Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 1

Application of transformation optics for the purpose of cloaking

Sidhwa HH

Department of Electrical Engineering, Indian Institute of Technology Bombay, India

Correspondence: Haroonhaider Sidhwa, Department of Electrical Engineering, Indian Institute of Technology Bombay, India

Received: December 13, 2017 | Published: February 20, 2018

Citation: Sidhwa HH. Application of transformation optics for the purpose of cloaking. Phys Astron Int J. 2018;2(1):111-114 DOI: 10.15406/paij.2018.02.00056

Download PDF

Abstract

The advent of transformation optics has lead to the initiation of designing devices and applications associated to electromagnetic wave propagation in anisotropic media. Here, a method is suggested using a coordinate transformation with spherical coordinates for the purpose of designing a three dimensional cloak for a body having an arbitrary convex geometry. For the purpose of verification of the algorithm, a ray tracing process is carried out for an ellipsoid having axial symmetry.

Keywords: optics, electromagnetic wave, geometry, cloaking, Maxwell equations, cartesian tensors

Introduction

Transformation optics is an allied area comprising of differential geometry and electrodynamics.1 The quest of humans to attain invisibility seems credible with the realisation of this field. The conceptualization of invisibility has been indicated in scientific parlance as cloaking which can be explained as bending the path of the ray around the body of interest in order to masquerade its path undistorted by any encumbrance.2 Pendry et al.,3 and Leonhardt4 commenced the idea of cloaking in 2006 by carrying out a coordinate transformation in order to alter the material characteristics, which would in turn cause a change in the formulation of Maxwell equations. A process of ray tracing in transformed media for spherical and cylindrical cloaks using Cartesian tensors was carried out by Pendry et al.,5 A generalised method for designing arbitrarily shaped cloaks using the approach of coordinate transformation has been discussed by C Li & F Li6 A full wave simulation using a commercial software program was carried out by them for its verification. Other techniques for cloaking include a scattering cancellation method wherein scattering can be minimized by covering the main object by a single layer or by multiple layers of dielectric materials.7,8 Another technique based on the usage of volumetric structures composed of two dimensional or three dimensional transmission line networks, is illustrated.9 In this paper, we propose an algorithm for cloaking of an arbitrarily shaped body in three dimensions. This generalised transformation technique would enable designing of a cloak with an arbitrary geometry without the need to calculate the material characteristics explicitly but which can easily be found with the help of Jacobian as explained later. The Hamiltonian is calculated using a technique similar to that reported in5 but which obviates the need to calculate the determinant of refractive index, which is cubersome in nature. For the purpose of verification of the algorithm, it is assumed that the arbitrary body is an ellipsoid having axial symmetry.

Transformation of coordinate system

Consider an arbitrarily shaped body to be cloaked which is enclosed by another body with the same topology. A coordinate transformation is carried out to map any point lying within the region from the centre to the boundary of the outer body to the region lying between the two bodies.

Consider O to be the centre of the concentric bodies as shown in Figure 1. Letbe any point on the surface of the inner body and A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadgeagaqbaaaa@3A20@ be the corresponding point having the same value of ( θ,φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjaaiYcacqaHgpGAaaa@3D77@ ) on the surface of the outer body in the radial direction. The transformation is carried out such that any point lying in the region OA  gets transformed to a point lying in the region A A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeaceWGbbGbauaaaaa@3AE6@ .

OA O A =τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGpbGaamyqaaGcbaqcLbsacaWGpbGa bmyqayaafaaaaiaai2dacqaHepaDaaa@405B@   (1)

r = R 0 ( θ,φ ) r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqahkhagaqbaiaai2dacaWGsbWcdaWgaaqcbasaaKqzadGa aGimaaqcbasabaqcfa4aaeWaaOqaaKqzGeGaeqiUdeNaaGilaiabeA 8aQbGccaGLOaGaayzkaaqcLbsaceWGYbGbaKaaaaa@46D4@   (2)

r=τ R 0 ( θ,φ ) r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaQaKqzGeGaaCOCaiaai2dacqaHepaDcaWGsbWcdaWgaaqcbasa aKqzadGaaGimaaqcbasabaqcfa4aaeWaaOqaaKqzGeGaeqiUdeNaaG ilaiabeA8aQbGccaGLOaGaayzkaaqcLbsaceWGYbGbaKaaaaa@4938@   (3)

Figure 1 Coordinate transformation for arbitrary geometry.

Where r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadkhagaqcaaaa@3A55@ is the unit vector in the radial direction, r is the position vector of a point on the surface of the body to be cloaked for a given ( θ,φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjaaiYcacqaHgpGAaaa@3D77@ ), r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqahkhagaqbaaaa@3A55@ is the position vector of the point on the surface of the cloak for the same ( θ,φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjaaiYcacqaHgpGAaaa@3D77@ ), and R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3C8D@ is a mathematical function that defines the nature of contour of the surface of the cloaked and outer bodies which is dependent on ( θ,φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjaaiYcacqaHgpGAaaa@3D77@ ). Since the cloak parameters depend on ( θ,φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjaaiYcacqaHgpGAaaa@3D77@ ), for the unique definition of the parameters, the function R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3C8D@ must be a single valued function of ( θ,φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjaaiYcacqaHgpGAaaa@3D77@ ).

r =( 1τ )r+τ R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadkhagaqbaiaai2dajuaGdaqadaGcbaqcLbsacaaIXaGa eyOeI0IaeqiXdqhakiaawIcacaGLPaaajugibiaadkhacqGHRaWkcq aHepaDcaWGsbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaaa@48AB@   (4)

θ =θ φ =φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqbeI7aXzaafaGaaGypaiabeI7aXjaaywW7cuaHgpGAgaqb aiaai2dacqaHgpGAaaa@4368@   (5)

r =τ R 0 ;ifr=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadkhagaqbaiaai2dacqaHepaDcaWGsbWcdaWgaaqcbasa aKqzadGaaGimaaqcbasabaqcLbsacaaI7aGaaGzbVlaabMgacaqGMb GaaGzbVlaadkhacaaI9aGaaGimaaaa@48D9@   (6)

=( 1τ ) R 0 +τ R 0 ifr= R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaai2dajuaGdaqadaGcbaqcLbsacaaIXaGaeyOeI0IaeqiX dqhakiaawIcacaGLPaaajugibiaadkfalmaaBaaajeaibaqcLbmaca aIWaaajeaibeaajugibiabgUcaRiabes8a0jaadkfalmaaBaaajeai baqcLbmacaaIWaaajeaibeaajugibiaaywW7caqGPbGaaeOzaiaayw W7caWGYbGaaGypaiaadkfalmaaBaaajeaibaqcLbmacaaIWaaajeai beaaaaa@54FC@    (7)

The transformation from unprimed to primed coordinates preserves the direction of the position vector r, which means that r, r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaahkhacaaISaGaaGjbVlqahkhagaqbaaaa@3D93@ are parallel.

x r = x r ; y r = y r ; z r = z r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsaceWG4bGbauaaaOqaaKqzGeGabmOCayaa faaaaiaai2dajuaGdaWcaaGcbaqcLbsacaWG4baakeaajugibiaadk haaaGaaG4oaiaaywW7juaGdaWcaaGcbaqcLbsaceWG5bGbauaaaOqa aKqzGeGabmOCayaafaaaaiaai2dajuaGdaWcaaGcbaqcLbsacaWG5b aakeaajugibiaadkhaaaGaaG4oaiaaywW7juaGdaWcaaGcbaqcLbsa ceWG6bGbauaaaOqaaKqzGeGabmOCayaafaaaaiaai2dajuaGdaWcaa GcbaqcLbsacaWG6baakeaajugibiaadkhaaaaaaa@56A0@   (8)

Expressing the equation in the tensor notation and using Equation (4),

x = r r x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadIhagaqbaiaai2dajuaGdaWcaaGcbaqcLbsaceWGYbGb auaaaOqaaKqzGeGaamOCaaaacaWG4baaaa@3FE5@   (9)

x i =( τ R 0 r +( 1τ ) ) x j δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadIhagaqbaSWaaSbaaKaaGeaajugWaiaadMgaaKaaGeqa aKqzGeGaaGypaKqbaoaabmaakeaajugibiabes8a0Lqbaoaalaaake aajugibiaadkfalmaaBaaajaaibaqcLbmacaaIWaaajaaibeaaaOqa aKqzGeGaamOCaaaacqGHRaWkjuaGdaqadaGcbaqcLbsacaaIXaGaey OeI0IaeqiXdqhakiaawIcacaGLPaaaaiaawIcacaGLPaaajugibiaa dIhalmaaBaaajaaibaqcLbmacaWGQbaajaaibeaajugibiabes7aKL qbaoaaBaaajaaibaqcLbmacaWGPbGaamOAaaGcbeaaaaa@5A11@   (10)

x i =( 1τ ) x j δ ij +τ R 0 x j r δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadIhagaqbaKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqa aKqzGeGaaGypaKqbaoaabmaakeaajugibiaaigdacqGHsislcqaHep aDaOGaayjkaiaawMcaaKqzGeGaamiEaSWaaSbaaKqaGeaajugWaiaa dQgaaKqaGeqaaKqzGeGaeqiTdq2cdaWgaaqcbasaaKqzadGaamyAai aadQgaaKqaGeqaaKqzGeGaey4kaSIaeqiXdqNaamOuaSWaaSbaaKqa GeaajugWaiaaicdaaKqaGeqaaKqbaoaalaaakeaajugibiaadIhaju aGdaWgaaqcbasaaKqzadGaamOAaaWcbeaaaOqaaKqzGeGaamOCaaaa cqaH0oazlmaaBaaajeaibaqcLbmacaWGPbGaamOAaaqcbasabaaaaa@6126@   (11)

Where δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabes7aKTWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeai beaaaaa@3E7E@ is the Kronecker delta function.

The Jacobian for the coordinate transformation can be written as shown in:5

Λ l i = x i x l =( 1τ ) x j x l δ ij +τ R 0 x l ( x j r ) δ ij +τ x j r R 0 x l δ ij = r r δ il R 0 r 3 τ x i x l +τ x i r [ R 0 θ θ x l + R 0 φ φ x l ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeu4MdW0cdaqhaaqcbasaaKqzadGaamiBaaqcbasa aKqzadGabmyAayaafaaaaKqzGeGaaGypaKqbaoaalaaakeaajugibi abgkGi2kqadIhagaqbaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqa aaGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaKqaGeaajugWaiaadY gaaSqabaaaaKqzGeGaaGypaKqbaoaabmaakeaajugibiaaigdacqGH sislcqaHepaDaOGaayjkaiaawMcaaKqbaoaalaaakeaajugibiabgk Gi2kaadIhalmaaBaaajeaibaqcLbmacaWGQbaajeaibeaaaOqaaKqz GeGaeyOaIyRaamiEaSWaaSbaaKqaGeaajugWaiaadYgaaKqaGeqaaa aajugibiabes7aKTWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeai beaajugibiabgUcaRiabes8a0jaadkfalmaaBaaajeaibaqcLbmaca aIWaaajeaibeaajuaGdaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGa eyOaIyRaamiEaKqbaoaaBaaajeaibaqcLbmacaWGSbaaleqaaaaaju aGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamiEaSWaaSbaaKqaGeaa jugWaiaadQgaaKqaGeqaaaGcbaqcLbsacaWGYbaaaaGccaGLOaGaay zkaaqcLbsacqaH0oazlmaaBaaajeaibaqcLbmacaWGPbGaamOAaaqc basabaaakeaajugibiabgUcaRiabes8a0Lqbaoaalaaakeaajugibi aadIhajuaGdaWgaaqcbasaaKqzadGaamOAaaWcbeaaaOqaaKqzGeGa amOCaaaajuaGdaWcaaGcbaqcLbsacqGHciITcaWGsbWcdaWgaaqcba saaKqzadGaaGimaaqcbasabaaakeaajugibiabgkGi2kaadIhalmaa BaaajeaibaqcLbmacaWGSbaajeaibeaaaaqcLbsacqaH0oazlmaaBa aajeaibaqcLbmacaWGPbGaamOAaaqcbasabaqcLbsacaaI9aqcfa4a aSaaaOqaaKqzGeGabmOCayaafaaakeaajugibiaadkhaaaGaeqiTdq 2cdaWgaaqcbasaaKqzadGaamyAaiaadYgaaKqaGeqaaKqzGeGaeyOe I0scfa4aaSaaaOqaaKqzGeGaamOuaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaaGcbaqcLbsacaWGYbWcdaahaaqcbasabeaajugWaiaa iodaaaaaaKqzGeGaeqiXdqNaamiEaSWaaSbaaKqaGeaajugWaiaadM gaaKqaGeqaaKqzGeGaamiEaSWaaSbaaKqaGeaajugWaiaadYgaaKqa GeqaaKqzGeGaey4kaSIaeqiXdqxcfa4aaSaaaOqaaKqzGeGaamiEaS WaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaaGcbaqcLbsacaWGYbaa aKqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacqGHciITcaWGsbqcfa 4aaSbaaKqaGeaajugWaiaaicdaaSqabaaakeaajugibiabgkGi2kab eI7aXbaajuaGdaWcaaGcbaqcLbsacqGHciITcqaH4oqCaOqaaKqzGe GaeyOaIyRaamiEaSWaaSbaaKqaGeaajugWaiaadYgaaKqaGeqaaaaa jugibiabgUcaRKqbaoaalaaakeaajugibiabgkGi2kaadkfalmaaBa aajeaibaqcLbmacaaIWaaajeaibeaaaOqaaKqzGeGaeyOaIyRaeqOX dOgaaKqbaoaalaaakeaajugibiabgkGi2kabeA8aQbGcbaqcLbsacq GHciITcaWG4bWcdaWgaaqcbasaaKqzadGaamiBaaqcbasabaaaaaGc caGLBbGaayzxaaqcLbsacaaIUaaaaaa@F34E@   (12)

The gradient of a function F in spherical coordinates can be expressed as

F( r,θ,φ )= F r r ^ + 1 r F θ θ ^ + 1 rsinθ F φ φ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgEGirlaadAeajuaGdaqadaGcbaqcLbsacaWGYbGaaGil aiabeI7aXjaaiYcacqaHgpGAaOGaayjkaiaawMcaaKqzGeGaaGypaK qbaoaalaaakeaajugibiabgkGi2kaadAeaaOqaaKqzGeGaeyOaIyRa amOCaaaaceWGYbGbaKaacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIXa aakeaajugibiaadkhaaaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOr aaGcbaqcLbsacqGHciITcqaH4oqCaaGafqiUdeNbaKaacqGHRaWkju aGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadkhacaGGZbGaaiyA aiaac6gacqaH4oqCaaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOraa GcbaqcLbsacqGHciITcqaHgpGAaaGafqOXdOMbaKaaaaa@6C12@   (13)

θ x l = θ ^ l r φ x l = φ ^ l rsinθ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITcqaH4oqCaOqaaKqzGeGaeyOa IyRaamiEaSWaaSbaaKqaGeaajugWaiaadYgaaKqaGeqaaaaajugibi aai2dajuaGdaWcaaGcbaqcLbsacuaH4oqCgaqcaSWaaSbaaKqaGeaa jugWaiaadYgaaKqaGeqaaaGcbaqcLbsacaWGYbaaaiaaywW7juaGda WcaaGcbaqcLbsacqGHciITcqaHgpGAaOqaaKqzGeGaeyOaIyRaamiE aSWaaSbaaKqaGeaajugWaiaadYgaaKqaGeqaaaaajugibiaai2daju aGdaWcaaGcbaqcLbsacuaHgpGAgaqcaKqbaoaaBaaajeaibaqcLbma caWGSbaaleqaaaGcbaqcLbsacaWGYbGaai4CaiaacMgacaGGUbGaeq iUdehaaiaai6caaaa@64E3@   (14)

Equation (14) can be used to express Λ l i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfU5amTWaa0baaKqaGeaajugWaiaadYgaaKqaGeaajugW aiqadMgagaqbaaaaaaa@3F8B@ (12) as

x i x l = r r δ il τ R 0 r 3 x i x l +τ x i r 2 [ R 0 θ θ ^ l + R 0 φ φ ^ l sinθ ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITceWG4bGbauaajuaGdaWgaaqc basaaKqzadGaamyAaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaSWaaS baaKqaGeaajugWaiaadYgaaKqaGeqaaaaajugibiaai2dajuaGdaWc aaGcbaqcLbsaceWGYbGbauaaaOqaaKqzGeGaamOCaaaacqaH0oazlm aaBaaajeaibaqcLbmacaWGPbGaamiBaaqcbasabaqcLbsacqGHsisl juaGdaWcaaGcbaqcLbsacqaHepaDcaWGsbqcfa4aaSbaaKqaGeaaju gWaiaaicdaaSqabaaakeaajugibiaadkhajuaGdaahaaWcbeqcbasa aKqzadGaaG4maaaaaaqcLbsacaWG4bWcdaWgaaqcbasaaKqzadGaam yAaaqcbasabaqcLbsacaWG4bWcdaWgaaqcbasaaKqzadGaamiBaaqc basabaqcLbsacqGHRaWkcqaHepaDjuaGdaWcaaGcbaqcLbsacaWG4b WcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaakeaajugibiaadkha lmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaqcfa4aamWaaOqaaKqbao aalaaakeaajugibiabgkGi2kaadkfalmaaBaaajeaibaqcLbmacaaI WaaajeaibeaaaOqaaKqzGeGaeyOaIyRaeqiUdehaaiqbeI7aXzaaja WcdaWgaaqcbasaaKqzadGaamiBaaqcbasabaqcLbsacqGHRaWkjuaG daWcaaGcbaqcLbsacqGHciITcaWGsbqcfa4aaSbaaKqaGeaajugWai aaicdaaSqabaaakeaajugibiabgkGi2kabeA8aQbaajuaGdaWcaaGc baqcLbsacuaHgpGAgaqcaKqbaoaaBaaajeaibaqcLbmacaWGSbaale qaaaGcbaqcLbsacaWGZbGaamyAaiaad6gacqaH4oqCaaaakiaawUfa caGLDbaajugibiaai6caaaa@9864@   (15)

Formulation of hamiltonian

The media properties ( μ,ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeY7aTjaaiYcacqaH1oqzaaa@3D61@ ) in the transformed medium can be expressed as:

μ'=ε'= Λ Λ T |Λ| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaadgKqzGeGaeqiVd0MaaG4jaiaai2dacqaH1oqzcaaINaGaaGyp aKqbaoaalaaakeaajugibiabfU5amjabfU5amLqbaoaaCaaaleqaje aibaqcLbmacaWGubaaaaGcbaqcLbsacaaI8bGaeu4MdWKaaGiFaaaa aaa@4AD7@   (16)

|μ'|=|ε'|= |Λ|| Λ T | ( |Λ| ) 3 = 1 |Λ| . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacqaH8oqBcaaINaGaaGiFaiaai2dacaaI8bGaeqyT duMaaG4jaiaaiYhacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGiFaiabfU 5amjaaiYhacaaI8bGaeu4MdW0cdaahaaqcbasabeaajugWaiaadsfa aaqcLbsacaaI8baakeaajuaGdaqadaGcbaqcLbsacaaI8bGaeu4MdW KaaGiFaaGccaGLOaGaayzkaaWcdaahaaqcbasabeaajugWaiaaioda aaaaaKqzGeGaaGypaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGe GaaGiFaiabfU5amjaaiYhaaaGaaGOlaaaa@5F7A@   (17)

The motion of a material particle is determined by the Hamilton-Jacobi equation. The function of a wave vector in geometric optics is same as that of momentum of a particle in mechanics, while the frequency is akin to Hamiltonian, i.e., the energy of the particle.

Since there is no loss of energy while the wave propagates through the medium, the Hamiltonian can be found in order to trace the path of the wave in the cloaked medium.5

From the classical theory of electromagnetic,10 the dispersion equation in an anisotropic medium can be expressed as:

A n 4 B n 2 +C=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacaWGUbWcdaahaaqcbasabeaajugWaiaaisdaaaqc LbsacqGHsislcaWGcbGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYa aaaKqzGeGaey4kaSIaam4qaiaai2dacaaIWaaaaa@467B@   (18)

A=( kε'k )( kμ'k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacaaI9aqcfa4aaeWaaOqaaKqzGeGaaC4AaiabgwSi xlabew7aLjaaiEcacqGHflY1caWHRbaakiaawIcacaGLPaaajuaGda qadaGcbaqcLbsacaWHRbGaeyyXICTaeqiVd0MaaG4jaiabgwSixlaa hUgaaOGaayjkaiaawMcaaaaa@5206@   (19)

B=( kμ'{ [ adj(ε')μ' ] t Iadj(ε')μ' }k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkeacaaI9aqcfa4aaeWaaOqaaKqzGeGaaC4AaiabgwSi xlabeY7aTjaaiEcacqGHflY1juaGdaGadaGcbaqcfa4aamWaaOqaaK qzGeGaamyyaiaadsgacaWGQbGaaGikaiabew7aLjaaiEcacaaIPaGa eyyXICTaeqiVd0MaaG4jaaGccaGLBbGaayzxaaqcfa4aaSbaaKqaGe aajugWaiaadshaaSqabaqcLbsacaWHjbGaeyOeI0Iaamyyaiaadsga caWGQbGaaGikaiabew7aLjaaiEcacaaIPaGaeyyXICTaeqiVd0MaaG 4jaaGccaGL7bGaayzFaaqcLbsacqGHflY1caWHRbaakiaawIcacaGL Paaaaaa@6AF9@   (20)

C=|ε'μ'| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoeacaaI9aGaaGiFaiabew7aLjaaiEcacqGHflY1cqaH 8oqBcaaINaGaaGiFaaaa@43F2@   (21)

Hereis the refractive index of the medium,is the unity matrix in a three dimensional system, adj(ε') MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggacaWGKbGaamOAaiaaiIcacqaH1oqzcaaINaGaaGyk aaaa@3FC9@ is the adjoint matrix of ε' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLjaaiEcaaaa@3BA6@ and [ adj(ε')μ' ] t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWadaGcbaqcLbsacaWGHbGaamizaiaadQgacaaIOaGaeqyT duMaaG4jaiaaiMcacqGHflY1cqaH8oqBcaaINaaakiaawUfacaGLDb aalmaaBaaajeaibaqcLbmacaWG0baajeaibeaaaaa@49B5@  is the trace of the product of the adjoint of ε' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLjaaiEcaaaa@3BA6@ and μ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeY7aTjaaiEcaaaa@3BB5@ . Under the condition that ε'=μ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLjaaiEcacaaI9aGaeqiVd0MaaG4jaaaa@3ED4@ , which is the case for cloaking, the above equation reduces to Equation (22) same as Equation (37) in [5] and as explained below.

( K μ 1 K+ε ) E 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWHlbGaeqiVd02cdaahaaqcbasabeaa jugWaiabgkHiTiaaigdaaaqcLbsacaWHlbGaey4kaSIaeqyTdugaki aawIcacaGLPaaajugibiaahweajuaGdaWgaaqcbasaaKqzadGaaCim aaWcbeaajugibiaai2dacaaIWaaaaa@4B54@   (22)

|K μ 1 K+ε|=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgsJiCjaaiYhacaWHlbGaeqiVd0wcfa4aaWbaaSqabKqa GeaajugWaiabgkHiTiaaigdaaaqcLbsacaWHlbGaey4kaSIaeqyTdu MaaGiFaiaai2dacaaIWaaaaa@484A@   (23)

μ=ε=n= με MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiablwJirjabeY7aTjaai2dacqaH1oqzcaaI9aGaamOBaiaa i2dajuaGdaGcaaGcbaqcLbsacqaH8oqBcqaH1oqzaSqabaaaaa@45CB@

|K n 1 K+n|= 1 |n| ( knk|n| ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWHlbGaamOBaSWaaWbaaKqaGeqabaqcLbmacqGH sislcaaIXaaaaKqzGeGaaC4saiabgUcaRiaad6gacaaI8bGaaGypaK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGiFaiaad6gacaaI 8baaaKqbaoaabmaakeaajugibiaahUgacaWGUbGaaC4AaiabgkHiTi aaiYhacaWGUbGaaGiFaaGccaGLOaGaayzkaaWcdaahaaqcbasabeaa jugWaiaaikdaaaaaaa@5599@   (24)

H=( knk|n| )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeacaaI9aqcfa4aaeWaaOqaaKqzGeGaaC4Aaiaad6ga caWHRbGaeyOeI0IaaGiFaiaad6gacaaI8baakiaawIcacaGLPaaaju gibiaai2dacaaIWaaaaa@4673@   (25)

Whereis the refractive index of the medium, K=k×I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaahUeacaaI9aGaaC4AaiabgEna0kaadMeaaaa@3EC2@  andis the unity matrix in a three dimensional system. The Hamiltonian can be expressed as

H=<k| μ |k>| μ | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeacaaI9aGaaGipaiaahUgacaGG8bGafqiVd0Mbauaa caGG8bGaaC4Aaiaai6dacqGHsislcaaI8bGafqiVd0MbauaacaaI8b aaaa@46D5@   (26)

=<k| Λ Λ T |Λ| |k> 1 |Λ| . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaai2dacaaI8aGaaC4AaiaacYhajuaGdaWcaaGcbaqcLbsa cqqHBoatcqqHBoatjuaGdaahaaWcbeqcbasaaKqzadGaamivaaaaaO qaaKqzGeGaaGiFaiabfU5amjaaiYhaaaGaaiiFaiaahUgacaaI+aGa eyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaI8bGaeu 4MdWKaaGiFaaaacaaIUaaaaa@5263@   (27)

Since detΛ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGLbGaamiDaiabfU5ambaa@3D8F@ i.e. |Λ| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacqqHBoatcaaI8baaaa@3CCF@ is a function which is not dependent on the Hamiltonian, |Λ| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacqqHBoatcaaI8baaaa@3CCF@ can be eliminated. The Hamiltonian would now read:

H=<k|Λ Λ T |k>1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeacaaI9aGaaGipaiaahUgacaGG8bGaeu4MdWKaeu4M dW0cdaahaaqcbasabeaajugWaiaadsfaaaqcLbsacaGG8bGaaC4Aai aai6dacqGHsislcaaIXaGaaGypaiaaicdaaaa@4958@   (28)

In order to illustrate the similarity of approach between Hamiltonian mechanics and Maxwell equations, we consider the spherical cloak as described by Pendry5 One can start with the Maxwell equations, write the dispersion equation Hamiltonian H=0 (Equation 25), take its gradient with respect to k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqahUgagaqbaaaa@3A4E@ . For a spherical cloak, the Hamiltonian can be written as:5

H=<k|Λ Λ T |k> ω 2 c 2 [ b(ra) r(ba) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeacaaI9aGaaGipaiaahUgacaGG8bGaeu4MdWKaeu4M dW0cdaahaaqcbasabeaajugWaiaadsfaaaqcLbsacaGG8bGaaC4Aai aai6dacqGHsisljuaGdaWcaaGcbaqcLbsacqaHjpWDlmaaCaaajeai beqaaKqzadGaaGOmaaaaaOqaaKqzGeGaam4yaSWaaWbaaKqaGeqaba qcLbmacaaIYaaaaaaajuaGdaWadaGcbaqcLbsacaaMe8Ecfa4aaSaa aOqaaKqzGeGaamOyaiaaiIcacaWGYbGaeyOeI0IaamyyaiaaiMcaaO qaaKqzGeGaamOCaiaaiIcacaWGIbGaeyOeI0IaamyyaiaaiMcaaaaa kiaawUfacaGLDbaalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@6310@   (29)

The gradient of the dispersion equation (Equation 29) can be written as:10

H k + H ω ω k =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITcaWGibaakeaajugibiabgkGi 2kaahUgaaaGaey4kaSscfa4aaSaaaOqaaKqzGeGaeyOaIyRaamisaa GcbaqcLbsacqGHciITcqaHjpWDaaqcfa4aaSaaaOqaaKqzGeGaeyOa IyRaeqyYdChakeaajugibiabgkGi2kaahUgaaaGaaGypaiaaicdaaa a@5012@   (30)

2|Λ Λ T |k> ω 2 c 2 [ b(ra) r(ba) ] 2 1 ω ω k =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaGG8bGaeu4MdWKaeu4MdW0cdaahaaqcbasabeaa jugWaiaadsfaaaqcLbsacaGG8bGaaC4Aaiaai6dacqGHsisljuaGda WcaaGcbaqcLbsacqaHjpWDlmaaCaaajeaibeqaaKqzadGaaGOmaaaa aOqaaKqzGeGaam4yaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaaju aGdaWadaGcbaqcLbsacaaMe8Ecfa4aaSaaaOqaaKqzGeGaamOyaiaa iIcacaWGYbGaeyOeI0IaamyyaiaaiMcaaOqaaKqzGeGaamOCaiaaiI cacaWGIbGaeyOeI0IaamyyaiaaiMcaaaaakiaawUfacaGLDbaalmaa CaaajeaibeqaaKqzadGaaGOmaaaajuaGdaWcaaGcbaqcLbsacaaIXa aakeaajugibiabeM8a3baajuaGdaWcaaGcbaqcLbsacqGHciITcqaH jpWDaOqaaKqzGeGaeyOaIyRaaC4AaaaacaaI9aGaaGimaaaa@6DB4@   (31)

The group velocity can be defined as ω k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITcqaHjpWDaOqaaKqzGeGaeyOa IyRaaC4Aaaaaaaa@401C@ . The ray vectorcan be defined as

s= 1 k 0 2 [ b(ra) r(ba) ]|Λ Λ T |k> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaahohacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaWGRbWcdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaG Omaaaaaaqcfa4aamWaaOqaaKqzGeGaaGjbVNqbaoaalaaakeaajugi biaadkgacaaIOaGaamOCaiabgkHiTiaadggacaaIPaaakeaajugibi aadkhacaaIOaGaamOyaiabgkHiTiaadggacaaIPaaaaaGccaGLBbGa ayzxaaqcLbqacaaMe8EcLbsacaGG8bGaeu4MdWKaeu4MdW0cdaahaa qcbasabeaajugWaiaadsfaaaqcLbsacaGG8bGaaC4Aaiaai6daaaa@5FA9@   (32)

The ray vectorwhich indicates the direction of flow of power is in the same direction as dx dς MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGKbGaaCiEaaGcbaqcLbsacaWGKbGa eqOWdyfaaaaa@3F07@ : Equation (35). As explained in.5,11 Since the media properties ( μ,ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeY7aTjaaiYcacqaH1oqzaaa@3D61@ ) in the transformed medium, Equation (16) are changing with position in the problem we are dealing with as well as in the case of Pendry5 Equation (37) of5 cannot be solved for any arbitrary position, hence the fields cannot be calculated analytically. One is compelled to use Hamiltonian mechanics (as discussed in5) to solve the dispersion relation to findas a function of position and free space.

The transformation equation Eq.15 can be expressed in terms of primed coordinates and the ratio ( r /r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcaceWGYbGbauaacaaIVaGaamOCaiaaiMcaaaa@3D66@ can be eliminated later.

Λ l i = r r [ δ il x i r x l r τ R 0 r +τ x i r ( R 0 θ θ ^ l + R 0 φ φ ^ l sinθ ) 1 r ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfU5amTWaa0baaKazba4=baqcLbmacaWGSbaajqwaa+Fa aKqzadGabmyAayaafaaaaKqzGeGaaGypaKqbaoaalaaajaaybaqcLb saceWGYbGbauaaaKaaGfaajugibiaadkhaaaqcfa4aamWaaKaaGfaa jugibiabes7aKTWaaSbaaKazba4=baqcLbmacaWGPbGaamiBaaqcKf aG=hqaaKqzGeGaeyOeI0scfa4aaSaaaKaaGfaajugibiqadIhagaqb aSWaaSbaaKazba4=baqcLbmacaWGPbaajqwaa+FabaaajaaybaqcLb saceWGYbGbauaaaaqcfa4aaSaaaKaaGfaajugibiqadIhagaqbaKqb aoaaBaaajqwaa+FaaKqzadGaamiBaaqcbawabaaajaaybaqcLbsace WGYbGbauaaaaqcfa4aaSaaaKaaGfaajugibiabes8a0jaadkfalmaa Baaajqwaa+FaaKqzadGaaGimaaqcKfaG=hqaaaqcaawaaKqzGeGabm OCayaafaaaaiabgUcaRiabes8a0LqbaoaalaaajaaybaqcLbsaceWG 4bGbauaalmaaBaaajqwaa+FaaKqzadGaamyAaaqcKfaG=hqaaaqcaa waaKqzGeGabmOCayaafaaaaKqbaoaabmaajaaybaqcfa4aaSaaaKaa GfaajugibiabgkGi2kaadkfalmaaBaaajqwaa+FaaKqzadGaaGimaa qcKfaG=hqaaaqcaawaaKqzGeGaeyOaIyRaeqiUdehaaiqbeI7aXzaa jaWcdaWgaaqcKfaG=haajugWaiaadYgaaKazba4=beaajugibiabgU caRKqbaoaalaaajaaybaqcLbsacqGHciITcaWGsbWcdaWgaaqcKfaG =haajugWaiaaicdaaKazba4=beaaaKaaGfaajugibiabgkGi2kabeA 8aQbaajuaGdaWcaaqcaawaaKqzGeGafqOXdOMbaKaalmaaBaaajqwa a+FaaKqzadGaamiBaaqcKfaG=hqaaaqcaawaaKqzGeGaam4CaiaadM gacaWGUbGaeqiUdehaaaqcaaMaayjkaiaawMcaaKqbaoaalaaajaay baqcLbsacaaIXaaajaaybaqcLbsaceWGYbGbauaaaaaajaaycaGLBb GaayzxaaqcLbsacaaIUaaaaa@C195@   (33)

The aim is to express the whole expression in terms of the primed coordinate system. Since the Hamiltonian involves the product Λ Λ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfU5amjabfU5amTWaaWbaaKqaGeqabaqcLbmacaWGubaa aaaa@3E96@ , the ratio ( r r ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGabmOCayaafaaakeaa jugibiaadkhaaaaakiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzad GaaGOmaaaaaaa@40F5@ can eliminated completely by multiplying both sides by ( r r ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamOCaaGcbaqcLbsa ceWGYbGbauaaaaaakiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzad GaaGOmaaaaaaa@40F5@  using Equation (4) as

( r r ) 2 = ( r τ R 0 ) 2 ( 1τ ) 2 r 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamOCaaGcbaqcLbsa ceWGYbGbauaaaaaakiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiaai2dajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqz GeGabmOCayaafaGaeyOeI0IaeqiXdqNaamOuaKqbaoaaBaaajeaiba qcLbmacaaIWaaaleqaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabKqa GeaajugWaiaaikdaaaaakeaajuaGdaqadaGcbaqcLbsacaaIXaGaey OeI0IaeqiXdqhakiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiqadkhagaqbaSWaaWbaaKqaGeqabaqcLbmacaaIYa aaaaaajugibiaai6caaaa@5D60@

Further analysis will be carried out in terms of r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadkhagaqbaaaa@3A51@ , but the primes will be dropped.

For the sake of simplicity, we consider an axisymmetric cloak i.e. R 0 φ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITcaWGsbWcdaWgaaqcbasaaKqz adGaaGimaaqcbasabaaakeaajugibiabgkGi2kabeA8aQbaacaaI9a GaaGimaaaa@43D8@ . The Hamiltonian is expressed in terms of the transformed coordinate system. On substituting the corresponding values and carrying out a nontrivial derivation, we obtain

H=kk+ [ ( τ R 0 ) 2 2rτ R 0 ] r 4 ( kx ) 2 ( rτ R 0 ) 2 ( 1τ ) 2 r 2 + τ 2 r 4 ( R 0 θ ) 2 ( kx ) 2 + 2τ r 2 R 0 θ ( kx )( k θ ^ ) τ 2 R 0 r 5 R 0 θ ( kx ) 2 ( x θ ^ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamisaiaai2dacaaMe8UaaC4AaiabgwSixlaahUga cqGHRaWkjuaGdaWcaaGcbaqcfa4aamWaaOqaaKqbaoaabmaakeaaju gibiabes8a0jaadkfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaa aOGaayjkaiaawMcaaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaK qzGeGaeyOeI0IaaGOmaiaadkhacqaHepaDcaWGsbWcdaWgaaqcbasa aKqzadGaaGimaaqcbasabaaakiaawUfacaGLDbaaaeaajugibiaadk hajuaGdaahaaWcbeqcbasaaKqzadGaaGinaaaaaaqcfa4aaeWaaOqa aKqzGeGaaC4AaiabgwSixlaahIhaaOGaayjkaiaawMcaaSWaaWbaaK qaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0scfa4aaSaaaOqaaKqb aoaabmaakeaajugibiaadkhacqGHsislcqaHepaDcaWGsbWcdaWgaa qcbasaaKqzadGaaGimaaqcbasabaaakiaawIcacaGLPaaalmaaCaaa jeaibeqaaKqzadGaaGOmaaaaaOqaaKqbaoaabmaakeaajugibiaaig dacqGHsislcqaHepaDaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaamOCaSWaaWbaaKqaGeqabaqcLbmacaaIYa aaaaaajugibiabgUcaRaGcbaqcfa4aaSaaaOqaaKqzGeGaeqiXdqxc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakeaajugibiaadkhaju aGdaahaaWcbeqcbasaaKqzadGaaGinaaaaaaqcfa4aaeWaaOqaaKqb aoaalaaakeaajugibiabgkGi2kaadkfajuaGdaWgaaqcbasaaKqzad GaaGimaaWcbeaaaOqaaKqzGeGaeyOaIyRaeqiUdehaaaGccaGLOaGa ayzkaaWcdaahaaqcbasabeaajugWaiaaikdaaaqcfa4aaeWaaOqaaK qzGeGaaC4AaiabgwSixlaahIhaaOGaayjkaiaawMcaaSWaaWbaaKqa GeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGe GaaGOmaiabes8a0bGcbaqcLbsacaWGYbWcdaahaaqcbasabeaajugW aiaaikdaaaaaaKqbaoaalaaakeaajugibiabgkGi2kaadkfalmaaBa aajeaibaqcLbmacaaIWaaajeaibeaaaOqaaKqzGeGaeyOaIyRaeqiU dehaaKqbaoaabmaakeaajugibiaahUgacqGHflY1caWH4baakiaawI cacaGLPaaajuaGdaqadaGcbaqcLbsacaWHRbGaeyyXICTafqiUdeNb aKaaaOGaayjkaiaawMcaaaqaaKqzGeGaeyOeI0scfa4aaSaaaOqaaK qzGeGaeqiXdq3cdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWG sbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaakeaajugibiaadk halmaaCaaajeaibeqaaKqzadGaaGynaaaaaaqcfa4aaSaaaOqaaKqz GeGaeyOaIyRaamOuaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaa GcbaqcLbsacqGHciITcqaH4oqCaaqcfa4aaeWaaOqaaKqzGeGaaC4A aiabgwSixlaahIhaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLb macaaIYaaaaKqbaoaabmaakeaajugibiaahIhacqGHflY1cuaH4oqC gaqcaaGccaGLOaGaayzkaaqcLbsacaaIUaaaaaa@EE78@   (34)

For a spherical cloak, only first three terms of Equation 31 exist since

R 0 θ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITcaWGsbqcfa4aaSbaaKqaGeaa jugWaiaaicdaaSqabaaakeaajugibiabgkGi2kabeI7aXbaacaaI9a GaaGimaiaai6caaaa@44ED@

This reduced equation of Hamiltonian agrees with the expression of Hamiltonian for spherical cloak given in.5 The transmitted wave vector k t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaahUgalmaaBaaajeaibaqcLbmacaWG0baajeaibeaaaaa@3CE9@ must lie in the plane of incidence.

k t = k in +qN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaahUgajuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugi biaai2dacaWHRbWcdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGe qaaKqzGeGaey4kaSIaamyCaiaah6eaaaa@4664@

where k in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaahUgalmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasa baaaaa@3DD1@ is the incident wave vector,N is the normal vector pointing inwards to the plane of incidence, and q is a scalar quantity which is obtained by solving for H=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeacaaI9aGaaGimaaaa@3B9C@ using a procedure similar to that described by Pendry5

For the purpose of ray tracing, the path can be parameterised using the Hamiltonian, Equation 34 as:11

dx dς = H k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGKbGaaCiEaaGcbaqcLbsacaWGKbGa eqOWdyfaaiaai2dajuaGdaWcaaGcbaqcLbsacqGHciITcaWGibaake aajugibiabgkGi2kaahUgaaaaaaa@462B@   (35)

dk dς = H x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGKbGaaC4AaaGcbaqcLbsacaWGKbGa eqOWdyfaaiaai2dacqGHsisljuaGdaWcaaGcbaqcLbsacqGHciITca WGibaakeaajugibiabgkGi2kaahIhaaaaaaa@4718@   (36)

Where ς MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek8awbaa@3AF3@ is the parameterising variable and x is the position vector. Ray tracing is carried out by solving ( x,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWH4bGaaGilaiaahUgaaOGaayjkaiaa wMcaaaaa@3E24@ as a function of ς MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek8awbaa@3AF3@ starting from ς=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek8awjaai2dacaaIWaaaaa@3C74@ which corresponds to the point at which the incident wave touches the cloak. In a spherical coordinate system, the position vector x points in the direction of the radial vector r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadkhagaqcaaaa@3A55@ , which means x=r=r r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaahIhacaaI9aGaaCOCaiaai2dacaWGYbGabmOCayaajaaa aa@3ED6@ .

The Hamiltonian can be solved as per11 as:

H k =2k+ [ ( τ R 0 ) 2 2rτ R 0 ] r 4 2( kx )x+2 τ 2 r 4 ( R 0 θ ) 2 ( kx )x + 2τ r 2 R 0 θ [ ( kx ) θ ^ +( k θ ^ )x ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqbaoaalaaakeaajugibiabgkGi2kaadIeaaOqaaKqzGeGa eyOaIyRaaC4AaaaacaaI9aGaaGOmaiaahUgacqGHRaWkjuaGdaWcaa Gcbaqcfa4aamWaaOqaaKqbaoaabmaakeaajugibiabes8a0jaadkfa lmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaOGaayjkaiaawMcaaK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGOm aiaadkhacqaHepaDcaWGsbqcfa4aaSbaaKqaGeaajugWaiaaicdaaS qabaaakiaawUfacaGLDbaaaeaajugibiaadkhalmaaCaaajqwaa+Fa beaajugWaiaaisdaaaaaaKqzGeGaaGOmaKqbaoaabmaakeaajugibi aahUgacqGHflY1caWH4baakiaawIcacaGLPaaajugibiaahIhacqGH RaWkcaaIYaqcfa4aaSaaaOqaaKqzGeGaeqiXdq3cdaahaaqcbasabe aajugWaiaaikdaaaaakeaajugibiaadkhalmaaCaaajeaibeqaaKqz adGaaGinaaaaaaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabgk Gi2kaadkfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaOqaaKqz GeGaeyOaIyRaeqiUdehaaaGccaGLOaGaayzkaaWcdaahaaqcbasabe aajugWaiaaikdaaaqcfa4aaeWaaOqaaKqzGeGaaC4AaiabgwSixlaa hIhaaOGaayjkaiaawMcaaKqzGeGaaCiEaaGcbaqcLbsacqGHRaWkju aGdaWcaaGcbaqcLbsacaaIYaGaeqiXdqhakeaajugibiaadkhajuaG daahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcfa4aaSaaaOqaaKqzGe GaeyOaIyRaamOuaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaGc baqcLbsacqGHciITcqaH4oqCaaqcfa4aamWaaOqaaKqbaoaabmaake aajugibiaahUgacqGHflY1caWH4baakiaawIcacaGLPaaajugibiqb eI7aXzaajaGaey4kaSscfa4aaeWaaOqaaKqzGeGaaC4AaiabgwSixl qbeI7aXzaajaaakiaawIcacaGLPaaajugibiaahIhaaOGaay5waiaa w2faaaaaaa@B309@   (37)

H x = [ ( 6τr R 0 4 ( τ R 0 ) 2 r 5 ) ( kx ) 2 2 ( rτ R 0 )τ R 0 ( 1τ ) 2 r 3 + [ 2τ r 5 ( R 0 θ )( R 0 r ) ( kx ) 2 +2 ( rτ )τ R 0 ( 1τ ) 2 r 3 ( R 0 θ ) + 2 τ 2 r 5 ( R 0 θ )( 2 R 0 θ 2 ) ( kx ) 2 ( kr ) 2 r 2 2τ r 2 ( R 0 θ ) + 2τ r 3 ( 2 R 0 θ 2 )( kr )( k θ ^ ) ] θ ^ + [ ( ( τ R 0 ) 2 2rτ R 0 ) r 4 2( kr )+ 2 τ 2 r 4 ( R 0 θ ) 2 ( kr ) + 2τ r 2 ( R 0 θ )( k θ ^ ) ]k. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqbaoaalaaakeaajugibiabgkGi2kaadIeaaOqaaKqzGeGa eyOaIyRaaCiEaaaacqGH9aqpjuaGdaWabaGcbaqcfa4aaeWaaOqaaK qbaoaalaaakeaajugibiaaiAdacqaHepaDcaWGYbGaamOuaKqbaoaa BaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaeyOeI0IaaGinaKqbao aabmaakeaajugibiabes8a0jaadkfalmaaBaaajeaibaqcLbmacaaI WaaajeaibeaaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaaGcbaqcLbsacaWGYbWcdaahaaqcbasabeaajugWaiaaiwda aaaaaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGaaC4Aaiabgw SixlaahIhaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaeyOeI0IaaGOmaKqbaoaalaaakeaajuaGdaqadaGcba qcLbsacaWGYbGaeyOeI0IaeqiXdqNaamOuaSWaaSbaaKqaGeaajugW aiaaicdaaKqaGeqaaaGccaGLOaGaayzkaaqcLbsacqaHepaDcaWGsb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaakeaajuaGdaqadaGc baqcLbsacaaIXaGaeyOeI0IaeqiXdqhakiaawIcacaGLPaaajuaGda ahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaadkhalmaaCaaajeai beqaaKqzadGaaG4maaaaaaaakiaawUfaaaqaaKqzGeGaey4kaSscfa 4aamqaaOqaaKqbaoaalaaakeaajugibiaaikdacqaHepaDaOqaaKqz GeGaamOCaSWaaWbaaKqaGeqabaqcLbmacaaI1aaaaaaajuaGdaqada Gcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOuaSWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaaGcbaqcLbsacqGHciITcqaH4oqCaaaaki aawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaWGsbWcdaWgaaqcbasa aKqzadGaaGimaaqcbasabaqcLbsacqGHsislcaWGYbaakiaawIcaca GLPaaajuaGdaqadaGcbaqcLbsacaWHRbGaeyyXICTaaCiEaaGccaGL OaGaayzkaaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRa WkcaaIYaqcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadkhacqGH sislcqaHepaDaOGaayjkaiaawMcaaKqzGeGaeqiXdqNaamOuaSWaaS baaKqaGeaajugWaiaaicdaaKqaGeqaaaGcbaqcfa4aaeWaaOqaaKqz GeGaaGymaiabgkHiTiabes8a0bGccaGLOaGaayzkaaWcdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacaWGYbqcfa4aaWbaaSqabKqaGeaa jugWaiaaiodaaaaaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacq GHciITcaWGsbWcdaWgaaqcbauaaKqzGdGaaGimaaqcbauabaaakeaa jugibiabgkGi2kabeI7aXbaaaOGaayjkaiaawMcaaaGaay5waaaaba qcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIYaGaeqiXdq3cdaah aaqcbasabeaajugWaiaaikdaaaaakeaajugibiaadkhalmaaCaaaje aibeqaaKqzadGaaGynaaaaaaqcfa4aaeWaaOqaaKqbaoaalaaakeaa jugibiabgkGi2kaadkfalmaaBaaajeaibaqcLbmacaaIWaaajeaibe aaaOqaaKqzGeGaeyOaIyRaeqiUdehaaaGccaGLOaGaayzkaaqcfa4a aeWaaOqaaKqbaoaalaaakeaajugibiabgkGi2UWaaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaamOuaKqbaoaaBaaajeaibaqcLbmacaaI WaaaleqaaaGcbaqcLbsacqGHciITcqaH4oqCjuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaaaaaakiaawIcacaGLPaaajuaGdaqadaGcbaqc LbsacaWHRbGaeyyXICTaaCiEaaGccaGLOaGaayzkaaWcdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacqGHsisljuaGdaWcaaGcbaqcfa4a aeWaaOqaaKqzGeGaaC4AaiabgwSixlaahkhaaOGaayjkaiaawMcaaK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGYbqc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqbaoaalaaakeaaju gibiaaikdacqaHepaDaOqaaKqzGeGaamOCaKqbaoaaCaaaleqabaqc LbsacaaIYaaaaaaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaey OaIyRaamOuaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaaGcbaqc LbsacqGHciITcqaH4oqCaaaakiaawIcacaGLPaaaaeaajuaGdaWaca GcbaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIYaGaeqiXdqha keaajugibiaadkhalmaaCaaajeaibeqaaKqzadGaaG4maaaaaaqcfa 4aaeWaaOqaaKqbaoaalaaakeaajugibiabgkGi2UWaaWbaaKqaGeqa baqcLbmacaaIYaaaaKqzGeGaamOuaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaaGcbaqcLbsacqGHciITcqaH4oqCjuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaaaaaakiaawIcacaGLPaaajuaGdaqadaGcba qcLbsacaWHRbGaeyyXICTaaCOCaaGccaGLOaGaayzkaaqcfa4aaeWa aOqaaKqzGeGaaC4AaiabgwSixlqbeI7aXzaajaaakiaawIcacaGLPa aaaiaaw2faaKqzGeGafqiUdeNbaKaaaOqaaKqzGeGaey4kaSscfa4a amqaaOqaaKqbaoaalaaakeaajuaGdaqadaGcbaqcfa4aaeWaaOqaaK qzGeGaeqiXdqNaamOuaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aaGccaGLOaGaayzkaaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLb sacqGHsislcaaIYaGaamOCaiabes8a0jaadkfalmaaBaaajeaibaqc LbmacaaIWaaajeaibeaaaOGaayjkaiaawMcaaaqaaKqzGeGaamOCaK qbaoaaCaaaleqajeaibaqcLbmacaaI0aaaaaaajugibiaaikdajuaG daqadaGcbaqcLbsacaWHRbGaeyyXICTaaCOCaaGccaGLOaGaayzkaa qcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIYaGaeqiXdq3cdaah aaqcbasabeaajugWaiaaikdaaaaakeaajugibiaadkhajuaGdaahaa WcbeqcbasaaKqzadGaaGinaaaaaaqcfa4aaeWaaOqaaKqbaoaalaaa keaajugibiabgkGi2kaadkfalmaaBaaajeaibaqcLbmacaaIWaaaje aibeaaaOqaaKqzGeGaeyOaIyRaeqiUdehaaaGccaGLOaGaayzkaaWc daahaaqcbasabeaajugWaiaaikdaaaqcfa4aaeWaaOqaaKqzGeGaaC 4AaiabgwSixlaahkhaaOGaayjkaiaawMcaaaGaay5waaaabaqcfa4a amGaaOqaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGOmaiabes 8a0bGcbaqcLbsacaWGYbWcdaahaaqcbasabeaajugWaiaaikdaaaaa aKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqGHciITcaWGsbWcda WgaaqcbasaaKqzadGaaGimaaqcbasabaaakeaajugibiabgkGi2kab eI7aXbaaaOGaayjkaiaawMcaaKqbaoaabmaakeaajugibiaahUgacq GHflY1cuaH4oqCgaqcaaGccaGLOaGaayzkaaaacaGLDbaajugibiaa hUgacaaIUaaaaaa@BC5D@   (38)

In order to calculate the Jacobian, a spherical coordinate system (θ,φ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacqaH4oqCcaaISaGaeqOXdOMaaGykaaaa@3EDC@ has been used. However, for the case of ray tracing where in the calculation of distance is involved, the vectors r ^ , θ ^ ,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadkhagaqcaiaaiYcacuaH4oqCgaqcaiaaiYcacaWHRbaa aa@3E7B@ are expressed in the corresponding Cartesian components.

Ellipsoidal cloak

For the verification of the above algorithm, the outer contour is considered to be an ellipsoid having axial symmetry. The ellipsoid would look identical for any section containing the axis of symmetry. Since we are assuming a spherical polar axis of symmetry which is the Z axis, we can carry out the ray tracing procedure in two dimensions for an ellipse with the major axis asand the minor axis as b.

R 0 = ab b 2 cos 2 θ+ a 2 sin 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaai2dajuaGdaWcaaGcbaqcLbsacaWGHbGaamOyaaGcbaqcfa4aaO aaaOqaaKqzGeGaamOyaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aKqbaoaavacakeqaleqajeaibaqcLbmacaaIYaaakeaajugibiaaco gacaGGVbGaai4CaaaacqaH4oqCcqGHRaWkcaWGHbWcdaahaaqcbasa beaajugWaiaaikdaaaqcfa4aaubiaOqabSqabKqaGeaajugWaiaaik daaOqaaKqzGeGaai4CaiaacMgacaGGUbaaaiabeI7aXbWcbeaaaaaa aa@5A21@   (39)

R 0 θ = sinθcosθ( b 2 a 2 )ab ( b 2 cos 2 θ+ a 2 sin 2 θ ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITcaWGsbqcfa4aaSbaaKqaGeaa jugWaiaaicdaaSqabaaakeaajugibiabgkGi2kabeI7aXbaacaaI9a qcfa4aaSaaaOqaaKqzGeGaai4CaiaacMgacaGGUbGaeqiUdeNaam4y aiaad+gacaWGZbGaeqiUdexcfa4aaeWaaOqaaKqzGeGaamOyaSWaaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamyyaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWGHb GaamOyaaGcbaqcfa4aaeWaaOqaaKqzGeGaamOyaSWaaWbaaKqaGeqa baqcLbmacaaIYaaaaKqbaoaavacakeqaleqajeaibaqcLbmacaaIYa aakeaajugibiaacogacaGGVbGaai4CaaaacqaH4oqCcqGHRaWkcaWG HbWcdaahaaqcbasabeaajugWaiaaikdaaaqcfa4aaubiaOqabSqabK qaGeaajugWaiaaikdaaOqaaKqzGeGaai4CaiaacMgacaGGUbaaaiab eI7aXbGccaGLOaGaayzkaaWcdaahaaqcbasabeaajugWaiaaiodaca aIVaGaaGOmaaaaaaaaaa@7884@   (40)

2 R 0 θ 2 =( b 2 a 2 )ab   [ cos2θ ( b 2 cos 2 θ+ a 2 sin 2 θ ) 3/2 + 3 4 ( b 2 a 2 ) sin 2 2θ ( b 2 cos 2 θ+ a 2 sin 2 θ ) 5/2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWacaqaamaalaaabaqcLbsacqGHciITjuaGdaahaaqabKqb GeaajugWaiaaikdaaaqcLbsacaWGsbqcfa4aaSbaaKqbGeaajugWai aaicdaaKqbagqaaaqaaKqzGeGaeyOaIyRaeqiUdexcfa4aaWbaaeqa juaibaqcLbmacaaIYaaaaaaajugibiaai2dajuaGdaqadaqaaKqzGe GaamOyaSWaaWbaaKqbGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0Ia amyyaSWaaWbaaKqbGeqabaqcLbmacaaIYaaaaaqcfaOaayjkaiaawM caaKqzGeGaamyyaiaadkgaqaaaaaaaaaWdbiaacckacaGGGcqcfa4d amaadeaabaWaaSaaaeaajugibiaacogacaGGVbGaai4Caiaaikdacq aH4oqCaKqbagaadaqadaqaaKqzGeGaamOyaSWaaWbaaKqbGeqabaqc LbmacaaIYaaaaKqbaoaavacabeqabKqbGeaajugWaiaaikdaaKqbag aajugibiaacogacaGGVbGaai4CaaaacqaH4oqCcqGHRaWkcaWGHbWc daahaaqcfasabeaajugWaiaaikdaaaqcfa4aaubiaeqabeqcfasaaK qzadGaaGOmaaqcfayaaKqzGeGaai4CaiaacMgacaGGUbaaaiabeI7a XbqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaKqzadGaaG4maiaai+ cacaaIYaaaaaaaaKqbakaawUfaaKqzGeGaey4kaSscfa4aaSaaaeaa jugibiaaiodaaKqbagaajugibiaaisdaaaqcfa4aaSaaaeaadaqada qaaKqzGeGaamOyaKqbaoaaCaaabeqcfasaaKqzadGaaGOmaaaajugi biabgkHiTiaadggalmaaCaaajuaibeqaaKqzadGaaGOmaaaaaKqbak aawIcacaGLPaaadaqfGaqabeqajuaibaqcLbmacaaIYaaajuaGbaqc LbsacaGGZbGaaiyAaiaac6gaaaGaaGOmaiabeI7aXbqcfayaamaabm aabaqcLbsacaWGIbWcdaahaaqcfasabeaajugWaiaaikdaaaqcfa4a aubiaeqabeqcfasaaKqzadGaaGOmaaqcfayaaKqzGeGaai4yaiaac+ gacaGGZbaaaiabeI7aXjabgUcaRiaadggajuaGdaahaaqabKqbGeaa jugWaiaaikdaaaqcfa4aaubiaeqabeqcfasaaKqzadGaaGOmaaqcfa yaaKqzGeGaai4CaiaacMgacaGGUbaaaiabeI7aXbqcfaOaayjkaiaa wMcaaSWaaWbaaKqbGeqabaqcLbmacaaI1aGaaG4laiaaikdaaaaaaa qcfaOaayzxaaaaaa@BC7A@   (41)

Figure 2 shows the path of a plane wave with the incident wave vector parallel to the Z-axis. The cloaking effect is obvious from the path of the waves. Since it is a symmetric structure, we have generated waves on one side only.

Figure 2 Two-dimensional plot of ellipsoidal cloak in the X-Z plane.

Conclusion

A generalised transformation technique for the design of an arbitrarily shaped cloak in three dimensions has been demonstrated. A procedure for calculating the path of a ray through it is described. In order to demonstrate the validity of the algorithm, it has been applied to an axisymmetric ellipsoid cloak. In the existing algorithms, there is a need for an explicit calculation of material properties ( μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeY7aTbaa@3B04@ and ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLbaa@3AF5@ tensors) and the determinant of the refractive index for the formulation of the Hamiltonian. The algorithm explained in this paper obviates these requirements. Also, the algorithms reported in the literature, for the design of an arbitrarily shaped cloak in three dimensions, have not been verified using the ray tracing technique. Thus there are two distinct contributions of this research work. First, the freedom from the necessity of calculating material properties explicitly and second, the verification of the algorithm using ray tracing. This technique can be applied to any arbitrary surface for which the function R 0 (θ,φ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaaiIcacqaH4oqCcaaISaGaeqOXdOMaaGykaaaa@42AA@  is single valued on it.

Acknowledgments

None.

Conflicts of interest

Author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Sidhwa. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.