jeaibaqcLbmacaWGKbGaamyzaaaajugibiaaiMcacqGHRaWkcaWGWb qcfa4aa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaadogaaaqc LbsacaaIDbGaaGilaaaaaa@4999@   (16)

The matter terms due to charge are given by,5

ρ c = p r c = p t c = Q 2 8π r 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaahaaqcbasabeaajugWaiaadogaaaqcLbsacaaI9aGaamiC aKqbaoaaDaaajeaibaqcLbmacaWGYbaajeaibaqcLbmacaWGJbaaaK qzGeGaaGypaiaadchajuaGdaqhaaqcbasaaKqzadGaamiDaaqcbasa aKqzadGaam4yaaaajugibiaai2dakmaalaaabaqcLbsacaWGrbGcda ahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGioaiabec8a WjaadkhakmaaCaaaleqajeaibaqcLbmacaaI0aaaaaaajugibiaaiY caaaa@591F@   (17)

Hence from equations (14) and (15) we find,

b(r)= e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) + e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) × 1 r [ e (n+1)(Log(p)+Log( Q 2 + p 2 ( p r s ) l )) ω(n1) ×(n+1)(2 Q 4 2 Q 2 p 2 +m Q 2 p 2 ( p r s ) l +l p 4 ( p r s ) l )× (ω(n1) p 2 ( Q 2 + p 2 ( p r s ) l )) 1 ]dp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadkgacaaIOaGaamOCaiaaiMcacaaI9aGaamyzaKqbaoaaCaaajeai beqaaKqbaoaalaaajeaibaqcLbmacaaIOaGaamOBaiabgUcaRiaaig dacaaIPaGaaGikaiabgkHiTiaadYeacaWGVbGaam4zaiaaiIcacaWG YbGaaGykaiabgUcaRiaadYeacaWGVbGaam4zaiaaiIcacaWGrbqcfa 4aaWbaaKqaGeqabaqcLbmacaaIYaaaaiabgUcaRiaadkhajuaGdaah aaqcbasabeaajugWaiaaikdaaaGaaGikaKqbaoaalaaajeaibaqcLb macaWGYbaajeaibaqcLbmacaWGYbqcfa4aaSbaaKqaGeaajugWaiaa dohaaKqaGeqaaaaajugWaiaaiMcajuaGdaahaaqcbasabeaajugWai aadYgaaaGaaGykaiaaiMcaaKqaGeaajugWaiabeM8a3jaaiIcacaWG UbGaeyOeI0IaaGymaiaaiMcaaaaaaKqzGeGaey4kaSIaamyzaKqbao aaCaaajeaibeqaaKqbaoaalaaajeaibaqcLbmacaaIOaGaamOBaiab gUcaRiaaigdacaaIPaGaaGikaiabgkHiTiaadYeacaWGVbGaam4zai aaiIcacaWGYbGaaGykaiabgUcaRiaadYeacaWGVbGaam4zaiaaiIca caWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaiabgUcaRiaadk hajuaGdaahaaqcbasabeaajugWaiaaikdaaaGaaGikaKqbaoaalaaa jeaibaqcLbmacaWGYbaajeaibaqcLbmacaWGYbqcfa4aaSbaaKqaGe aajugWaiaadohaaKqaGeqaaaaajugWaiaaiMcajuaGdaahaaqcbasa beaajugWaiaadYgaaaGaaGykaiaaiMcaaKqaGeaajugWaiabeM8a3j aaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaKqzGeGaey41aqRc daWdXbqaaKqzGeGaaG4waiabgkHiTiaadwgajuaGdaahaaqcbasabe aajuaGdaWcaaqcbasaaKqzadGaaGikaiaad6gacqGHRaWkcaaIXaGa aGykaiaaiIcacqGHsislcaWGmbGaam4BaiaadEgacaaIOaGaamiCai aaiMcacqGHRaWkcaWGmbGaam4BaiaadEgacaaIOaGaamyuaKqbaoaa CaaajeaibeqaaKqzadGaaGOmaaaacqGHRaWkcaWGWbqcfa4aaWbaaK qaGeqabaqcLbmacaaIYaaaaiaaiIcajuaGdaWcaaqcbasaaKqzadGa amiCaaqcbasaaKqzadGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZb aajeaibeaaaaqcLbmacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWG SbaaaiaaiMcacaaIPaaajeaibaqcLbmacqaHjpWDcaaIOaGaamOBai abgkHiTiaaigdacaaIPaaaaaaaaKqaGeaajugWaiaaigdaaKqaGeaa jugWaiaadkhaaKqzGeGaey4kIipaaOqaaKqzGeGaey41aqRaaGikai aad6gacqGHRaWkcaaIXaGaaGykaiaaiIcacqGHsislcaaIYaGaamyu aKqbaoaaCaaaleqabaqcLbmacaaI0aaaaKqzGeGaeyOeI0IaaGOmai aadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGWbqc fa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamyBai aadgfakmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamiCaKqb aoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiIcakmaalaaaba qcLbsacaWGWbaakeaajugibiaadkhakmaaBaaajeaibaqcLbmacaWG ZbaaleqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaadY gaaaqcLbsacqGHRaWkcaWGSbGaamiCaOWaaWbaaSqabKqaGeaajugW aiaaisdaaaqcLbsacaaIOaGcdaWcaaqaaKqzGeGaamiCaaGcbaqcLb sacaWGYbqcfa4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaajugi biaaiMcajuaGdaahaaqcbasabeaajugWaiaadYgaaaqcLbsacaaIPa Gaey41aqRaaGikaiabeM8a3jaaiIcacaWGUbGaeyOeI0IaaGymaiaa iMcacaWGWbGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaaiI cacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4k aSIaamiCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiI cakmaalaaabaqcLbsacaWGWbaakeaajugibiaadkhakmaaBaaajeai baqcLbmacaWGZbaaleqaaaaajugibiaaiMcajuaGdaahaaqcbasabe aajugWaiaadYgaaaqcLbsacaaIPaGaaGykaKqbaoaaCaaajeaibeqa aKqzadGaeyOeI0IaaGymaaaajugibiaai2facaWGKbGaamiCaaaaaa@46B0@   (18)

Where p is a variable. The effective wormhole shape function is found as,

b eff (r)= e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) Q 2 r + e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) × 1 r [ e (n+1)(Log(p)+Log( Q 2 + p 2 ( p r s ) l )) ω(n1) ×(n+1)(2 Q 4 2 Q 2 p 2 +m Q 2 p 2 ( p r s ) l +l p 4 ( p r s ) l )× (ω(n1) p 2 ( Q 2 + p 2 ( p r s ) l )) 1 ]dp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadkgakmaaBaaajeaibaqcLbmacaWGLbGaamOzaiaadAgaaKqaGeqa aKqzGeGaaGikaiaadkhacaaIPaGaaGypaiaadwgakmaaCaaaleqaje aibaGcdaWcaaqcbasaaKqzadGaaGikaiaad6gacqGHRaWkcaaIXaGa aGykaiaaiIcacqGHsislcaWGmbGaam4BaiaadEgacaaIOaGaamOCai aaiMcacqGHRaWkcaWGmbGaam4BaiaadEgacaaIOaGaamyuaOWaaWba aKqaGeqabaqcLbmacaaIYaaaaiabgUcaRiaadkhakmaaCaaajeaibe qaaKqzadGaaGOmaaaacaaIOaGcdaWcaaqcbasaaKqzadGaamOCaaqc basaaKqzadGaamOCaOWaaSbaaKqaGeaajugWaiaadohaaKqaGeqaaa aajugWaiaaiMcakmaaCaaajeaibeqaaKqzadGaamiBaaaacaaIPaGa aGykaaqcbasaaKqzadGaeqyYdCNaaGikaiaad6gacqGHsislcaaIXa GaaGykaaaaaaqcLbsacqGHsislkmaalaaabaqcLbsacaWGrbGcdaah aaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOCaaaacqGHRa WkcaWGLbGcdaahaaWcbeqcbasaaOWaaSaaaKqaGeaajugWaiaaiIca caWGUbGaey4kaSIaaGymaiaaiMcacaaIOaGaeyOeI0Iaamitaiaad+ gacaWGNbGaaGikaiaadkhacaaIPaGaey4kaSIaamitaiaad+gacaWG NbGaaGikaiaadgfakmaaCaaajeaibeqaaKqzadGaaGOmaaaacqGHRa WkcaWGYbGcdaahaaqcbasabeaajugWaiaaikdaaaGaaGikaOWaaSaa aKqaGeaajugWaiaadkhaaKqaGeaajugWaiaadkhakmaaBaaajeaiba qcLbmacaWGZbaajeaibeaaaaqcLbmacaaIPaGcdaahaaqcbasabeaa jugWaiaadYgaaaGaaGykaiaaiMcaaKqaGeaajugWaiabeM8a3jaaiI cacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaKqzGeGaey41aqRcdaWd XbqaaKqzGeGaaG4waiabgkHiTiaadwgakmaaCaaaleqajeaibaGcda WcaaqcbasaaKqzGcGaaGikaiaad6gacqGHRaWkcaaIXaGaaGykaiaa iIcacqGHsislcaWGmbGaam4BaiaadEgacaaIOaGaamiCaiaaiMcacq GHRaWkcaWGmbGaam4BaiaadEgacaaIOaGaamyuaOWaaWbaaKqaGeqa baqcLbkacaaIYaaaaiabgUcaRiaadchakmaaCaaajeaibeqaaKqzGc GaaGOmaaaacaaIOaGcdaWcaaqcbasaaKqzGcGaamiCaaqcbasaaKqz GcGaamOCaOWaaSbaaKqaGeaajugOaiaadohaaKqaGeqaaaaajugOai aaiMcakmaaCaaajeaibeqaaKqzGcGaamiBaaaacaaIPaGaaGykaaqc basaaKqzGcGaeqyYdCNaaGikaiaad6gacqGHsislcaaIXaGaaGykaa aaaaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaWGYbaajugibiab gUIiYdaakeaajugibiabgEna0kaaiIcacaWGUbGaey4kaSIaaGymai aaiMcacaaIOaGaeyOeI0IaaGOmaiaadgfakmaaCaaaleqajeaibaqc LbmacaaI0aaaaKqzGeGaeyOeI0IaaGOmaiaadgfakmaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiaadchakmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabgUcaRiaad2gacaWGrbGcdaahaaqcbauabKqaGe aajugWaiaaikdaaaqcLbsacaWGWbGcdaahaaqcbasabeaajugWaiaa ikdaaaqcLbsacaaIOaGcdaWcaaqaaKqzGeGaamiCaaGcbaqcLbsaca WGYbGcdaWgaaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzGeGaaGyk aOWaaWbaaSqabKqaGeaajugWaiaadYgaaaqcLbsacqGHRaWkcaWGSb GaamiCaOWaaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGaaGikaOWa aSaaaeaajugibiaadchaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaaju gWaiaadohaaKqaGeqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaa jugWaiaadYgaaaqcLbsacaaIPaGaey41aqRaaGikaiabeM8a3jaaiI cacaWGUbGaeyOeI0IaaGymaiaaiMcacaWGWbGcdaahaaWcbeqcbasa aKqzadGaaGOmaaaajugibiaaiIcacaWGrbGcdaahaaWcbeqcbasaaK qzadGaaGOmaaaajugibiabgUcaRiaadchakmaaCaaajeaibeqaaKqz adGaaGOmaaaajugibiaaiIcakmaalaaabaqcLbsacaWGWbaakeaaju gibiaadkhakmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaa iMcakmaaCaaajeaibeqaaKqzadGaamiBaaaajugibiaaiMcacaaIPa GcdaahaaqcbasabeaajugWaiabgkHiTiaaigdaaaqcLbsacaaIDbGa amizaiaadchaaaaa@418B@   (19)

From eqns. (14) and (17) we get expression for the energy density function as,

ρ(r)= 1 8π(1+n) r 2 ×[ (n+1)(2 Q 4 +2 Q 2 r 2 l Q 2 r 2 ( r r s ) l l r 4 ( r r s ) l ) ω(n1) r 2 ( Q 2 + r 2 ( r r s ) l ) + (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l )+ (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l ) × 1 r ( e (n+1)(Log(p)+Log( Q 2 + p 2 ( p r s ) l )) ω(n1) ×(n+1)(2 Q 4 2 Q 2 p 2 +m Q 2 p 2 ( p r s ) l +l p 4 ( p r s ) l )× (ω(n1) p 2 ( Q 2 + p 2 ( p r s ) l )) 1 )dp] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abeg8aYjaaiIcacaWGYbGaaGykaiaai2dakmaalaaajuaGbaqcLbsa caaIXaaajuaGbaqcLbsacaaI4aGaeqiWdaNaaGikaiaaigdacqGHRa WkcaWGUbGaaGykaiaadkhakmaaCaaajuaGbeqcfasaaKqzadGaaGOm aaaaaaqcLbsacqGHxdaTcaaIBbGcdaWcaaqcfayaaKqzGeGaaGikai aad6gacqGHRaWkcaaIXaGaaGykaiaaiIcacaaIYaGaamyuaOWaaWba aKqbagqajuaibaqcLbmacaaI0aaaaKqzGeGaey4kaSIaaGOmaiaadg fajuaGdaahaaqcfasabeaajugWaiaaikdaaaqcLbsacaWGYbqcfa4a aWbaaKqbGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamiBaiaadg fajuaGdaahaaqcfasabeaajugWaiaaikdaaaqcLbsacaWGYbqcfa4a aWbaaKqbGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaOWaaSaaaKqbag aajugibiaadkhaaKqbagaajugibiaadkhakmaaBaaajuaibaqcLbma caWGZbaajuaGbeaaaaqcLbsacaaIPaqcfa4aaWbaaKqbGeqabaqcLb macaWGSbaaaKqzGeGaeyOeI0IaamiBaiaadkhakmaaCaaajuaGbeqc fasaaKqzadGaaGinaaaajugibiaaiIcakmaalaaajuaGbaqcLbsaca WGYbaajuaGbaqcLbsacaWGYbGcdaWgaaqcfasaaKqzadGaam4Caaqc fayabaaaaKqzGeGaaGykaKqbaoaaCaaajuaibeqaaKqzadGaamiBaa aajugibiaaiMcaaKqbagaajugibiabeM8a3jaaiIcacaWGUbGaeyOe I0IaaGymaiaaiMcacaWGYbqcfa4aaWbaaKqbGeqabaqcLbmacaaIYa aaaKqzGeGaaGikaiaadgfajuaGdaahaaqcfasabeaajugWaiaaikda aaqcLbsacqGHRaWkcaWGYbqcfa4aaWbaaKqbGeqabaqcLbmacaaIYa aaaKqzGeGaaGikaOWaaSaaaKqbagaajugibiaadkhaaKqbagaajugi biaadkhakmaaBaaajuaibaqcLbmacaWGZbaajuaGbeaaaaqcLbsaca aIPaqcfa4aaWbaaKqbGeqabaqcLbmacaWGSbaaaKqzGeGaaGykaaaa cqGHRaWkkmaalaaajuaGbaqcLbsacaaIOaGaamOBaiabgUcaRiaaig dacaaIPaaajuaGbaqcLbsacaaIOaGaeqyYdCNaaGikaiaad6gacqGH sislcaaIXaGaaGykaiaaiMcaaaGaamyzaOWaaWbaaKqbagqajuaiba qcfa4aaSaaaKqbGeaajugWaiaaiIcacaWGUbGaey4kaSIaaGymaiaa iMcacaaIOaGaeyOeI0Iaamitaiaad+gacaWGNbGaaGikaiaadkhaca aIPaGaey4kaSIaamitaiaad+gacaWGNbGaaGikaiaadgfajuaGdaah aaqcfasabeaajugWaiaaikdaaaGaey4kaSIaamOCaKqbaoaaCaaaju aibeqaaKqzadGaaGOmaaaacaaIOaqcfa4aaSaaaKqbGeaajugWaiaa dkhaaKqbGeaajugWaiaadkhajuaGdaWgaaqcfasaaKqzadGaam4Caa qcfasabaaaaKqzadGaaGykaKqbaoaaCaaajuaibeqaaKqzadGaamiB aaaacaaIPaGaaGykaaqcfasaaKqzadGaeqyYdCNaaGikaiaad6gacq GHsislcaaIXaGaaGykaaaaaaaajuaGbaqcLbsacqGHxdaTcaaIOaGa eyOeI0IcdaWcaaqcfayaaKqzGeGaaGymaaqcfayaaKqzGeGaamOCaa aacqGHRaWkkmaalaaajuaGbaGcdaWcaaqcfayaaKqzGeGaamiBaiaa dkhakmaaCaaajuaGbeqcfasaaKqzadGaaGOmaaaajugibiaaiIcakm aalaaajuaGbaqcLbsacaWGYbaajuaGbaqcLbsacaWGYbqcfa4aaSba aKqbGeaajugWaiaadohaaKqbGeqaaaaajugibiaaiMcajuaGdaahaa qcfasabeaajugWaiaadYgacqGHsislcaaIXaaaaaqcfayaaKqzGeGa amOCaOWaaSbaaKqbGeaajugWaiaadohaaKqbagqaaaaajugibiabgU caRiaaikdacaWGYbGaaGikaOWaaSaaaKqbagaajugibiaadkhaaKqb agaajugibiaadkhakmaaBaaajuaibaqcLbmacaWGZbaajuaGbeaaaa qcLbsacaaIPaqcfa4aaWbaaKqbGeqabaqcLbmacaWGSbaaaaqcfaya aKqzGeGaamyuaOWaaWbaaKqbagqajuaibaqcLbmacaaIYaaaaKqzGe Gaey4kaSIaamOCaKqbaoaaCaaajuaibeqaaKqzadGaaGOmaaaajugi biaaiIcakmaalaaajuaGbaqcLbsacaWGYbaajuaGbaqcLbsacaWGYb qcfa4aaSbaaKqbGeaajugWaiaadohaaKqbGeqaaaaajugibiaaiMca juaGdaahaaqcfasabeaajugWaiaadYgaaaaaaKqzGeGaaGykaiabgU caROWaaSaaaKqbagaajugibiaaiIcacaWGUbGaey4kaSIaaGymaiaa iMcaaKqbagaajugibiaaiIcacqaHjpWDcaaIOaGaamOBaiabgkHiTi aaigdacaaIPaGaaGykaaaacaWGLbGcdaahaaqcfayabKqbGeaajuaG daWcaaqcfasaaKqzadGaaGikaiaad6gacqGHRaWkcaaIXaGaaGykai aaiIcacqGHsislcaWGmbGaam4BaiaadEgacaaIOaGaamOCaiaaiMca cqGHRaWkcaWGmbGaam4BaiaadEgacaaIOaGaamyuaKqbaoaaCaaaju aibeqaaKqzadGaaGOmaaaacqGHRaWkcaWGYbqcfa4aaWbaaKqbGeqa baqcLbmacaaIYaaaaiaaiIcajuaGdaWcaaqcfasaaKqzadGaamOCaa qcfasaaKqzadGaamOCaKqbaoaaBaaajuaibaqcLbmacaWGZbaajuai beaaaaqcLbmacaaIPaqcfa4aaWbaaKqbGeqabaqcLbmacaWGSbaaai aaiMcacaaIPaaajuaibaqcLbmacqaHjpWDcaaIOaGaamOBaiabgkHi TiaaigdacaaIPaaaaaaajugibiabgEna0kaaiIcacqGHsislkmaala aajuaGbaqcLbsacaaIXaaajuaGbaqcLbsacaWGYbaaaiabgUcaROWa aSaaaKqbagaakmaalaaajuaGbaqcLbsacaWGSbGaamOCaOWaaWbaaK qbagqajuaibaqcLbmacaaIYaaaaKqzGeGaaGikaOWaaSaaaKqbagaa jugibiaadkhaaKqbagaajugibiaadkhakmaaBaaajuaibaqcLbmaca WGZbaajuaGbeaaaaqcLbsacaaIPaqcfa4aaWbaaKqbGeqabaqcLbma caWGSbGaeyOeI0IaaGymaaaaaKqbagaajugibiaadkhakmaaBaaaju aGbaqcLbsacaWGZbaajuaGbeaaaaqcLbsacqGHRaWkcaaIYaGaamOC aiaaiIcakmaalaaajuaGbaqcLbsacaWGYbaajuaGbaqcLbsacaWGYb qcfa4aaSbaaKqbGeaajugWaiaadohaaKqbGeqaaaaajugibiaaiMca juaGdaahaaqcfasabeaajugWaiaadYgaaaaajuaGbaqcLbsacaWGrb qcfa4aaWbaaKqbGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOC aKqbaoaaCaaajuaibeqaaKqzadGaaGOmaaaajugibiaaiIcakmaala aajuaGbaqcLbsacaWGYbaajuaGbaqcLbsacaWGYbGcdaWgaaqcfasa aKqzadGaam4CaaqcfayabaaaaKqzGeGaaGykaKqbaoaaCaaajuaibe qaaKqzadGaamiBaaaaaaqcLbsacaaIPaaakeaajugibiabgEna0QWa a8qCaeaajugibiaaiIcacqGHsislcaWGLbGcdaahaaqcfayabKqbGe aakmaalaaajuaibaqcLbmacaaIOaGaamOBaiabgUcaRiaaigdacaaI PaGaaGikaiabgkHiTiaadYeacaWGVbGaam4zaiaaiIcacaWGWbGaaG ykaiabgUcaRiaadYeacaWGVbGaam4zaiaaiIcacaWGrbGcdaahaaqc fasabeaajugWaiaaikdaaaGaey4kaSIaamiCaOWaaWbaaKqbGeqaba qcLbmacaaIYaaaaiaaiIcakmaalaaajuaibaqcLbmacaWGWbaajuai baqcLbmacaWGYbGcdaWgaaqcfasaaKqzadGaam4CaaqcfasabaaaaK qzadGaaGykaOWaaWbaaKqbGeqabaqcLbmacaWGSbaaaiaaiMcacaaI PaaajuaibaqcLbmacqaHjpWDcaaIOaGaamOBaiabgkHiTiaaigdaca aIPaaaaaaajugibiabgEna0kaaiIcacaWGUbGaey4kaSIaaGymaiaa iMcacaaIOaGaeyOeI0IaaGOmaiaadgfajuaGdaahaaqcfasabeaaju gWaiaaisdaaaqcLbsacqGHsislcaaIYaGaamyuaOWaaWbaaKqbGeqa baqcLbmacaaIYaaaaKqzGeGaamiCaOWaaWbaaKqbafqajuaibaqcLb macaaIYaaaaKqzGeGaey4kaSIaamyBaiaadgfakmaaCaaajuaibeqa aKqzadGaaGOmaaaajugibiaadchakmaaCaaajuaibeqaaKqzadGaaG OmaaaajugibiaaiIcakmaalaaajuaGbaqcLbsacaWGWbaajuaGbaqc LbsacaWGYbGcdaWgaaqcfasaaKqzadGaam4CaaqcfayabaaaaKqzGe GaaGykaOWaaWbaaKqbafqabaqcLboacaWGSbaaaKqzGeGaey4kaSIa amiBaiaadchakmaaCaaajuaibeqaaKqzadGaaGinaaaajugibiaaiI cakmaalaaajuaGbaqcLbsacaWGWbaajuaGbaqcLbsacaWGYbGcdaWg aaqcfauaaKqzGdGaam4CaaqcfauabaaaaKqzGeGaaGykaOWaaWbaaK qbGeqabaqcLbmacaWGSbaaaKqzGeGaaGykaiabgEna0kaaiIcacqaH jpWDcaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaamiCaOWaaWbaaK qbGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaiaadgfakmaaCaaajuaq beqaaKqzGdGaaGOmaaaajugibiabgUcaRiaadchakmaaCaaajuaqbe qaaKqzGdGaaGOmaaaajugibiaaiIcakmaalaaajuaGbaqcLbsacaWG WbaajuaGbaqcLbsacaWGYbGcdaWgaaqcfauaaKqzGdGaam4Caaqcfa uabaaaaKqzGeGaaGykaOWaaWbaaKqbGeqabaqcLbmacaWGSbaaaKqz GeGaaGykaiaaiMcakmaaCaaajuaibeqaaKqzadGaeyOeI0IaaGymaa aajugibiaaiMcacaWGKbGaamiCaiaai2faaSqaaiaaigdaaeaacaWG YbaaniabgUIiYdaaaaa@681D@   (20)

The following relations are evident,

p(r)= m 8π(1+n) r 2 ×[ (n+1)(2 Q 4 +2 Q 2 r 2 l Q 2 r 2 ( r r s ) l l r 4 ( r r s ) l ) ω(n1) r 2 ( Q 2 + r 2 ( r r s ) l ) + (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l )+ (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l ) × 1 r ( e (n+1)(Log(p)+Log( Q 2 + p 2 ( p r s ) l )) ω(n1) ×(n+1)(2 Q 4 2 Q 2 p 2 +l Q 2 p 2 ( p r s ) l +l p 4 ( p r s ) l )× (ω(n1) p 2 ( Q 2 + p 2 ( p r s ) l )) 1 )dp] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadchacaaIOaGaamOCaiaaiMcacaaI9aGcdaWcaaqaaKqzGeGaamyB aaGcbaqcLbsacaaI4aGaeqiWdaNaaGikaiaaigdacqGHRaWkcaWGUb GaaGykaiaadkhajuaGdaahaaqcbasabeaajugWaiaaikdaaaaaaKqz GeGaey41aqRaaG4waOWaaSaaaeaajugibiaaiIcacaWGUbGaey4kaS IaaGymaiaaiMcacaaIOaGaaGOmaiaadgfajuaGdaahaaqcbasabeaa jugWaiaaisdaaaqcLbsacqGHRaWkcaaIYaGaamyuaOWaaWbaaSqabK qaGeaajugWaiaaikdaaaqcLbsacaWGYbqcfa4aaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaeyOeI0IaamiBaiaadgfajuaGdaahaaWcbe qcbauaaKqzadGaaGOmaaaajugibiaadkhajuaGdaahaaqcbasabeaa jugWaiaaikdaaaqcLbsacaaIOaGcdaWcaaqaaKqzGeGaamOCaaGcba qcLbsacaWGYbqcfa4aaSbaaKqaafaajug4aiaadohaaKqaafqaaaaa jugibiaaiMcakmaaCaaaleqajeaibaqcLbmacaWGSbaaaKqzGeGaey OeI0IaamiBaiaadkhajuaGdaahaaqcbasabeaajugWaiaaisdaaaqc LbsacaaIOaGcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa 4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaajugibiaaiMcajuaG daahaaqcbasabeaajugWaiaadYgaaaqcLbsacaaIPaaakeaajugibi abeM8a3jaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacaWGYbGcdaah aaWcbeqcbasaaKqzadGaaGOmaaaajugibiaaiIcacaWGrbqcfa4aaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOCaKqbaoaa CaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiIcakmaalaaabaqcLb sacaWGYbaakeaajugibiaadkhajuaGdaWgaaqcbasaaKqzadGaam4C aaqcbasabaaaaKqzGeGaaGykaOWaaWbaaSqabKqaGeaajugWaiaadY gaaaqcLbsacaaIPaaaaiabgUcaROWaaSaaaeaajugibiaaiIcacaWG UbGaey4kaSIaaGymaiaaiMcaaOqaaKqzGeGaaGikaiabeM8a3jaaiI cacaWGUbGaeyOeI0IaaGymaiaaiMcacaaIPaaaaiaadwgakmaaCaaa leqajeaibaqcfa4aaSaaaKqaGeaajugWaiaaiIcacaWGUbGaey4kaS IaaGymaiaaiMcacaaIOaGaeyOeI0Iaamitaiaad+gacaWGNbGaaGik aiaadkhacaaIPaGaey4kaSIaamitaiaad+gacaWGNbGaaGikaiaadg fajuaGdaahaaqcbasabeaajugWaiaaikdaaaGaey4kaSIaamOCaKqb aoaaCaaajeaibeqaaKqzadGaaGOmaaaacaaIOaqcfa4aaSaaaKqaGe aajugWaiaadkhaaKqaGeaajugWaiaadkhajuaGdaWgaaqcbasaaKqz adGaam4CaaqcbasabaaaaKqzadGaaGykaKqbaoaaCaaajeaibeqaaK qzadGaamiBaaaacaaIPaGaaGykaaqcbasaaKqzadGaeqyYdCNaaGik aiaad6gacqGHsislcaaIXaGaaGykaaaaaaaakeaajugibiabgEna0k aaiIcacqGHsislkmaalaaabaqcLbsacaaIXaaakeaajugibiaadkha aaGaey4kaSIcdaWcaaqaamaalaaabaqcLbsacaWGSbGaamOCaOWaaW baaSqabKqaGeaajugWaiaaikdaaaqcLbsacaaIOaGcdaWcaaqaaKqz GeGaamOCaaGcbaqcLbsacaWGYbGcdaWgaaqcbasaaKqzadGaam4Caa WcbeaaaaqcLbsacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSbGa eyOeI0IaaGymaaaaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaajugWai aadohaaSqabaaaaKqzGeGaey4kaSIaaGOmaiaadkhacaaIOaGcdaWc aaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaaju gWaiaadohaaKqaGeqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaa jugWaiaadYgaaaaakeaajugibiaadgfajuaGdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacqGHRaWkcaWGYbqcfa4aaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaaGikaOWaaSaaaeaajugibiaadkhaaOqaaK qzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqc LbsacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaaaajugibi aaiMcacqGHRaWkkmaalaaabaqcLbsacaaIOaGaamOBaiabgUcaRiaa igdacaaIPaaakeaajugibiaaiIcacqaHjpWDcaaIOaGaamOBaiabgk HiTiaaigdacaaIPaGaaGykaaaacaWGLbGcdaahaaWcbeqcbasaaKqb aoaalaaajeaibaqcLbmacaaIOaGaamOBaiabgUcaRiaaigdacaaIPa GaaGikaiabgkHiTiaadYeacaWGVbGaam4zaiaaiIcacaWGYbGaaGyk aiabgUcaRiaadYeacaWGVbGaam4zaiaaiIcacaWGrbqcfa4aaWbaaK qaGeqabaqcLbmacaaIYaaaaiabgUcaRiaadkhajuaGdaahaaqcbasa beaajugWaiaaikdaaaGaaGikaKqbaoaalaaajeaibaqcLbmacaWGYb aajeaibaqcLbmacaWGYbqcfa4aaSbaaKqaGeaajugWaiaadohaaKqa GeqaaaaajugWaiaaiMcajuaGdaahaaqcbasabeaajugWaiaadYgaaa GaaGykaiaaiMcaaKqaGeaajugWaiabeM8a3jaaiIcacaWGUbGaeyOe I0IaaGymaiaaiMcaaaaaaKqzGeGaey41aqRaaGikaiabgkHiTOWaaS aaaeaajugibiaaigdaaOqaaKqzGeGaamOCaaaacqGHRaWkkmaalaaa baWaaSaaaeaajugibiaadYgacaWGYbGcdaahaaWcbeqcbasaaKqzad GaaGOmaaaajugibiaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugi biaadkhakmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiM cakmaaCaaaleqajeaibaqcLbmacaWGSbGaeyOeI0IaaGymaaaaaOqa aKqzGeGaamOCaOWaaSbaaKqaGeaajugWaiaadohaaSqabaaaaKqzGe Gaey4kaSIaaGOmaiaadkhacaaIOaGcdaWcaaqaaKqzGeGaamOCaaGc baqcLbsacaWGYbqcfa4aaSbaaKqaafaajug4aiaadohaaKqaafqaaa aajugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaadYgaaaaakeaa jugibiaadgfakmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaey 4kaSIaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaa iIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhakmaaBaaaje aibaqcLbmacaWGZbaaleqaaaaajugibiaaiMcajuaGdaahaaqcbasa beaajugWaiaadYgaaaaaaKqzGeGaaGykaaGcbaqcLbsacqGHxdaTkm aapehabaqcLbsacaaIOaGaeyOeI0IaamyzaOWaaWbaaSqabKqaGeaa juaGdaWcaaqcbasaaKqzadGaaGikaiaad6gacqGHRaWkcaaIXaGaaG ykaiaaiIcacqGHsislcaWGmbGaam4BaiaadEgacaaIOaGaamiCaiaa iMcacqGHRaWkcaWGmbGaam4BaiaadEgacaaIOaGaamyuaKqbaoaaCa aajeaibeqaaKqzadGaaGOmaaaacqGHRaWkcaWGWbqcfa4aaWbaaKqa GeqabaqcLbmacaaIYaaaaiaaiIcajuaGdaWcaaqcbasaaKqzadGaam iCaaqcbasaaKqzadGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaa jeaibeaaaaqcLbmacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSb aaaiaaiMcacaaIPaaajeaibaqcLbmacqaHjpWDcaaIOaGaamOBaiab gkHiTiaaigdacaaIPaaaaaaajugibiabgEna0kaaiIcacaWGUbGaey 4kaSIaaGymaiaaiMcacaaIOaGaeyOeI0IaaGOmaiaadgfajuaGdaah aaqcbasabeaajugWaiaaisdaaaqcLbsacqGHsislcaaIYaGaamyuaK qbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadchajuaGdaah aaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGSbGaamyuaK qbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadchajuaGdaah aaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGcdaWcaaqaaKqzGe GaamiCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaajugWaiaadoha aKqaGeqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaadY gaaaqcLbsacqGHRaWkcaWGSbGaamiCaKqbaoaaCaaajeaibeqaaKqz adGaaGinaaaajugibiaaiIcakmaalaaabaqcLbsacaWGWbaakeaaju gibiaadkhajuaGdaWgaaqcbasaaKqzadGaam4CaaqcbasabaaaaKqz GeGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaaaajugibiaaiM cacqGHxdaTcaaIOaGaeqyYdCNaaGikaiaad6gacqGHsislcaaIXaGa aGykaiaadchajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsaca aIOaGaamyuaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiab gUcaRiaadchajuaGdaahaaqcbauabeaajugWaiaaikdaaaqcLbsaca aIOaGcdaWcaaqaaKqzGeGaamiCaaGcbaqcLbsacaWGYbGcdaWgaaqc basaaKqzadGaam4CaaWcbeaaaaqcLbsacaaIPaqcfa4aaWbaaKqaGe qabaqcLbmacaWGSbaaaKqzGeGaaGykaiaaiMcajuaGdaahaaqcbasa beaajugWaiabgkHiTiaaigdaaaqcLbsacaaIPaGaamizaiaadchaca aIDbaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaWGYbaajugibiab gUIiYdaaaaa@52BC@   (21)

ρ de = n 8π(1+n) r 2 ×[ (n+1)(2 Q 4 +2 Q 2 r 2 l Q 2 r 2 ( r r s ) l l r 4 ( r r s ) l ) ω(n1) r 2 ( Q 2 + r 2 ( r r s ) l ) + (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l )+ (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l ) × 1 r ( e (n+1)(Log(p)+Log( Q 2 + p 2 ( p r s ) l )) ω(n1) ×(n+1)(2 Q 4 2 Q 2 p 2 +l Q 2 p 2 ( p r s ) l +l p 4 ( p r s ) l )× (ω(n1) p 2 ( Q 2 + p 2 ( p r s ) l )) 1 )dp] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abeg8aYLqbaoaaCaaajeaibeqaaKqzadGaamizaiaadwgaaaqcLbsa caaI9aGcdaWcaaqaaKqzGeGaamOBaaGcbaqcLbsacaaI4aGaeqiWda NaaGikaiaaigdacqGHRaWkcaWGUbGaaGykaiaadkhakmaaCaaaleqa jeaibaqcLbmacaaIYaaaaaaajugibiabgEna0kaaiUfakmaalaaaba qcLbsacaaIOaGaamOBaiabgUcaRiaaigdacaaIPaGaaGikaiaaikda caWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGaey4kaS IaaGOmaiaadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsa caWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0 IaamiBaiaadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsa caWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaO WaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaa jugWaiaadohaaSqabaaaaKqzGeGaaGykaKqbaoaaCaaajeaibeqaaK qzadGaamiBaaaajugibiabgkHiTiaadYgacaWGYbqcfa4aaWbaaKqa GeqabaqcLbmacaaI0aaaaKqzGeGaaGikaOWaaSaaaeaajugibiaadk haaOqaaKqzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaajeai beaaaaqcLbsacaaIPaGcdaahaaWcbeqcbasaaKqzadGaamiBaaaaju gibiaaiMcaaOqaaKqzGeGaeqyYdCNaaGikaiaad6gacqGHsislcaaI XaGaaGykaiaadkhakmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGe GaaGikaiaadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsa cqGHRaWkcaWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe GaaGikaOWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaKqbaoaa BaaajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbsacaaIPaGcdaahaa WcbeqcbasaaKqzadGaamiBaaaajugibiaaiMcaaaGaey4kaSIcdaWc aaqaaKqzGeGaaGikaiaad6gacqGHRaWkcaaIXaGaaGykaaGcbaqcLb sacaaIOaGaeqyYdCNaaGikaiaad6gacqGHsislcaaIXaGaaGykaiaa iMcaaaGaamyzaOWaaWbaaSqabKqaGeaajuaGdaWcaaqcbasaaKqzad GaaGikaiaad6gacqGHRaWkcaaIXaGaaGykaiaaiIcacqGHsislcaWG mbGaam4BaiaadEgacaaIOaGaamOCaiaaiMcacqGHRaWkcaWGmbGaam 4BaiaadEgacaaIOaGaamyuaKqbaoaaCaaajeaibeqaaKqzadGaaGOm aaaacqGHRaWkcaWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaai aaiIcajuaGdaWcaaqcbasaaKqzadGaamOCaaqcbasaaKqzadGaamOC aKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbmacaaIPa qcfa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaiaaiMcacaaIPaaajeai baqcLbmacqaHjpWDcaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaa aaaOqaaKqzGeGaey41aqRaaGikaiabgkHiTOWaaSaaaeaajugibiaa igdaaOqaaKqzGeGaamOCaaaacqGHRaWkkmaalaaabaWaaSaaaeaaju gibiaadYgacaWGYbGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugi biaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhajuaGda WgaaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzGeGaaGykaKqbaoaa CaaajeaibeqaaKqzadGaamiBaiabgkHiTiaaigdaaaaakeaajugibi aadkhajuaGdaWgaaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzGeGa ey4kaSIaaGOmaiaadkhacaaIOaGcdaWcaaqaaKqzGeGaamOCaaGcba qcLbsacaWGYbqcfa4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaa jugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaadYgaaaaakeaaju gibiaadgfakmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaey4k aSIaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiI cakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhakmaaBaaajeai baqcLbmacaWGZbaaleqaaaaajugibiaaiMcajuaGdaahaaqcbasabe aajugWaiaadYgaaaaaaKqzGeGaaGykaiabgUcaROWaaSaaaeaajugi biaaiIcacaWGUbGaey4kaSIaaGymaiaaiMcaaOqaaKqzGeGaaGikai abeM8a3jaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacaaIPaaaaiaa dwgakmaaCaaaleqajeaibaqcfa4aaSaaaKqaGeaajugWaiaaiIcaca WGUbGaey4kaSIaaGymaiaaiMcacaaIOaGaeyOeI0Iaamitaiaad+ga caWGNbGaaGikaiaadkhacaaIPaGaey4kaSIaamitaiaad+gacaWGNb GaaGikaiaadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaGaey4k aSIaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaacaaIOaqcfa 4aaSaaaKqaGeaajugWaiaadkhaaKqaGeaajugWaiaadkhajuaGdaWg aaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzadGaaGykaKqbaoaaCa aajeaibeqaaKqzadGaamiBaaaacaaIPaGaaGykaaqcbasaaKqzadGa eqyYdCNaaGikaiaad6gacqGHsislcaaIXaGaaGykaaaaaaqcLbsacq GHxdaTcaaIOaGaeyOeI0IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsa caWGYbaaaiabgUcaROWaaSaaaeaadaWcaaqaaKqzGeGaamiBaiaadk hajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGcdaWc aaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaaju gWaiaadohaaKqaGeqaaaaajugibiaaiMcakmaaCaaaleqajeaibaqc LbmacaWGSbGaeyOeI0IaaGymaaaaaOqaaKqzGeGaamOCaKqbaoaaBa aajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbsacqGHRaWkcaaIYaGa amOCaiaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhakm aaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiMcajuaGdaah aaqcbasabeaajugWaiaadYgaaaaakeaajugibiaadgfajuaGdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGYbqcfa4aaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaOWaaSaaaeaajugibi aadkhaaOqaaKqzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaa jeaibeaaaaqcLbsacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSb aaaaaajugibiaaiMcaaOqaaKqzGeGaey41aqRcdaWdXbqaaKqzGeGa aGikaiabgkHiTiaadwgakmaaCaaaleqajeaibaqcfa4aaSaaaKqaGe aajugWaiaaiIcacaWGUbGaey4kaSIaaGymaiaaiMcacaaIOaGaeyOe I0Iaamitaiaad+gacaWGNbGaaGikaiaadchacaaIPaGaey4kaSIaam itaiaad+gacaWGNbGaaGikaiaadgfajuaGdaahaaqcbasabeaajugW aiaaikdaaaGaey4kaSIaamiCaKqbaoaaCaaajeaibeqaaKqzadGaaG OmaaaacaaIOaqcfa4aaSaaaKqaGeaajugWaiaadchaaKqaGeaajugW aiaadkhajuaGdaWgaaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzad GaaGykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaaaacaaIPaGaaGyk aaqcbasaaKqzadGaeqyYdCNaaGikaiaad6gacqGHsislcaaIXaGaaG ykaaaaaaqcLbsacqGHxdaTcaaIOaGaamOBaiabgUcaRiaaigdacaaI PaGaaGikaiabgkHiTiaaikdacaWGrbqcfa4aaWbaaKqaGeqabaqcLb macaaI0aaaaKqzGeGaeyOeI0IaaGOmaiaadgfajuaGdaahaaqcbasa beaajugWaiaaikdaaaqcLbsacaWGWbqcfa4aaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaey4kaSIaamiBaiaadgfajuaGdaahaaqcbasa beaajugWaiaaikdaaaqcLbsacaWGWbqcfa4aaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaaGikaOWaaSaaaeaajugibiaadchaaOqaaKqz GeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqcLb sacaaIPaGcdaahaaWcbeqcbasaaKqzadGaamiBaaaajugibiabgUca RiaadYgacaWGWbGcdaahaaWcbeqcbasaaKqzadGaaGinaaaajugibi aaiIcakmaalaaabaqcLbsacaWGWbaakeaajugibiaadkhajuaGdaWg aaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzGeGaaGykaOWaaWbaaS qabKqaGeaajugWaiaadYgaaaqcLbsacaaIPaGaey41aqRaaGikaiab eM8a3jaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacaWGWbqcfa4aaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaiaadgfajuaGdaah aaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGWbqcfa4aaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaOWaaSaaaeaajugi biaadchaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaajugWaiaadohaaS qabaaaaKqzGeGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaaaa jugibiaaiMcacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacqGHsislca aIXaaaaKqzGeGaaGykaiaadsgacaWGWbGaaGyxaaqcbasaaKqzadGa aGymaaqcbasaaKqzadGaamOCaaqcLbsacqGHRiI8aaaaaa@54DF@   (22)

p r de = nω 8π(1+n) r 2 ×[ (n+1)(2 Q 4 +2 Q 2 r 2 l Q 2 r 2 ( r r s ) l l r 4 ( r r s ) l ) ω(n1) r 2 ( Q 2 + r 2 ( r r s ) l ) + (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l )+ (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l ) × 1 r ( e (n+1)(Log(p)+Log( Q 2 + p 2 ( p r s ) l )) ω(n1) ×(n+1)(2 Q 4 2 Q 2 p 2 +l Q 2 p 2 ( p r s ) l +l p 4 ( p r s ) l )× (ω(n1) p 2 ( Q 2 + p 2 ( p r s ) l )) 1 )dp] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadchajuaGdaqhaaqcbasaaKqzadGaamOCaaqcbasaaKqzadGaamiz aiaadwgaaaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaeyOeI0IaamOBai abeM8a3bGcbaqcLbsacaaI4aGaeqiWdaNaaGikaiaaigdacqGHRaWk caWGUbGaaGykaiaadkhajuaGdaahaaqcbasabeaajugWaiaaikdaaa aaaKqzGeGaey41aqRaaG4waOWaaSaaaeaajugibiaaiIcacaWGUbGa ey4kaSIaaGymaiaaiMcacaaIOaGaaGOmaiaadgfajuaGdaahaaqcba sabeaajugWaiaaisdaaaqcLbsacqGHRaWkcaaIYaGaamyuaKqbaoaa CaaajeaibeqaaKqzadGaaGOmaaaajugibiaadkhakmaaCaaaleqaje aibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamiBaiaadgfajuaGdaah aaqcbasabeaajugWaiaaikdaaaqcLbsacaWGYbqcfa4aaWbaaKqaGe qabaqcLbmacaaIYaaaaKqzGeGaaGikaOWaaSaaaeaajugibiaadkha aOqaaKqzGeGaamOCaOWaaSbaaKqaGeaajugWaiaadohaaSqabaaaaK qzGeGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaaaajugibiab gkHiTiaadYgacaWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaI0aaaaK qzGeGaaGikaOWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaKqb aoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbsacaaIPaqcfa 4aaWbaaKqaGeqabaqcLbmacaWGSbaaaKqzGeGaaGykaaGcbaqcLbsa cqaHjpWDcaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaamOCaOWaaW baaSqabeaajugibiaaikdaaaGaaGikaiaadgfakmaaCaaaleqabaqc LbsacaaIYaaaaiabgUcaRiaadkhakmaaCaaaleqabaqcLbsacaaIYa aaaiaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhakmaa BaaaleaajugibiaadohaaSqabaaaaKqzGeGaaGykaOWaaWbaaSqabe aajugibiaadYgaaaGaaGykaaaacqGHRaWkkmaalaaabaqcLbsacaaI OaGaamOBaiabgUcaRiaaigdacaaIPaaakeaajugibiaaiIcacqaHjp WDcaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaaGykaaaacaWGLbGc daahaaWcbeqcbasaaKqbaoaalaaajeaibaqcLbmacaaIOaGaamOBai abgUcaRiaaigdacaaIPaGaaGikaiabgkHiTiaadYeacaWGVbGaam4z aiaaiIcacaWGYbGaaGykaiabgUcaRiaadYeacaWGVbGaam4zaiaaiI cacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaiabgUcaRiaa dkhajuaGdaahaaqcbasabeaajugWaiaaikdaaaGaaGikaKqbaoaala aajeaibaqcLbmacaWGYbaajeaibaqcLbmacaWGYbqcfa4aaSbaaKqa GeaajugWaiaadohaaKqaGeqaaaaajugWaiaaiMcajuaGdaahaaqcba sabeaajugWaiaadYgaaaGaaGykaiaaiMcaaKqaGeaajugWaiabeM8a 3jaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaaGcbaqcLbsacq GHxdaTcaaIOaGaeyOeI0IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsa caWGYbaaaiabgUcaROWaaSaaaeaadaWcaaqaaKqzGeGaamiBaiaadk hajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGcdaWc aaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaaju gWaiaadohaaKqaGeqaaaaajugibiaaiMcakmaaCaaaleqajeaibaqc LbmacaWGSbGaeyOeI0IaaGymaaaaaOqaaKqzGeGaamOCaOWaaSbaaK qaGeaajugWaiaadohaaSqabaaaaKqzGeGaey4kaSIaaGOmaiaadkha caaIOaGcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaS baaKqaGeaajugWaiaadohaaKqaGeqaaaaajugibiaaiMcajuaGdaah aaqcbasabeaajugWaiaadYgaaaaakeaajugibiaadgfajuaGdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGYbqcfa4aaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaOWaaSaaaeaajugibi aadkhaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaajugWaiaadohaaSqa baaaaKqzGeGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaaaaaa qcLbsacaaIPaGaey4kaSIcdaWcaaqaaKqzGeGaaGikaiaad6gacqGH RaWkcaaIXaGaaGykaaGcbaqcLbsacaaIOaGaeqyYdCNaaGikaiaad6 gacqGHsislcaaIXaGaaGykaiaaiMcaaaGaamyzaOWaaWbaaSqabKqa GeaajuaGdaWcaaqcbasaaKqzadGaaGikaiaad6gacqGHRaWkcaaIXa GaaGykaiaaiIcacqGHsislcaWGmbGaam4BaiaadEgacaaIOaGaamOC aiaaiMcacqGHRaWkcaWGmbGaam4BaiaadEgacaaIOaGaamyuaKqbao aaCaaajeaibeqaaKqzadGaaGOmaaaacqGHRaWkcaWGYbqcfa4aaWba aKqaGeqabaqcLbmacaaIYaaaaiaaiIcajuaGdaWcaaqcbasaaKqzad GaamOCaaqcbasaaKqzadGaamOCaKqbaoaaBaaajeaibaqcLbmacaWG ZbaajeaibeaaaaqcLbmacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmaca WGSbaaaiaaiMcacaaIPaaajeaibaqcLbmacqaHjpWDcaaIOaGaamOB aiabgkHiTiaaigdacaaIPaaaaaaajugibiabgEna0kaaiIcacqGHsi slkmaalaaabaqcLbsacaaIXaaakeaajugibiaadkhaaaGaey4kaSIc daWcaaqaamaalaaabaqcLbsacaWGSbGaamOCaKqbaoaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiaaiIcakmaalaaabaqcLbsacaWGYbaa keaajugibiaadkhakmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaaju gibiaaiMcakmaaCaaajeaibeqaaKqzadGaamiBaiabgkHiTiaaigda aaaakeaajugibiaadkhakmaaBaaajeaibaqcLbmacaWGZbaajeaibe aaaaqcLbsacqGHRaWkcaaIYaGaamOCaiaaiIcakmaalaaabaqcLbsa caWGYbaakeaajugibiaadkhakmaaBaaajeaibaqcLbmacaWGZbaaje aibeaaaaqcLbsacaaIPaGcdaahaaWcbeqcbasaaKqzadGaamiBaaaa aOqaaKqzGeGaamyuaOWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe Gaey4kaSIaamOCaOWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa aGikaOWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaOWaaSbaaK qaGeaajugWaiaadohaaSqabaaaaKqzGeGaaGykaOWaaWbaaKqaGeqa baqcLbmacaWGSbaaaaaajugibiaaiMcaaOqaaKqzGeGaey41aqRcda WdXbqaaKqzGeGaaGikaiabgkHiTiaadwgakmaaCaaaleqajeaibaqc fa4aaSaaaKqaGeaajugWaiaaiIcacaWGUbGaey4kaSIaaGymaiaaiM cacaaIOaGaeyOeI0Iaamitaiaad+gacaWGNbGaaGikaiaadchacaaI PaGaey4kaSIaamitaiaad+gacaWGNbGaaGikaiaadgfajuaGdaahaa qcbasabeaajugWaiaaikdaaaGaey4kaSIaamiCaKqbaoaaCaaajeai beqaaKqzadGaaGOmaaaacaaIOaqcfa4aaSaaaKqaGeaajugWaiaadc haaKqaGeaajugWaiaadkhajuaGdaWgaaqcbasaaKqzadGaam4Caaqc basabaaaaKqzadGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaa aacaaIPaGaaGykaaqcbasaaKqzadGaeqyYdCNaaGikaiaad6gacqGH sislcaaIXaGaaGykaaaaaaqcLbsacqGHxdaTcaaIOaGaamOBaiabgU caRiaaigdacaaIPaGaaGikaiabgkHiTiaaikdacaWGrbqcfa4aaWba aKqaGeqabaqcLbmacaaI0aaaaKqzGeGaeyOeI0IaaGOmaiaadgfaju aGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGWbGcdaahaaWc beqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiaadYgacaWGrbqcfa 4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamiCaKqbaoaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiaaiIcakmaalaaabaqcLbsaca WGWbaakeaajugibiaadkhajuaGdaWgaaqcbasaaKqzadGaam4Caaqc basabaaaaKqzGeGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaa aajugibiabgUcaRiaadYgacaWGWbqcfa4aaWbaaKqaGeqabaqcLbma caaI0aaaaKqzGeGaaGikaOWaaSaaaeaajugibiaadchaaOqaaKqzGe GaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbsa caaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaKqzGeGaaGykai abgEna0kaaiIcacqaHjpWDcaaIOaGaamOBaiabgkHiTiaaigdacaaI PaGaamiCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiI cacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4k aSIaamiCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiI cakmaalaaabaqcLbsacaWGWbaakeaajugibiaadkhajuaGdaWgaaqc basaaKqzadGaam4CaaqcbasabaaaaKqzGeGaaGykaKqbaoaaCaaaje aibeqaaKqzadGaamiBaaaajugibiaaiMcacaaIPaqcfa4aaWbaaKqa GeqabaqcLbmacqGHsislcaaIXaaaaKqzGeGaaGykaiaadsgacaWGWb GaaGyxaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaamOCaaqcLbsa cqGHRiI8aaaaaa@4F93@   (23)

And a big expression for the dark energy tangential pressure as,

p t de = 1 32π r 4 ( Q 2 + r 2 ( r r s ) l ) 2 [4 Q 6 + r 5 ( r r s ) 2l (b(r)(2+l l 2 )+( l 2 b (r)(l+2))r) +2 Q 4 r(2b(r)+r(2+2( r r s ) l +l ( r r s ) l + l 2 ( r r s ) l ))+ Q 2 r 3 ( r r s ) l (b(r)(2 l 2 +3l+6) +r( l 2 (2+ ( r r s ) l )2l(( r r s ) l 2)4( r r s ) l b (r)(l+2)+8))] m 8π(1+n) r 2 ×[ (n+1)(2 Q 4 +2 Q 2 r 2 l Q 2 r 2 ( r r s ) l l r 4 ( r r s ) l ) ω(n1) r 2 ( Q 2 + r 2 ( r r s ) l ) + (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l )+ (n+1) (ω(n1)) e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) ×( 1 r + l r 2 ( r r s ) l1 r s +2r ( r r s ) l Q 2 + r 2 ( r r s ) l )× 1 r ( e (n+1)(Log(p)+Log( Q 2 + p 2 ( p r s ) l )) ω(n1) ×(n+1)(2 Q 4 2 Q 2 p 2 +l Q 2 p 2 ( p r s ) l +l p 4 ( p r s ) l )× (ω(n1) p 2 ( Q 2 + p 2 ( p r s ) l )) 1 )dp] Q 2 8π r 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadchajuaGdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaamiz aiaadwgaaaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLb sacaaIZaGaaGOmaiabec8aWjaadkhakmaaCaaaleqajeaibaqcLbma caaI0aaaaKqzGeGaaGikaiaadgfakmaaCaaaleqajeaibaqcLbmaca aIYaaaaKqzGeGaey4kaSIaamOCaKqbaoaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibi aadkhakmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiMca juaGdaahaaqcbasabeaajugWaiaadYgaaaqcLbsacaaIPaqcfa4aaW baaKqaGeqabaqcLbmacaaIYaaaaaaajugibiaaiUfacaaI0aGaamyu aKqbaoaaCaaajeaibeqaaKqzadGaaGOnaaaajugibiabgUcaRiaadk hajuaGdaahaaqcbasabeaajugWaiaaiwdaaaqcLbsacaaIOaGcdaWc aaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaaju gWaiaadohaaKqaGeqaaaaajugibiaaiMcajuaGdaahaaqcbauabeaa jugWaiaaikdacaWGSbaaaKqzGeGaaGikaiaadkgacaaIOaGaamOCai aaiMcacaaIOaGaaGOmaiabgUcaRiaadYgacqGHsislcaWGSbqcfa4a aWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGykaiabgUcaRiaaiI cacaWGSbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOe I0IabmOyayaafaGaaGikaiaadkhacaaIPaGaaGikaiaadYgacqGHRa WkcaaIYaGaaGykaiaaiMcacaWGYbGaaGykaaGcbaqcLbsacqGHRaWk caaIYaGaamyuaKqbaoaaCaaajeaibeqaaKqzadGaaGinaaaajugibi aadkhacaaIOaGaeyOeI0IaaGOmaiaadkgacaaIOaGaamOCaiaaiMca cqGHRaWkcaWGYbGaaGikaiaaikdacqGHRaWkcaaIYaGaaGikaOWaaS aaaeaajugibiaadkhaaOqaaKqzGeGaamOCaKqbaoaaBaaajeaibaqc LbmacaWGZbaajeaibeaaaaqcLbsacaaIPaqcfa4aaWbaaKqaGeqaba qcLbmacaWGSbaaaKqzGeGaey4kaSIaamiBaiaaiIcakmaalaaabaqc LbsacaWGYbaakeaajugibiaadkhakmaaBaaajeaibaqcLbmacaWGZb aaleqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaadYga aaqcLbsacqGHRaWkcaWGSbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYa aaaKqzGeGaaGikaOWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOC aKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbsacaaIPa qcfa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaKqzGeGaaGykaiaaiMca cqGHRaWkcaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe GaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaG4maaaajugibiaaiIca kmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhajuaGdaWgaaqcba saaKqzadGaam4CaaqcbasabaaaaKqzGeGaaGykaKqbaoaaCaaajeai beqaaKqzadGaamiBaaaajugibiaaiIcacqGHsislcaWGIbGaaGikai aadkhacaaIPaGaaGikaiaaikdacaWGSbqcfa4aaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaey4kaSIaaG4maiaadYgacqGHRaWkcaaI2a GaaGykaaGcbaqcLbsacqGHRaWkcaWGYbGaaGikaiaadYgajuaGdaah aaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGaaGOmaiabgUcaRi aaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhakmaaBaaa jeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiMcajuaGdaahaaqcba sabeaajugWaiaadYgaaaqcLbsacaaIPaGaeyOeI0IaaGOmaiaadYga caaIOaGaaGikaOWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaK qbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbsacaaIPaqc fa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaKqzGeGaeyOeI0IaaGOmai aaiMcacqGHsislcaaI0aGaaGikaOWaaSaaaeaajugibiaadkhaaOqa aKqzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaa qcLbsacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaKqzGeGa eyOeI0IabmOyayaafaGaaGikaiaadkhacaaIPaGaaGikaiaadYgacq GHRaWkcaaIYaGaaGykaiabgUcaRiaaiIdacaaIPaGaaGykaiaai2fa cqGHsislkmaalaaabaqcLbsacaWGTbaakeaajugibiaaiIdacqaHap aCcaaIOaGaaGymaiabgUcaRiaad6gacaaIPaGaamOCaKqbaoaaCaaa jeaibeqaaKqzadGaaGOmaaaaaaaakeaajugibiabgEna0kaaiUfakm aalaaabaqcLbsacaaIOaGaamOBaiabgUcaRiaaigdacaaIPaGaaGik aiaaikdacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGe Gaey4kaSIaaGOmaiaadgfajuaGdaahaaqcbasabeaajugWaiaaikda aaqcLbsacaWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe GaeyOeI0IaamiBaiaadgfajuaGdaahaaqcbasabeaajugWaiaaikda aaqcLbsacaWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe GaaGikaOWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaKqbaoaa BaaajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbsacaaIPaGcdaahaa WcbeqcbauaaKqzadGaamiBaaaajugibiabgkHiTiaadYgacaWGYbqc fa4aaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGaaGikaOWaaSaaae aajugibiaadkhaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaajugWaiaa dohaaSqabaaaaKqzGeGaaGykaOWaaWbaaSqabKqaGeaajugWaiaadY gaaaqcLbsacaaIPaaakeaajugibiabeM8a3jaaiIcacaWGUbGaeyOe I0IaaGymaiaaiMcacaWGYbGcdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiaaiIcacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaey4kaSIaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaa aajugibiaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkha kmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiMcajuaGda ahaaqcbasabeaajugWaiaadYgaaaqcLbsacaaIPaaaaiabgUcaROWa aSaaaeaajugibiaaiIcacaWGUbGaey4kaSIaaGymaiaaiMcaaOqaaK qzGeGaaGikaiabeM8a3jaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMca caaIPaaaaiaadwgakmaaCaaaleqajeaibaqcfa4aaSaaaKqaGeaaju gWaiaaiIcacaWGUbGaey4kaSIaaGymaiaaiMcacaaIOaGaeyOeI0Ia amitaiaad+gacaWGNbGaaGikaiaadkhacaaIPaGaey4kaSIaamitai aad+gacaWGNbGaaGikaiaadgfajuaGdaahaaqcbasabeaajugWaiaa ikdaaaGaey4kaSIaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaa aacaaIOaqcfa4aaSaaaKqaGeaajugWaiaadkhaaKqaGeaajugWaiaa dkhajuaGdaWgaaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzadGaaG ykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaaaacaaIPaGaaGykaaqc basaaKqzadGaeqyYdCNaaGikaiaad6gacqGHsislcaaIXaGaaGykaa aaaaaakeaajugibiabgEna0kaaiIcacqGHsislkmaalaaabaqcLbsa caaIXaaakeaajugibiaadkhaaaGaey4kaSIcdaWcaaqaamaalaaaba qcLbsacaWGSbGaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaa jugibiaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhakm aaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiMcajuaGdaah aaqcbasabeaajugWaiaadYgacqGHsislcaaIXaaaaaGcbaqcLbsaca WGYbqcfa4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaajugibiab gUcaRiaaikdacaWGYbGaaGikaOWaaSaaaeaajugibiaadkhaaOqaaK qzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqc LbsacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaaGcbaqcLb sacaWGrbGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgUca RiaadkhajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOa GcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqa GeaajugWaiaadohaaKqaGeqaaaaajugibiaaiMcakmaaCaaaleqaje aibaqcLbmacaWGSbaaaaaajugibiaaiMcacqGHRaWkkmaalaaabaqc LbsacaaIOaGaamOBaiabgUcaRiaaigdacaaIPaaakeaajugibiaaiI cacqaHjpWDcaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaaGykaaaa caWGLbGcdaahaaWcbeqcbasaaKqbaoaalaaajeaibaqcLbmacaaIOa GaamOBaiabgUcaRiaaigdacaaIPaGaaGikaiabgkHiTiaadYeacaWG VbGaam4zaiaaiIcacaWGYbGaaGykaiabgUcaRiaadYeacaWGVbGaam 4zaiaaiIcacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaiab gUcaRiaadkhajuaGdaahaaqcbasabeaajugWaiaaikdaaaGaaGikaK qbaoaalaaajeaibaqcLbmacaWGYbaajeaibaqcLbmacaWGYbqcfa4a aSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaajugWaiaaiMcajuaGda ahaaqcbasabeaajugWaiaadYgaaaGaaGykaiaaiMcaaKqaGeaajugW aiabeM8a3jaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaaGcba qcLbsacqGHxdaTcaaIOaGaeyOeI0IcdaWcaaqaaKqzGeGaaGymaaGc baqcLbsacaWGYbaaaiabgUcaROWaaSaaaeaadaWcaaqaaKqzGeGaam iBaiaadkhakmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaaGik aOWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaSWaaSbaaKqaGe aajugOaiaadohaaKqaGeqaaaaajugibiaaiMcajuaGdaahaaqcbasa beaajugWaiaadYgacqGHsislcaaIXaaaaaGcbaqcLbsacaWGYbGcda WgaaqcbauaaKqzadGaam4CaaWcbeaaaaqcLbsacqGHRaWkcaaIYaGa amOCaiaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkhakm aaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiMcakmaaCaaa leqajeaibaqcLbmacaWGSbaaaaGcbaqcLbsacaWGrbqcfa4aaWbaaK qaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOCaKqbaoaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiaaiIcakmaalaaabaqcLbsaca WGYbaakeaajugibiaadkhakmaaBaaajeaibaqcLbmacaWGZbaaleqa aaaajugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaadYgaaaaaaK qzGeGaaGykaiabgEna0QWaa8qCaeaajugibiaaiIcacqGHsislcaWG Lbqcfa4aaWbaaKqaGeqabaqcfa4aaSaaaKqaGeaajugWaiaaiIcaca WGUbGaey4kaSIaaGymaiaaiMcacaaIOaGaeyOeI0Iaamitaiaad+ga caWGNbGaaGikaiaadchacaaIPaGaey4kaSIaamitaiaad+gacaWGNb GaaGikaiaadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaGaey4k aSIaamiCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaacaaIOaqcfa 4aaSaaaKqaGeaajugWaiaadchaaKqaGeaajugWaiaadkhajuaGdaWg aaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzadGaaGykaKqbaoaaCa aajeaibeqaaKqzadGaamiBaaaacaaIPaGaaGykaaqcbasaaKqzadGa eqyYdCNaaGikaiaad6gacqGHsislcaaIXaGaaGykaaaaaaaajeaiba qcLbmacaaIXaaajeaibaqcLbmacaWGYbaajugibiabgUIiYdaakeaa jugibiabgEna0kaaiIcacaWGUbGaey4kaSIaaGymaiaaiMcacaaIOa GaeyOeI0IaaGOmaiaadgfajuaGdaahaaqcbasabeaajugWaiaaisda aaqcLbsacqGHsislcaaIYaGaamyuaKqbaoaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiaadchajuaGdaahaaqcbasabeaajugWaiaaikda aaqcLbsacqGHRaWkcaWGSbGaamyuaOWaaWbaaSqabKqaGeaajugWai aaikdaaaqcLbsacaWGWbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaaGikaOWaaSaaaeaajugibiaadchaaOqaaKqzGeGaamOCaO WaaSbaaKqaGeaajugWaiaadohaaSqabaaaaKqzGeGaaGykaKqbaoaa CaaajeaibeqaaKqzadGaamiBaaaajugibiabgUcaRiaadYgacaWGWb qcfa4aaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGaaGikaOWaaSaa aeaajugibiaadchaaOqaaKqzGeGaamOCaKqbaoaaBaaajeaibaqcLb macaWGZbaajeaibeaaaaqcLbsacaaIPaqcfa4aaWbaaKqaGeqabaqc LbmacaWGSbaaaKqzGeGaaGykaiabgEna0kaaiIcacqaHjpWDcaaIOa GaamOBaiabgkHiTiaaigdacaaIPaGaamiCaKqbaoaaCaaajeaibeqa aKqzadGaaGOmaaaajugibiaaiIcacaWGrbqcfa4aaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaey4kaSIaamiCaKqbaoaaCaaajeaibeqa aKqzadGaaGOmaaaajugibiaaiIcakmaalaaabaqcLbsacaWGWbaake aajugibiaadkhajuaGdaWgaaqcbasaaKqzadGaam4Caaqcbasabaaa aKqzGeGaaGykaKqbaoaaCaaajeaibeqaaKqzadGaamiBaaaajugibi aaiMcacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaa aKqzGeGaaGykaiaadsgacaWGWbGaaGyxaiabgkHiTOWaaSaaaeaaju gibiaadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugi biaaiIdacqaHapaCcaWGYbGcdaahaaWcbeqcbasaaKqzadGaaGinaa aaaaaaaaa@5AF6@   (24)

  1. n= 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb GaaGypaOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaaaaa@3D0B@

The wormhole shape function is plotted below [Assuming Q 2 =0.1,ω= 2 3 ,l=0.05, r s =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGypaiaaicda caaIUaGaaGymaiaaiYcacqaHjpWDcaaI9aGcdaWcaaqaaKqzGeGaaG OmaaGcbaqcLbsacaaIZaaaaiaaiYcacaWGSbGaaGypaiaaicdacaaI UaGaaGimaiaaiwdacaaISaGaamOCaOWaaSbaaKqaGeaajugWaiaado haaSqabaqcLbsacaaI9aGaaGymaaaa@5157@ ].

It is evident from the Figure 1, that the throat occurs at r 0 =0.9092 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaai2dacaaIWaGa aGOlaiaaiMdacaaIWaGaaGyoaiaaikdaaaa@419B@ . The flare-out conditions, b eff (0.9092)=0.9092 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaqc LbsacaaIOaGaaGimaiaai6cacaaI5aGaaGimaiaaiMdacaaIYaGaaG ykaiaai2dacaaIWaGaaGOlaiaaiMdacaaIWaGaaGyoaiaaikdaaaa@4A07@  and b eff '(0.9092)=4.92297<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaqc LbsacaaINaGaaGikaiaaicdacaaIUaGaaGyoaiaaicdacaaI5aGaaG OmaiaaiMcacaaI9aGaeyOeI0IaaGinaiaai6cacaaI5aGaaGOmaiaa ikdacaaI5aGaaG4naiaaiYdacaaIXaaaaa@4DED@  is also satisfied. As the wormhole shape function b eff (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GcdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaleqaaKqzGeGa aGikaiaadkhacaaIPaaaaa@40B8@  and the energy momentum tensor T b a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aa0baaKqaGeaajugWaiaadkgaaKqaGeaajugWaiaadggaaaaa aa@3E9E@  self-consistently satisfy the E-M equations, hence the wormhole spacetime metric in equation (1) is valid (Figures 2–4).

Figure 1 The shape function of the wormhole against r(k.p.c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGikaiaadUgacaaIUaGaamiCaiaai6cacaWGJbGaaGykaaaa@3F31@ .

Figure 2 The throat occurs where b eff (r)r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GcdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaleqaaKqzGeGa aGikaiaadkhacaaIPaGaeyOeI0IaamOCaaaa@429C@ cuts the r-axis.

Figure 3 b eff (r) r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadkgajuaGdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaa jeaibeaajugibiaaiIcacaWGYbGaaGykaaGcbaqcLbsacaWGYbaaaa aa@42FB@ is plotted against r(k.p.c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGikaiaadUgacaaIUaGaamiCaiaai6cacaWGJbGaaGykaaaa@3F31@ .

Figure 4 (1 b eff (r) r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaaGymaiabgkHiTOWaaSaaaeaajugibiaadkgakmaaBaaajeaibaqc LbmacaWGLbGaamOzaiaadAgaaSqabaqcLbsacaaIOaGaamOCaiaaiM caaOqaaKqzGeGaamOCaaaacaaIPaaaaa@45FE@ is plotted against r(k.p.c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGikaiaadUgacaaIUaGaamiCaiaai6cacaWGJbGaaGykaaaa@3F31@ .

The electric field5 is given below and plotted graphically in Figure 5,

E(r)= Q r 2 × g tt g rr = Q r 2 × ( r r s ) l + Q 2 r 2 (1 b(r) r + Q 2 r 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GaaGikaiaadkhacaaIPaGaaGypaOWaaSaaaeaajugibiaadgfaaOqa aKqzGeGaamOCaOWaaWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqzGe Gaey41aqRcdaGcaaqaaKqzGeGaam4zaOWaaSbaaKqaGeaajugWaiaa dshacaWG0baaleqaaKqzGeGaam4zaOWaaSbaaKqaGeaajugWaiaadk hacaWGYbaaleqaaaqabaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaamyu aaGcbaqcLbsacaWGYbGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaa qcLbsacqGHxdaTkmaakaaabaWaaSaaaeaajugibiaaiIcakmaalaaa baqcLbsacaWGYbaakeaajugibiaadkhakmaaBaaajeaibaqcLbmaca WGZbaaleqaaaaajugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaa dYgaaaqcLbsacqGHRaWkkmaalaaabaqcLbsacaWGrbqcfa4aaWbaaK qaGeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaWGYbqcfa4aaWbaaKqa GeqabaqcLbmacaaIYaaaaaaaaOqaaKqzGeGaaGikaiaaigdacqGHsi slkmaalaaabaqcLbsacaWGIbGaaGikaiaadkhacaaIPaaakeaajugi biaadkhaaaGaey4kaSIcdaWcaaqaaKqzGeGaamyuaKqbaoaaCaaaje aibeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOCaOWaaWbaaSqabKqa GeaajugWaiaaikdaaaaaaKqzGeGaaGykaaaaaSqabaqcLbsacaaISa aaaa@814C@   (25)

Figure 5 The elctric field is plotted against r(k.p.c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGikaiaadUgacaaIUaGaamiCaiaai6cacaWGJbGaaGykaaaa@3F31@ .

The wormhole metric is valid throughout the galactic halo region. Also the test particle and the wormhole itself are in the same gravitational field of the galactic halo. Hence, the flat rotation curve for the circular stable geodesic motion of a test particle on the outer regions of the galactic halo and in the equatorial plane yields the tangential velocity26–28 as,

( v ϕ ) 2 = r 2 ν (r), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamODaKqbaoaaCaaajeaibeqaaKqzadGaeqy1dygaaKqzGeGaaGyk aKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaai2dakmaala aabaqcLbsacaWGYbaakeaajugibiaaikdaaaGafqyVd4MbauaacaaI OaGaamOCaiaaiMcacaaISaaaaa@4B3C@   (26)

Using equation (2) we find,

( v ϕ ) 2 = l ( r r s ) l 2 Q 2 r 2 2[( r r s ) l + Q 2 r 2 ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamODaKqbaoaaCaaajeaibeqaaKqzadGaeqy1dygaaKqzGeGaaGyk aKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaai2dakmaala aabaqcLbsacaWGSbGaaGikaOWaaSaaaeaajugibiaadkhaaOqaaKqz GeGaamOCaOWaaSbaaKqaGeaajugWaiaadohaaSqabaaaaKqzGeGaaG ykaOWaaWbaaSqabKqaGeaajugWaiaadYgaaaqcLbsacqGHsislkmaa laaabaqcLbsacaaIYaGaamyuaOWaaWbaaSqabKqaGeaajugWaiaaik daaaaakeaajugibiaadkhajuaGdaahaaqcbasabeaajugWaiaaikda aaaaaaGcbaqcLbsacaaIYaGaaG4waiaaiIcakmaalaaabaqcLbsaca WGYbaakeaajugibiaadkhajuaGdaWgaaqcbasaaKqzadGaam4Caaqc basabaaaaKqzGeGaaGykaOWaaWbaaSqabKqaGeaajugWaiaadYgaaa qcLbsacqGHRaWkkmaalaaabaqcLbsacaWGrbqcfa4aaWbaaKqaGeqa baqcLbmacaaIYaaaaaGcbaqcLbsacaWGYbGcdaahaaWcbeqcbasaaK qzadGaaGOmaaaaaaqcLbsacaaIDbaaaiaaiYcaaaa@724D@   (27)

The velocity profile is shown in Figure 6 which is also consistent as per observations,

Figure 6 The velocity of galactic rotation curve is shown against r(k.p.c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGikaiaadUgacaaIUaGaamiCaiaai6cacaWGJbGaaGykaaaa@3F31@ .

However, if l=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb GaaGypaiaaicdaaaa@3B0A@ , then Q should also vanish simultaneously for a static and uncharged wormhole solution. For a positive circular rotational velocity, when i is considered as a parameter dependent on r we find,

l LambertW[ 2 Q 2 Log( r r s ) r 2 ] Log( r r s ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb GaeyyzImRcdaWcaaqaaKqzGeGaamitaiaadggacaWGTbGaamOyaiaa dwgacaWGYbGaamiDaiaadEfacaaIBbGcdaWcaaqaaKqzGeGaaGOmai aadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGmbGa am4BaiaadEgacaaIOaGcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsaca WGYbGcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaaqcLbsacaaIPaaa keaajugibiaadkhakmaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaju gibiaai2faaOqaaKqzGeGaamitaiaad+gacaWGNbGaaGikaOWaaSaa aeaajugibiaadkhaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaajugWai aadohaaSqabaaaaKqzGeGaaGykaaaacaaISaaaaa@6507@   (28)

Where the Lambert W-function also called omega function is the inverse function of f(W)=W e W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb GaaGikaiaadEfacaaIPaGaaGypaiaadEfacaWGLbqcfa4aaWbaaKqa GeqabaqcLbmacaWGxbaaaaaa@4135@ . For static and charged wormhole, l(r) decreases as r increases and is shown in Figure 7.

Figure 7 l(r) is shown against r.

Profile curve and embedding diagram of the wormhole

The profile curve is of the wormhole is defined by,2,29

dz dr =± 1 r/ b eff (r)1 =±[r×( e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) Q 2 r + e (n+1)(Log(r)+Log( Q 2 + r 2 ( r r s ) l )) ω(n1) × 1 r [ e (n+1)(Log(p)+Log( Q 2 + p 2 ( p r s ) l )) ω(n1) ×(n+1)(2 Q 4 2 Q 2 p 2 +m Q 2 p 2 ( p r s ) l +l p 4 ( p r s ) l )× (ω(n1) p 2 ( Q 2 + p 2 ( p r s ) l )) 1 ]dp ) 1 1] 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaKqzGeGaamizaiaadQhaaOqaaKqzGeGaamizaiaadkhaaaGaaGyp aiabgglaXQWaaSaaaeaajugibiaaigdaaOqaamaakaaabaqcLbsaca WGYbGaaG4laiaadkgakmaaBaaajeaibaqcLbmacaWGLbGaamOzaiaa dAgaaSqabaqcLbsacaaIOaGaamOCaiaaiMcacqGHsislcaaIXaaale qaaaaajugibiaai2dacqGHXcqScaaIBbGaamOCaiabgEna0kaaiIca caWGLbGcdaahaaWcbeqcbasaaKqbaoaalaaajeaibaqcLbmacaaIOa GaamOBaiabgUcaRiaaigdacaaIPaGaaGikaiabgkHiTiaadYeacaWG VbGaam4zaiaaiIcacaWGYbGaaGykaiabgUcaRiaadYeacaWGVbGaam 4zaiaaiIcacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaiab gUcaRiaadkhajuaGdaahaaqcbasabeaajugWaiaaikdaaaGaaGikaK qbaoaalaaajeaibaqcLbmacaWGYbaajeaibaqcLbmacaWGYbqcfa4a aSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaajugWaiaaiMcajuaGda ahaaqcbasabeaajugWaiaadYgaaaGaaGykaiaaiMcaaKqaGeaajugW aiabeM8a3jaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaaaaKqzGe GaeyOeI0IcdaWcaaqaaKqzGeGaamyuaKqbaoaaCaaajeaibeqaaKqz adGaaGOmaaaaaOqaaKqzGeGaamOCaaaaaOqaaKqzGeGaey4kaSIaam yzaOWaaWbaaSqabKqaGeaajuaGdaWcaaqcbasaaKqzadGaaGikaiaa d6gacqGHRaWkcaaIXaGaaGykaiaaiIcacqGHsislcaWGmbGaam4Bai aadEgacaaIOaGaamOCaiaaiMcacqGHRaWkcaWGmbGaam4BaiaadEga caaIOaGaamyuaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaacqGHRa WkcaWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaiaaiIcajuaG daWcaaqcbasaaKqzadGaamOCaaqcbasaaKqzadGaamOCaKqbaoaaBa aajeaibaqcLbmacaWGZbaajeaibeaaaaqcLbmacaaIPaqcfa4aaWba aKqaGeqabaqcLbmacaWGSbaaaiaaiMcacaaIPaaajeaibaqcLbmacq aHjpWDcaaIOaGaamOBaiabgkHiTiaaigdacaaIPaaaaaaajugibiab gEna0QWaa8qCaeaajugibiaaiUfacqGHsislcaWGLbGcdaahaaWcbe qcbasaaOWaaSaaaKqaGeaajugWaiaaiIcacaWGUbGaey4kaSIaaGym aiaaiMcacaaIOaGaeyOeI0Iaamitaiaad+gacaWGNbGaaGikaiaadc hacaaIPaGaey4kaSIaamitaiaad+gacaWGNbGaaGikaiaadgfakmaa CaaajeaibeqaaKqzadGaaGOmaaaacqGHRaWkcaWGWbGcdaahaaqcba sabeaajugWaiaaikdaaaGaaGikaOWaaSaaaKqaGeaajugWaiaadcha aKqaGeaajugWaiaadkhakmaaBaaajeaibaqcLbmacaWGZbaajeaibe aaaaqcLbmacaaIPaGcdaahaaqcbasabeaajugWaiaadYgaaaGaaGyk aiaaiMcaaKqaGeaajugWaiabeM8a3jaaiIcacaWGUbGaeyOeI0IaaG ymaiaaiMcaaaaaaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaamOC aaqcLbsacqGHRiI8aiabgEna0kaaiIcacaWGUbGaey4kaSIaaGymai aaiMcacaaIOaGaeyOeI0IaaGOmaiaadgfakmaaCaaajeaibeqaaKqz adGaaGinaaaajugibiabgkHiTiaaikdacaWGrbGcdaahaaWcbeqcba saaKqzadGaaGOmaaaajugibiaadchakmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabgUcaRiaad2gacaWGrbGcdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacaWGWbGcdaahaaqcbasabeaajugWaiaaikda aaqcLbsacaaIOaGcdaWcaaqaaKqzGeGaamiCaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaam4CaaqcbasabaaaaKqzGeGaaGykaOWa aWbaaKqaGeqabaqcLbmacaWGSbaaaaGcbaqcLbsacqGHRaWkcaWGSb GaamiCaOWaaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGaaGikaOWa aSaaaeaajugibiaadchaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaaju gWaiaadohaaSqabaaaaKqzGeGaaGykaOWaaWbaaKqaGeqabaqcLbma caWGSbaaaKqzGeGaaGykaiabgEna0kaaiIcacqaHjpWDcaaIOaGaam OBaiabgkHiTiaaigdacaaIPaGaamiCaOWaaWbaaKqaGeqabaqcLbma caaIYaaaaKqzGeGaaGikaiaadgfakmaaCaaajeaibeqaaKqzadGaaG OmaaaajugibiabgUcaRiaadchakmaaCaaajeaibeqaaKqzadGaaGOm aaaajugibiaaiIcakmaalaaabaqcLbsacaWGWbaakeaajugibiaadk hakmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiMcakmaa CaaajeaibeqaaKqzadGaamiBaaaajugibiaaiMcacaaIPaGcdaahaa qcbasabeaajugWaiabgkHiTiaaigdaaaqcLbsacaaIDbGaamizaiaa dchacaaIPaGcdaahaaqcbasabeaajugWaiabgkHiTiaaigdaaaqcLb sacqGHsislcaaIXaGaaGyxaOWaaWbaaKqaGeqabaqcLbmacqGHsisl kmaalaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaaaaju gibiaaiYcaaaaa@6ADE@   (29)

The embedding diagram for a particular choice of parameters Q 2 =0.1,n= 1 2 ,l=0.05,ω= 2 3 , r s =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGypaiaaicda caaIUaGaaGymaiaaiYcacaWGUbGaaGypaOWaaSaaaeaajugibiaaig daaOqaaKqzGeGaaGOmaaaacaaISaGaamiBaiaai2dacaaIWaGaaGOl aiaaicdacaaI1aGaaGilaiabeM8a3jaai2dakmaalaaabaqcLbsaca aIYaaakeaajugibiaaiodaaaGaaGilaiaadkhajuaGdaWgaaqcbasa aKqzadGaam4CaaqcbasabaqcLbsacaaI9aGaaGymaaaa@5723@ , is obtained by rotating the profile curve about the z-axis as follows (Figure 8),

Figure 8 Embedding diagram of the wormhole.

We observe that the wormhole is valid in a particular region upto r=2 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGypaiaaikdacaaIGaGaam4Aaiaai6cacaWGWbGaaGOlaiaadoga aaa@3FF9@ , the throat occuring at r=0.9092 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGypaiaaicdacaaIUaGaaGyoaiaaicdacaaI5aGaaGOmaiaaicca caWGRbGaaGOlaiaadchacaaIUaGaam4yaaaa@43AB@  from its center.

According to Morris and Thorne,2 the r-coordinate is ill-behaved near the throat, but proper radial distance must be well behaved everywhere i.e. we must require that l(r) is finite throughout the spacetime. The proper radial distance L(r) from the throat to a point outside is

L(r)=± r 0 + r dr 1 b eff (r) r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb GaaGikaiaadkhacaaIPaGaaGypaiabgglaXQWaa8qCaeaadaWcaaqa aKqzGeGaamizaiaadkhaaOqaamaakaaabaqcLbsacaaIXaGaeyOeI0 IcdaWcaaqaaKqzGeGaamOyaOWaaSbaaKqaGeaajugWaiaadwgacaWG MbGaamOzaaWcbeaajugibiaaiIcacaWGYbGaaGykaaGcbaqcLbsaca WGYbaaaaWcbeaaaaaajeaibaqcLbmacaWGYbGcdaqhaaqccawaaKqz adGaaGimaaqccawaaKqzadGaey4kaScaaaqcbasaaKqzadGaamOCaa qcLbsacqGHRiI8aaaa@5A30@   (30)

Which is always positive taking r 0 =0.9092 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaaGypaiaa icdacaaIUaGaaGyoaiaaicdacaaI5aGaaGOmaaaa@423E@ .

Geodesic equations

We now study the geodesic equation for a test particle placed at some radius. The radial equation is found as,

d 2 r d s 2 =[ 4 Q 2 +r(3b(r)( b (r)+2)r) 2r ( dθ ds ) 2 + c 2 2 ( Q 2 +r(rb(r)))(2 Q 2 +l r 2 ( r r s ) l ) 2r( Q 2 + r 2 ( r r s ) l ) + c 1 2 ( Q 2 +r(b(r)r)cose c 2 θ) r 5 + (1b(r)+ Q 2 r 2 )(2 Q 2 +r(r b (r)b(r))) 2r( Q 2 +r(rb(r))) ×(1+ c 2 2 Q 2 r 2 + ( r r s ) l c 1 2 cose c 2 θ r 2 )] r= r 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaKqzGeGaamizaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugi biaadkhaaOqaaKqzGeGaamizaiaadohakmaaCaaaleqajeaibaqcLb macaaIYaaaaaaajugibiaai2dacqGHsislcaaIBbGcdaWcaaqaaKqz GeGaaGinaiaadgfakmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGe Gaey4kaSIaamOCaiaaiIcacaaIZaGaamOyaiaaiIcacaWGYbGaaGyk aiabgkHiTiaaiIcaceWGIbGbauaacaaIOaGaamOCaiaaiMcacqGHRa WkcaaIYaGaaGykaiaadkhacaaIPaaakeaajugibiaaikdacaWGYbaa aiaaiIcakmaalaaabaqcLbsacaWGKbGaeqiUdehakeaajugibiaads gacaWGZbaaaiaaiMcajuaGdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacqGHRaWkkmaalaaabaqcLbsacaWGJbqcfa4aa0baaKqaGeaaju gWaiaaikdaaKqaGeaajugWaiaaikdaaaqcLbsacaaIOaGaamyuaOWa aWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGYbGaaG ikaiaadkhacqGHsislcaWGIbGaaGikaiaadkhacaaIPaGaaGykaiaa iMcacaaIOaGaeyOeI0IaaGOmaiaadgfajuaGdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacqGHRaWkcaWGSbGaamOCaKqbaoaaCaaajeai beqaaKqzadGaaGOmaaaajugibiaaiIcakmaalaaabaqcLbsacaWGYb aakeaajugibiaadkhakmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaa jugibiaaiMcajuaGdaahaaqcbasabeaajugWaiaadYgaaaqcLbsaca aIPaaakeaajugibiaaikdacaWGYbGaaGikaiaadgfakmaaCaaaleqa baqcLbsacaaIYaaaaiabgUcaRiaadkhakmaaCaaaleqabaqcLbsaca aIYaaaaiaaiIcakmaalaaabaqcLbsacaWGYbaakeaajugibiaadkha kmaaBaaaleaajugibiaadohaaSqabaaaaKqzGeGaaGykaOWaaWbaaS qabeaajugibiaadYgaaaGaaGykaaaaaOqaaKqzGeGaey4kaSIcdaWc aaqaaKqzGeGaam4yaKqbaoaaDaaajeaibaqcLbmacaaIXaaajeaiba qcLbmacaaIYaaaaKqzGeGaaGikaiaadgfakmaaCaaaleqajeaibaqc LbmacaaIYaaaaKqzGeGaey4kaSIaamOCaiaaiIcacaWGIbGaaGikai aadkhacaaIPaGaeyOeI0IaamOCaiaaiMcacaWGJbGaam4Baiaadoha caWGLbGaam4yaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi abeI7aXjaaiMcaaOqaaKqzGeGaamOCaOWaaWbaaSqabKqaGeaajugW aiaaiwdaaaaaaKqzGeGaey4kaSIcdaWcaaqaaKqzGeGaaGikaiaaig dacqGHsislcaWGIbGaaGikaiaadkhacaaIPaGaey4kaSIcdaWcaaqa aKqzGeGaamyuaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaaaOqaaK qzGeGaamOCaOWaaWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqzGeGa aGykaiaaiIcacaaIYaGaamyuaKqbaoaaCaaajeaibeqaaKqzadGaaG OmaaaajugibiabgUcaRiaadkhacaaIOaGaamOCaiqadkgagaqbaiaa iIcacaWGYbGaaGykaiabgkHiTiaadkgacaaIOaGaamOCaiaaiMcaca aIPaGaaGykaaGcbaqcLbsacaaIYaGaamOCaiaaiIcacaWGrbGcdaah aaWcbeqcbauaaKqzadGaaGOmaaaajugibiabgUcaRiaadkhacaaIOa GaamOCaiabgkHiTiaadkgacaaIOaGaamOCaiaaiMcacaaIPaGaaGyk aaaacqGHxdaTcaaIOaGaaGymaiabgUcaROWaaSaaaeaajugibiaado galmaaDaaajeaibaqcLbkacaaIYaaajeaibaqcLbkacaaIYaaaaaGc baWaaSaaaeaajugibiaadgfajuaGdaahaaqcbasabeaajugWaiaaik daaaaakeaajugibiaadkhajuaGdaahaaqcbasabeaajugWaiaaikda aaaaaKqzGeGaey4kaSIaaGikaOWaaSaaaeaajugibiaadkhaaOqaaK qzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaqc LbsacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaWGSbaaaaaajugibi abgkHiTOWaaSaaaeaajugibiaadogajuaGdaqhaaqcbauaaKqzadGa aGymaaqcbauaaKqzadGaaGOmaaaajugibiaadogacaWGVbGaam4Cai aadwgacaWGJbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa eqiUdehakeaajugibiaadkhajuaGdaahaaqcbasabeaajugWaiaaik daaaaaaKqzGeGaaGykaiaai2fakmaaBaaaleaajugibiaadkhacaaI 9aGaamOCaOWaaSbaaKqaGeaajugWaiaaicdaaSqabaaabeaajugibi aaiYcaaaaa@3D97@   (31)

Whereandare arbitrary constants. From the equations we find that d 2 r d s 2 =0.157673 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadsgajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWG YbaakeaajugibiaadsgacaWGZbqcfa4aaWbaaKqaGeqabaqcLbmaca aIYaaaaaaajugibiaai2dacqGHsislcaaIWaGaaGOlaiaaigdacaaI 1aGaaG4naiaaiAdacaaI3aGaaG4maaaa@4B47@ , is negative at r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaaa@3BD7@  [considering θ= π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcaaI9aGcdaWcaaqaaKqzGeGaeqiWdahakeaajugibiaaikdaaaaa aa@3ED0@  and dθ ds =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadsgacqaH4oqCaOqaaKqzGeGaamizaiaadohaaaGaaGypaiaa igdaaaa@3F43@ ]. Also the quantity in the square bracket is positive. Hence the centrepetal force is directed towards the center of rotation indicating that the motion is stable. Thus particles are attracted towards the center. This result confirms with the observational phenomena pertaining to gravity on the galactic scale which is attractive (clustering, structure formation etc.).28

Equilibrium conditions

Following,30 we write the TOV Eq. for an anisotropic fluid distribution, in the following form

M G ( ρ eff + p r eff r 2 e λν 2 d p r eff dr + 2 r ( p t eff p r eff )+σE(r)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slkmaalaaabaqcLbsacaWGnbGcdaWgaaqcbasaaKqzadGaam4raaWc beaajugibiaaiIcacqaHbpGCjuaGdaahaaqcbasabeaajugWaiaadw gacaWGMbGaamOzaaaajugibiabgUcaRiaadchajuaGdaqhaaqcbasa aKqzadGaamOCaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaaaGcba qcLbsacaWGYbqcfa4aaWbaaKqaafqabaqcLbmacaaIYaaaaaaajugi biaadwgakmaaCaaaleqajeaibaqcfa4aaSaaaKqaGeaajugWaiabeU 7aSjabgkHiTiabe27aUbqcbasaaKqzadGaaGOmaaaaaaqcLbsacqGH sislkmaalaaabaqcLbsacaWGKbGaamiCaKqbaoaaDaaajeaibaqcLb macaWGYbaajeaibaqcLbmacaWGLbGaamOzaiaadAgaaaaakeaajugi biaadsgacaWGYbaaaiabgUcaROWaaSaaaeaajugibiaaikdaaOqaaK qzGeGaamOCaaaacaaIOaGaamiCaKqbaoaaDaaajeaibaqcLbmacaWG 0baajeaibaqcLbmacaWGLbGaamOzaiaadAgaaaqcLbsacqGHsislca WGWbqcfa4aa0baaKqaGeaajugWaiaadkhaaKqaGeaajugWaiaadwga caWGMbGaamOzaaaajugibiaaiMcacqGHRaWkcqaHdpWCcaWGfbGaaG ikaiaadkhacaaIPaGaaGypaiaaicdacaaISaaaaa@8A47@   (32)

Where M G = M G (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb GcdaWgaaqcbasaaKqzadGaam4raaWcbeaajugibiaai2dacaWGnbGc daWgaaqcbasaaKqzadGaam4raaWcbeaajugibiaaiIcacaWGYbGaaG ykaaaa@4331@ the effective is gravitational mass within the radius  and is given by

M G (r)= 1 2 r 2 e νλ 2 ν ' , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb GcdaWgaaqcbasaaKqzadGaam4raaWcbeaajugibiaaiIcacaWGYbGa aGykaiaai2dakmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaa GaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadwga kmaaCaaaleqajeaibaqcfa4aaSaaaKqaGeaajugWaiabe27aUjabgk HiTiabeU7aSbqcbasaaKqzadGaaGOmaaaaaaqcLbsacqaH9oGBkmaa CaaaleqabaqcLbsacaWGNaaaaiaaiYcaaaa@5496@   (33)

Which can easily be derived from the Tolman-Whittaker formula and the Einstein’s field equations. Obviously, the modified TOV equation (32) describes the equilibrium condition for the wormhole subject to gravitational ( F g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaKqaGeaajugWaiaadEgaaKqaGeqaaaaa@3C80@ ) and hydrostatic ( F h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GcdaWgaaqcbasaaKqzadGaamiAaaWcbeaaaaa@3BDE@ ) plus another force due to the anisotropic nature ( F a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GcdaWgaaqcbasaaKqzadGaamyyaaWcbeaaaaa@3BD7@ ) of the matter comprising the wormhole. Therefore, for equilibrium the above Equation can be written as

F g + F h + F a + F e =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GcdaWgaaqcbasaaKqzadGaam4zaaWcbeaajugibiabgUcaRiaadAea juaGdaWgaaqcbasaaKqzadGaamiAaaqcbasabaqcLbsacqGHRaWkca WGgbqcfa4aaSbaaKqaGeaajugWaiaadggaaKqaGeqaaKqzGeGaey4k aSIaamOraKqbaoaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugibi aai2dacaaIWaGaaGilaaaa@4EA7@   (34)

Where,

F g = ν ' 2 ( ρ eff + p r eff ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GcdaWgaaqcbasaaKqzadGaam4zaaWcbeaajugibiaai2dacqGHsisl kmaalaaabaqcLbsacqaH9oGBkmaaCaaaleqabaqcLbsacaWGNaaaaa GcbaqcLbsacaaIYaaaaiaaiIcacqaHbpGCjuaGdaahaaqcbauabeaa jugWaiaadwgacaWGMbGaamOzaaaajugibiabgUcaRiaadchajuaGda qhaaqcbasaaKqzadGaamOCaaqcbasaaKqzadGaamyzaiaadAgacaWG MbaaaKqzGeGaaGykaiaaiYcaaaa@5617@   (35)

F h = d p r eff dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GcdaWgaaqcbasaaKqzadGaamiAaaWcbeaajugibiaai2dacqGHsisl kmaalaaabaqcLbsacaWGKbGaamiCaKqbaoaaDaaajeaibaqcLbmaca WGYbaajeaibaqcLbmacaWGLbGaamOzaiaadAgaaaaakeaajugibiaa dsgacaWGYbaaaaaa@4A38@   (36)

F a = 2 r ( p t eff p r eff ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaKqaGeaajugWaiaadggaaKqaGeqaaKqzGeGaaGypaOWa aSaaaeaajugibiaaikdaaOqaaKqzGeGaamOCaaaacaaIOaGaamiCaK qbaoaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaWGLbGaamOz aiaadAgaaaqcLbsacqGHsislcaWGWbqcfa4aa0baaKqaGeaajugWai aadkhaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaaajugibiaaiMca aaa@544F@   (37)

F e =σ(r)E(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GcdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugibiaai2dacqaHdpWC caaIOaGaamOCaiaaiMcacaWGfbGaaGikaiaadkhacaaIPaaaaa@4476@   (38)

Where the proper charge density σ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCcaaIOaGaamOCaiaaiMcaaaa@3CB7@ is given by,

  (39)

The profiles of F g , F h , F e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GcdaWgaaqcbasaaKqzadGaam4zaaWcbeaakiaacYcajugibiaadAea kmaaBaaajeaibaqcLbmacaWGObaaleqaaOGaaiilaKqzGeGaamOraO WaaSbaaKqaGeaajugWaiaadwgaaSqabaaaaa@44F8@  and F a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GcdaWgaaqcbasaaKqzadGaamyyaaWcbeaaaaa@3BD7@  for our chosen source are shown in Figure 9. The figure indicates that equilibrium stage can be achieved due to the combined effect of pressure anisotropic, electrical, gravitational and hydrostatic forces. It is to be distinctly noted that the anisotropic force is balanced by the combined effects of the forces electrical, gravitational and hydrostatic forces.

Figure 9 The various forces acting on the system in equilibrium are show against r(k.p.c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGikaiaadUgacaaIUaGaamiCaiaai6cacaWGJbGaaGykaaaa@3F31@ .

Effective gravitational mass

In our model the effective gravitational mass, in terms of the effective energy density ρ eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaahaaqcbasabeaajugWaiaadwgacaWGMbGaamOzaaaaaaa@3F20@ , can be expressed as

M eff =4π r 0 R ( ρ eff ) dr=4π r 0 R (ρ+ ρ de + ρ c ) r 2 dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaWbaaKqaGeqabaqcLbmacaWGLbGaamOzaiaadAgaaaqcLbsa caaI9aGaaGinaiabec8aWPWaa8qCaeaajugibiaaiIcacqaHbpGCju aGdaahaaqcbasabeaajugWaiaadwgacaWGMbGaamOzaaaajugibiaa iMcaaKqaGeaajugWaiaadkhajuaGdaWgaaqccawaaKqzadGaaGimaa qccawabaaajeaibaqcLbmacaWGsbaajugibiabgUIiYdGaamizaiaa dkhacaaI9aGaaGinaiabec8aWPWaa8qCaeaajugibiaaiIcacqaHbp GCcqGHRaWkcqaHbpGCkmaaCaaajeaibeqaaKqzadGaamizaiaadwga aaqcLbsacqGHRaWkcqaHbpGCkmaaCaaajeaibeqaaKqzadGaam4yaa aajugibiaaiMcacaWGYbGcdaahaaqcbasabeaajugWaiaaikdaaaaa jeaibaqcLbmacaWGYbqcfa4aaSbaaKGaGfaajugWaiaaicdaaKGaGf qaaaqcbasaaKqzadGaamOuaaqcLbsacqGHRiI8aiaadsgacaWGYbaa aa@7ACA@   (40)

The effective mass of the wormhole of throat radius, say, r 0 =0.9092 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaai2dacaaIWaGa aGOlaiaaiMdacaaIWaGaaGyoaiaaikdacaaIGaGaam4Aaiaai6caca WGWbGaaGOlaiaadogaaaa@4682@ upto 10 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa GaaGimaiaaiccacaWGRbGaaGOlaiaadchacaaIUaGaam4yaaaa@3EF4@ is obtained as M eff =0.637424 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaWbaaKqaGeqabaqcLbmacaWGLbGaamOzaiaadAgaaaqcLbsa caaI9aGaaGimaiaai6cacaaI2aGaaG4maiaaiEdacaaI0aGaaGOmai aaisdacaaIGaGaam4Aaiaai6cacaWGWbGaaGOlaiaadogaaaa@4A57@ . One can observe that the active gravitational mass M eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaWbaaKqaGeqabaqcLbmacaWGLbGaamOzaiaadAgaaaaaaa@3E32@ of the wormhole is positive. This indicates that seen from the Earth, it is not possible to alienate the gravitational nature of a wormhole from that of a compact mass in the galaxy.

Energy conditions and tidal forces

We observe that ρ+p<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcqGHRaWkcaWGWbGaaGipaiaaicdaaaa@3DAF@ , which is in violation of the null energy condition to support wormholes. We observe that the wormhole has two distinct regions, in the region 0.3<r<2 k.p.c,ρ+p<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaGOlaiaaiodacaaI8aGaamOCaiaaiYdacaaIYaGaaGiiaiaaicca caWGRbGaaGOlaiaadchacaaIUaGaam4yaiaacYcacqaHbpGCcqGHRa WkcaWGWbGaaGipaiaaicdaaaa@495E@ , whereas in the region 2<r<6 k.p.c,ρ+p0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaaGipaiaadkhacaaI8aGaaGOnaiaaiccacaaIGaGaam4Aaiaai6ca caWGWbGaaGOlaiaadogacaGGSaGaeqyWdiNaey4kaSIaamiCaiabgk ziUkaaicdaaaa@4916@  as r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaeyOKH4QaeyOhIukaaa@3CED@  (Figure 10).

Figure 10 Null energy condition plotted against against r in k.p.c.

Density profile in the galactic halo region

We further consider the density profile of galaxies and their clusters in this region which takes the following form,31,32

ρ(r)= ρ s r r s (1+ r r s ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcaaIOaGaamOCaiaaiMcacaaI9aGcdaWcaaqaaKqzGeGaeqyWdiNc daWgaaqcbasaaKqzadGaam4CaaWcbeaaaOqaamaalaaabaqcLbsaca WGYbaakeaajugibiaadkhakmaaBaaajeaibaqcLbmacaWGZbaaleqa aaaajugibiaaiIcacaaIXaGaey4kaSIcdaWcaaqaaKqzGeGaamOCaa GcbaqcLbsacaWGYbGcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaaqc LbsacaaIPaGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsaca aISaaaaa@5586@   (41)

Where r s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaaa@3C15@ as defined earlier and ρ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaam4Caaqcbasabaaaaa@3D81@ is the corresponding density, and search for further validity of our wormhole metric.

Hence the wormhole shape function is obtained from equation (14) as,

b eff (r)=8π(1+n) ρ s r s 3 ×[ln(1+ r r s )+ 1 1+ r r s ] Q 2 r , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaqc LbsacaaIOaGaamOCaiaaiMcacaaI9aGaaGioaiabec8aWjaaiIcaca aIXaGaey4kaSIaamOBaiaaiMcacqaHbpGCjuaGdaWgaaqcbasaaKqz adGaam4CaaqcbasabaqcLbsacaWGYbqcfa4aa0baaKqaGeaajugWai aadohaaKqaGeaajugWaiaaiodaaaqcLbsacqGHxdaTcaaIBbGaamiB aiaad6gacaaIOaGaaGymaiabgUcaROWaaSaaaeaajugibiaadkhaaO qaaKqzGeGaamOCaOWaaSbaaKqaGeaajugWaiaadohaaSqabaaaaKqz GeGaaGykaiabgUcaROWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaG ymaiabgUcaROWaaSaaaeaajugibiaadkhaaOqaaKqzGeGaamOCaKqb aoaaBaaajeaibaqcLbmacaWGZbaajeaibeaaaaaaaKqzGeGaaGyxai abgkHiTOWaaSaaaeaajugibiaadgfakmaaCaaaleqajeaibaqcLbma caaIYaaaaaGcbaqcLbsacaWGYbaaaiaaiYcaaaa@7618@   (42)

When,

b(r)=8π(1+n) ρ s r s 3 ×[ln(1+ r r s )+ 1 1+ r r s ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GaaGikaiaadkhacaaIPaGaaGypaiaaiIdacqaHapaCcaaIOaGaaGym aiabgUcaRiaad6gacaaIPaGaeqyWdiNcdaWgaaqcbasaaKqzadGaam 4CaaWcbeaajugibiaadkhajuaGdaqhaaqcbasaaKqzadGaam4Caaqc basaaKqzadGaaG4maaaajugibiabgEna0kaaiUfacaWGSbGaamOBai aaiIcacaaIXaGaey4kaSIcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsa caWGYbGcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaaqcLbsacaaIPa Gaey4kaSIcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaey4k aSIcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbGcdaWgaaqcba saaKqzadGaam4CaaWcbeaaaaaaaKqzGeGaaGyxaiaaiYcaaaa@690B@   (43)

We now consider the charge to be dependent on the wormhole shape function as,6

2 Q 2 r 2 = b eff '(r), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaaikdacaWGrbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaaGc baqcLbsacaWGYbGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcLb sacaaI9aGaamOyaOWaaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOz aaqcbasabaqcLbsacaaINaGaaGikaiaadkhacaaIPaGaaGilaaaa@4BD5@   (44)

That is when,

Q 2 r 2 = b (r), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadgfakmaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsa caWGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugibiaai2 daceWGIbGbauaacaaIOaGaamOCaiaaiMcacaaISaaaaa@4578@   (45)

Thus we get from equation (14),

2 Q 2 r 4 =8π[ (1+n) ρ s r r s (1+ r r s ) 2 + ρ c ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaaikdacaWGrbGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqa aKqzGeGaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGinaaaaaaqcLb sacaaI9aGaaGioaiabec8aWjaaiUfakmaalaaabaqcLbsacaaIOaGa aGymaiabgUcaRiaad6gacaaIPaGaeqyWdiNcdaWgaaqcbasaaKqzad Gaam4CaaWcbeaaaOqaamaalaaabaqcLbsacaWGYbaakeaajugibiaa dkhakmaaBaaajeaibaqcLbmacaWGZbaaleqaaaaajugibiaaiIcaca aIXaGaey4kaSIcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWGYbqc fa4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaajugibiaaiMcaju aGdaahaaqcbasabeaajugWaiaaikdaaaaaaKqzGeGaey4kaSIaeqyW diNcdaahaaWcbeqcbasaaKqzadGaam4yaaaajugibiaai2facaaISa aaaa@6940@   (46)

Equation (17) and (46) implies,

Q 2 r 4 =8π[ (1+n) ρ s r r s (1+ r r s ) 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadgfajuaGdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugi biaadkhakmaaCaaaleqajeaibaqcLbmacaaI0aaaaaaajugibiaai2 dacaaI4aGaeqiWdaNaaG4waOWaaSaaaeaajugibiaaiIcacaaIXaGa ey4kaSIaamOBaiaaiMcacqaHbpGCjuaGdaWgaaqcbasaaKqzadGaam 4CaaqcbasabaaakeaadaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWG Ybqcfa4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaajugibiaaiI cacaaIXaGaey4kaSIcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWG Ybqcfa4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaajugibiaaiM cakmaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiaai2facaaI Saaaaa@63A9@   (47)

And hence the wormhole charge within the throat radius is given by,

Q 2 =8π r 0 4 [ (1+n) ρ s r 0 r s (1+ r 0 r s ) 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGypaiaaiIda cqaHapaCcaWGYbqcfa4aa0baaKqaGeaajugWaiaaicdaaKqaGeaaju gWaiaaisdaaaqcLbsacaaIBbGcdaWcaaqaaKqzGeGaaGikaiaaigda cqGHRaWkcaWGUbGaaGykaiabeg8aYLqbaoaaBaaajeaibaqcLbmaca WGZbaajeaibeaaaOqaamaalaaabaqcLbsacaWGYbGcdaWgaaqcbasa aKqzadGaaGimaaWcbeaaaOqaaKqzGeGaamOCaKqbaoaaBaaajeaiba qcLbmacaWGZbaajeaibeaaaaqcLbsacaaIOaGaaGymaiabgUcaROWa aSaaaeaajugibiaadkhakmaaBaaajeaibaqcLbmacaaIWaaaleqaaa GcbaqcLbsacaWGYbGcdaWgaaqcbasaaKqzadGaam4CaaWcbeaaaaqc LbsacaaIPaqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugibi aai2facaaISaaaaa@6A80@   (48)

Which is constant for a suitable choice of positive parameter, n. The electric field is given by5

E(r)= Q r 2 g tt g rr = 8π r 4 [ (1+n) ρ s r r s (1+ r r s ) 2 ]× ( r r s ) l + Q 2 r 2 (1 b(r) r + Q 2 r 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GaaGikaiaadkhacaaIPaGaaGypaOWaaSaaaeaajugibiaadgfaaOqa aKqzGeGaamOCaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaaaaGcda GcaaqaaKqzGeGaam4zaKqbaoaaBaaajeaibaqcLbmacaWG0bGaamiD aaqcbasabaqcLbsacaWGNbGcdaWgaaqcbasaaKqzadGaamOCaiaadk haaSqabaaabeaajugibiaai2dakmaakaaabaqcLbsacaaI4aGaeqiW daNaamOCaOWaaWbaaSqabKqaafaajug4aiaaisdaaaqcLbsacaaIBb GcdaWcaaqaaKqzGeGaaGikaiaaigdacqGHRaWkcaWGUbGaaGykaiab eg8aYPWaaSbaaKqaGeaajugWaiaadohaaSqabaaakeaadaWcaaqaaK qzGeGaamOCaaGcbaqcLbsacaWGYbGcdaWgaaqcbasaaKqzadGaam4C aaWcbeaaaaqcLbsacaaIOaGaaGymaiabgUcaROWaaSaaaeaajugibi aadkhaaOqaaKqzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaWGZbaa jeaibeaaaaqcLbsacaaIPaGcdaahaaWcbeqcbasaaKqzadGaaGOmaa aaaaqcLbsacaaIDbGaey41aqRcdaWcaaqaaKqzGeGaaGikaOWaaSaa aeaajugibiaadkhaaOqaaKqzGeGaamOCaOWaaSbaaKqaGeaajugWai aadohaaSqabaaaaKqzGeGaaGykaOWaaWbaaSqabKqaGeaajugWaiaa dYgaaaqcLbsacqGHRaWkkmaalaaabaqcLbsacaWGrbGcdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOCaKqbaoaaCaaajeai beqaaKqzadGaaGOmaaaaaaaakeaajugibiaaiIcacaaIXaGaeyOeI0 IcdaWcaaqaaKqzGeGaamOyaiaaiIcacaWGYbGaaGykaaGcbaqcLbsa caWGYbaaaiabgUcaROWaaSaaaeaajugibiaadgfakmaaCaaaleqaje aibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGYbGcdaahaaWcbeqcbasa aKqzadGaaGOmaaaaaaqcLbsacaaIPaaaaaWcbeaajugibiaaiYcaaa a@9D52@   (49)

The wormhole shape function for suitable choice of parameters Q, ρ s ,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb GaaGilaiabeg8aYLqbaoaaBaaajeaibaqcLbmacaWGZbaajeaibeaa jugibiaaiYcacaWGUbaaaa@4145@  and r s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaa@3CB8@  is plotted below Figure 11,

Figure 11 The shape function of the wormhole against r( k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb GaaGOlaiaadchacaaIUaGaam4yaaaa@3CD5@ ).

The other conditions are plotted in Figures 12 & 13, Figure 13 indicates that the throat of the wormhole occurs at r=3.0819 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGypaiaaiodacaaIUaGaaGimaiaaiIdacaaIXaGaaGyoaaaa@3EC5@ . Also as b eff '(3.0819)=0.359322<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GcdaWgaaqcbasaaKqzadGaamyzaiaadAgacaWGMbaaleqaaKqzGeGa aG4jaiaaiIcacaaIZaGaaGOlaiaaicdacaaI4aGaaGymaiaaiMdaca aIPaGaaGypaiaaicdacaaIUaGaaG4maiaaiwdacaaI5aGaaG4maiaa ikdacaaIYaGaaGipaiaaigdaaaa@4D0F@ , the conditions for a valid wormhole are satisfied.

Figure 12 The asymptotic behaviour of shape function against r(k.p.c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaaGikaiaadUgacaaIUaGaamiCaiaai6cacaWGJbGaaGykaaaa@3F31@ .

Figure 13 The throat occurs where b eff (r)r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadwgacaWGMbGaamOzaaqcbasabaqc LbsacaaIOaGaamOCaiaaiMcacqGHsislcaWGYbaaaa@433F@ cuts the r-axis.

Final remarks

The possibility of generalizing the wormholes discussed here to wormholes with (slow) rotation has been discussed in.33 In the case of slow rotation a small nondiagonal polar-angle-time (tϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiDaiabew9aMjaaiMcaaaa@3CBE@ component of metric is included. The (tϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiDaiabew9aMjaaiMcaaaa@3CBE@ Einstein equation can be written using the tetrad components introduced with the basic 1-forms ω a = e μ a d x μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDkmaaCaaaleqajeaibaqcLbmacaWGHbaaaKqzGeGaaGypaiaadwga juaGdaqhaaqcbasaaKqzadGaeqiVd0gajeaibaqcLbmacaWGHbaaaK qzGeGaamizaiaadIhajuaGdaahaaqcbasabeaajugWaiabeY7aTbaa aaa@4B49@ 26 and using ϕ= ν eff 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzcaaI9aGcdaWcaaqaaKqzGeGaeqyVd4McdaWgaaqcbasaaKqzadGa amyzaiaadAgacaWGMbaaleqaaaGcbaqcLbsacaaIYaaaaaaa@432B@  as,

ω 0 = e Φ dt, ω 1 =(dϕ+hdt)rsinθ, ω 2 =dρ, ω 3 =rdθ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDkmaaCaaaleqajeaibaqcLbmacaaIWaaaaKqzGeGaaGypaiaadwga juaGdaahaaqcbasabeaajugWaiabfA6agbaajugibiaadsgacaWG0b GaaGilaiabeM8a3PWaaWbaaSqabKqaGeaajugWaiaaigdaaaqcLbsa caaI9aGaaGikaiaadsgacqaHvpGzcqGHRaWkcaWGObGaamizaiaads hacaaIPaGaamOCaiaadohacaWGPbGaamOBaiabeI7aXjaaiYcacqaH jpWDkmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaaGypaiaads gacqaHbpGCcaaISaGaeqyYdCNcdaahaaWcbeqcbasaaKqzadGaaG4m aaaajugibiaai2dacaWGYbGaamizaiabeI7aXjaaiYcaaaa@6B8F@   (50)

Hence equation (1) is reduced to the self-sustained static wormhole metric,

d s 2 = e 2Φ d t 2 +d ρ 2 + r 2 [d θ 2 +si n 2 θ(d ϕ 2 +2hdϕdt)], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaai2da cqGHsislcaWGLbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaGaeuOPdy eaaKqzGeGaamizaiaadshakmaaCaaaleqajeaibaqcLbmacaaIYaaa aKqzGeGaey4kaSIaamizaiabeg8aYPWaaWbaaSqabKqaGeaajugWai aaikdaaaqcLbsacqGHRaWkcaWGYbGcdaahaaWcbeqcbasaaKqzadGa aGOmaaaajugibiaaiUfacaWGKbGaeqiUdeNcdaahaaWcbeqcbasaaK qzadGaaGOmaaaajugibiabgUcaRiaadohacaWGPbGaamOBaKqbaoaa CaaajeaibeqaaKqzadGaaGOmaaaajugibiabeI7aXjaaiIcacaWGKb Gaeqy1dywcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4k aSIaaGOmaiaadIgacaWGKbGaeqy1dyMaamizaiaadshacaaIPaGaaG yxaiaaiYcaaaa@7451@   (51)

Where h(ρ,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb GaaGikaiabeg8aYjaaiYcacqaH4oqCcaaIPaaaaa@3F16@ is the angular velocity of rotation. The static metric Φ(ρ),r(ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrcaaIOaGaeqyWdiNaaGykaiaacYcacaWGYbGaaGikaiabeg8aYjaa iMcaaaa@4203@  is assumed to exist as a self-consistent solution of static semiclassical Einstein equations andis considered to be arbitrarily small.

We can also extend the original model of wormhole to a more generalized cosmological traversable wormholes by introducing the fifth coordinateas detailed in,34 such that

dz dr =± [ r b(r) 1] 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadsgacaWG6baakeaajugibiaadsgacaWGYbaaaiaai2dacqGH XcqScaaIBbGcdaWcaaqaaKqzGeGaamOCaaGcbaqcLbsacaWGIbGaaG ikaiaadkhacaaIPaaaaiabgkHiTiaaigdacaaIDbGcdaahaaWcbeqc basaaKqzadGaeyOeI0scfa4aaSaaaKqaGeaajugWaiaaigdaaKqaGe aajugWaiaaikdaaaaaaKqzGeGaaGOlaaaa@5136@   (52)

Thus using ϕ= ν eff 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzcaaI9aGcdaWcaaqaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugW aiaadwgacaWGMbGaamOzaaqcbasabaaakeaajugibiaaikdaaaaaaa@43CE@  equation (1) reduces to the 5-dimensional metric as,

d s 2 = e 2ϕ(r) d t 2 +d z 2 +d r 2 + r 2 (d θ 2 +si n 2 θd ϕ 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaOWaaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaaI9aGa eyOeI0IaamyzaOWaaWbaaSqabKqaGeaajugWaiaaikdacqaHvpGzca aIOaGaamOCaiaaiMcaaaqcLbsacaWGKbGaamiDaOWaaWbaaSqabKqa GeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGKbGaamOEaKqbaoaaCa aajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaadsgacaWGYbGc daahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiaadkhaju aGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGaamizaiab eI7aXLqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRi aadohacaWGPbGaamOBaOWaaWbaaSqabKqaGeaajugWaiaaikdaaaqc LbsacqaH4oqCcaWGKbGaeqy1dywcfa4aaWbaaKqaGeqabaqcLbmaca aIYaaaaKqzGeGaaGykaiaai6caaaa@72EE@   (53)

It is known that the presence of a nonminimal interaction between dark matter and dark energy may lead to a violation of the null energy condition and to the formation of a configuration with nontrivial topology like a wormhole.35 Here the violation of N.E.C takes place only in the inner high-density regions of the configuration both between 0.3<r<2 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaGOlaiaaiodacaaI8aGaamOCaiaaiYdacaaIYaGaaGiiaiaaicca caWGRbGaaGOlaiaadchacaaIUaGaam4yaaaa@4397@  and 2<r<6 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaaGipaiaadkhacaaI8aGaaGOnaiaaiccacaaIGaGaam4Aaiaai6ca caWGWbGaaGOlaiaadogaaaa@4228@ .

The present observational data also suggest an exotic form of dark energy with equation of state p<ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGipaiabgkHiTiabeg8aYbaa@3D00@ , violating the weak energy condition.36,37 This violation allows for exotic solutions of general relativity such as wormholes and warp drives and the possibility of time travel associated with them. Dark energy with ω= p ρ <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDcaaI9aGcdaWcaaqaaKqzGeGaamiCaaGcbaqcLbsacqaHbpGCaaGa aGipaiabgkHiTiaaigdaaaa@4191@ , is called super-quintessence or phantom energy.38

We observe via equation (1) that as the metric components are positive, the spacetime metric is devoid of any horizon resulting in a positive wormhole mass. Also the shape function is dependent on the charge Q, the characteristic scale length r s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaKqaGeaajugWaiaadohaaKqaGeqaaaaa@3CB8@ , the corresponding density ρ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaam4Caaqcbasabaaaaa@3D81@  and the positive constant n. Moreover for traversable wormhole the charge is considered sufficiently small yet positive for feasible geometric configuration. The validity of the metric is further confirmed by our extended study of wormholes in the galactic halo region. But whatever be the value of the charge the wormhole throat in our model occurs at a distance 0.9092 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaGOlaiaaiMdacaaIWaGaaGyoaiaaikdacaaIGaGaam4Aaiaai6ca caWGWbGaaGOlaiaadogaaaa@41ED@ from the center whereas in the Galactic Halo region the throat occurs at a distance 3.0819 k.p.c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIZa GaaGOlaiaaicdacaaI4aGaaGymaiaaiMdacaaIGaGaam4Aaiaai6ca caWGWbGaaGOlaiaadogaaaa@41EE@ from the center for suitable choices of the above values. Hence we may conclude that any charge inside the wormhole is static in nature and could not affect any change in the wormhole configurations.

We iterate that such a metric is useful for wormhole study in other regions of the galaxy under different forms of gravity as well. Such study is in progress.

Acknowledgments

FR would like to thank the authorities of the Inter- University Centre for Astronomy and Astrophysics, Pune, India for providing the research facilities. FR and MR are also thankful to DST-SERB and UGC for financial support. We are grateful to the referee for his valuable comments.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. Visser M. Lorentzian Wormholes. AIP Press, New York, USA. 1996.
  2. Morris MS, Thorne KS. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics. 1988;56(5):395–412.
  3. Rahaman F, Kuhfittig PKF, Ray S, et al. Possible existence of wormholes in the galactic halo region. The European Physical Journal C. 2014;74(2).
  4. Rahaman F, Salucci P, Kuhfittig PKF, et al. Possible existence of wormholes in the central regions of halos. Annals of Physics. 2014;350:561–567.
  5. Kim SW, Lee H. Exact solutions of a charged wormhole. Physical Review D. 2001;63(6).
  6. Kuhfittig PKF. On the feasibility of charged wormholes. Central European Journal of Physics. 2011;9(5):1144–1150.
  7. Buchdahl HA. General Relativistic Fluid Spheres. II. General Inequalities for Regular Spheres. Astrophysical Journal. 1996;160:1512.
  8. Kuhfittig PKF, Gladney VD. Noncommutative-Geometry Inspired Charged Wormholes with Low Tidal Forces. Journal of Applied Mathematics and Physics. 2017;5:574–581.
  9. Kuhfittig PKF. Stable phantom-energy wormholes admitting conformal motions. International Journal of Modern Physics D. 2017;26(3):1–8.
  10. Kuhfittig PKF. Macroscopic traversable wormholes with zero tidal forces inspired by noncommutative geometry. International Journal of Modern Physics D. 2015;24(3).
  11. Kim SW. Cosmological model with a traversable wormhole. Physical Review D. 1996;53(12):68890–6892.
  12. Kim SW. Flare-out condition of a Morris-Thorne wormhole and finiteness of pressure. Journal of the Korean Physical Society. 2013;63(10):1887–1891.
  13. Roman TA. Inflating Lorentzian wormholes. Physical Review D. 1993;47(4).
  14. Goulart P. Phantom wormholes in Einstein–Maxwell-dilaton theory. Classical and Quantum Gravity. 2017;35(2).
  15. Moradpour H, Sadeghnezhad N, Hendi SH. Traversable asymptotically flat wormholes in Rastall gravity. Canadian Journal of Physics. 2017;95(12):1257–1266.
  16. El-Nabulsi RA. Wormholes in fractional action cosmology. Canadian Journal of Physics. 2017;95(6):605–609.
  17. El-Nabulsi RA. Wormholes in Higher Dimensions with Non-Linear Curvature Terms from Quantum Gravity Corrections. Journal of the Korean Physical Society. 2011;59(5):2963–2970.
  18. El-Nabulsi RA. Quintessence cosmology with a traversable wormhole, massive decaying gravitons and with varying G and Lambda. Astrophysics and Space Science. 2010;325(2):277–281.
  19. El-Nabulsi RA. Extra-Dimensional Cosmology with a Traversable Wormhole. Chinese Physics Letters. 2009;26(9).
  20. Herrera L, Fuenmayor E, León P. Cracking of general relativistic anisotropic polytropes. Physical Review D. 2016;93(2).
  21. Böhmer CG, Harko T, Lobo FSN. Wormhole geometries with conformal motions. Classical and Quantum Gravity. 2008;25(7).
  22. Einstein A, Rosen N. The Particle Problem in the General Theory of Relativity. Physical Review journals Archive. 1935;48(1):1–5.
  23. Rahaman F, Maulick R, Yadav AK, et al. Singularity-free dark energy star. General Relativity and Gravitation. 2012;44(1):107–214.
  24. Kuhfittig PKF. Wormholes Supported by a Combination of Normal and Quintessential Matter in Einstein and Einstein-Maxwell Gravity. Journal of Modern Physics. 2013;4(1):30–34.
  25. Rahaman F, Saibal R, Islam S. Wormholes supported by two non-interacting fluids. Astrophysics and Space Science. 2013;346(1):245–252.
  26. Chandrasekhar S. Mathematical Theory of Black Holes, Oxford University Press, UK. 1983.
  27. Landau LD, Lifshitz EM. The Classical Theory of Fields. Pergamon Press, UK, 1975. p. 1–387.
  28. Rahaman F, Nandi KK, Bhadra A, et al. Perfect fluid dark matter. Physics Letters B. 2010;694(1):10–15.
  29. Morris MS, Thorne KS, Yurtsever U. Wormholes, Time Machines, and the Weak Energy Condition. Physical Review Letters. 1988;61(13).
  30. Ponce de León J. Limiting configurations allowed by the energy conditions. General Relativity and Gravitation. 1993;25(11):1123–1137.
  31. Novarro JF, Frenk CS, White SDM. The Structure of Cold Dark Matter Halos. Astrophysical Journal. 1996;462:563–575.
  32. Novarro JF, Frenk CS, White SDM. A Universal Density Profile from Hierarchical Clustering. The Astrophysical Journal. 1997;490(2):493–508.
  33. Khatsymovsky VM. Rotating vacuum wormhole. Physics Letters B. 1998;429(3–4):254–262.
  34. Kao WF, Soo C. A note on 4-dimensional traversable wormholes and energy conditions in higher dimensions. Cornell University Library, USA. 2003.
  35. Folomeev V, Dzhunushaliev V. Wormhole solutions supported by interacting dark matter and dark energy. Physical Review D. 2014;89(6).
  36. Faraoni V, Israel W. Dark energy, wormholes, and the big rip. Physical Review D. 2005;71(6).
  37. El-Nabulsi AR. Accelerated expansion of the Universe in the presence of a static traversable wormhole, extra-dimensions and variable modified Chaplygin gas. Astrophysics and Space Science. 2010;326(2):169–174.
  38. Pedro FGD, Prado MM. Wormholes in the accelerating universe. Cornell University Library, USA. 2007.
Creative Commons Attribution License

©2018 Islam, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.