Submit manuscript...
Open Access Journal of
eISSN: 2575-9086

Science

Research Article Volume 7 Issue 1

Oscillations through a barrier tunneling potential for a particle in a central potential (double potential well)

Hasan Hüseyin Erbil, Ahmet Saim Selvi

Department of Physics, Faculty of Sciences, Ege University, 35100 Bornova – İzmir, Turkey

Correspondence: Hasan Hüseyin Erbil, Department of Physics, Faculty of Sciences, Ege University, 35100 Bornova – İzmir, Turkey, Tel +90 533 481 9918,

Received: January 08, 2024 | Published: January 23, 2024

Citation: Erbil HH, Selvi AS. Oscillations through a barrier tunneling potential for a particle in a central potential (double potential well). Open Access J Sci. 2024;7(1):5-13. DOI: 10.15406/oajs.2024.07.00208

Download PDF

Abstract

In some molecules such as ammonia, double vibrations are observed at small energies. These small vibrations are thought to arise from double well potentials. To explain these small energy gaps, double potential wells are investigated, and complex calculations are made. Until recently, since the exact solution of the Schrödinger equation was not known, approximate solutions were always obtained. The exact solution of the Schrödinger equation is now known. In previous studies, a simple procedure for the general solution of the radial Schrödinger Equation has been found for spherical symmetric potentials without making any approximation. In this article, the Schrodinger equation was solved with this new solution method. It has been applied to the oscillations through a barrier tunneling potential for a particle in a central quadratic deformed potential well (double potential well). It is seen that there is no need to look for complex potentials to explain the double wells observed in small vibrations in ammonia and similar molecules, they were compared with experimentally measured energies. The results were found to be fully compatible. It has been seen that there can always be double well potentials at small energies for all molecules, atomic nuclei, and similar particles with angular momentum other than zero.

Keywords: central potentials, radial equation, spherical symmetric potential, oscillations through a barrier tunneling, double potential well, small vibrations

Introduction

Although the radial Schrödinger Equation (SE) for some simple spherical symmetric potential is solved, an exact solution is not possible in complicated situations, and it must be then resorted to approximation methods. For the calculation of stationary states and energy eigenvalues, these methods include perturbation theory, the variational method and the WKB approximation. Perturbation theory is applicable if the Hamiltonian differs from an exactly solvable part by a small amount. The variational method gives a good estimate of the ground state energy if one has a qualitative idea of the form of the wave function and the WKB method is applicable in the nearly classical limit. In one of the previous studies, it has been achieved a simple method for the exact general solution of the radial SE for spherically symmetric potential well of any form without making any approximation. This simple solution method has been applied to many spherical symmetric potential.1,2 In this study, we have applied this simple method to solve the oscillations through a barrier of potential (double potential well). It was applied to the ammonia molecule, and it was seen that the values calculated with experimental measurements agreed very well. It is seen that there is no need to look for complex potentials to explain the double wells observed in small vibrations in ammonia and similar molecules, and that there will be double wells in small vibrations in all molecules, atomic nuclei, and similar particles with non-zero angular momentum.

Radial Schrodinger equations for spherical symmetric potentials and their solution (general solution)

The SE in three dimensions is given as follows:

  Δψ( r )+ 2m 2  [ EV( r ) ]ψ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaiiOaiabfs5aejabeI8a5naabmaapaqaa8qaceWGYbWdayaa laaapeGaayjkaiaawMcaaiabgUcaRmaalaaapaqaa8qacaaIYaGaam yBaaWdaeaapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaaaOGa aiiOamaadmaapaqaa8qacaWGfbGaeyOeI0IaamOvamaabmaapaqaa8 qaceWGYbWdayaalaaapeGaayjkaiaawMcaaaGaay5waiaaw2faaiab eI8a5naabmaapaqaa8qaceWGYbWdayaalaaapeGaayjkaiaawMcaai abg2da9iaaicdaaaa@5368@   (1)

Where, E and V are the total and potential energies, respectively, m is the mass or reduced mass of particle. The spherical polar coordinates ( r,θ,ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaadkhacaGGSaGaeqiUdeNaaiilaiabew9aMbGaayjkaiaa wMcaaaaa@3E6C@ are given as follows:

X=r sin( θ ) cos( ϕ ),   y=r sin( θ ) sin( ϕ ),  z=r cos( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGybGaeyypa0JaamOCaiaacckacaWGZbGaamyAaiaad6gadaqadaqa aiabeI7aXbGaayjkaiaawMcaaiaacckaciGGJbGaai4Baiaacohada qadaqaaiabew9aMbGaayjkaiaawMcaaiaacYcacaGGGcGaaiiOaiaa cckacaWG5bGaeyypa0JaamOCaiaacckacaWGZbGaamyAaiaad6gada qadaqaaiabeI7aXbGaayjkaiaawMcaaiaacckacaWGZbGaamyAaiaa d6gadaqadaqaaiabew9aMbGaayjkaiaawMcaaiaacYcacaGGGcGaai iOaiaadQhacqGH9aqpcaWGYbGaaiiOaiaadogacaWGVbGaam4Camaa bmaabaGaeqiUdehacaGLOaGaayzkaaaaaa@6B38@  

These coordinates appropriate for the symmetry of the problem. The Equation (1), expressed in these coordinates, is as follows:

[ 2 r 2 + 2 r r ]ψ( r,θ,ϕ )+ 1 r 2 L 2 ^ ( θ,ϕ )ψ( r,θ,ϕ )+ 2m 2 [ EV( r,θ,ϕ ) ]ψ( r,θ,ϕ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qa caaIYaaaaaGcpaqaa8qacqGHciITcaWGYbWdamaaCaaaleqabaWdbi aaikdaaaaaaOGaey4kaSYaaSaaa8aabaWdbiaaikdaa8aabaWdbiaa dkhaaaWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamOCaa aaaiaawUfacaGLDbaacqaHipqEdaqadaWdaeaapeGaamOCaiaacYca cqaH4oqCcaGGSaGaeqy1dygacaGLOaGaayzkaaGaey4kaSYaaSaaa8 aabaWdbiaaigdaa8aabaWdbiaadkhapaWaaWbaaSqabeaapeGaaGOm aaaaaaGcpaWaaecaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqba8qacqWFsectpaWaaWbaaSqabeaapeGaaGOmaaaaaOWd aiaawkWaa8qadaqadaWdaeaapeGaeqiUdeNaaiilaiabew9aMbGaay jkaiaawMcaaiabeI8a5naabmaapaqaa8qacaWGYbGaaiilaiabeI7a XjaacYcacqaHvpGzaiaawIcacaGLPaaacqGHRaWkdaWcaaWdaeaape GaaGOmaiaad2gaa8aabaWdbiabl+qiO9aadaahaaWcbeqaa8qacaaI Yaaaaaaakmaadmaapaqaa8qacaWGfbGaeyOeI0IaamOvamaabmaapa qaa8qacaWGYbGaaiilaiabeI7aXjaacYcacqaHvpGzaiaawIcacaGL PaaaaiaawUfacaGLDbaacqaHipqEdaqadaWdaeaapeGaamOCaiaacY cacqaH4oqCcaGGSaGaeqy1dygacaGLOaGaayzkaaGaeyypa0JaaGim aaaa@8B8C@   (2)

L ^ 2 ( θ,ϕ )= 2 θ 2 +cotg( θ ) θ + 1 si n 2 ( θ ) 2 ϕ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuaaqaaaaaaaaaWdbiqb=jrimzaa jaWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaeqiUde Naaiilaiabew9aMbGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qa cqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaeyOaIy RaaeiUd8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRiaaboga caqGVbGaaeiDaiaabEgadaqadaWdaeaacqaH4oqCa8qacaGLOaGaay zkaaWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaeqiUdeha aiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGZbGaamyAa8 aacaWGUbWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaaiabeI7a XbWdbiaawIcacaGLPaaaaaWaaSaaa8aabaWdbiabgkGi2+aadaahaa Wcbeqaa8qacaaIYaaaaaGcpaqaa8qacqGHciITcqaHvpGzpaWaaWba aSqabeaapeGaaGOmaaaaaaaaaa@6D10@

The potential energy of a particle which moves in a central and spherically symmetric field of force depends only upon the distance r between the particle and the center of force. Thus, the potential energy should be such as V( r,θ,ϕ )=V( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWaaeWaaeaacaWGYbGaaiilaiabeI7aXjaacYcacqaHvpGzaiaa wIcacaGLPaaacqGH9aqpcaWGwbWaaeWaaeaacaWGYbaacaGLOaGaay zkaaaaaa@43A8@ . Solution of the Equation (2) can be found by the method of separation of variables. To apply this method, it is assumed that the solution is in the form of

Ψ( r,θ,ϕ )=R( r )Y( θ,ϕ )=R( r )| jm > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq qHOoqwdaqadaqaaiaadkhacaGGSaGaeqiUdeNaaiilaiabew9aMbGa ayjkaiaawMcaaiabg2da9iaadkfadaqadaqaaiaadkhaaiaawIcaca GLPaaacaWGzbWaaeWaaeaacqaH4oqCcaGGSaGaeqy1dygacaGLOaGa ayzkaaGaeyypa0JaamOuamaabmaabaGaamOCaaGaayjkaiaawMcaam aaeeaabaGaamOAaiaad2gaaiaawEa7aiaacckacqGH+aGpaaa@54EB@   (3)

in which R(r) is independent of the angles, and Y( θ,ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGzbWaaeWaaeaacqaH4oqCcaGGSaGaeqy1dygacaGLOaGaayzkaaaa aa@3DA3@  and | jm > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada abbaqaaiaabQgacaqGTbaacaGLhWoacaGGGcGaeyOpa4daaa@3CAB@  are independent of r. By substituting Equation (3) into Equation (2) and rearranging, the following Equation is obtained. In the Equation (3),m is not mass, it is magnetic quantum number.

[ 2 r 2 + 2 r r ]R( r )+{ 2m 2 [ EV( r ) ] C r 2 }R( r )=0  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qa caaIYaaaaaGcpaqaa8qacqGHciITcaWGYbWdamaaCaaaleqabaWdbi aaikdaaaaaaOGaey4kaSYaaSaaa8aabaWdbiaaikdaa8aabaWdbiaa dkhaaaWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamOCaa aaaiaawUfacaGLDbaacaWGsbWaaeWaa8aabaWdbiaadkhaaiaawIca caGLPaaacqGHRaWkdaGadaWdaeaapeWaaSaaa8aabaWdbiaaikdaca WGTbaapaqaa8qacqWIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaaGc daWadaWdaeaapeGaamyraiabgkHiTiaadAfadaqadaWdaeaapeGaam OCaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgkHiTmaalaaapaqa a8qacaWGdbaapaqaa8qacaWGYbWdamaaCaaaleqabaWdbiaaikdaaa aaaaGccaGL7bGaayzFaaGaamOuamaabmaapaqaa8qacaWGYbaacaGL OaGaayzkaaGaeyypa0JaaGimaiaacckaaaa@62D0@   (4)

L ^ 2 ( θ,ϕ ) Y( θ,ϕ )+C Y( θ,ϕ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuaaqaaaaaaaaaWdbiqb=jrimzaa jaWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaeqiUde Naaiilaiabew9aMbGaayjkaiaawMcaaiaabckacaqGzbWaaeWaa8aa baWdbiabeI7aXjaacYcacqaHvpGzaiaawIcacaGLPaaacqGHRaWkca qGdbGaaeiOaiaabMfadaqadaWdaeaapeGaeqiUdeNaaiilaiabew9a MbGaayjkaiaawMcaaiabg2da9iaaicdaaaa@5BA7@   (5)

Here, C is a constant. Equation (5) is independent of the total energy E and of the potential energy V(r) therefore, the angular dependence of the wave functions is determined by the property of spherical symmetry, and admissible solutions of Equation (5) are valid for every spherically symmetric system regardless of the special form of the potential function. The solutions of the Equation (5) can be found in any quantum mechanics and mathematical physics text-books and the solutions are known as spherical harmonic functions, Y( θ,ϕ )= Y lμ ( θ,ϕ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGzbWaaeWaaeaacqaH4oqCcaGGSaGaeqy1dygacaGLOaGaayzkaaGa eyypa0JaamywamaaBaaaleaacqWItecBcqaH8oqBaeqaaOWaaeWaae aacqaH4oqCcaGGSaGaeqy1dygacaGLOaGaayzkaaGaaiilaaaa@490B@  where C=l( l+1 ),l=0,1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGdbGaeyypa0JaeS4eHW2aaeWaaeaacqWItecBcqGHRaWkcaaIXaaa caGLOaGaayzkaaGaaiilaiabloriSjabg2da9iaaicdacaGGSaGaaG ymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaiOlaiaac6cacaGG Uaaaaa@490F@ are positive integer numbers and μ=l,  l+1,...0...+l. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH8oqBcqGH9aqpcqGHsislcqWItecBcaGGSaGaaiiOaiaacckacqGH sislcqWItecBcqGHRaWkcaaIXaGaaiilaiaac6cacaGGUaGaaiOlai aaicdacaGGUaGaaiOlaiaac6cacqGHRaWkcqWItecBcaGGUaaaaa@4AF6@  Equation (4) is the radial SE (Schrödinger Equation). Substituting C=l( l+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGdbGaeyypa0JaeS4eHW2aaeWaaeaacqWItecBcqGHRaWkcaaIXaaa caGLOaGaayzkaaaaaa@3E64@  and R( r )=F( r )/r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGsbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0JaamOramaa bmaabaGaamOCaaGaayjkaiaawMcaaiaac+cacaWGYbaaaa@4060@  into Equation (4), the radial wave Equation is obtained as follow:

{ d 2 d r 2 + 2m 2 [ EU( r ) ] }F( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada GadaWdaeaapeWaaSaaa8aabaWdbiaadsgapaWaaWbaaSqabeaapeGa aGOmaaaaaOWdaeaapeGaamizaiaadkhapaWaaWbaaSqabeaapeGaaG OmaaaaaaGccqGHRaWkdaWcaaWdaeaapeGaaGOmaiaad2gaa8aabaWd biabl+qiO9aadaahaaWcbeqaa8qacaaIYaaaaaaakmaadmaapaqaa8 qacaWGfbGaeyOeI0Iaamyvamaabmaapaqaa8qacaWGYbaacaGLOaGa ayzkaaaacaGLBbGaayzxaaaacaGL7bGaayzFaaGaamOramaabmaapa qaa8qacaWGYbaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@501E@ ; d 2 F( r ) d r 2 +[α U e ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGgbWaaeWaaeaa caWGYbaacaGLOaGaayzkaaaabaGaamizaiaadkhadaahaaWcbeqaai aaikdaaaaaaOGaey4kaSIaai4waiabeg7aHjabgkHiTiaadwfadaWg aaWcbaGaamyzaaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaacq GH9aqpcaaIWaaaaa@499F@   (6)

Here α= 2m 2 E   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHXoqycqGH9aqpdaWcaaWdaeaapeGaaGOmaiaad2gaa8aabaWdbiab l+qiO9aadaahaaWcbeqaa8qacaaIYaaaaaaakiaadweacaGGGcGaai iOaaaa@40FD@ ; U( r )=V( r )+ 2 2m l( l+1 ) r 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaacqGH9aqpcaWG wbWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaacqGHRaWkdaWcaa WdaeaapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaak8aabaWd biaaikdacaWGTbaaamaalaaapaqaa8qacqWItecBdaqadaWdaeaape GaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaaWdaeaapeGaamOC a8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaacckaaaa@4D43@  is the effective potential energy, and   U e ( r )= 2m 2 U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qadaqadaWd aeaapeGaamOCaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qaca aIYaGaamyBaaWdaeaapeGaeS4dHG2damaaCaaaleqabaWdbiaaikda aaaaaOGaamyvamaabmaapaqaa8qacaWGYbaacaGLOaGaayzkaaaaaa@45C0@ . here m is mass or reduced mass of particle.

Equation (6) is one dimensional differential equation. The solution of this one-dimensional differential equation has been given in.1,2 The F(r) functions have been found by using the same procedure that is explained in these references. Two of these solutions are given as follows:

F( r )=cosh[k  r]  [ A e i G( r ) + B  e -iG( r ) ]  ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGgbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0Jaam4yaiaa d+gacaWGZbGaamiAaiaabUfacaqGRbGaaeiOaiaabckacaqGYbGaai yxaiaacckacaGGGcGaai4waiaabgeacaqGGcGaaeyzamaaCaaaleqa baGaaeyAaiaabckacaqGhbWaaeWaaeaacaqGYbaacaGLOaGaayzkaa aaaOGaey4kaSIaaeOqaiaabckacaqGGcGaaeyzamaaCaaaleqabaGa aeylaiaabMgacaqGhbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaaaaO GaaiyxaiaacckacaGGGcGaai4oaaaa@5E64@ F( r )=sinh[k  r]  [ A e i G( r ) + B  e -iG( r ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGgbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0Jaam4Caiaa dMgacaWGUbGaamiAaiaabUfacaqGRbGaaeiOaiaabckacaqGYbGaai yxaiaacckacaGGGcGaai4waiaabgeacaqGGcGaaeyzamaaCaaaleqa baGaaeyAaiaabckacaqGhbWaaeWaaeaacaqGYbaacaGLOaGaayzkaa aaaOGaey4kaSIaaeOqaiaabckacaqGGcGaaeyzamaaCaaaleqabaGa aeylaiaabMgacaqGhbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaaaaO Gaaiyxaaaa@5B62@  (7)

Here,

For α> U e ( r ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHXoqycqGH+aGpcaWGvbWaaSbaaSqaaiaadwgaaeqaaOWaaeWaaeaa caWGYbaacaGLOaGaayzkaaGaaiilaaaa@3EDF@ (bound state), k= α  , G( r )= U e ( r )   dr ; [G( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGRbGaeyypa0ZaaOaaaeaacqGHsislcqaHXoqyaSqabaGccaGGGcGa aiilaiaacckacaWGhbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaey ypa0Zaa8qaaeaadaGcaaqaaiabgkHiTiaadwfadaWgaaWcbaGaamyz aaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaaaSqabaGccaGGGc aaleqabeqdcqGHRiI8aOGaaeizaiaabkhacaGGGcGaae4oaiaaccka caGGBbGaam4ramaabmaabaGaamOCaaGaayjkaiaawMcaaaaa@54C1@  real function]. For α> U e ( r ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHXoqycqGH+aGpcaWGvbWaaSbaaSqaaiaadwgaaeqaaOWaaeWaaeaa caWGYbaacaGLOaGaayzkaaGaaiilaaaa@3EDF@  (unbound state), k= α ,  G( r )= U e ( r )    dr . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGRbGaeyypa0ZaaOaaaeaacqaHXoqyaSqabaGccaGGSaGaaiiOaiaa cckacaWGhbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0Zaa8 qaaeaadaGcaaqaaiabgkHiTiaadwfadaWgaaWcbaGaamyzaaqabaGc daqadaqaaiaadkhaaiaawIcacaGLPaaaaSqabaGccaGGGcaaleqabe qdcqGHRiI8aOGaaiiOaiaabsgacaqGYbGaaiiOaiaac6caaaa@4F9C@   r 1  and   r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaigdaaeqaaOGaaiiOaiaadggacaWGUbGaamiz aiaacckacaGGGcGaamOCamaaBaaaleaacaaIYaaabeaaaaa@4103@  are the roots of the following Equation:

α U e ( r )=0  or  EU( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHXoqycqGHsislcaWGvbWaaSbaaSqaaiaadwgaaeqaaOWaaeWaaeaa caWGYbaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacckacaGGGcGaam 4BaiaadkhacaGGGcGaaiiOaiaadweacqGHsislcaWGvbWaaeWaaeaa caWGYbaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@4D20@   (8)

In some cases, using the following quantities can provide more conveniences:

d= r 2   r 1 ,  ( r 1 <  r 2 );   r 0 =( r 1 +  r 2 )/2;   r 1 = r 0  d/2 ;  r 2 = r 0 +d/2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGKbGaeyypa0JaaiOCamaaBaaaleaacaaIYaaabeaakiabgkHiTiaa cckacaWGYbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaacckacaGGGc WaaeWaaeaacaGGYbWaaSbaaSqaaiaaigdaaeqaaOGaeyipaWJaaiiO aiaadkhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaGG7a GaaiiOaiaacckacaGGYbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Za aeWaaeaacaGGYbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaiiOai aadkhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaGGVaGa aGOmaiaacUdacaGGGcGaaiiOaiaadkhadaWgaaWcbaGaaGymaaqaba GccqGH9aqpcaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaaiiOaiabgkHi TiaadsgacaGGVaGaaGOmaiaacckacaGG7aGaaiiOaiaadkhadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaWGYbWaaSbaaSqaaiaaicdaaeqa aOGaey4kaSIaamizaiaac+cacaaIYaGaaiOlaaaa@7026@

If one takes ( r r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaadkhacqGHsislcaWGYbWaaSbaaSqaaiaaicdaaeqaaaGc caGLOaGaayzkaaaaaa@3C62@  instead of in the above functions, these can also be used when obtaining the solutions of the Equation (6). The A and B coefficients of the functions are determined by using the boundary and normalization conditions.

In bound states (in the wells), the normalized wave functions are as follows [  is taken as real function]:

F s ( r )=A cos[k r]  e ± i  G( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGgbWaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0JaamyqaiaacckacaWGJbGaam4BaiaadohacaqGBb Gaae4AaiaabckacaqGYbGaaiyxaiaacckacaWGLbWaaWbaaKqaGgqa baGaeyySaelaaOWaaWbaaKqaGgqabaGaaeyAaiaacckacaGGGcGaam 4raSWaaeWaaKqaGgaacaWGYbaacaGLOaGaayzkaaaaaaaa@52E3@ F a ( r )=B sin[k r]  e ± i  G( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGgbWaaSbaaSqaaiaadggaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0JaamOqaiaacckacaWGZbGaamyAaiaad6gacaqGBb Gaae4AaiaabckacaqGYbGaaiyxaiaacckacaWGLbWaaWbaaKqaGgqa baGaeyySaelaaOWaaWbaaKqaGgqabaGaamyAaiaacckacaGGGcGaam 4raSWaaeWaaKqaGgaacaWGYbaacaGLOaGaayzkaaaaaaaa@52D9@   (9)

or

F s ( r )=A cos[k ( r r 0 )]  e ± i  G( rr0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGgbWaaSbaaSqaaiaadohaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0JaamyqaiaacckacaWGJbGaam4BaiaadohacaqGBb Gaae4AaiaabckadaqadaqaaiaabkhacqGHsislcaqGYbWaaSbaaSqa aiaabcdaaeqaaaGccaGLOaGaayzkaaGaaiyxaiaacckacaWGLbWaaW baaKqaGgqabaGaeyySaelaaOWaaWbaaKqaGgqabaGaamyAaiaaccka caGGGcGaam4raSWaaeWaaKqaGgaacaWGYbGaeyOeI0IaamOCaiaaic daaiaawIcacaGLPaaaaaaaaa@59D7@ F a ( r )=B sin[k ( r r 0 )]  e ± i  G( rr0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGgbWaaSbaaSqaaiaadggaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0JaamOqaiaacckacaWGZbGaamyAaiaad6gacaqGBb Gaae4AaiaabckadaqadaqaaiaadkhacqGHsislcaWGYbWaaSbaaSqa aiaaicdaaeqaaaGccaGLOaGaayzkaaGaaiyxaiaacckacaWGLbWaaW baaKqaGgqabaGaeyySaelaaOWaaWbaaKqaGgqabaGaamyAaiaaccka caGGGcGaam4raSWaaeWaaKqaGgaacaWGYbGaeyOeI0IaamOCaiaaic daaiaawIcacaGLPaaaaaaaaa@59D6@  (10)

A = B =  2/d = 2K/q ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaakeaaaaaaaaa8 qacaqGbbGccaGGGcqcaaQaaeypaOGaaiiOaKaaGkaabkeakiaaccka jaaOcaqG9aGccaGGGcWaaOaaaeaacaaIYaGaai4laiaadsgaaSqaba GccqGH9aqpdaGcaaqaaiaaikdacaWGlbGaai4laiaadghaaSqabaGc caGG7aaaaa@490F@  ; (s: symmetric; a: antisymmetric).

The bound state energies are given by the solution of the following Equation:

K [ r 2 ( E ) r 1 ( E )]=Kd=q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGlbGaaiiOaiaacUfacaGGYbWaaSbaaSqaaiaaikdaaeqaaOWaaeWa aeaacaWGfbaacaGLOaGaayzkaaGaeyOeI0IaamOCamaaBaaaleaaca aIXaaabeaakmaabmaabaGaamyraaGaayjkaiaawMcaaiaac2facqGH 9aqpcaWGlbGaamizaiabg2da9iaadghaaaa@48E0@ ; K= | α | = 2 m 2 | E |  . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGlbGaeyypa0ZaaOaaa8aabaWdbmaaemaapaqaaiabeg7aHbWdbiaa wEa7caGLiWoaaSqabaGccqGH9aqpdaGcaaWdaeaapeWaaSaaa8aaba WdbiaaikdacaqGGcGaaeyBaaWdaeaapeGaeS4dHG2damaaCaaaleqa baWdbiaaikdaaaaaaOWaaqWaaeaacaWGfbaacaGLhWUaayjcSdaale qaaOGaaiiOaiaac6caaaa@4A6D@   (11)

Equation (11) is the quantization condition of energy in bound states. For q=2 the ground state (minimum energy) occurs; for q=n π,  ( n=1,2,3,... ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGXbGaeyypa0JaamOBaiaacckacqaHapaCcaGGSaGaaiiOaiaaccka daqadaqaaiaad6gacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG 4maiaacYcacaGGUaGaaiOlaiaac6caaiaawIcacaGLPaaacaGGSaaa aa@4A62@  the excited states occur. We have symmetric states for odd integer values of n and antisymmetric states for even integer values of n.

Solution of Schrodinger equation in double potential wells

Consider a particle with mass or reduced mass m is in the central potential of V(r) in a coordinate system at the point (0,0) of the coordinate start. The variable r of the potential in this coordinate system is always positive. If the spin of the particle is also considered, the total angular momentum quantum number j should be taken instead of L. Thus, the effective potential is    U( r )=V( r )+b/ r 2  ; [b= 2  j ( j+1 )/( 2m )] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaiiOaiaacckacaqGvbWaaeWaa8aabaWdbiaabkhaaiaawIca caGLPaaacqGH9aqpcaqGwbWaaeWaa8aabaWdbiaabkhaaiaawIcaca GLPaaacqGHRaWkcaqGIbGaai4laiaabkhapaWaaWbaaSqabeaapeGa aGOmaaaakiaabckacaGG7aGaaeiOaiaacUfacaqGIbGaeyypa0JaeS 4dHG2damaaCaaaleqabaWdbiaaikdaaaGccaqGGcGaaeOAaiaabcka daqadaWdaeaapeGaaeOAaiabgUcaRiaaigdaaiaawIcacaGLPaaaca GGVaWaaeWaa8aabaWdbiaaikdacaqGTbaacaGLOaGaayzkaaGaaiyx aaaa@5B43@ . This effective potential is usually a parabolic function in the bound states. In the bound states, the total energy is always negative and consequently the effective potential is also negative. Therefore, U( r )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyipaWJaaGimaaaa @3C24@ should be in the bound states. When mass m vibrates in this effective potential, the term b of the potential creates an obstacle that tries to prevent vibration motion. This potential comes from the rotation of the mass m, that is, from the centrifugal motion. If there is no rotation, this term is zero. The solution of the Equation U( r )=E   or   | U( r ) |=E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0Ia amyraiaacckacaGGGcGaaiiOaiaad+gacaWGYbGaaiiOaiaacckaca GGGcWaaqWaaeaacaqGvbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaaa caGLhWUaayjcSdGaeyypa0Jaamyraaaa@4E30@  are r 1 ,  r 2 , r 3  and   r 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGYbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaacckacaGGYbWaaSba aSqaaiaaikdaaeqaaOGaaiilaiaackhadaWgaaWcbaGaaG4maaqaba GccaGGGcGaaiyyaiaac6gacaGGKbGaaiiOaiaacckacaWGYbWaaSba aSqaaiaaisdaaeqaaaaa@4756@  values, depending on E. If the values ( r 3  and   r 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaackhadaWgaaWcbaGaaG4maaqabaGccaGGGcGaaiyyaiaa c6gacaGGKbGaaiiOaiaacckacaWGYbWaaSbaaSqaaiaaisdaaeqaaa GccaGLOaGaayzkaaaaaa@4296@  are real and non-zero, there is a potential barrier in the potential well. If this Equation is solved at a point r= r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbGaeyypa0JaamOCamaaBaaaleaacaaIWaaabeaaaaa@3AE8@ , these roots are written also as follows: r 1 = r 0 d 1 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaamOCamaaBaaaleaa caaIWaaabeaakiabgkHiTiaadsgadaWgaaWcbaGaaGymaaqabaGcca GGVaGaaGOmaaaa@4019@ and r 2 = r 0 + d 1 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaamOCamaaBaaaleaa caaIWaaabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGymaaqabaGcca GGVaGaaGOmaaaa@400F@ and r 3 = r 0 d 3 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamOCamaaBaaaleaa caaIWaaabeaakiabgkHiTiaadsgadaWgaaWcbaGaaG4maaqabaGcca GGVaGaaGOmaaaa@401D@  and r 4 = r 0 d 3 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0JaamOCamaaBaaaleaa caaIWaaabeaakiabgkHiTiaadsgadaWgaaWcbaGaaG4maaqabaGcca GGVaGaaGOmaaaa@401E@ . Here d 1 =( r 2 r 1 ), d 3 =( r 4 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGKbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaeWaaeaacaWGYbWa aSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamOCamaaBaaaleaacaaIXa aabeaaaOGaayjkaiaawMcaaiaacYcacaWGKbWaaSbaaSqaaiaaioda aeqaaOGaeyypa0ZaaeWaaeaacaWGYbWaaSbaaSqaaiaaisdaaeqaaO GaeyOeI0IaamOCamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMca aaaa@4A12@ and r 0 =( r 1 + r 2 )/2=( r 3 + r 4 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaeWaaeaacaWGYbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOCamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaGaeyypa0ZaaeWaaeaa caWGYbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamOCamaaBaaale aacaaI0aaabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaaaa@4A5B@ . If the origin of the coordinate system is taken as the point r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaicdaaeqaaaaa@38EB@ , these are r 1 = d 1 /2  and   r 2 = d 1 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0Iaamizamaa BaaaleaacaaIXaaabeaakiaac+cacaaIYaGaaiiOaiaacckacaWGHb GaamOBaiaadsgacaGGGcGaaiiOaiaadkhadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpcqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaai 4laiaaikdaaaa@4CA9@  and r 3 = d 3 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0Iaamizamaa BaaaleaacaaIZaaabeaakiaac+cacaaIYaaaaa@3E36@ and r 4 = d 3 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaisdaaeqaaOGaeyypa0JaeyOeI0Iaamizamaa BaaaleaacaaIZaaabeaakiaac+cacaaIYaaaaa@3E37@ . The points r 1  and   r 2 ,  and   r 3   and   r 4   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaigdaaeqaaOGaaiiOaiaadggacaWGUbGaamiz aiaacckacaGGGcGaamOCamaaBaaaleaacaaIYaaabeaakiaacYcaca GGGcGaaiiOaiaadggacaWGUbGaamizaiaacckacaGGGcGaamOCamaa BaaaleaacaaIZaaabeaakiaacckacaGGGcGaamyyaiaad6gacaWGKb GaaiiOaiaacckacaWGYbWaaSbaaSqaaiaaisdaaeqaaOGaaiiOaaaa @555A@ are the classic turning points of the U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaaaaa@3A64@  potential. Since U( r 1 )=U( r 2 )  and  U( r 3 )=U( r 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbWaaSbaaSqaaiaabgdaaeqaaaGccaGLOaGa ayzkaaGaeyypa0JaaeyvamaabmaabaGaaeOCamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaiaacckacaGGGcGaamyyaiaad6gacaWG KbGaaiiOaiaacckacaqGvbWaaeWaaeaacaqGYbWaaSbaaSqaaiaaio daaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaeyvamaabmaabaGaaeOC amaaBaaaleaacaaI0aaabeaaaOGaayjkaiaawMcaaaaa@5187@  are equal at the potential of the classical turning points. Thus, the following Equations can be written:

U( d 1 /2 )+U( + d 1 /2 )=2E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGa ai4laiaaikdaaiaawIcacaGLPaaacqGHRaWkcaWGvbWaaeWaaeaacq GHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaaikdaaiaa wIcacaGLPaaacqGH9aqpcaaIYaGaamyraaaa@47A3@ U( d 3 /2 )+U( + d 3 /2 )=2 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacqGHsislcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGa ai4laiaaikdaaiaawIcacaGLPaaacqGHRaWkcaWGvbWaaeWaaeaacq GHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaai4laiaaikdaaiaa wIcacaGLPaaacqGH9aqpcaaIYaGaaiiOaiaadweaaaa@48CB@ Since  E=  m h  q 2 / d i 2 ( E )  ,  (   m h = 2 2 m   ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaamyraiabg2da9iaabckacaqGTbWdamaaBaaaleaapeGaamiA aaWdaeqaaOWdbiaabckacaqGXbWdamaaCaaaleqabaWdbiaaikdaaa GccaGGVaGaamiza8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaaikda aaGcdaqadaWdaeaapeGaamyraaGaayjkaiaawMcaaiaabckacaGGGc GaaiilaiaacckacaGGGcWaaeWaa8aabaWdbiaabckacaqGGcGaaeyB a8aadaWgaaWcbaWdbiaadIgaa8aabeaak8qacqGH9aqpdaWcaaWdae aapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaa ikdacaqGGcGaaeyBaaaacaGGGcaacaGLOaGaayzkaaGaaiiOaiaac6 caaaa@5BA3@

these Equations can also be written as follows:

U( d 1 /2 )+U( + d 1 +2 )=2  m h    q 2 / d i 2 ( E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacqGHsislcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGa ai4laiaaikdaaiaawIcacaGLPaaacqGHRaWkcaWGvbWaaeWaaeaacq GHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaaGa ayjkaiaawMcaaiabg2da9iaaikdacaGGGcGaamyBamaaBaaaleaaca WGObaabeaakiaacckacaGGGcGaamyCamaaCaaaleqabaGaaGOmaaaa kiaac+cacaWGKbWaa0baaSqaaiaadMgaaeaacaaIYaaaaOWaaeWaae aacaWGfbaacaGLOaGaayzkaaaaaa@5442@ U( d 3 /2 )+U( + d 3 +2 )=2  m h    q 2 / d 3 2 ( E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacqGHsislcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGa ai4laiaaikdaaiaawIcacaGLPaaacqGHRaWkcaWGvbWaaeWaaeaacq GHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaGOmaaGa ayjkaiaawMcaaiabg2da9iaaikdacaGGGcGaamyBamaaBaaaleaaca WGObaabeaakiaacckacaGGGcGaamyCamaaCaaaleqabaGaaGOmaaaa kiaac+cacaWGKbWaa0baaSqaaiaaiodaaeaacaaIYaaaaOWaaeWaae aacaWGfbaacaGLOaGaayzkaaaaaa@5415@  

The solution of these two Equations has the same energy. It is therefore sufficient to solve one of these two Equations to find the energy values. When these Equations cannot be solved analytically, numerical solutions are made, and energy values are found. When one of these two Equations is solved, two energies based on q are obtained. One of these energies (+) and the other (-) becomes and their absolute values are equal. The (-) sign indicates that the particle is bound. For q=2 the ground state (minimum energy) occurs; for q=n π,  ( n=1,2,3,... ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGXbGaeyypa0JaamOBaiaacckacqaHapaCcaGGSaGaaiiOaiaaccka daqadaqaaiaad6gacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG 4maiaacYcacaGGUaGaaiOlaiaac6caaiaawIcacaGLPaaacaGGSaaa aa@4A62@  the excited states occur. We have symmetric states for odd integer values of  and antisymmetric states for even integer values of . This problem is useful in some cases if it is solved in two wells.

Conversion of potential into two parts (double well)

Solutions become easier when you divide a given potential into two parts. This separation process will be given here. If the potential is given as V( r )= V 0 ( r ) V 00 ,[ V 0 ( r )>0  and   V 00 >  0], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGwbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0JaaiOvamaa BaaaleaacaaIWaaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaai abgkHiTiaacAfadaWgaaWcbaGaaGimaiaaicdaaeqaaOGaaiilaiaa cUfacaGGwbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWGYbaaca GLOaGaayzkaaGaeyOpa4JaaGimaiaacckacaGGGcGaamyyaiaad6ga caWGKbGaaiiOaiaacckacaGGwbWaaSbaaSqaaiaaicdacaaIWaaabe aakiabg6da+iaacckacaGGGcGaaGimaiaac2facaGGSaaaaa@5A35@ the effective potential is U( r )= V 0 ( r ) V 00 + b r 2 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaGaeyypa0JaaiOvamaa BaaaleaacaaIWaaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaai abgkHiTiaacAfadaWgaaWcbaGaaGimaiaaicdaaeqaaOGaey4kaSYa aSaaaeaacaWGIbaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGccq GH8aapcaaIWaaaaa@48A6@  in the bound states. Here, V 00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq GHsislcaGGwbWaaSbaaSqaaiaaicdacaaIWaaabeaaaaa@3A75@  is the depth of the potential well. Let us find the maximum and minimum values of this effective potential U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaaaaa@3A64@ et the roots of the Equation U'( r )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbGaae4jamaabmaabaGaaeOCaaGaayjkaiaawMcaaiabg2da9iaa icdacaGGSaaaaa@3D7E@   r m1   and   r m2   be.   r 0 =( r m1 + r m1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGYbWaaSbaaSqaaiaac2gacaaIXaaabeaakiaacckacaGGGcGaamyy aiaad6gacaWGKbGaaiiOaiaacckacaGGYbWaaSbaaSqaaiaac2gaca aIYaaabeaakiaacckacaGGGcGaamOyaiaadwgacaGGUaGaaiiOaiaa cckacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaeWaaeaaca GGYbWaaSbaaSqaaiaac2gacaaIXaaabeaakiabgUcaRiaackhadaWg aaWcbaGaaiyBaiaaigdaaeqaaaGccaGLOaGaayzkaaGaai4laiaaik daaaa@579B@  is the point where the potential receives the smallest values U( r m1 )  and  U( r m2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGvbWaaeWaaeaacaGGYbWaaSbaaSqaaiaac2gacaaIXaaabeaaaOGa ayjkaiaawMcaaiaacckacaGGGcGaamyyaiaad6gacaWGKbGaaiiOai aacckacaGGvbWaaeWaaeaacaGGYbWaaSbaaSqaaiaac2gacaaIYaaa beaaaOGaayjkaiaawMcaaaaa@48D5@  and the largest value U( r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGvbWaaeWaaeaacaGGYbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGa ayzkaaaaaa@3B56@ . Let U 0 =U( r 0 )   V 00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGvbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaiyvamaabmaabaGa aiOCamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiaacckaca GGGcGaeyOeI0IaaiOvamaaBaaaleaacaaIWaGaaGimaaqabaaaaa@43D4@ Thus U( r )= V 0 ( r )U+ b r 2 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaGaeyypa0JaaiOvamaa BaaaleaacaaIWaaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaai abgkHiTiaadwfacqGHRaWkdaWcaaqaaiaadkgaaeaacaWGYbWaaWba aSqabeaacaaIYaaaaaaakiabgYda8iaaicdaaaa@46FC@ can be written. By solving this U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaaaaa@3A64@  potential directly, energy values and wave functions can be found. However, if this potential is divided into two parts with an obstacle in the middle, there may be some convenience. The obstacle in the two potential wells comes from rotational energy and the potential [ V 0 ( r ) U 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGBbGaaiOvamaaBaaaleaacaaIWaaabeaakmaabmaabaGaamOCaaGa ayjkaiaawMcaaiabgkHiTiaadwfadaWgaaWcbaGaaGimaaqabaGcca GGDbaaaa@3FCF@ . Therefore, the U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaaaaa@3A64@  potential can be written as the sum of two parts as follows:

U( r )= V 0 ( r ) U 0 + b r 2 = U w ( r )+ U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0JaaiOvamaa BaaaleaacaaIWaaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaai abgkHiTiaadwfadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWcaaqa aiaadkgaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9i aadwfadaWgaaWcbaGaam4DaaqabaGcdaqadaqaaiaadkhaaiaawIca caGLPaaacqGHRaWkcaWGvbWaaSbaaSqaaiaadkgaaeqaaOWaaeWaae aacaWGYbaacaGLOaGaayzkaaaaaa@511D@ ; [ U w ( r )= V 0 ( r ) U 0  ;   U b ( r )= b r 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGBbGaamyvamaaBaaaleaacaWG3baabeaakmaabmaabaGaamOCaaGa ayjkaiaawMcaaiabg2da9iaacAfadaWgaaWcbaGaaGimaaqabaGcda qadaqaaiaadkhaaiaawIcacaGLPaaacqGHsislcaWGvbWaaSbaaSqa aiaaicdaaeqaaOGaaiiOaiaacUdacaGGGcGaaiiOaiaadwfadaWgaa WcbaGaamOyaaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaacqGH 9aqpdaWcaaqaaiaadkgaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaa aakiaac2faaaa@51EA@  (12)

Here, the U w ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaSbaaSqaaiaabEhaaeqaaOWaaeWaaeaacaqGYbaacaGLOaGa ayzkaaaaaa@3B94@ potential is the vibration part of the U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaaaaa@3A64@  potential, and the U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaSbaaSqaaiaabkgaaeqaaOWaaeWaaeaacaqGYbaacaGLOaGa ayzkaaaaaa@3B7F@  potential is total of the rotational and the other obstacle potential parts of the potential U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaaeaacaqGYbaacaGLOaGaayzkaaaaaa@3A64@ . U 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaSbaaSqaaiaaicdaaeqaaaaa@38CE@ is the depth of the potential well. If the coordinate start is taken at the point ( r 0 , U 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaadkhadaWgaaWcbaGaaGimaaqabaGccaGGSaGaeyOeI0Ia amyvamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa@3DE5@  in this new coordinate system, U b ( r )= b r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaSbaaSqaaiaadkgaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaWGIbaabaGaamOCamaaCaaaleqaba GaaGOmaaaaaaaaaa@3F62@  and U w ( r )= V 0 ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaSbaaSqaaiaadEhaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0JaaiOvamaaBaaaleaacaaIWaaabeaakmaabmaaba GaamOCaaGaayjkaiaawMcaaaaa@40EA@ . Thus, the effective potential is written as follows:

U( r )= V 0 ( r )+ b r 2 = U w ( r )+ U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0JaaiOvamaa BaaaleaacaaIWaaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaai abgUcaRmaalaaabaGaamOyaaqaaiaadkhadaahaaWcbeqaaiaaikda aaaaaOGaeyypa0JaamyvamaaBaaaleaacaWG3baabeaakmaabmaaba GaamOCaaGaayjkaiaawMcaaiabgUcaRiaadwfadaWgaaWcbaGaamOy aaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaaaaa@4E66@ ; [ U w ( r )= V 0 ( r ) ;   U b ( r )= b r 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGBbGaamyvamaaBaaaleaacaWG3baabeaakmaabmaabaGaamOCaaGa ayjkaiaawMcaaiabg2da9iaacAfadaWgaaWcbaGaaGimaaqabaGcda qadaqaaiaadkhaaiaawIcacaGLPaaacaGGGcGaai4oaiaacckacaGG GcGaamyvamaaBaaaleaacaWGIbaabeaakmaabmaabaGaamOCaaGaay jkaiaawMcaaiabg2da9maalaaabaGaamOyaaqaaiaadkhadaahaaWc beqaaiaaikdaaaaaaOGaaiyxaaaa@4F33@   (13)

The graph of this potential is shown in Figure 1. (Shape of the U(r) function ( r 0 , U 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaadkhadaWgaaWcbaGaaGimaaqabaGccaGGSaGaeyOeI0Ia amyvamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa@3DE5@ in the coordinate system). In this way, three domains I, II, III are obtained. Thus, by solving the Equation (13), E energy values are found.

Figure 1 The plot of the potential U(r) in the form of two wells; the points r1,r2,r3,r4 are classic turning points.

Solution of the equation of [U( r )= E q ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGBbGaaeyvamaabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9iaa dweadaWgaaWcbaGaamyCaaqabaGccaGGDbaaaa@3F22@

The functions U w ( r )   and     U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaSbaaSqaaiaadEhaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaaiiOaiaacckacaGGGcGaamyyaiaad6gacaWGKbGaaiiOai aacckacaGGGcGaaiiOaiaadwfadaWgaaWcbaGaamOyaaqabaGcdaqa daqaaiaadkhaaiaawIcacaGLPaaaaaa@4ACF@ are symmetrical functions according to point r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaicdaaeqaaaaa@38EB@ . The U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaSbaaSqaaiaadkgaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaaaaa@3B85@  function is an obstacle function located in the midpoint of the well U w ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaSbaaSqaaiaadEhaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaaaaa@3B9A@  function. The quantities ( r 1 , r 2 , r 3 , r 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaadkhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOCamaa BaaaleaacaaIYaaabeaakiaacYcacaWGYbWaaSbaaSqaaiaaiodaae qaaOGaaiilaiaadkhadaWgaaWcbaGaaGinaaqabaaakiaawIcacaGL Paaaaaa@424D@ that are the solution of the Equation U( r )=E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0Jaamyraaaa @3C38@ are depending on r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaicdaaeqaaaaa@38EB@ . As seen in Figure 1, the roots of the Equation, U( r )=E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0Jaamyraaaa @3C38@  are ( r 1 ,  r 2 ,  r 3 ,  r 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaadkhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaiiOaiaa dkhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaiiOaiaadkhadaWgaa WcbaGaaG4maaqabaGccaGGSaGaaiiOaiaadkhadaWgaaWcbaGaaGin aaqabaaakiaawIcacaGLPaaaaaa@45B9@ and the roots of U b ( r )=E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaSbaaSqaaiaadkgaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0Jaamyraaaa@3D55@  are ( r 3  ,  r 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaadkhadaWgaaWcbaGaaG4maaqabaGccaGGGcGaaiilaiaa cckacaWGYbWaaSbaaSqaaiaaisdaaeqaaaGccaGLOaGaayzkaaGaai ilaaaa@4014@ the roots of U w ( r )=E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaSbaaSqaaiaadEhaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0Jaamyraaaa@3D6A@ are ( r 1  ,  r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaadkhadaWgaaWcbaGaaGymaaqabaGccaGGGcGaaiilaiaa cckacaWGYbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3F60@ . From there, the following values are obtained:

r 1 + r 2 2 = r 3 + r 4 2 =0 ;  d 1 = r 3 r 1  ;  d 2 = r 2 r 4  ;  d 1 = d 2  ;  d 3 = r 4 r 3  ;  d= r 2 r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WcaaqaaiaadkhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGYbWa aSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaacqGH9aqpdaWcaaqaai aadkhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGYbWaaSbaaSqa aiaaisdaaeqaaaGcbaGaaGOmaaaacqGH9aqpcaaIWaGaaiiOaiaacU dacaGGGcGaamizamaaBaaaleaacaaIXaaabeaakiabg2da9iaadkha daWgaaWcbaGaaG4maaqabaGccqGHsislcaWGYbWaaSbaaSqaaiaaig daaeqaaOGaaiiOaiaacUdacaGGGcGaamizamaaBaaaleaacaaIYaaa beaakiabg2da9iaadkhadaWgaaWcbaGaaGOmaaqabaGccqGHsislca WGYbWaaSbaaSqaaiaaisdaaeqaaOGaaiiOaiaacUdacaGGGcGaamiz amaaBaaaleaacaaIXaaabeaakiabg2da9iaadsgadaWgaaWcbaGaaG OmaaqabaGccaGGGcGaai4oaiaacckacaWGKbWaaSbaaSqaaiaaioda aeqaaOGaeyypa0JaamOCamaaBaaaleaacaaI0aaabeaakiabgkHiTi aadkhadaWgaaWcbaGaaG4maaqabaGccaGGGcGaai4oaiaacckacaGG GcGaamizaiabg2da9iaadkhadaWgaaWcbaGaaGOmaaqabaGccqGHsi slcaWGYbWaaSbaaSqaaiaaigdaaeqaaaaa@7760@

[ d 1 ,  d 2 ,  d 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGBbGaaiizamaaBaaaleaacaaIXaaabeaakiaacYcacaGGGcGaaiiz amaaBaaaleaacaaIYaaabeaakiaacYcacaGGGcGaaiizamaaBaaale aacaaIZaaabeaakiaac2faaaa@4204@ are respectively the widths of the region ( I,II,III ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaabMeacaqGSaGaaeysaiaabMeacaqGSaGaaeysaiaabMea caqGjbaacaGLOaGaayzkaaaaaa@3EBD@ . Since d 1 = d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGKbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaiizamaaBaaaleaa caaIYaaabeaaaaa@3BBD@ , it is sufficient to make a solution in one of the regions (I) and (II). Particle is unbound in the region , it cannot remain in this area continuously, it can pass from region II to region I or from region I to region II by tunneling with equal probability. Here the probability of passing coefficient is calculated.

Example: Three axial deformed harmonic oscillator potential (anisotropic harmonic oscillator potential) (Nilson model in the nuclear physics)

Effective potential

The nucleus is assumed to have a spherical shape in the shell model. Therefore, particles move in a spherically symmetric potential. There are, however, convincing arguments that nuclei with the neutron and proton numbers sufficiently far from the magic numbers have no spherical symmetry ellipsoidal shapes. In this case, it is said that the deformed shell model. In deformed shell model calculations, it is used the three-dimensional anisotropic harmonic oscillator potential which is given as follows:

V 0 ( x,y,z )= 1 2 μ( ω x 2 x 2 + ω y 2 y 2 + ω Z 2 Z 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWG4bGaaiilaiaa dMhacaGGSaGaamOEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaG ymaaqaaiaaikdaaaGaeqiVd02aaeWaaeaacqaHjpWDdaqhaaWcbaGa amiEaaqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaeqyYdC3aa0baaSqaaiaadMhaaeaacaaIYaaaaOGaamyEamaa CaaaleqabaGaaGOmaaaakiabgUcaRiabeM8a3naaDaaaleaacaWGAb aabaGaaGOmaaaakiaadQfadaahaaWcbeqaaiaaikdaaaaakiaawIca caGLPaaaaaa@5719@  (14)

Here,μ is mass or reduced mass. In the case of deformed nuclei, it is generally restricted to axially symmetric nuclei and it taken the z -axis as symmetry axis. So, it is accepted ω X = ω y = ω ω z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDdaWgaaWcbaGaamiwaaqabaGccqGH9aqpcqaHjpWDdaWgaaWc baGaamyEaaqabaGccqGH9aqpcqaHjpWDdaWgaaWcbaGaeyyPI4fabe aakiabgcMi5kabeM8a3naaBaaaleaacaWG6baabeaaaaa@476E@  in the anisotropic harmonic oscillator potential. The motion of a particle in an axially symmetric potential, with additional symmetry plane, perpendicular to symmetry axis was described by Nilsson. The no-spherical nuclei have the shape of an ellipsoid of revolution. It is, however, possible that some transitional nuclei have shapes of a three-axial ellipsoid. It is also possible that the shapes of excited states differ from the ground state shapes and that some exited states have three axial ellipsoidal forms. In the three axial cases, ω X ω y ω z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDdaWgaaWcbaGaamiwaaqabaGccqGHGjsUcqaHjpWDdaWgaaWc baGaamyEaaqabaGccqGHGjsUcqaHjpWDdaWgaaWcbaGaamOEaaqaba aaaa@4375@ . The no-axial shape is characterized by two parameters ε and γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH1oqzcaGGGcGaamyyaiaad6gacaWGKbGaaiiOaiabeo7aNbaa@3F66@ . For ε >0,  γ= 0 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH1oqzcaGGGcGaeyOpa4JaaGimaiaacYcacaGGGcGaaiiOaiabeo7a Njabg2da9iaaicdadaahaaWcbeqaaiaaicdaaaaaaa@42E1@  situation corresponds to the axially symmetric prolate ellipsoid, γ= 60 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHZoWzcqGH9aqpcaaI2aGaaGimamaaCaaaleqabaGaaGimaaaaaaa@3C1C@ corresponds to the oblate ellipsoid. When γ 0 0  and γ 60 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHZoWzcqGHGjsUcaaIWaWaaWbaaSqabeaacaaIWaaaaOGaaiiOaiaa dggacaWGUbGaamizaiaacckacqaHZoWzcqGHGjsUcaaI2aGaaGimam aaCaaaleqabaGaaGimaaaaaaa@4700@ , the ellipsoid has no axial symmetry, and the projection quantum number of the total angular momentum on any axis is not one conserved quantity. The angular frequencies ω x , ω y , ω z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDdaWgaaWcbaGaamiEaaqabaGccaGGSaGaeqyYdC3aaSbaaSqa aiaadMhaaeqaaOGaaiilaiabeM8a3naaBaaaleaacaWG6baabeaaaa a@4167@ relate to the deformation parameters ε and γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH1oqzcaGGGcGaamyyaiaad6gacaWGKbGaaiiOaiabeo7aNbaa@3F66@ by the following expressions:

ω x = ω 0 ( ε,γ )[ 1 2 3 ε cos( γ+ 2π 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDdaWgaaWcbaGaamiEaaqabaGccqGH9aqpcqaHjpWDdaWgaaWc baGaaGimaaqabaGcdaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawI cacaGLPaaadaWadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdaaeaa caaIZaaaaiabew7aLjaacckacaWGJbGaam4Baiaadohadaqadaqaai abeo7aNjabgUcaRmaalaaabaGaaGOmaiabec8aWbqaaiaaiodaaaaa caGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@5573@ ; ω y = ω 0 ( ε,γ )[ 1 2 3 ε cos( γ+ 2π 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDdaWgaaWcbaGaamyEaaqabaGccqGH9aqpcqaHjpWDdaWgaaWc baGaaGimaaqabaGcdaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawI cacaGLPaaadaWadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdaaeaa caaIZaaaaiabew7aLjaacckacaWGJbGaam4Baiaadohadaqadaqaai abeo7aNjabgUcaRmaalaaabaGaaGOmaiabec8aWbqaaiaaiodaaaaa caGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@5573@ ω z = ω 0 ( ε,γ )[ 1 2 3 ε cos( γ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDdaWgaaWcbaGaamOEaaqabaGccqGH9aqpcqaHjpWDdaWgaaWc baGaaGimaaqabaGcdaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawI cacaGLPaaadaWadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdaaeaa caaIZaaaaiabew7aLjaacckacaWGJbGaam4Baiaadohadaqadaqaai abeo7aNbGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@514D@   (15)

If it is required a constant volume as deformation changes, it needs:

ω x ω y ω z = ω 00 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaSbaaS qaaiaadIhaaeqaaOGaeqyYdC3aaSbaaSqaaiaadMhaaeqaaOGaeqyY dC3aaSbaaSqaaiaadQhaaeqaaOGaeyypa0JaeqyYdC3aa0baaSqaai aaicdacaaIWaaabaGaaG4maaaaaaa@4522@   (16)

From Equation (16), we get the following value:

ω 0 ( ε,γ )=3 ω 00 [27=9 ε 2 2 ε 3  cos( 3γ )] 1/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaSbaaS qaaiaaicdaaeqaaOWaaeWaaeaacqaH1oqzcaGGSaGaeq4SdCgacaGL OaGaayzkaaGaeyypa0JaaG4maiabeM8a3naaBaaaleaacaaIWaGaaG imaaqabaGccaGGBbGaaGOmaiaaiEdacqGH9aqpcaaI5aGaeqyTdu2a aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabew7aLnaaCaaale qabaGaaG4maaaakabaaaaaaaaapeGaaiiOaiaadogacaWGVbGaam4C a8aadaqadaqaaiaaiodacqaHZoWzaiaawIcacaGLPaaacaGGDbWaaW baaSqabeaacqGHsislcaaIXaGaai4laiaaiodaaaaaaa@5BAA@   (17)

As can be seen from Equation (17), if ε=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH1oqzcqGH9aqpcaaIWaGaaiilaaaa@3B25@  isotropic state is obtained. Let us express the potential given in Equation (14) the following spherical coordinates:

x= r sin( θ )  cos( ϕ ),    y=r  sin( θ )sin( ϕ ),  z=r  cos( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qG4bGaaeypaiaacckacaqGYbGaaiiOaiaadohacaWGPbGaamOBamaa bmaabaGaeqiUdehacaGLOaGaayzkaaGaaiiOaiaacckacaWGJbGaam 4Baiaadohadaqadaqaaiabew9aMbGaayjkaiaawMcaaiaacYcacaGG GcGaaiiOaiaacckacaGGGcGaamyEaiabg2da9iaadkhacaGGGcGaai iOaiaadohacaWGPbGaamOBamaabmaabaGaeqiUdehacaGLOaGaayzk aaGaam4CaiaadMgacaWGUbWaaeWaaeaacqaHvpGzaiaawIcacaGLPa aacaGGSaGaaiiOaiaacckacaWG6bGaeyypa0JaamOCaiaacckacaGG GcGaam4yaiaad+gacaWGZbWaaeWaaeaacqaH4oqCaiaawIcacaGLPa aaaaa@6FA0@   (18)

If the potential given in Equation (14) is calculated by considering Equations (15), (16) and (17), the following function is obtained:

V 0 ( r,ε,γ )= 1 2 μ ω 00 2 r 2 [A( ε,γ )  si n 2 ( θ )  co s 2 ( ϕ )+B( ε,γ )  si n 2 ( ϕ )  si n 2 ( ϕ )+C( ε,γ )  co s 2 ( θ )] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWGYbGaaiilaiab ew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacaaIYaaaaiabeY7aTjabeM8a3naaDaaaleaacaaIWaGa aGimaaqaaiaaikdaaaGccaWGYbWaaWbaaSqabeaacaaIYaaaaOGaai 4waiaadgeadaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawIcacaGL PaaacaGGGcGaaiiOaiaadohacaWGPbGaamOBamaaCaaaleqabaGaaG OmaaaakmaabmaabaGaeqiUdehacaGLOaGaayzkaaGaaiiOaiaaccka caWGJbGaam4BaiaadohadaahaaWcbeqaaiaaikdaaaGcdaqadaqaai abew9aMbGaayjkaiaawMcaaiabgUcaRiaadkeadaqadaqaaiabew7a LjaacYcacqaHZoWzaiaawIcacaGLPaaacaGGGcGaaiiOaiaadohaca WGPbGaamOBamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqy1dyga caGLOaGaayzkaaGaaiiOaiaacckacaWGZbGaamyAaiaad6gadaahaa WcbeqaaiaaikdaaaGcdaqadaqaaiabew9aMbGaayjkaiaawMcaaiab gUcaRiaadoeadaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawIcaca GLPaaacaGGGcGaaiiOaiaadogacaWGVbGaam4CamaaCaaaleqabaGa aGOmaaaakmaabmaabaGaeqiUdehacaGLOaGaayzkaaGaaiyxaaaa@8FA2@  (19)

A( ε,γ )= [ 3+2ε sin( π 6 +γ ) ] 2 [ 27=9 ε 2 2 ε 3  cos( 3γ ) ] 2/3 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGbbWaaeWaaeaacqaH1oqzcaGGSaGaeq4SdCgacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaadaWadaqaaiaaiodacqGHRaWkcaaIYaGaeqyTdu MaaiiOaiaadohacaWGPbGaamOBamaabmaabaWaaSaaaeaacqaHapaC aeaacaaI2aaaaiabgUcaRiabeo7aNbGaayjkaiaawMcaaaGaay5wai aaw2faamaaCaaaleqabaGaaGOmaaaaaOqaamaadmaabaGaaGOmaiaa iEdacqGH9aqpcaaI5aGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGOmaiabew7aLnaaCaaaleqabaGaaG4maaaakiaacckacaWG JbGaam4BaiaadohadaqadaqaaiaaiodacqaHZoWzaiaawIcacaGLPa aaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdacaGGVaGaaG4maaaa aaGccaGG7aaaaa@6711@ B( ε,γ )= [ 3+2ε sin( π 6 γ ) ] 2 [ 279 ε 2 2 ε 3  cos( 3γ ) ] 2/3 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGcbWaaeWaaeaacqaH1oqzcaGGSaGaeq4SdCgacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaadaWadaqaaiaaiodacqGHRaWkcaaIYaGaeqyTdu MaaiiOaiaadohacaWGPbGaamOBamaabmaabaWaaSaaaeaacqaHapaC aeaacaaI2aaaaiabgkHiTiabeo7aNbGaayjkaiaawMcaaaGaay5wai aaw2faamaaCaaaleqabaGaaGOmaaaaaOqaamaadmaabaGaaGOmaiaa iEdacqGHsislcaaI5aGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGOmaiabew7aLnaaCaaaleqabaGaaG4maaaakiaacckacaWG JbGaam4BaiaadohadaqadaqaaiaaiodacqaHZoWzaiaawIcacaGLPa aaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdacaGGVaGaaG4maaaa aaGccaGG7aaaaa@6705@ C( ε,γ )= [ 32ε  cos( γ ) ] 2 [ 279 ε 2 2 ε 3  cos( 3γ ) ] 2/3 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGdbWaaeWaaeaacqaH1oqzcaGGSaGaeq4SdCgacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaadaWadaqaaiaaiodacqGHsislcaaIYaGaeqyTdu MaaiiOaiaacckacaWGJbGaam4Baiaadohadaqadaqaaiabeo7aNbGa ayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaO qaamaadmaabaGaaGOmaiaaiEdacqGHsislcaaI5aGaeqyTdu2aaWba aSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabew7aLnaaCaaaleqaba GaaG4maaaakiaacckacaWGJbGaam4Baiaadohadaqadaqaaiaaioda cqaHZoWzaiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaai aaikdacaGGVaGaaG4maaaaaaGccaGG7aaaaa@64B6@   (20)

β 2 =A( ε,γ ) si n 2 ( θ )  co s 2 ( ϕ )+B( ε,γ ) si n 2 ( θ ) si n 2 ( ϕ )+C( ε,γ )  co s 2 ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHYoGydaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWGbbWaaeWaaeaa cqaH1oqzcaGGSaGaeq4SdCgacaGLOaGaayzkaaGaaiiOaiaadohaca WGPbGaamOBamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqiUdeha caGLOaGaayzkaaGaaiiOaiaacckacaWGJbGaam4Baiaadohadaahaa WcbeqaaiaaikdaaaGcdaqadaqaaiabew9aMbGaayjkaiaawMcaaiab gUcaRiaadkeadaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawIcaca GLPaaacaGGGcGaam4CaiaadMgacaWGUbWaaWbaaSqabeaacaaIYaaa aOWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaacaGGGcGaam4CaiaadM gacaWGUbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacqaHvpGzaiaa wIcacaGLPaaacqGHRaWkcaWGdbWaaeWaaeaacqaH1oqzcaGGSaGaeq 4SdCgacaGLOaGaayzkaaGaaiiOaiaacckacaWGJbGaam4Baiaadoha daahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabeI7aXbGaayjkaiaawM caaaaa@7AA4@  

  β 2 =A( ε,γ ) [ 1 co s 2 ( θ ) ]  co s 2 ( ϕ )+B( ε,γ ) [1  co s 2 ( θ ) ][1 co s 2 ( θ )]+C( ε,γ )  co s 2 ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaeqOSdi2aaWbaaSqabeaacaaIYaaaaOGaeyypa0Jaamyqamaa bmaabaGaeqyTduMaaiilaiabeo7aNbGaayjkaiaawMcaaiaacckaca GGBbWaamGaaeaacaaIXaGaeyOeI0IaaiiOaiaadogacaWGVbGaam4C amaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqiUdehacaGLOaGaay zkaaaacaGLDbaacaGGGcGaaiiOaiaadogacaWGVbGaam4CamaaCaaa leqabaGaaGOmaaaakmaabmaabaGaeqy1dygacaGLOaGaayzkaaGaey 4kaSIaamOqamaabmaabaGaeqyTduMaaiilaiabeo7aNbGaayjkaiaa wMcaaiaacckacaGGBbGaaGymamaadiaabaGaeyOeI0IaaiiOaiaado gacaWGVbGaam4CamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqiU dehacaGLOaGaayzkaaaacaGLDbaacaGGBbGaaGymaiabgkHiTiaacc kacaWGJbGaam4BaiaadohadaahaaWcbeqaaiaaikdaaaGcdaqadaqa aiabeI7aXbGaayjkaiaawMcaaiaac2facqGHRaWkcaWGdbWaaeWaae aacqaH1oqzcaGGSaGaeq4SdCgacaGLOaGaayzkaaGaaiiOaiaaccka caWGJbGaam4BaiaadohadaahaaWcbeqaaiaaikdaaaGcdaqadaqaai abeI7aXbGaayjkaiaawMcaaaaa@885F@  

β 2 =B( ε,γ )  [ C( ε,γ ) B ( ε,γ ){ A( ε,γ ) B( ε,γ ) }   co s 2 ( ϕ ) ] co s 2 ( θ )+[ A( ε,γ )B( ε,γ ) ]  co s 2 ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHYoGydaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWGcbWaaeWaaeaa cqaH1oqzcaGGSaGaeq4SdCgacaGLOaGaayzkaaGaaiiOamaadeaaba Gaam4qamaabmaabaGaeqyTduMaaiilaiabeo7aNbGaayjkaiaawMca aaGaay5waaGaeyOeI0IaaiOqaiaacckadaqadaqaaiabew7aLjaacY cacqaHZoWzaiaawIcacaGLPaaacqGHsisldaGabaqaaiaadgeadaqa daqaaiabew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaaaiaawUhaai abgkHiTmaaciaabaGaamOqamaabmaabaGaeqyTduMaaiilaiabeo7a NbGaayjkaiaawMcaaaGaayzFaaGaaiiOamaadiaabaGaaiiOaiaado gacaWGVbGaam4CamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqy1 dygacaGLOaGaayzkaaaacaGLDbaacaGGGcGaam4yaiaad+gacaWGZb WaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCaiaawIcacaGL PaaacqGHRaWkdaWadaqaaiaadgeadaqadaqaaiabew7aLjaacYcacq aHZoWzaiaawIcacaGLPaaacqGHsislcaGGcbWaaeWaaeaacqaH1oqz caGGSaGaeq4SdCgacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiiOai aacckacaWGJbGaam4BaiaadohadaahaaWcbeqaaiaaikdaaaGcdaqa daqaaiabeI7aXbGaayjkaiaawMcaaaaa@8E9F@  (21)

If γ is exceedingly small, then sin( γ )0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaci GGZbGaaiyAaiaac6gadaqadaqaaiabeo7aNbGaayjkaiaawMcaaiab gIKi7kaaicdaaaa@3F82@  and AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGbbGaeyisISRaaeOqaaaa@3A49@ (symmetric ellipsoid form) can be taken. Thus,  β 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOSd8aadaahaaWcbeqaa8qacaaIYaaaaaaa@3A72@ can be taken as follows:

  β 2 =B( ε,γ )+  [ C( ε,γ ) B  ( ε,γ ) ] co s 2 ( θ )=B( ε,γ )+[ C( ε,γ )B( ε,γ ) ][ 1 3 + 2 3 4π 5 Y 0 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaeqOSdi2aaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamOqamaa bmaabaGaeqyTduMaaiilaiabeo7aNbGaayjkaiaawMcaaiabgUcaRi aacckadaWabaqaaiaadoeadaqadaqaaiabew7aLjaacYcacqaHZoWz aiaawIcacaGLPaaaaiaawUfaaiabgkHiTiaackeacaGGGcWaamGaae aadaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaaaiaa w2faaiaacckacaWGJbGaam4BaiaadohadaahaaWcbeqaaiaaikdaaa GcdaqadaqaaiabeI7aXbGaayjkaiaawMcaaiabg2da9iaadkeadaqa daqaaiabew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaacqGHRaWkda Wadaqaaiaadoeadaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawIca caGLPaaacqGHsislcaWGcbWaaeWaaeaacqaH1oqzcaGGSaGaeq4SdC gacaGLOaGaayzkaaaacaGLBbGaayzxaaWaamWaaeaadaWcaaqaaiaa igdaaeaacaaIZaaaaiabgUcaRmaalaaabaGaaGOmaaqaaiaaiodaaa WaaOaaaeaadaWcaaqaaiaaisdacqaHapaCaeaacaaI1aaaaaWcbeaa kiaadMfadaqhaaWcbaGaaGimaaqaaiaaikdaaaaakiaawUfacaGLDb aaaaa@8081@  (22)

Y 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGzbWaa0baaSqaaiaaicdaaeaacaaIYaaaaaaa@398F@  is spherical harmonic function. Thus, the anisotropic harmonic oscillator potential becomes as follows:

V 0 ( r,ε,γ )= 1 2 μ ω 00 2 r 2 β 2 ( ε,γ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWGYbGaaiilaiab ew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaigdaaeaacaaIYaaaaiabeY7aTjabeM8a3naaDaaaleaacaaIWaGa aGimaaqaaiaaikdaaaGccaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeq OSdi2aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacqaH1oqzcaGGSaGa eq4SdCgacaGLOaGaayzkaaaaaa@5284@   (23)

With this potential, the effective potential  U( r,ε,γ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaamyvamaabmaabaGaamOCaiaacYcacqaH1oqzcaGGSaGaeq4S dCgacaGLOaGaayzkaaaaaa@403B@    is obtained as follows:

U( r,ε,γ )= V 0 ( r,ε,γ )+ 2 2μ r 2 j( j+1 )= 1 2 μ ω 00 2 r 2 β 2 ( ε,γ )+ 2 2μ r 2 j( j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacaWGYbGaaiilaiabew7aLjaacYcacqaHZoWzaiaa wIcacaGLPaaacqGH9aqpcaWGwbWaaSbaaSqaaiaaicdaaeqaaOWaae WaaeaacaWGYbGaaiilaiabew7aLjaacYcacqaHZoWzaiaawIcacaGL PaaacqGHRaWkdaWcaaqaaiabl+qiO9aadaahaaWcbeqaa8qacaaIYa aaaaGcbaGaaGOmaiabeY7aTjaadkhadaahaaWcbeqaaiaaikdaaaaa aOGaamOAamaabmaabaGaamOAaiabgUcaRiaaigdaaiaawIcacaGLPa aacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabeY7aTjabeM8a 3naaDaaaleaacaaIWaGaaGimaaqaaiaaikdaaaGccaWGYbWaaWbaaS qabeaacaaIYaaaaOGaeqOSdi2aaWbaaSqabeaacaaIYaaaaOWaaeWa aeaacqaH1oqzcaGGSaGaeq4SdCgacaGLOaGaayzkaaGaey4kaSYaaS aaaeaacqWIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaOqaaiaaikda cqaH8oqBcaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiaadQgadaqada qaaiaadQgacqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaa@74AC@  (24)

Here, ω 00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDdaWgaaWcbaGaaGimaiaaicdaaeqaaaaa@3A7B@ is the isotropic oscillator angular frequency and total angular momentum quantum number. The Coulomb potential must be added to the potential given in Equation (24) when the charged particle levels are calculated. The Coulomb potential in the spherical case, neglecting the effect of the surface, is as follows:

V c ( r )= ( Z1 )  e 2 r { 3 r 2  R 0 1 2 ( r R 0 ) 2   ,    for   r R 0 1                          ,     for   r> R 0     } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbmaabmaapaqaa8qa caWGYbaacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbmaabmaapa qaa8qacaWGAbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacckacaWG LbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadkhaaaWaai Waaeaapaqbaeqabmqaaaqaa8qadaWcaaWdaeaapeGaaG4maiaabcka caqGYbaapaqaa8qacaaIYaGaaeiOaiaabkfapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqa a8qacaaIYaaaamaabmaapaqaa8qadaWcaaWdaeaapeGaaeOCaaWdae aapeGaaeOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaaak8qacaGL OaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGccaGGGcGaaiiOai aacYcacaGGGcGaaiiOaiaacckacaGGGcGaamOzaiaad+gacaWGYbGa aiiOaiaacckacaGGGcGaamOCaiabgsMiJkaabkfapaWaaSbaaSqaa8 qacaaIWaaapaqabaaakeaapeGaaGymaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiilaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaamOzaiaad+gacaWGYbGaaiiO aiaacckacaGGGcGaamOCaiabg6da+iaabkfapaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaaiiOaaWdaeaapeGaaiiOaaaaaiaawUhacaGL 9baaaaa@9B80@

Here, R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@38F8@ is the radius of the spherical nucleus and Z is the charge number. Thus, in the nucleus,  r R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOCaiabgsMiJkaabkfapaWaaSbaaSqaa8qacaaIWaaapaqa baaaaa@3CC5@ , we have as follows:

V c ( r )= b c + a c   r 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbmaabmaapaqaa8qa caWGYbaacaGLOaGaayzkaaGaeyypa0JaamOya8aadaWgaaWcbaWdbi aadogaa8aabeaak8qacqGHRaWkcaWGHbWdamaaBaaaleaapeGaam4y aaWdaeqaaOWdbiaacckacaWGYbWdamaaCaaaleqabaWdbiaaikdaaa GccaGGGcaaaa@46A3@ ; [ a c =  ( Z1 ) e 2 2  R 0 3  ,    b c = 3 ( Z1 ) e 2 2  R 0   ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaadogaa8aabeaak8qa cqGH9aqpcqGHsislcaGGGcWaaSaaa8aabaWdbmaabmaapaqaa8qaca WGAbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadwgapaWaaWbaaSqa beaapeGaaGOmaaaaaOWdaeaapeGaaGOmaiaacckacaWGsbWdamaaDa aaleaapeGaaGimaaWdaeaapeGaaG4maaaaaaGccaGGGcGaaiilaiaa cckacaGGGcGaaiiOaiaadkgapaWaaSbaaSqaa8qacaWGJbaapaqaba GcpeGaeyypa0ZaaSaaa8aabaWdbiaaiodacaGGGcWaaeWaa8aabaWd biaadQfacqGHsislcaaIXaaacaGLOaGaayzkaaGaamyza8aadaahaa Wcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaaiiOaiaadkfapaWa aSbaaSqaa8qacaaIWaaapaqabaaaaOWdbiaacckaaiaawUfacaGLDb aaaaa@5F81@   (25)

In the quadratic deformed case, the Coulomb potential is obtained as follows:

V c ( r )= 3( Z1 ) e 2 2 R 0 { 8.97233.3241   ε+8.14235 1.5+ε + a c r 2 ,    for      r R 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWaaSbaaSqaaiaadogaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIZaWaaeWaaeaacaWGAbGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiaaikdaaaaa keaacaaIYaGaamOuamaaBaaaleaacaaIWaaabeaaaaGcdaGabaqaai abgkHiTiaaiIdacaGGUaGaaGyoaiaaiEdacaaIYaGaaG4maiabgkHi TiaaiodacaGGUaGaaG4maiaaikdacaaI0aGaaGymaaGaay5EaaGaai iOaiaacckacqaH1oqzcqGHRaWkcaaI4aGaaiOlaiaaigdacaaI0aGa aGOmaiaaiodacaaI1aWaaOaaaeaacaaIXaGaaiOlaiaaiwdacqGHRa WkcqaH1oqzaSqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaadogaaeqa aOGaamOCamaaCaaaleqabaGaaGOmaaaakiaacYcacaGGGcGaaiiOai aacckacaGGGcGaamOzaiaad+gacaWGYbGaaiiOaiaacckacaGGGcGa aiiOaiaacckadaGacaqaaiaadkhacqGHKjYOcaWGsbWaaSbaaSqaai aaicdaaeqaaaGccaGL9baaaaa@788A@  

V c ( r )= ( Z1 ) e 2 R 0 { R 0 r 4.761421.58717   ε+3.88768 1.5+ε ,    for      r> R 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWaaSbaaSqaaiaadogaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaadaqadaqaaiaadQfacqGHsislcaaIXa aacaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaaGOmaaaaaOqaaiaa dkfadaWgaaWcbaGaaGimaaqabaaaaOWaaiqaaeaadaWcaaqaaiaadk fadaWgaaWcbaGaaGimaaqabaaakeaacaWGYbaaaiabgkHiTiaaisda caGGUaGaaG4naiaaiAdacaaIXaGaaGinaiaaikdacqGHsislcaaIXa GaaiOlaiaaiwdacaaI4aGaaG4naiaaigdacaaI3aaacaGL7baacaGG GcGaaiiOaiabew7aLjabgUcaRiaaiodacaGGUaGaaGioaiaaiIdaca aI3aGaaGOnaiaaiIdadaGcaaqaaiaaigdacaGGUaGaaGynaiabgUca Riabew7aLbWcbeaakiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaam Ozaiaad+gacaWGYbGaaiiOaiaacckacaGGGcGaaiiOaiaacckadaGa caqaaiaadkhacqGH+aGpcaWGsbWaaSbaaSqaaiaaicdaaeqaaaGcca GL9baaaaa@75F3@  

Because in the nucleus r R 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGYbGaeyizImQaaiOuamaaBaaaleaacaaIWaaabeaakiaacYcaaaa@3C30@ in the case quadratic, the Coulomb potential can be rewritten as follows:

V c ( r )= b c ( ε )+ a c    r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaale aacaWGJbaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da 9iaadkgadaWgaaWcbaGaam4yaaqabaGcdaqadaqaaiabew7aLbGaay jkaiaawMcaaiabgUcaRiaadggadaWgaaWcbaGaam4yaaqabaGcqaaa aaaaaaWdbiaacckacaGGGcWdaiaadkhadaahaaWcbeqaaiaaikdaaa aaaa@48DF@ ;

[ a c = ( Z1 ) e 2 2   R 0 3 ,   b c  ( ε )= 3( Z1 ) e 2 2   R 0 ( 8.97233.3241  ε+8.14235 1.5+ε ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGBbGaamyyamaaBaaaleaacaWGJbaabeaakiabg2da9iabgkHiTmaa laaabaWaaeWaaeaacaWGAbGaeyOeI0IaaGymaaGaayjkaiaawMcaai aadwgadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaaiiOaiaaccka caWGsbWaa0baaSqaaiaaicdaaeaacaaIZaaaaaaakiaacYcacaGGGc GaaiiOaiaackgadaWgaaWcbaGaai4yaaqabaGccaGGGcWaaeWaaeaa cqaH1oqzaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaiodadaqada qaaiaadQfacqGHsislcaaIXaaacaGLOaGaayzkaaGaamyzamaaCaaa leqabaGaaGOmaaaaaOqaaiaaikdacaGGGcGaaiiOaiaadkfadaWgaa WcbaGaaGimaaqabaaaaOWaaeWaaeaacqGHsislcaaI4aGaaiOlaiaa iMdacaaI3aGaaGOmaiaaiodacqGHsislcaaIZaGaaiOlaiaaiodaca aIYaGaaGinaiaaigdacaGGGcGaaiiOaiabew7aLjabgUcaRiaaiIda caGGUaGaaGymaiaaisdacaaIYaGaaG4maiaaiwdadaGcaaqaaiaaig dacaGGUaGaaGynaiabgUcaRiabew7aLbWcbeaaaOGaayjkaiaawMca aaaa@784A@   (26)

It is seen that for  ε=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaeqyTduMaeyypa0JaaGimaaaa@3B99@ , Equation (26) is equal to Equation (25). On the other hand, the total wave function  is ψ( r,θϕ )=R( r )| ljm>= F( r ) r |ljm> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHipqEdaqadaqaaiaadkhacaGGSaGaeqiUdeNaeqy1dygacaGLOaGa ayzkaaGaeyypa0JaamOuamaabmaabaGaamOCaaGaayjkaiaawMcaam aaemaabaGaeS4eHWMaamOAaiaad2gacqGH+aGpcqGH9aqpdaWcaaqa aiaadAeadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeaacaWGYbaaaa Gaay5bSlaawIa7aiabloriSjaadQgacaWGTbGaeyOpa4daaa@5495@ and the radial SE is written as follows:

d 2 F( r ) d r 2 | ljm>+ 2μ 2 [ EU( r,ε,γ ) ]F( r ) |ljm>=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGgbWaaeWaaeaa caWGYbaacaGLOaGaayzkaaaabaGaamizaiaadkhadaahaaWcbeqaai aaikdaaaaaaOWaaqWaaeaacqWItecBcaWGQbGaamyBaiabg6da+iab gUcaRmaalaaabaGaaGOmaiabeY7aTbqaaiabl+qiO9aadaahaaWcbe qaa8qacaaIYaaaaaaakmaadmaabaGaamyraiabgkHiTiaadwfadaqa daqaaiaadkhacaGGSaGaeqyTduMaaiilaiabeo7aNbGaayjkaiaawM caaaGaay5waiaaw2faaiaadAeadaqadaqaaiaadkhaaiaawIcacaGL PaaaaiaawEa7caGLiWoacqWItecBcaWGQbGaamyBaiabg6da+iabg2 da9iaaicdaaaa@60CA@ ; d 2 F( r ) d r 2 | ljm>+ 2μ 2 F( r )[ EU( r,ε,γ ) ] |ljm>=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGgbWaaeWaaeaa caWGYbaacaGLOaGaayzkaaaabaGaamizaiaadkhadaahaaWcbeqaai aaikdaaaaaaOWaaqWaaeaacqWItecBcaWGQbGaamyBaiabg6da+iab gUcaRmaalaaabaGaaGOmaiabeY7aTbqaaiabl+qiO9aadaahaaWcbe qaa8qacaaIYaaaaaaakiaadAeadaqadaqaaiaadkhaaiaawIcacaGL PaaadaWadaqaaiaadweacqGHsislcaWGvbWaaeWaaeaacaWGYbGaai ilaiabew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaaaiaawUfacaGL DbaaaiaawEa7caGLiWoacqWItecBcaWGQbGaamyBaiabg6da+iabg2 da9iaaicdaaaa@60CA@   (27)

In Equation (27), [ EU( r,ε,γ ) ]| ljm> MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaqaaiaadweacqGHsislcaWGvbWaaeWaaeaacaWGYbGaaiilaiab ew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaaaiaawUfacaGLDbaada abbaqaaiabloriSjaadQgacaWGTbGaeyOpa4dacaGLhWoaaaa@486E@ is calculated as follows:

[ EU( r,ε,λ ) ]| ljm> =E |ljm>U( r,ε,γ )| ljm> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaqaaiaadweacqGHsislcaWGvbWaaeWaaeaacaWGYbGaaiilaiab ew7aLjaacYcacqaH7oaBaiaawIcacaGLPaaaaiaawUfacaGLDbaada abdaWdaeaapeGaeS4eHWMaaeOAaiaab2gacqGH+aGpcaqGGcGaeyyp a0JaaeyraaGaay5bSlaawIa7aiabloriSjaabQgacaqGTbGaeyOpa4 JaeyOeI0IaamyvamaabmaabaGaamOCaiaacYcacqaH1oqzcaGGSaGa eq4SdCgacaGLOaGaayzkaaWaaqqaaeaacqWItecBcaqGQbGaaeyBai abg6da+aGaay5bSdaaaa@5FC9@

U( r,ε,γ )| ljm> =[ 1 2  μ  ω 00 2 r 2   β 2 ( ε,γ )+ 2 2 μ  r 2 j( j+1 ) ]| ljm> MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaa8aabaWdbiaackhacaGGSaGaeqyTduMaaiilaiabeo7a NbGaayjkaiaawMcaamaaeeaabaGaeS4eHWMaamOAaiaad2gacqGH+a GpaiaawEa7aiaabckacqGH9aqpdaWadaWdaeaapeWaaSaaa8aabaWd biaaigdaa8aabaWdbiaaikdaaaGaaeiOaiabeY7aTjaabckacqaHjp WDpaWaa0baaSqaa8qacaaIWaGaaGimaaWdaeaapeGaaGOmaaaakiaa bkhapaWaaWbaaSqabeaapeGaaGOmaaaakiaabckacqaHYoGypaWaaW baaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacqaH1oqzcaGGSaGa eq4SdCgacaGLOaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiabl+qiO9 aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaaeiOaiab eY7aTjaabckacaqGYbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaam OAamaabmaapaqaa8qacaWGQbGaey4kaSIaaGymaaGaayjkaiaawMca aaGaay5waiaaw2faamaaeeaabaGaeS4eHWMaamOAaiaad2gacqGH+a GpaiaawEa7aaaa@73CE@

β 2 ( ε,γ ) ]|ljm> = β 2 | ljm>={ B( ε,γ )+[ C( ε,γ )B( ε,γ ) ][ 1 3 + 2 3 4π 5 Y 0 2 ] }|ljm> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada abcaqaamaaeiaabaWaamGaaeaacqaHYoGydaahaaWcbeqaaiaaikda aaGcdaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaaai aaw2faaaGaayjcSdGaeS4eHWMaaeOAaiaab2gacqGH+aGpcaqGGcGa eyypa0JaeqOSdi2aaWbaaSqabeaacaaIYaaaaOWaaqqaaeaacqWIte cBcaqGQbGaaeyBaiabg6da+iabg2da9maacmaabaGaamOqamaabmaa baGaeqyTduMaaiilaiabeo7aNbGaayjkaiaawMcaaiabgUcaRmaadm aapaqaa8qacaqGdbWaaeWaa8aabaWdbiabew7aLjaacYcacqaHZoWz aiaawIcacaGLPaaacqGHsislcaqGcbWaaeWaa8aabaWdbiabew7aLj aacYcacqaHZoWzaiaawIcacaGLPaaaaiaawUfacaGLDbaadaWadaqa amaalaaabaGaaGymaaqaaiaaiodaaaGaey4kaSYaaSaaaeaacaaIYa aabaGaaG4maaaadaGcaaqaamaalaaabaGaaGinaiabec8aWbqaaiaa iwdaaaaaleqaaOGaamywamaaDaaaleaacaaIWaaabaGaaGOmaaaaaO Gaay5waiaaw2faaaGaay5Eaiaaw2haaaGaay5bSdaacaGLiWoacqWI tecBcaqGQbGaaeyBaiabg6da+aaa@7C01@  (28)

β 2 ( ε,γ )]| ljm> =  β 2 |ljm>={ B( ε,γ )+[ C( ε,γ )B( ε,γ ) ]co s 2 ( θ ) } | ljm> MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaWbaaS qabeaaqaaaaaaaaaWdbiaaikdaaaGcdaqadaWdaeaapeGaeqyTduMa aiilaiabeo7aNbGaayjkaiaawMcaaiaac2fadaabdaWdaeaapeGaeS 4eHWMaaeOAaiaab2gacqGH+aGpcaqGGcGaeyypa0JaaeiOaiabek7a I9aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLhWUaayjcSdGaeS4eHW MaaeOAaiaab2gacqGH+aGpcqGH9aqpdaGadaWdaeaapeGaaeOqamaa bmaapaqaa8qacqaH1oqzcaGGSaGaeq4SdCgacaGLOaGaayzkaaGaey 4kaSYaamWaa8aabaWdbiaaboeadaqadaWdaeaapeGaeqyTduMaaiil aiabeo7aNbGaayjkaiaawMcaaiabgkHiTiaabkeadaqadaWdaeaape GaeqyTduMaaiilaiabeo7aNbGaayjkaiaawMcaaaGaay5waiaaw2fa aiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOWaae Waa8aabaGaeqiUdehapeGaayjkaiaawMcaaaGaay5Eaiaaw2haamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hOaa6aaq qaaeaacqWItecBcaqGQbGaaeyBaiabg6da+aGaay5bSdaaaa@844B@

If we calculate Y 0 2 | ljm = a 20 | ljm  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGzbWdamaaDaaaleaapeGaaGimaaWdaeaapeGaaGOmaaaakmaaEiaa beWdaeaapeGaeS4eHWMaaeOAaiaab2gaaiaawEa7caGLQmcacaqGGc Gaeyypa0Jaaeyya8aadaWgaaWcbaWdbiaaikdacaaIWaaapaqabaGc peWaa4Haaeqapaqaa8qacqWItecBcaqGQbGaaeyBaaGaay5bSlaawQ Yiaiaabckaaaa@4B76@ in Equation (28), by the Wigner-Eckart theorem, we have found the following value:

a 20 ( l,j,m ) π 2l+1 j+ j 2 3 m 2 2j( j+1 ) = a 20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGHbWdamaaBaaaleaapeGaaGOmaiaaicdaa8aabeaak8qadaqadaWd aeaapeGaeS4eHWMaaiilaiaabQgacaGGSaGaaeyBaaGaayjkaiaawM caaiabgkHiTmaakaaabaWaaSaaaeaacqaHapaCaeaacaaIYaGaeS4e HWMaey4kaSIaaGymaaaaaSqabaGcdaWcaaqaaiaadQgacqGHRaWkca WGQbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaG4maiaad2gadaah aaWcbeqaaiaaikdaaaaakeaacaaIYaGaamOAamaabmaabaGaamOAai abgUcaRiaaigdaaiaawIcacaGLPaaaaaGaeyypa0Jaaeyya8aadaWg aaWcbaWdbiaaikdacaaIWaaapaqabaaaaa@5728@

Thus, β 2 ( ε,γ, a 20 )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHYoGypaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacqaH 1oqzcaGGSaGaeq4SdCMaaiilaiaabggapaWaaSbaaSqaa8qacaaIYa GaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacckaaaa@440A@ are written as follows:

β 2 ( ε,γ, a 2 0 )=B( ε,γ )+[ C( ε,γ )B( ε,γ ) ][ 1 3 + 2 3 4π 5 a 2 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHYoGydaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabew7aLjaacYca cqaHZoWzcaGGSaGaamyyamaaBaaaleaacaaIYaaabeaakmaaBaaale aacaaIWaaabeaaaOGaayjkaiaawMcaaiabg2da9iaadkeadaqadaqa aiabew7aLjaacYcacqaHZoWzaiaawIcacaGLPaaacqGHRaWkdaWada qaaiaadoeadaqadaqaaiabew7aLjaacYcacqaHZoWzaiaawIcacaGL PaaacqGHsislcaWGcbWaaeWaaeaacqaH1oqzcaGGSaGaeq4SdCgaca GLOaGaayzkaaaacaGLBbGaayzxaaWaamWaaeaadaWcaaqaaiaaigda aeaacaaIZaaaaiabgUcaRmaalaaabaGaaGOmaaqaaiaaiodaaaWaaO aaaeaadaWcaaqaaiaaisdacqaHapaCaeaacaaI1aaaaaWcbeaakiaa dggadaWgaaWcbaGaaGOmaaqabaGcdaWgaaWcbaGaaGimaaqabaaaki aawUfacaGLDbaaaaa@666F@   (29)

So, we have found the effective potential for anisotropic harmonic oscillator as follows.

U( r;ε,γ, a 2 0 )= 1 2 μ ω 2 0 0 β 2 ( ε,γ, a 0 0 ) r 2 + 2 2μ r 2 j( j+1 )=a r 2 + b r 2 =U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaaeaacaWGYbGaai4oaiabew7aLjaacYcacqaHZoWzcaGG SaGaamyyamaaBaaaleaacaaIYaaabeaakmaaBaaaleaacaaIWaaabe aaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaikda aaGaeqiVd0MaeqyYdC3aaWbaaSqabeaacaaIYaaaaOWaaSbaaSqaai aaicdaaeqaaOWaaSbaaSqaaiaaicdaaeqaaOGaeqOSdi2aaWbaaSqa beaacaaIYaaaaOWaaeWaaeaacqaH1oqzcaGGSaGaeq4SdCMaaiilai aadggadaWgaaWcbaGaaGimaaqabaGcdaWgaaWcbaGaaGimaaqabaaa kiaawIcacaGLPaaacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaey4kaS YaaSaaaeaacqWIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaOqaaiaa ikdacqaH8oqBcaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiaadQgada qadaqaaiaadQgacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeyypa0Ja amyyaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaai aadkgaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaa dwfadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaa@7182@  (30)

a= 1 0 μ ω 2 0 0 β 2 ( ε,γ, a 2 0 )= 1 2 μ ω 2 ;b= 2 2 μ j( j+1 ); ω 2 = ω 2 0 0 β 2 ( ε,γ, a 2 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGHbGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGimaaaacqaH8oqBcqaH jpWDdaahaaWcbeqaaiaaikdaaaGcdaWgaaWcbaGaaGimaaqabaGcda WgaaWcbaGaaGimaaqabaGccqaHYoGydaahaaWcbeqaaiaaikdaaaGc daqadaqaaiabew7aLjaacYcacqaHZoWzcaGGSaGaamyyamaaBaaale aacaaIYaaabeaakmaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMca aiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeqiVd0MaeqyYdC 3aaWbaaSqabeaacaaIYaaaaOGaai4oaiaadkgacqGH9aqpdaWcaaqa aiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaaaaGcbaGaaGOmamaaBa aaleaacqaH8oqBaeqaaaaakiaadQgadaqadaqaaiaadQgacqGHRaWk caaIXaaacaGLOaGaayzkaaGaai4oaiabeM8a3naaCaaaleqabaGaaG Omaaaakiabg2da9iabeM8a3naaCaaaleqabaGaaGOmaaaakmaaBaaa leaacaaIWaaabeaakmaaBaaaleaacaaIWaaabeaakiabek7aInaaCa aaleqabaGaaGOmaaaakmaabmaabaGaeqyTduMaaiilaiabeo7aNjaa cYcacaWGHbWaaSbaaSqaaiaaikdaaeqaaOWaaSbaaSqaaiaaicdaae qaaaGccaGLOaGaayzkaaaaaa@74C7@  (31)

In the case of electric charged particle, the Coulomb potential should be also added to this effective potential.

Solution of the equation of  [ U( r )= E q ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcWaamWaa8aabaWdbiaahwfadaqadaWdaeaapeGaaCOCaaGaayjk aiaawMcaaiabg2da9iaahweapaWaaSbaaSqaa8qacaWHXbaapaqaba aak8qacaGLBbGaayzxaaaaaa@4107@

Consider   U w ( r )= a r 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaamyva8aadaWgaaWcbaWdbiaadEhaa8aabeaak8qadaqadaWd aeaapeGaamOCaaGaayjkaiaawMcaaiabg2da9iaabggacaqGGcGaae OCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaaaa@4353@ and U b ( r )= 2 2 μ   ( j+1 ) r 2 = b r 2  , [ b= m h  j ( j+1 ) ,  m h = 2 2 μ   ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaBaaaleaapeGaamOyaaWdaeqaaOWdbmaabmaapaqaa8qa caWGYbaacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiabl+qiO9 aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaaeiOaiab eY7aTbaacaqGGcWaaSaaa8aabaWdbiaabQgacaqGGcWaaeWaa8aaba WdbiaabQgacqGHRaWkcaaIXaaacaGLOaGaayzkaaaapaqaa8qacaqG YbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaeyypa0ZaaSaaa8aaba Wdbiaabkgaa8aabaWdbiaabkhapaWaaWbaaSqabeaapeGaaGOmaaaa aaGccaGGGcGaaiilaiaacckadaWadaWdaeaapeGaamOyaiabg2da9i aad2gapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaaeiOaiaabQga caqGGcWaaeWaa8aabaWdbiaabQgacqGHRaWkcaaIXaaacaGLOaGaay zkaaGaaeiOaiaacYcacaqGGcGaamyBa8aadaWgaaWcbaWdbiaadIga a8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaeS4dHG2damaaCaaale qabaWdbiaaikdaaaaak8aabaWdbiaaikdacaqGGcGaeqiVd0gaaiaa bckaaiaawUfacaGLDbaacaGGUaaaaa@6FF1@  Thus, according to (30), we have:

U( r )= V 0 ( r )+  b r 2 = U w ( r )+ U b ( r ) ;   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaacqGH9aqpcaWG wbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qaca WGYbaacaGLOaGaayzkaaGaey4kaSIaaiiOamaalaaapaqaa8qacaWG Ibaapaqaa8qacaWGYbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey ypa0Jaamyva8aadaWgaaWcbaWdbiaadEhaa8aabeaak8qadaqadaWd aeaapeGaamOCaaGaayjkaiaawMcaaiabgUcaRiaadwfapaWaaSbaaS qaa8qacaWGIbaapaqabaGcpeWaaeWaa8aabaWdbiaadkhaaiaawIca caGLPaaacaGGGcGaai4oaiaacckacaGGGcaaaa@554A@   [   U w ( r )=  V 0 ( r )=a  r 2  ;  U b ( r )=  b r 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaapeGaaiiOaiaadwfapaWaaSbaaSqaa8qacaWG3baapaqa baGcpeWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaacqGH9aqpca GGGcGaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWd aeaapeGaamOCaaGaayjkaiaawMcaaiabg2da9iaadggacaGGGcGaam OCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaiaacUdacaGGGcGa amyva8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qadaqadaWdaeaape GaamOCaaGaayjkaiaawMcaaiabg2da9iaacckadaWcaaWdaeaapeGa amOyaaWdaeaapeGaamOCa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaO Gaay5waiaaw2faaaaa@585B@ .

Solution of the Equation U( r )= E   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaa8aabaWdbiaabkhaaiaawIcacaGLPaaacqGH9aqpcaqG fbWdamaaBaaaleaapeGaaeyCaiaabckaa8aabeaak8qacaqGGcaaaa@4000@ gives the following values:

r 1 = E q + E q 2 4 a b 2 a  ;  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGYbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iabgkHi Tmaakaaapaqaa8qadaWcaaWdaeaapeGaaeyra8aadaWgaaWcbaWdbi aabghaa8aabeaak8qacqGHRaWkdaGcaaWdaeaapeGaaeyra8aadaqh aaWcbaWdbiaabghaa8aabaWdbiaaikdaaaGccqGHsislcaaI0aGaae iOaiaabggacaqGGcGaaeOyaaWcbeaaaOWdaeaapeGaaGOmaiaabcka caqGHbaaaaWcbeaakiaabckacaGG7aGaaeiOaaaa@4D7D@ r 2 = E q + E q 2 4 a b 2 a   ;  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGYbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9maakaaa paqaa8qadaWcaaWdaeaapeGaaeyra8aadaWgaaWcbaWdbiaabghaa8 aabeaak8qacqGHRaWkdaGcaaWdaeaapeGaaeyra8aadaqhaaWcbaWd biaabghaa8aabaWdbiaaikdaaaGccqGHsislcaaI0aGaaeiOaiaabg gacaqGGcGaaeOyaaWcbeaaaOWdaeaapeGaaGOmaiaabckacaqGHbaa aaWcbeaakiaabckacaqGGcGaai4oaiaabckaaaa@4DB4@  r 3 = E q E q 2 4 a b 2 a   ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOCa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqp cqGHsisldaGcaaWdaeaapeWaaSaaa8aabaWdbiaabweapaWaaSbaaS qaa8qacaqGXbaapaqabaGcpeGaeyOeI0YaaOaaa8aabaWdbiaabwea paWaa0baaSqaa8qacaqGXbaapaqaa8qacaaIYaaaaOGaeyOeI0IaaG inaiaabckacaqGHbGaaeiOaiaabkgaaSqabaaak8aabaWdbiaaikda caqGGcGaaeyyaaaaaSqabaGccaqGGcGaaeiOaiaacUdaaaa@4EAD@  r 4 = E q E q 2 4 a b 2 a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOCa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqp daGcaaWdaeaapeWaaSaaa8aabaWdbiaabweapaWaaSbaaSqaa8qaca qGXbaapaqabaGcpeGaeyOeI0YaaOaaa8aabaWdbiaabweapaWaa0ba aSqaa8qacaqGXbaapaqaa8qacaaIYaaaaOGaeyOeI0IaaGinaiaabc kacaqGHbGaaeiOaiaabkgaaSqabaaak8aabaWdbiaaikdacaqGGcGa aeyyaaaaaSqabaaaaa@4AB2@ .

r 1 + r 2 2 = r 3 + r 4 2 = r 0 =0  ;   d 1 = r 3 r 1   ;   d 2 = r 2 r 4  ;   d 1 = d 2   ;  d 3 = r 4 r 3  ;  d= r 2 r 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaaeOCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGHRaWkcaqGYbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbi aaikdaaaGaeyypa0ZaaSaaa8aabaWdbiaabkhapaWaaSbaaSqaa8qa caaIZaaapaqabaGcpeGaey4kaSIaaeOCa8aadaWgaaWcbaWdbiaais daa8aabeaaaOqaa8qacaaIYaaaaiabg2da9iaabkhapaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeGaeyypa0JaaGimaiaabckacaqGGcGaai 4oaiaabckacaqGGcGaaeiza8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacqGH9aqpcaqGYbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbi abgkHiTiaabkhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaeiO aiaabckacaGG7aGaaeiOaiaabckacaqGKbWdamaaBaaaleaapeGaaG OmaaWdaeqaaOWdbiabg2da9iaabkhapaWaaSbaaSqaa8qacaaIYaaa paqabaGcpeGaeyOeI0IaaeOCa8aadaWgaaWcbaWdbiaaisdaa8aabe aak8qacaqGGcGaai4oaiaabckacaqGGcGaaeiza8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacqGH9aqpcaqGKbWdamaaBaaaleaapeGaaG OmaiaabckacaqGGcaapaqabaGcpeGaai4oaiaabckacaqGKbWdamaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iaabkhapaWaaSbaaS qaa8qacaaI0aaapaqabaGcpeGaeyOeI0IaaeOCa8aadaWgaaWcbaWd biaaiodaa8aabeaak8qacaqGGcGaai4oaiaabckacaqGGcGaaeizai abg2da9iaabkhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOe I0IaaeOCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@8579@ .

Now, we will solve this problem in three cases as follows.

Solution of the case E q > U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WHfbWdamaaBaaaleaapeGaaCyCaaWdaeqaaOWdbiabg6da+iaahwfa paWaaSbaaSqaa8qacaWHIbaapaqabaGcpeWaaeWaa8aabaWdbiaahk haaiaawIcacaGLPaaaaaa@3F33@

In this case, the following equation can be written according to the quantization condition of energy:

K d= E q   or  K 2 d 2 = E q 2   ;  [K= 2 μ  E q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGlbGaaeiOaiaabsgacqGH9aqpcaqGfbWdamaaBaaaleaapeGaaeyC aaWdaeqaaOWdbiaabckacaqGGcGaae4BaiaabkhacaqGGcGaaeiOai aabUeapaWaaWbaaSqabeaapeGaaGOmaaaakiaabsgapaWaaWbaaSqa beaapeGaaGOmaaaakiabg2da9iaadweapaWaa0baaSqaa8qacaWGXb aapaqaa8qacaaIYaaaaOGaaiiOaiaabckacaGG7aGaaeiOaiaabcka caGGBbGaae4saiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaaG OmaiaabckacqaH8oqBcaqGGcGaaeyra8aadaWgaaWcbaGaamyCaaqa baaakeaapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaaaaqaba GccaGGDbaaaa@5DA4@

The following energy value is obtained from the solution of this equation.

E q = a   2 q 2 2  2 μ   2 q 2 8 μ b   ;  [ E q > U b ( r )] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaBaaaleaapeGaamyCaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qadaGcaaWdaeaapeGaaeyyaaWcbeaakiaabckacqWIpecApa WaaWbaaSqabeaapeGaaGOmaaaak8aacaWGXbWaaWbaaSqabeaapeGa aGOmaaaaaOWdaeaapeGaaGOmaiaabckadaGcaaWdaeaapeGaaGOmai aabckacqaH8oqBaSqabaGccaqGGcWaaOaaa8aabaWdbiabl+qiO9aa daahaaWcbeqaa8qacaaIYaaaaOWdaiaadghadaahaaWcbeqaa8qaca aIYaaaaOGaeyOeI0IaaGioaiaabckacqaH8oqBcaqGGcGaaeOyaaWc beaaaaGccaqGGcGaaeiOaiaacUdacaqGGcGaaeiOaiaacUfacaWGfb WdamaaBaaaleaapeGaamyCaaWdaeqaaOWdbiabg6da+iaadwfapaWa aSbaaSqaa8qacaWGIbaapaqabaGcpeWaaeWaa8aabaWdbiaadkhaai aawIcacaGLPaaacaGGDbaaaa@6232@  (32)

If the energy E q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGfbWdamaaBaaaleaapeGaaeyCaaWdaeqaaaaa@3925@  does not depend on the angular momentum quantum number j, i.e., rotation, energy is purely vibrational energy. In this case, b=0  and   E q = 1 2  ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGIbGaeyypa0JaaGimaiaacckacaGGGcGaamyyaiaad6gacaWGKbGa aiiOaiaacckacaWGfbWdamaaBaaaleaapeGaamyCaaWdaeqaaOWdbi abg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiabl+qi OjaabckacqaHjpWDaaa@4A20@ .

Solution of the case   E q < U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaaCyra8aadaWgaaWcbaWdbiaahghaa8aabeaak8qacqGH8aap caWHvbWdamaaBaaaleaapeGaaCOyaaWdaeqaaOWdbmaabmaapaqaa8 qacaWHYbaacaGLOaGaayzkaaaaaa@4053@

In this case, since  d 1 = d 2  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeiza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqp caqGKbWdamaaBaaaleaapeGaaGOmaiaabckaa8aabeaaaaa@3E6E@ , equal energy values are obtained in (I) and (II) regions. So, the following equation can be written according to the quantization condition of energy:

K d 1 = E q   or  K 2 d 1 2 = E q 2   ;  [K= 2 μ  E q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGlbGaaeiOaiaabsgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyypa0Jaaeyra8aadaWgaaWcbaWdbiaabghaa8aabeaak8qacaqGGc GaaeiOaiaab+gacaqGYbGaaeiOaiaabckacaqGlbWdamaaCaaaleqa baWdbiaaikdaaaGccaqGKbWdamaaDaaaleaapeGaaGymaaWdaeaape GaaGOmaaaakiabg2da9iaadweapaWaa0baaSqaa8qacaWGXbaapaqa a8qacaaIYaaaaOGaaiiOaiaabckacaGG7aGaaeiOaiaabckacaGGBb Gaae4saiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaaGOmaiaa bckacqaH8oqBcaqGGcGaaeyra8aadaWgaaWcbaGaamyCaaqabaaake aapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaaaaqabaGccaGG Dbaaaa@5FAD@

The following energy values are obtained from the solution of this equation.

E q ( 1 ) = a μ ( 4 b μ+ 2 q 2 )+δ( a,b,q ) μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaDaaaleaapeGaamyCaaWdaeaapeWaaeWaa8aabaWdbiaa igdaaiaawIcacaGLPaaaaaGccqGH9aqpdaWcaaWdaeaapeWaaOaaa8 aabaWdbiaadggacaGGGcGaeqiVd0MaaiiOamaabmaapaqaa8qacaaI 0aGaaiiOaiaadkgacaGGGcGaeqiVd0Maey4kaSIaeS4dHG2damaaCa aaleqabaWdbiaaikdaaaGcpaGaamyCamaaCaaaleqabaWdbiaaikda aaaakiaawIcacaGLPaaacqGHRaWkcqaH0oazdaqadaWdaeaapeGaam yyaiaacYcacaWGIbGaaiilaiaadghaaiaawIcacaGLPaaaaSqabaaa k8aabaGaeqiVd0gaaaaa@588B@ ; E q ( 2 ) = a μ ( 4 b μ+ 2 q 2 )δ( a,b,q ) μ   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaDaaaleaapeGaamyCaaWdaeaapeWaaeWaa8aabaWdbiaa ikdaaiaawIcacaGLPaaaaaGccqGH9aqpdaWcaaWdaeaapeWaaOaaa8 aabaWdbiaadggacaGGGcGaeqiVd0MaaiiOamaabmaapaqaa8qacaaI 0aGaaiiOaiaadkgacaGGGcGaeqiVd0Maey4kaSIaeS4dHG2damaaCa aaleqabaWdbiaaikdaaaGccaWGXbWdamaaCaaaleqabaWdbiaaikda aaaakiaawIcacaGLPaaacqGHsislcqaH0oazdaqadaWdaeaapeGaam yyaiaacYcacaWGIbGaaiilaiaadghaaiaawIcacaGLPaaaaSqabaaa k8aabaGaeqiVd0gaa8qacaGGGcaaaa@59CB@  (33)

δ=2 2  a 2 μ 3 ( 2 b μ+ 2 q 2 )   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH0oazcqGH9aqpcaaIYaWaaOaaa8aabaWdbiaaikdacaGGGcGaaeyy a8aadaahaaWcbeqaa8qacaaIYaaaaOGaaeOyaiaabckacqaH8oqBpa WaaWbaaSqabeaapeGaaG4maaaakmaabmaapaqaa8qacaaIYaGaaeiO aiaabkgacaqGGcGaeqiVd0Maey4kaSIaeS4dHG2damaaCaaaleqaba WdbiaaikdaaaGccaqGXbWdamaaCaaaleqabaWdbiaaikdaaaaakiaa wIcacaGLPaaaaSqabaGccaGGGcaaaa@50ED@

If the values of b are put in place, the following values depending on (a, j, q) are obtained:

E q1 ( a,j,q )= a  2 ( 2j+2 j 2 + q 2 )μ+δ μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaBaaaleaapeGaamyCaiaaigdaa8aabeaak8qadaqadaWd aeaapeGaamyyaiaacYcacaWGQbGaaiilaiaadghaaiaawIcacaGLPa aacqGH9aqpdaWcaaWdaeaapeWaaOaaa8aabaWdbiaadggacaGGGcGa eS4dHG2damaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaG OmaiaadQgacqGHRaWkcaaIYaGaamOAa8aadaahaaWcbeqaa8qacaaI YaaaaOGaey4kaSIaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaaGcca GLOaGaayzkaaGaeqiVd0Maey4kaSIaeqiTdqgaleqaaaGcpaqaaiab eY7aTbaaaaa@556D@ ; E q2 ( a,j,q )= a  2 ( 2j+2 j 2 + q 2 )μδ μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaBaaaleaapeGaamyCaiaaikdaa8aabeaak8qadaqadaWd aeaapeGaamyyaiaacYcacaWGQbGaaiilaiaadghaaiaawIcacaGLPa aacqGH9aqpdaWcaaWdaeaapeWaaOaaa8aabaWdbiaadggacaGGGcGa eS4dHG2damaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaG OmaiaadQgacqGHRaWkcaaIYaGaamOAa8aadaahaaWcbeqaa8qacaaI YaaaaOGaey4kaSIaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaaGcca GLOaGaayzkaaGaeqiVd0MaeyOeI0IaeqiTdqgaleqaaaGcpaqaaiab eY7aTbaaaaa@5579@ . (34)

δ( a,j,q )=2a 2 μ j( 1+j )( j+ j 2 + q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH0oazdaqadaqaaiaadggacaGGSaGaamOAaiaacYcacaWGXbaacaGL OaGaayzkaaGaeyypa0JaaGOmaiaadggacqWIpecApaWaaWbaaSqabe aapeGaaGOmaaaak8aacqaH8oqBdaGcaaqaaiaadQgadaqadaqaaiaa igdacqGHRaWkcaWGQbaacaGLOaGaayzkaaWaaeWaaeaacaWGQbGaey 4kaSIaamOAamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadghadaah aaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaSqabaaaaa@5236@  

Then, in case  E q < U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeyra8aadaWgaaWcbaWdbiaabghaa8aabeaak8qacqGH8aap caqGvbWdamaaBaaaleaapeGaaeOyaaWdaeqaaOWdbmaabmaapaqaa8 qacaqGYbaacaGLOaGaayzkaaaaaa@4034@ , there are two equal energy values in regions (I) and (II). As seen in Figure 1, the U b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWdamaaBaaaleaapeGaaeOyaaWdaeqaaOWdbmaabmaapaqaa8qa caqGYbaacaGLOaGaayzkaaaaaa@3BDD@  barrier potential located between (I) and (II) potential wells divides the energy of the particle into two. While the particle is oscillating in these wells, when the particle reaches the r3 (or r4) point, some of its energy passes from the III region to the II (or I) region by tunneling, and some of it is reflected from the r3 (or r4) point. This transition is equally likely for both parties. (This passing probability will be calculated below). Thus, the potential barrier divides the energy of the particle in two. The rotational potential due to angular momentum always splits the energy into two parts. This phenomenon may be a way to find the angular momentum of a particle. When j=0,( δ=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGQbGaeyypa0JaaGimaiaacYcadaqadaqaaiabes7aKjabg2da9iaa icdaaiaawIcacaGLPaaaaaa@3F5C@ in (34), there is only one energy. So, the  U b ( r )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeyva8aadaWgaaWcbaWdbiaabkgaa8aabeaak8qadaqadaWd aeaapeGaaeOCaaGaayjkaiaawMcaaiaabckaaaa@3E23@  barrier cuts a single energy into two parts. These double energy splits are observed at small vibrations in some molecules such as ammonia. Many double wells are proposed to explain these energy splits, although there is no need for them. Because this energy splitting occurs in small vibrations for all particles with angular momentum.

Solution of the case E q =U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WHfbWdamaaBaaaleaapeGaaCyCaaWdaeqaaOWdbiabg2da9iaahwfa daqadaWdaeaapeGaaCOCaaGaayjkaiaawMcaaaaa@3DD2@ , [In one potential well]

We consider the effective potential given here as a whole. We will solve the two wells at the bottom of the potential well in general, without considering them separately.

U( r )=   V 0 ( r )+  b r 2 = U w ( r )+ U b ( r ) ;   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaa8aabaWdbiaabkhaaiaawIcacaGLPaaacqGH9aqpcaqG GcGaaeiOaiaabAfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaae Waa8aabaWdbiaabkhaaiaawIcacaGLPaaacqGHRaWkcaqGGcWaaSaa a8aabaWdbiaabkgaa8aabaWdbiaabkhapaWaaWbaaSqabeaapeGaaG OmaaaaaaGccqGH9aqpcaqGvbWdamaaBaaaleaapeGaae4DaaWdaeqa aOWdbmaabmaapaqaa8qacaqGYbaacaGLOaGaayzkaaGaey4kaSIaae yva8aadaWgaaWcbaWdbiaabkgaa8aabeaak8qadaqadaWdaeaapeGa aeOCaaGaayjkaiaawMcaaiaabckacaGG7aGaaeiOaiaabckaaaa@5774@ [  U w ( r )=  V 0 ( r )  ;  U b ( r )=  b r 2   ;   V 0 ( r )= a r 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaapeGaaeiOaiaabwfapaWaaSbaaSqaa8qacaqG3baapaqa baGcpeWaaeWaa8aabaWdbiaabkhaaiaawIcacaGLPaaacqGH9aqpca qGGcGaaeOva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWd aeaapeGaaeOCaaGaayjkaiaawMcaaiaabckacaqGGcGaai4oaiaabc kacaqGvbWdamaaBaaaleaapeGaaeOyaaWdaeqaaOWdbmaabmaapaqa a8qacaqGYbaacaGLOaGaayzkaaGaeyypa0JaaeiOamaalaaapaqaa8 qacaqGIbaapaqaa8qacaqGYbWdamaaCaaaleqabaWdbiaaikdaaaaa aOGaaeiOaiaabckacaGG7aGaaeiOaiaabckacaqGwbWdamaaBaaale aapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaqGYbaacaGLOaGa ayzkaaGaeyypa0JaaeyyaiaabckacaqGYbWdamaaCaaaleqabaWdbi aaikdaaaaakiaawUfacaGLDbaaaaa@634F@

Solution of the Equation  U( r )= E   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaaeyvamaabmaapaqaa8qacaqGYbaacaGLOaGaayzkaaGaeyyp a0Jaaeyra8aadaWgaaWcbaWdbiaabghacaqGGcaapaqabaGcpeGaae iOaaaa@4124@ gives the following r values:

r 1 = E q + E q 2 4 a b 2 a  ;   r 2 = E q + E q 2 4 a b 2 a   ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iabgkHi Tmaakaaapaqaa8qadaWcaaWdaeaapeGaamyra8aadaWgaaWcbaWdbi aadghaa8aabeaak8qacqGHRaWkdaGcaaWdaeaapeGaamyra8aadaqh aaWcbaWdbiaadghaa8aabaWdbiaaikdaaaGccqGHsislcaaI0aGaai iOaiaadggacaGGGcGaamOyaaWcbeaaaOWdaeaapeGaaGOmaiaaccka caWGHbaaaaWcbeaakiaacckacaGG7aGaaiiOaiaacckacaWGYbWdam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9maakaaapaqaa8qa daWcaaWdaeaapeGaamyra8aadaWgaaWcbaWdbiaadghaa8aabeaak8 qacqGHRaWkdaGcaaWdaeaapeGaamyra8aadaqhaaWcbaWdbiaadgha a8aabaWdbiaaikdaaaGccqGHsislcaaI0aGaaiiOaiaadggacaGGGc GaamOyaaWcbeaaaOWdaeaapeGaaGOmaiaacckacaWGHbaaaaWcbeaa kiaacckacaGGGcGaai4oaaaa@644D@   r 3 = E q E q 2 4 a b 2 a  ;   r 4 = E q E q 2 4 a b 2 a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iabgkHi Tmaakaaapaqaa8qadaWcaaWdaeaapeGaamyra8aadaWgaaWcbaWdbi aadghaa8aabeaak8qacqGHsisldaGcaaWdaeaapeGaamyra8aadaqh aaWcbaWdbiaadghaa8aabaWdbiaaikdaaaGccqGHsislcaaI0aGaai iOaiaadggacaGGGcGaamOyaaWcbeaaaOWdaeaapeGaaGOmaiaaccka caWGHbaaaaWcbeaakiaacckacaGG7aGaaiiOaiaacckacaWGYbWdam aaBaaaleaapeGaaGinaaWdaeqaaOWdbiabg2da9maakaaapaqaa8qa daWcaaWdaeaapeGaamyra8aadaWgaaWcbaWdbiaadghaa8aabeaak8 qacqGHsisldaGcaaWdaeaapeGaamyra8aadaqhaaWcbaWdbiaadgha a8aabaWdbiaaikdaaaGccqGHsislcaaI0aGaaiiOaiaadggacaGGGc GaamOyaaWcbeaaaOWdaeaapeGaaGOmaiaacckacaWGHbaaaaWcbeaa aaa@6156@ ;

d 1 = r 2 r 1   ;   d 3 = r 4 r 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGKbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaabkha paWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaaeOCa8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacaqGGcGaaeiOaiaacUdacaqG GcGaaeiOaiaabsgapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey ypa0JaaeOCa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGHsisl caqGYbWdamaaBaaaleaapeGaaG4maaWdaeqaaaaa@4CEA@ .

Positive root of Equation d 1 2  [ U( r 1 )+U( r 2 ) ]=2  m h   q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGKbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiaaccka daWadaWdaeaapeGaamyvamaabmaapaqaa8qacaWGYbWdamaaBaaale aapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRiaadwfa daqadaWdaeaapeGaamOCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaO WdbiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpcaaIYaGaaiiO aiaad2gapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaaiiOaiaadg hapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@4FA7@  is E q1 = a    m h   q 2 2  m h   q 2 4 b = q 2    ω  4  q 2 4 j ( j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaBaaaleaapeGaamyCaiaaigdaa8aabeaak8qacqGH9aqp daWcaaWdaeaapeWaaOaaa8aabaWdbiaadggaaSqabaGccaGGGcGaai iOaiaad2gapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaaiiOaiaa dghapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmaiaacc kadaGcaaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadIgaa8aabeaa k8qacaGGGcGaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0 IaaGinaiaacckacaWGIbaaleqaaaaakiabg2da9maalaaapaqaaiaa dghadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaiaacckacqWIpecAca GGGcGaeqyYdCNaaiiOaaWdaeaapeGaaGinaiaacckadaGcaaWdaeaa peGaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGinai aacckacaWGQbGaaiiOamaabmaapaqaa8qacaWGQbGaey4kaSIaaGym aaGaayjkaiaawMcaaaWcbeaaaaaaaa@6799@  .

Positive root of Equation d 3 2  [ U( r 3 )+U( r 4 ) ]=2  m h   q 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGKbWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaGOmaaaakiaaccka daWadaWdaeaapeGaamyvamaabmaapaqaa8qacaWGYbWdamaaBaaale aapeGaaG4maaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRiaadwfa daqadaWdaeaapeGaamOCa8aadaWgaaWcbaWdbiaaisdaa8aabeaaaO WdbiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpcaaIYaGaaiiO aiaad2gapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaaiiOaiaadg hapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@4FAD@  is E q3 = a    m h   q 2 2  m h   q 2 4 b = q 2    ω  4  q 2 4 j ( j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaBaaaleaapeGaamyCaiaaiodaa8aabeaak8qacqGH9aqp daWcaaWdaeaapeWaaOaaa8aabaWdbiaadggaaSqabaGccaGGGcGaai iOaiaad2gapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaaiiOaiaa dghapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmaiaacc kadaGcaaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaadIgaa8aabeaa k8qacaGGGcGaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0 IaaGinaiaacckacaWGIbaaleqaaaaakiabg2da9maalaaapaqaaiaa dghadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaiaacckacqWIpecAca GGGcGaeqyYdCNaaiiOaaWdaeaapeGaaGinaiaacckadaGcaaWdaeaa peGaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGinai aacckacaWGQbGaaiiOamaabmaapaqaa8qacaWGQbGaey4kaSIaaGym aaGaayjkaiaawMcaaaWcbeaaaaaaaa@679B@  .

From here it is seen that E q1 = E q3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWaaSbaaSqaaiaadghacaaIXaaabeaakiabg2da9iaadweadaWg aaWcbaGaamyCaiaaiodaaeqaaaaa@3D6E@ . Since the particle is not bound in zone so energy is obtained as follows.

E q ( q,j )= a    m h   q 2 2  m h   q 2 4 b = q 2    ω  4  q 2 4 j ( j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaBaaaleaapeGaamyCaaWdaeqaaOWdbmaabmaapaqaa8qa caWGXbGaaiilaiaadQgaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdae aapeWaaOaaa8aabaWdbiaadggaaSqabaGccaGGGcGaaiiOaiaad2ga paWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaaiiOaiaadghapaWaaW baaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmaiaacckadaGcaaWd aeaapeGaamyBa8aadaWgaaWcbaWdbiaadIgaa8aabeaak8qacaGGGc GaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGinaiaa cckacaWGIbaaleqaaaaakiabg2da9maalaaapaqaaiaadghadaahaa Wcbeqaa8qacaaIYaaaaOGaaiiOaiaacckacqWIpecAcaGGGcGaeqyY dCNaaiiOaaWdaeaapeGaaGinaiaacckadaGcaaWdaeaapeGaamyCa8 aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGinaiaacckacaWG QbGaaiiOamaabmaapaqaa8qacaWGQbGaey4kaSIaaGymaaGaayjkai aawMcaaaWcbeaaaaaaaa@6B1B@   (35)

It is seen that the energy of (32) and the energy of (35) are the same for  j=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOAaiabg2da9iaaicdaaaa@3ADF@ . We have for  q=2,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaaeyCaiabg2da9iaaikdacaGGSaGaaeiOaaaa@3CBC@  the minimum (ground) state energy; for q=n π,  ( n=1,2,3... )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGXbGaaeypaiaab6gacaqGGcGaeqiWdaNaaiilaiaabckacaqGGcWa aeWaaeaacaWGUbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaio dacaGGUaGaaiOlaiaac6caaiaawIcacaGLPaaacaGGGcaaaa@49D9@  the exited state energies. We have symmetric states for odd integer values of n; antisymmetric states for even integer values of .

Here the solutions are made for the potential V 0 ( r )= a r 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGwbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qa caqGYbaacaGLOaGaayzkaaGaeyypa0JaaeyyaiaabckacaqGYbWdam aaCaaaleqabaWdbiaaikdaaaGccaqGGcaaaa@41EA@ and all solutions could be done analytically. If the potential is not a potential that can be solved analytically (as Saxon-Wood potential, trigonometric potentials etc.), numerical solutions can be made in the same way.

Finding wave functions

If the potential  U w ( r )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeyva8aadaWgaaWcbaWdbiaabEhaa8aabeaak8qadaqadaWd aeaapeGaaeOCaaGaayjkaiaawMcaaiaacckaaaa@3E39@  potential is an isotropic harmonic oscillator potential, therefore, the mass or reduced mass m in zone (I) makes a harmonic motion. If there were no (III) barriers, there would be only one energy value. So, the energy value would be corrupt. With such a two-well solution, corruption is eliminated. Therefore, total energy would be 32 or (35) if there were not the U b ( r )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWdamaaBaaaleaapeGaaeOyaaWdaeqaaOWdbmaabmaapaqaa8qa caqGYbaacaGLOaGaayzkaaGaaiiOaaaa@3D01@  obstacle at the point r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGYbWaaSbaaSqaaiaaicdaaeqaaaaa@38EB@ . According to the function (10), the radial normalized wave functions can be written as follows:

Q( r )= m 1 | U w ( r ) |  dr=Q( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGrbWaaeWaa8aabaWdbiaabkhaaiaawIcacaGLPaaacqGH9aqpcaqG TbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaubiaeqaleqabaGaaG zaVdqdbaWdbiabgUIiYdaakmaakaaapaqaa8qadaabdaWdaeaapeGa aeyva8aadaWgaaWcbaWdbiaabEhaa8aabeaak8qadaqadaWdaeaape GaaeOCaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaWcbeaakiaabcka caqGKbGaaeOCaiabg2da9iaabgfadaqadaWdaeaapeGaaeOCaaGaay jkaiaawMcaaaaa@5137@ ; [ m 1 = 2 m 2 = 2 m   ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGH9aqpdaGcaaWdaeaapeWaaSaaa8aabaWdbiaaikdacaGGGcGaam yBaaWdaeaapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaaaaqa baGccqGH9aqpdaWcaaWdaeaapeWaaOaaa8aabaWdbiaaikdacaGGGc GaamyBaaWcbeaaaOWdaeaapeGaeS4dHGgaaiaacckaaiaawUfacaGL Dbaaaaa@4887@

 (36)

For the state of E q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWaaSbaaSqaaiaadghaaeqaaaaa@38FA@ , the independent of time and time dependent normalized wave functions are as follows, respectively:

F s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGgbWaaWbaaSqabeaacaGGZbaaaaaa@38FC@  (r)=A cos [K r] e ±i Q( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGLbWdamaaCaaaleqabaWdbiabgglaXkaabMgacaqGGcGaaeyuamaa bmaapaqaa8qacaqGYbaacaGLOaGaayzkaaaaaaaa@3FB0@  ;

Fa (r)= B sin [K r] e ±i Q( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGLbWdamaaCaaaleqabaWdbiabgglaXkaabMgacaqGGcGaaeyuamaa bmaapaqaa8qacaqGYbaacaGLOaGaayzkaaaaaaaa@3FB0@ .

F s ( r,t )=cos[ K r ] e ±i Q( r ) e   i  E q  t  ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGgbWdamaaCaaaleqabaWdbiaabohaaaGcdaqadaWdaeaapeGaaeOC aiaacYcacaqG0baacaGLOaGaayzkaaGaeyypa0Jaaeyqaiaabckaci GGJbGaai4BaiaacohadaWadaWdaeaapeGaae4saiaabckacaqGYbaa caGLBbGaayzxaaGaaeyza8aadaahaaWcbeqaa8qacqGHXcqScaqGPb GaaeiOaiaabgfadaqadaWdaeaapeGaaeOCaaGaayjkaiaawMcaaaaa kiaabwgapaWaaWbaaSqabeaapeGaeyOeI0IaaiiOamaalaaapaqaa8 qacaqGPbaapaqaa8qacqWIpecAaaGaaeiOaiaabweapaWaaSbaaWqa a8qacaqGXbaapaqabaWcpeGaaeiOaiaabshaaaGccaGGGcGaai4oaa aa@5DCE@ F a ( r,t )=sin[ K r ] e ±i Q( r ) e   i  E q  t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGgbWdamaaCaaaleqabaWdbiaabggaaaGcdaqadaWdaeaapeGaaeOC aiaacYcacaqG0baacaGLOaGaayzkaaGaeyypa0JaaeOqaiaabckaci GGZbGaaiyAaiaac6gadaWadaWdaeaapeGaae4saiaabckacaqGYbaa caGLBbGaayzxaaGaaeyza8aadaahaaWcbeqaa8qacqGHXcqScaqGPb GaaeiOaiaabgfadaqadaWdaeaapeGaaeOCaaGaayjkaiaawMcaaaaa kiaabwgapaWaaWbaaSqabeaapeGaeyOeI0IaaiiOamaalaaapaqaa8 qacaqGPbaapaqaa8qacqWIpecAaaGaaeiOaiaabweapaWaaSbaaWqa a8qacaqGXbaapaqabaWcpeGaaeiOaiaabshaaaaaaa@5BD5@ . (37)

A=B= 2 K/q   ,  K= 2 m 2 E q = m 1 E q   .  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGbbGaeyypa0JaaeOqaiabg2da9maakaaapaqaa8qacaaIYaGaaeiO aiaabUeacaGGVaGaaeyCaaWcbeaakiaabckacaqGGcGaaiilaiaabc kacaqGGcGaae4saiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGa aGOmaiaabckacaqGTbaapaqaa8qacqWIpecApaWaaWbaaSqabeaape GaaGOmaaaaaaGccaqGfbWdamaaBaaaleaapeGaaeyCaaWdaeqaaaWd beqaaOGaeyypa0JaaeyBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qadaGcaaWdaeaapeGaaeyra8aadaWgaaWcbaWdbiaabghaa8aabeaa a8qabeaakiaabckacaqGGcGaaiOlaiaabckaaaa@57A1@

The independent of time and time-dependent total normalized wave functions are as follows, respectively:

ψ s ( r,θ,ϕ )=R( r )| jm>= F s ( r ) r  | jm>;  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaWbaaS qabeaaqaaaaaaaaaWdbiaabohaaaGcdaqadaWdaeaapeGaaeOCaiaa cYcacqaH4oqCcaGGSaGaeqy1dygacaGLOaGaayzkaaGaeyypa0Jaae Ouamaabmaapaqaa8qacaqGYbaacaGLOaGaayzkaaWaaqqaaeaacaqG QbGaaeyBaiabg6da+aGaay5bSdGaeyypa0ZaaSaaa8aabaWdbiaabA eapaWaaWbaaSqabeaapeGaae4Caaaakmaabmaapaqaa8qacaqGYbaa caGLOaGaayzkaaaapaqaa8qacaqGYbaaaiaabckadaabbaqaaiaabQ gacaqGTbGaeyOpa4dacaGLhWoacaGG7aGaaeiOaaaa@58EE@ ψ a ( r,θ,ϕ )=R( r )| jm>= F a ( r ) r  | jm> MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaWbaaS qabeaaqaaaaaaaaaWdbiaabggaaaGcdaqadaWdaeaapeGaaeOCaiaa cYcacqaH4oqCcaGGSaGaeqy1dygacaGLOaGaayzkaaGaeyypa0Jaae Ouamaabmaapaqaa8qacaqGYbaacaGLOaGaayzkaaWaaqqaaeaacaqG QbGaaeyBaiabg6da+aGaay5bSdGaeyypa0ZaaSaaa8aabaWdbiaabA eapaWaaWbaaSqabeaapeGaaeyyaaaakmaabmaapaqaa8qacaqGYbaa caGLOaGaayzkaaaapaqaa8qacaqGYbaaaiaabckadaabbaqaaiaabQ gacaqGTbGaeyOpa4dacaGLhWoaaaa@56E9@   (38)

ψ a ( r,θ,ϕ,t )=R( r )| jm >= F a ( r ) r  | jm > e   i  E q  t ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaWbaaS qabeaaqaaaaaaaaaWdbiaabggaaaGcdaqadaWdaeaapeGaaeOCaiaa cYcacqaH4oqCcaGGSaGaeqy1dyMaaiilaiaabshaaiaawIcacaGLPa aacqGH9aqpcaqGsbWaaeWaa8aabaWdbiaabkhaaiaawIcacaGLPaaa daabbaqaaiaabQgacaqGTbGaaeiiaiaab6daaiaawEa7aiabg2da9m aalaaapaqaa8qacaqGgbWdamaaCaaaleqabaWdbiaabggaaaGcdaqa daWdaeaapeGaaeOCaaGaayjkaiaawMcaaaWdaeaapeGaaeOCaaaaca qGGcWaaqqaaeaacaqGQbGaaeyBaiaabccacaqG+aaacaGLhWoacaqG LbWdamaaCaaaleqabaWdbiabgkHiTiaacckadaWcaaWdaeaapeGaae yAaaWdaeaapeGaeS4dHGgaaiaabckacaqGfbWdamaaBaaameaapeGa aeyCaaWdaeqaaSWdbiaabckacaqG0baaaOGaai4oaaaa@6527@ ψ s ( r,θ,ϕ,t )=R( r )|  jm>= F s ( r ) r  |  jm >   i  E q  t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaWbaaS qabeaaqaaaaaaaaaWdbiaabohaaaGcdaqadaWdaeaapeGaaeOCaiaa cYcacqaH4oqCcaGGSaGaeqy1dyMaaiilaiaabshaaiaawIcacaGLPa aacqGH9aqpcaqGsbWaaeWaa8aabaWdbiaabkhaaiaawIcacaGLPaaa daabbaqaaiaabckacaqGQbGaaeyBaaGaay5bSdGaeyOpa4Jaeyypa0 ZaaSaaa8aabaWdbiaabAeapaWaaWbaaSqabeaapeGaae4Caaaakmaa bmaapaqaa8qacaqGYbaacaGLOaGaayzkaaaapaqaa8qacaqGYbaaai aabckadaabbaqaaiaabckacaqGQbGaaeyBaaGaay5bSdGaeyOpa4Zd amaaCaaaleqabaWdbiabgkHiTiaacckadaWcaaWdaeaapeGaaeyAaa WdaeaapeGaeS4dHGgaaiaabckacaqGfbWdamaaBaaameaapeGaaeyC aaWdaeqaaSWdbiaabckacaqG0baaaaaa@6528@

Let us consider a general solution of the type of time-depending functions:

ψ( r,t )= 1 2 { ψ s ( r ) e i E s t/ + ψ a ( r ) e i E a t/ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHipqEdaqadaWdaeaapeGaaeOCaiaacYcacaqG0baacaGLOaGaayzk aaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaa8 qacaaIYaaaleqaaaaakmaacmaapaqaaiabeI8a5naaBaaaleaapeGa ae4CaaWdaeqaaOWdbmaabmaapaqaa8qacaqGYbaacaGLOaGaayzkaa Gaaeyza8aadaahaaWcbeqaa8qacqGHsislcaqGPbGaaeiOaiaabwea paWaaSbaaWqaa8qacaqGZbaapaqabaWcpeGaaeiDaiaac+cacqWIpe cAaaGccqGHRaWkcqaHipqEpaWaaSbaaSqaa8qacaqGHbaapaqabaGc peWaaeWaa8aabaWdbiaabkhaaiaawIcacaGLPaaacaqGLbWdamaaCa aaleqabaWdbiabgkHiTiaabMgacaqGGcGaaeyra8aadaWgaaadbaWd biaabggaa8aabeaal8qacaqG0bGaai4laiabl+qiObaaaOGaay5Eai aaw2haaaaa@614B@  (39)

(a: antisymmetric; s: symmetric). Here, both states, symmetric and antisymmetric, are equally probable. Let us calculate the probability density of presence as follows:

ρ= ψ * ( r,t ) ψ( r,t )= 1 2 { ψ s 2 + ψ a 2 +2  ψ a ψ s cos[ ( E a E s )t/ ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHbpGCcqGH9aqpcqaHipqEpaWaaWbaaSqabeaapeGaaeOkaaaakmaa bmaapaqaa8qacaqGYbGaaiilaiaabshaaiaawIcacaGLPaaacaqGGc GaeqiYdK3aaeWaa8aabaWdbiaabkhacaGGSaGaaeiDaaGaayjkaiaa wMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaam aacmaapaqaaiabeI8a5naaDaaaleaapeGaae4CaaWdaeaapeGaaGOm aaaakiabgUcaRiabeI8a59aadaqhaaWcbaWdbiaabggaa8aabaWdbi aaikdaaaGccqGHRaWkcaaIYaGaaeiOaiabeI8a59aadaWgaaWcbaWd biaabggaa8aabeaakiabeI8a5naaBaaaleaapeGaae4CaaWdaeqaaO WdbiaabogacaqGVbGaae4Camaadmaapaqaa8qadaqadaWdaeaapeGa aeyra8aadaWgaaWcbaWdbiaabggaa8aabeaak8qacqGHsislcaqGfb WdamaaBaaaleaapeGaae4CaaWdaeqaaaGcpeGaayjkaiaawMcaaiaa bshacaGGVaGaeS4dHGgacaGLBbGaayzxaaaacaGL7bGaayzFaaaaaa@6D6E@   (40)

If the wave functions of the energy states E q1  and  E q2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGfbWdamaaBaaaleaapeGaaeyCaiaaigdaa8aabeaak8qacaqGGcGa aeyyaiaab6gacaqGKbGaaeiOaiaabckacaqGfbWdamaaBaaaleaape GaaeyCaiaaikdaa8aabeaaaaa@42F1@  given in the formulas (34) are ψ q1 ( r ) and  ψ q2 ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaSbaaS qaaabaaaaaaaaapeGaaeyCaiaaigdaa8aabeaak8qadaqadaWdaeaa peGaaeOCaaGaayjkaiaawMcaaiaabckacaqGHbGaaeOBaiaabsgaca qGGcGaeqiYdK3damaaBaaaleaapeGaaeyCaiaaikdaa8aabeaak8qa daqadaWdaeaapeGaaeOCaaGaayjkaiaawMcaaaaa@490F@  , respectively, and the general wavefunction and the probability density of presence will be as follows:

ψ( r,t )= 1 2 { ψ q1 ( r ) e i E q1 t/ + ψ q2 ( r ) e i E q2 t/ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHipqEdaqadaWdaeaapeGaaeOCaiaacYcacaqG0baacaGLOaGaayzk aaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaa8 qacaaIYaaaleqaaaaakmaacmaapaqaaiabeI8a5naaBaaaleaapeGa aeyCaiaaigdaa8aabeaak8qadaqadaWdaeaapeGaaeOCaaGaayjkai aawMcaaiaabwgapaWaaWbaaSqabeaapeGaeyOeI0IaaeyAaiaabcka caqGfbWdamaaBaaameaapeGaaeyCaiaaigdaa8aabeaal8qacaqG0b Gaai4laiabl+qiObaakiabgUcaRiabeI8a59aadaWgaaWcbaWdbiaa bghacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaabkhaaiaawIcaca GLPaaacaqGLbWdamaaCaaaleqabaWdbiabgkHiTiaabMgacaqGGcGa aeyra8aadaWgaaadbaWdbiaabghacaaIYaaapaqabaWcpeGaaeiDai aac+cacqWIpecAaaaakiaawUhacaGL9baaaaa@6455@
ρ= ψ * ( r,t ) ψ( r,t )= 1 2 { ψ q1 2 + ψ q2 2 +2  ψ q1 ψ q2 cos[ ( E q2 E q1 )t/ ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHbpGCcqGH9aqpcqaHipqEpaWaaWbaaSqabeaapeGaaeOkaaaakmaa bmaapaqaa8qacaqGYbGaaiilaiaabshaaiaawIcacaGLPaaacaqGGc GaeqiYdK3aaeWaa8aabaWdbiaabkhacaGGSaGaaeiDaaGaayjkaiaa wMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaam aacmaapaqaaiabeI8a5naaDaaaleaapeGaaeyCaiaaigdaa8aabaWd biaaikdaaaGccqGHRaWkcqaHipqEpaWaa0baaSqaa8qacaqGXbGaaG OmaaWdaeaapeGaaGOmaaaakiabgUcaRiaaikdacaqGGcGaeqiYdK3d amaaBaaaleaapeGaaeyCaiaaigdaa8aabeaakiabeI8a5naaBaaale aapeGaaeyCaiaaikdaa8aabeaak8qacaqGJbGaae4BaiaabohadaWa daWdaeaapeWaaeWaa8aabaWdbiaabweapaWaaSbaaSqaa8qacaqGXb GaaGOmaaWdaeqaaOWdbiabgkHiTiaabweapaWaaSbaaSqaa8qacaqG XbGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaabshacaGGVaGaeS 4dHGgacaGLBbGaayzxaaaacaGL7bGaayzFaaaaaa@71FD@

When the cosine is equal to 1, we have ρ= 1 2 ( ψ q1 + ψ q2 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHbpGCcqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa daqadaWdaeaapeGaeqiYdK3damaaBaaaleaapeGaamyCaiaaigdaa8 aabeaak8qacqGHRaWkcqaHipqEpaWaaSbaaSqaa8qacaWGXbGaaGOm aaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYa aaaOWdaiaacYcaaaa@47DC@ and this corresponds to a state where the probability of finding the particle in domain I is maximum. When the cosine is equal to -1, we have ρ= 1 2 ( ψ q2 ψ q1 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHbpGCcqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa daqadaWdaeaapeGaeqiYdK3damaaBaaaleaapeGaamyCaiaaikdaa8 aabeaak8qacqGHsislcqaHipqEpaWaaSbaaSqaa8qacaWGXbGaaGym aaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYa aaaOWdaiaacYcaaaa@47E7@ and this corresponds to a state where the probability of finding the particle in domain I is minimum. The expression (39) and (40) must be interpreted by saying that it is a state where particle oscillates from the left bowl (domain I) to the right bowl (domain II). The frequency of this oscillation is  f=( E q2 E q1 )/h. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaamOzaiabg2da9maabmaapaqaa8qacaWGfbWdamaaBaaaleaa peGaamyCaiaaikdaa8aabeaak8qacqGHsislcaWGfbWdamaaBaaale aapeGaamyCaiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGVaGa amiAaiaac6caaaa@44EA@ To perform such an oscillation corresponding to the energy variation ( E q2 E q1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGfbWdamaaBaaaleaapeGaamyCaiaaikdaa8aabeaak8qacqGHsisl caWGfbWdamaaBaaaleaapeGaamyCaiaaigdaa8aabeaaaaa@3DC1@ ), the particle must receive energy from the outside, for example by placing it in an electromagnetic field having the frequency f. Such an oscillation is not possible classically because the energy supplied ( E q2 E q1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaWdaeaapeGaamyra8aadaWgaaWcbaWdbiaadghacaaIYaaapaqa baGcpeGaeyOeI0Iaamyra8aadaWgaaWcbaWdbiaadghacaaIXaaapa qabaaak8qacaGLOaGaayzkaaaaaa@3F83@  is insufficient for the particle to cross over the hump of the potential U b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWdamaaBaaaleaapeGaaeOyaaWdaeqaaaaa@3926@ . But, according to quantum mechanics, by tunneling through the III region, these oscillations are possible. It is observed similar states in ammonia  ( NH 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcWaaeWaa8aabaWdbiaab6eacaqGibWdamaaBaaaleaapeGaaG4m aaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CA8@ , and similar molecules which have the shape of a pyramid. This is called rotational symmetry. If  J=0  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaaeOsaiabg2da9iaaicdacaqGGcaaaa@3BE3@ , there is one energy value and one wave function; so, there is no energy splitting. If  J0  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOsaiabgcMi5kaaicdacaGGGcaaaa@3CA4@ , there are always two energies and two wave functions; so, there is an energy splitting.

Calculation of the transmission coefficient through the zone (III)

The particle is unbound state in the region (III). From the solution of the  [ U b ( r )= E q ];  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcWaamWaa8aabaWdbiaadwfapaWaaSbaaSqaa8qacaWGIbaapaqa baGcpeWaaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaacqGH9aqpca WGfbWdamaaBaaaleaapeGaamyCaaWdaeqaaaGcpeGaay5waiaaw2fa aiaacUdacaGGGcaaaa@4435@  Equation, r 3  and r 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGYbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiaabckacaqGHbGa aeOBaiaabsgacaqGGcGaaeOCa8aadaWgaaWcbaWdbiaaisdaa8aabe aaaaa@4044@ values depending on  E q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeyra8aadaWgaaWcbaWdbiaabghaa8aabeaaaaa@3A48@  are obtained. The solution to this Equation (at the point r 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGYbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3918@ ) gives the following values r 3   and  r 4  : r 3 = r 0 d 3 /2   and  r 4 = r 0 + d 3 /2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGYbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiaabckacaqGGcGa aeyyaiaab6gacaqGKbGaaeiOaiaabckacaqGYbWdamaaBaaaleaape GaaGinaaWdaeqaaOWdbiaabckacaqG6aGaaeiOaiaabkhapaWaaSba aSqaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaeOCa8aadaWgaaWcba Wdbiaaicdaa8aabeaak8qacqGHsislcaqGKbWdamaaBaaaleaapeGa aG4maaWdaeqaaOWdbiaac+cacaaIYaGaaeiOaiaabckacaqGHbGaae OBaiaabsgacaqGGcGaaeiOaiaabkhapaWaaSbaaSqaa8qacaaI0aaa paqabaGcpeGaeyypa0JaaeOCa8aadaWgaaWcbaWdbiaaicdaa8aabe aak8qacqGHRaWkcaqGKbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWd biaac+cacaaIYaaaaa@606B@  . From here, the width of the obstacle d 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGKbWdamaaBaaaleaapeGaaG4maaWdaeqaaaaa@390D@  is found: d 3 = r 4 r 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGKbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iaabkha paWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaeyOeI0IaaeOCa8aada WgaaWcbaWdbiaaiodaa8aabeaaaaa@3F4D@ . The energy   E q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeiOaiaabweapaWaaSbaaSqaa8qacaqGXbaapaqabaaaaa@3B6B@  is found by the Equation (33). In the region III, E q < U b ( r ), ( unbound state ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGfbWdamaaBaaaleaapeGaaeyCaaWdaeqaaOWdbiabgYda8iaabwfa paWaaSbaaSqaa8qacaqGIbaapaqabaGcpeWaaeWaa8aabaWdbiaabk haaiaawIcacaGLPaaacaGGSaGaaeiOamaabmaapaqaa8qacaqG1bGa aeOBaiaabkgacaqGVbGaaeyDaiaab6gacaqGKbGaaeiOaiaabohaca qG0bGaaeyyaiaabshacaqGLbaacaGLOaGaayzkaaGaaiilaaaa@4F9F@ thus the particle cannot remain stable in zone , it can pass from region II to region I or from region I to region II by tunneling with equal probability. Here the probability of passing coefficient is calculated. The tunneling probability coefficient (or transmission coefficient) is given by the following formula:3–5

T= 2 cosh[ 2 K  d ]+cos( 2 P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGubGaeyypa0ZaaSaaa8aabaWdbiaaikdaa8aabaWdbiaadogacaWG VbGaam4CaiaadIgadaWadaWdaeaapeGaaGOmaiaacckacaWGlbGaai iOaiaacckacaWGKbaacaGLBbGaayzxaaGaey4kaSIaam4yaiaad+ga caWGZbWaaeWaa8aabaWdbiaaikdacaGGGcGaamiuaaGaayjkaiaawM caaaaaaaa@4DBD@

Here, the width of the potential barrier d, K=m 1 | E | , m 1 = 2m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaakeaaaaaaaaa8 qacaqGlbGaaeypaiaab2gakmaaBaaajeaObaGaaeymaaqabaGcdaGc aaqcaaAaaOWaaqWaaKaaGgaacaWGfbaacaGLhWUaayjcSdaajeaObe aajaaOcaGGSaGaamyBaOWaaSbaaKqaGgaacaaIXaaabeaajaaOcqGH 9aqpkmaakaaajaaObaGcdaWcaaqcaaAaaiaaikdacaWGTbaabaGaeS 4dHGMcpaWaaWbaaKqaGgqabaWdbiaaikdaaaaaaaqabaaaaa@4D62@  E energy,  Q( r )= m 1 | U( r ) |  dr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaaeyuamaabmaapaqaa8qacaqGYbaacaGLOaGaayzkaaGaeyyp a0JaaeyBa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaavacabeWcbe qaaiaaygW7a0qaa8qacqGHRiI8aaGcdaGcaaWdaeaapeWaaqWaa8aa baWdbiaabwfadaqadaWdaeaapeGaaeOCaaGaayjkaiaawMcaaaGaay 5bSlaawIa7aaWcbeaakiaabckacaqGKbGaaeOCaaaa@4C77@ , U( r )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGvbWaaeWaa8aabaWdbiaabkhaaiaawIcacaGLPaaacaGGGcaaaa@3BA8@ barrier potential and P=Q( r 4 )Q( r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGqbGaeyypa0Jaaeyuamaabmaapaqaa8qacaqGYbWdamaaBaaaleaa peGaaGinaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTiaabgfada qadaWdaeaapeGaaeOCa8aadaWgaaWcbaWdbiaaiodaa8aabeaaaOWd biaawIcacaGLPaaaaaa@431A@ . Here, according to our quantities, these quantities are as follows:

P= 2 m 2   r 3 r  4 | U b ( r ) |  dr= Q b ( r 4 ) Q b ( r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGqbGaeyypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaaIYaGaaiiO aiaad2gaa8aabaWdbiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaaaa aaaeqaaOGaaiiOamaawahabeWcpaqaa8qacaWGYbWdamaaBaaameaa peGaaG4maaWdaeqaaaWcbaWdbiaadkhapaWaaSbaaWqaa8qacaGGGc GaaGinaaWdaeqaaaqdbaWdbiabgUIiYdaakmaakaaapaqaa8qadaab daWdaeaapeGaamyva8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qada qadaWdaeaapeGaamOCaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaWc beaakiaacckacaWGKbGaamOCaiabg2da9iaadgfapaWaaSbaaSqaa8 qacaWGIbaapaqabaGcpeWaaeWaa8aabaWdbiaadkhapaWaaSbaaSqa a8qacaaI0aaapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0Iaamyua8 aadaWgaaWcbaWdbiaadkgaa8aabeaak8qadaqadaWdaeaapeGaamOC a8aadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaawIcacaGLPaaaaa a@60F3@  ; Q b ( r )= m 1 | U b ( r ) |  dr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGrbWdamaaBaaaleaapeGaaeOyaaWdaeqaaOWdbmaabmaapaqaa8qa caqGYbaacaGLOaGaayzkaaGaeyypa0JaaeyBa8aadaWgaaWcbaWdbi aaigdaa8aabeaakmaavacabeWcbeqaaiaaygW7a0qaa8qacqGHRiI8 aaGcdaGcaaWdaeaapeWaaqWaa8aabaWdbiaabwfapaWaaSbaaSqaa8 qacaqGIbaapaqabaGcpeWaaeWaa8aabaWdbiaabkhaaiaawIcacaGL PaaaaiaawEa7caGLiWoaaSqabaGccaqGGcGaaeizaiaabkhaaaa@4E05@  ; K= m 1 | E q | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGlbGaeyypa0JaamyBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa daGcaaWdaeaapeWaaqWaa8aabaWdbiaadweapaWaaSbaaSqaa8qaca WGXbaapaqabaaak8qacaGLhWUaayjcSdaaleqaaaaa@40B5@  ; d= d 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGKbGaeyypa0Jaaeiza8aadaWgaaWcbaWdbiaaiodaa8aabeaaaaa@3AFA@ .

If Q b ( r )   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGrbWdamaaBaaaleaapeGaaeOyaaWdaeqaaOWdbmaabmaapaqaa8qa caqGYbaacaGLOaGaayzkaaGaaiiOaiaabckaaaa@3E20@  is pair, P=0.  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGqbGaeyypa0JaaGimaiaac6cacaqGGcaaaa@3B77@ If Q b ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGrbWdamaaBaaaleaapeGaaeOyaaWdaeqaaOWdbmaabmaapaqaa8qa caqGYbaacaGLOaGaayzkaaaaaa@3BD9@  is odd, P=Real[ Q b ( r 4 ) Q b ( r 3 ) ]=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGqbGaeyypa0JaaeOuaiaabwgacaqGHbGaaeiBamaadmaapaqaa8qa caqGrbWdamaaBaaaleaapeGaaeOyaaWdaeqaaOWdbmaabmaapaqaa8 qacaqGYbWdamaaBaaaleaapeGaaGinaaWdaeqaaaGcpeGaayjkaiaa wMcaaiabgkHiTiaabgfapaWaaSbaaSqaa8qacaqGIbaapaqabaGcpe WaaeWaa8aabaWdbiaabkhapaWaaSbaaSqaa8qacaaIZaaapaqabaaa k8qacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0JaaGimaiaac6 caaaa@4DDF@ Thus, if P=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGqbGaeyypa0JaaGimaaaa@39A2@ , the coefficient transmission is obtained as follows:

T= 2 1+cosh[ 2 K  d 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGubGaeyypa0ZaaSaaa8aabaWdbiaaikdaa8aabaWdbiaaigdacqGH RaWkcaWGJbGaam4BaiaadohacaWGObWaamWaa8aabaWdbiaaikdaca GGGcGaam4saiaacckacaWGKbWdamaaBaaaleaapeGaaG4maaWdaeqa aaGcpeGaay5waiaaw2faaaaaaaa@4755@ ; and  If   d 3  = 0,   T = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGHbGaaeOBaiaabsgacaqGGcGaaeiOaiaabMeacaqGMbGaaeiOaiaa bckacaqGGcGaaeiza8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qaca qGGcGaeyypa0JaaeiOaiaaicdacaGGSaGaaeiOaiaabckacaqGGcGa aeivaiaabckacqGH9aqpcaqGGcGaaGymaiaac6caaaa@50F6@

In regions (I) and (II), energy satisfies the quantization condition K  d 1 =q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGlbGaaiiOaiaadsgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyypa0JaamyCaaaa@3D17@ . In zone (III), the particle is not bound. But the energy will be equal at r 3   and  r 4   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGYbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiaabckacaqGGcGa aeyyaiaab6gacaqGKbGaaeiOaiaabckacaqGYbWdamaaBaaaleaape GaaGinaaWdaeqaaOWdbiaabckaaaa@43C7@ points and K d 3 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGlbGaaeiOaiaabsgapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGa eyypa0JaaeyCaiaabckaaaa@3E35@  quantization condition gets also in the (III) region. Therefore, it is K d 1 =q= K d 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGlbGaaeiOaiaabsgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyypa0JaaeyCaiabg2da9iaabUeacaqGGcGaaeiza8aadaWgaaWcba Wdbiaaiodaa8aabeaaaaa@4205@ . So, it is obtained as

T= 2 1+cosh[ 2 K  d 3 ]  = 2 1+cosh[ 2 q ] =T( q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGubGaeyypa0ZaaSaaa8aabaWdbiaaikdaa8aabaWdbiaaigdacqGH RaWkcaWGJbGaam4BaiaadohacaWGObWaamWaa8aabaWdbiaaikdaca GGGcGaam4saiaacckacaWGKbWdamaaBaaaleaapeGaaG4maaWdaeqa aaGcpeGaay5waiaaw2faaaaacaGGGcGaeyypa0ZaaSaaa8aabaWdbi aaikdaa8aabaWdbiaaigdacqGHRaWkcaWGJbGaam4BaiaadohacaWG ObWaamWaa8aabaWdbiaaikdacaGGGcGaamyCaaGaay5waiaaw2faaa aacqGH9aqpcaWGubWaaeWaa8aabaWdbiaadghaaiaawIcacaGLPaaa aaa@594A@  (41)

Numerical calculations

The energy values of some triaxial harmonic oscillator states calculated according to the formula (34) are given in Table 1. In this table, the parameters are taken arbitrarily to see how the energy values vary according to these parameters.

States
| ( l )jm> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada abbaqaamaabmaabaGaeS4eHWgacaGLOaGaayzkaaaacaGLhWoacaWG QbGaamyBaiabg6da+aaa@3E45@
q = 2

Eq1
ε=0

γ=00

Eq2
ε=0

γ=00

Eq1
ε=0.35

γ=00

Eq2
ε=0.35

γ=00

Eq1
ε=0.35

γ=300

Eq2
ε=0.35

γ=300

f7/2 5/2 

4.30371

4.98456

4.52261

5.23809

4.1478

4.80398

f5/2 5/2

3.36143

5.04564

3.88143

5.82618

3.4523

5.18205

g9/2 5/2 

5.26168

5.64722

5.28032

5.66723

4.92295

5.28368

g7/2 5/2 

4.30371

4.98456

4.51152

5.22525

4.14115

4.79628

d5/2 5/2 

3.36143

5.04564

3.95404

5.93517

3.49732

5.24963

h11/2 5/2 

6.22978

6.48175

6.12706

6.37487

5.7554

5.98818

h9/2 5/2 

5.26168

5.64722

5.29317

5.68102

4.93054

5.29182

i13/2 5/2 

7.20478

7.38356

7.02208

7.19631

6.6188

6.78303

Table 1 Some energy values of the three-axial harmonic oscillator calculated according to (34), (unit  h   ω 00 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaabaaaaaaa aapeGaaeyDaiaab6gacaqGPbGaaeiDaiaacckapaGabmiAayaahaWd biaacckacqaHjpWDdaWgaaWcbaGaaGimaiaaicdaaeqaaOGaaiykaa aa@430C@

Application to ammonia molecule

The ammonia molecule consists of one nitrogen and three hydrogen atoms. The effective potential curve becomes as shown in Figure 1. The hydrogen atoms define the orientation of ammonia. If the nitrogen atom is situated on the right side of potential barrier there is a chance that it can overcome the barrier and move to the other side. The movement of nitrogen atom consists of left and right vibrations and a slow drift between left and right zones of the potential. The classical turning points for the ground vibrational state, r 1  and r 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGYbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaabckacaqGHbGa aeOBaiaabsgacaqGGcGaaeOCa8aadaWgaaWcbaWdbiaaiodaa8aabe aaaaa@4041@  or  r 4   and  r 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOCa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacaqGGcGa aeiOaiaabggacaqGUbGaaeizaiaabckacaqGGcGaaeOCa8aadaWgaa WcbaWdbiaaikdaa8aabeaaaaa@43AC@ , are indicated as well in Figure 1. Due to tunneling through the potential barrier each vibrational level is split in two symmetrical components. As seen from formula (34), masses are not needed to calculate energies. Masses are within the angular frequency   ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeiOaiaabM8aaaa@3AA4@ . Therefore, from the Equation (31) a= 1 2 μ ω 2 0 0 β 2 ( ε,γ, a 2 0 )= 1 2 μ ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGHbGaaeypamaalaaabaGaaGymaaqaaiaaikdaaaGaeqiVd0MaeqyY dC3aaWbaaSqabeaacaaIYaaaaOWaaSbaaSqaaiaaicdaaeqaaOWaaS baaSqaaiaaicdaaeqaaOGaeqOSdi2aaWbaaSqabeaacaaIYaaaaOWa aeWaaeaacqaH1oqzcaGGSaGaeq4SdCMaaiilaiaadggadaWgaaWcba GaaGOmaaqabaGcdaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaa cqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabeY7aTjabeM8a3n aaCaaaleqabaGaaGOmaaaaaaa@531B@ , and must be explicitly calculated based on the mass (hence ω). But the mass is also calculated here to explain how the problem is. The masses and total angular momentums of hydrogen and nitrogen atoms are given as follows, respectively.

M H =1.007825 u  ,    J H + = 1 2 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGnbWdamaaBaaaleaapeGaamisaaWdaeqaaOWdbiabg2da9iaaigda caGGUaGaaGimaiaaicdacaaI3aGaaGioaiaaikdacaaI1aGaaiiOai aadwhacaGGGcGaaiiOaiaacYcacaGGGcGaaiiOaiaacckacaWGkbWd amaaDaaaleaapeGaamisaaWdaeaapeGaey4kaScaaOGaeyypa0ZaaS aaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaWdamaaCaaaleqabaWd biabgUcaRaaaaaa@4F75@ and  M N =14.003074 u  ,    J N + = 1 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeyta8aadaWgaaWcbaWdbiaab6eaa8aabeaak8qacqGH9aqp caaIXaGaaGinaiaac6cacaaIWaGaaGimaiaaiodacaaIWaGaaG4nai aaisdacaqGGcGaaeyDaiaabckacaqGGcGaaiilaiaabckacaqGGcGa aeiOaiaabQeapaWaa0baaSqaa8qacaqGobaapaqaa8qacqGHRaWkaa GccqGH9aqpcaaIXaWdamaaCaaaleqabaWdbiabgUcaRaaaaaa@5040@   [ u is atomic unit  ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada WadaWdaeaapeGaaeyDaiaabckacaqGPbGaae4CaiaabckacaqGHbGa aeiDaiaab+gacaqGTbGaaeyAaiaabogacaqGGcGaaeyDaiaab6gaca qGPbGaaeiDaiaabckaaiaawUfacaGLDbaaaaa@49E1@ ;

1 u=931.502 MeV/ c 2   ; c=2.99792458× 10 10 cm/s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca aIXaGaaeiOaiaabwhacqGH9aqpcaaI5aGaaG4maiaaigdacaGGUaGa aGynaiaaicdacaaIYaGaaeiOaiaab2eacaqGLbGaaeOvaiaac+caca qGJbWdamaaCaaaleqabaWdbiaaikdaaaGccaqGGcGaaeiOaiaacUda caqGGcGaae4yaiabg2da9iaaikdacaGGUaGaaGyoaiaaiMdacaaI3a GaaGyoaiaaikdacaaI0aGaaGynaiaaiIdacqGHxdaTcaaIXaGaaGim a8aadaahaaWcbeqaa8qacaaIXaGaaGimaaaakiaabogacaqGTbGaai 4laiaabohaaaa@5CC9@ ; h=4.13570 × 10 15 ×eV×s   ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGObGaeyypa0JaaGinaiaac6cacaaIXaGaaG4maiaaiwdacaaI3aGa aGimaiaabckacqGHxdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qacq GHsislcaaIXaGaaGynaaaakiabgEna0kaabwgacaqGwbGaey41aqRa ae4CaiaabckacaqGGcGaaeiOaiaacUdaaaa@509B@

=6.58217 × 10 16 ×eV×s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq WIpecAcqGH9aqpcaaI2aGaaiOlaiaaiwdacaaI4aGaaGOmaiaaigda caaI3aGaaiiOaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbi abgkHiTiaaigdacaaI2aaaaOGaey41aqRaamyzaiaadAfacqGHxdaT caWGZbaaaa@4CC2@ .

The reduced mass of three hydrogen atoms and one nitrogen atoms is as follows:

m= 3  M H   M N M N +3  M H  u= 3  M H   M N M N +3  M H ×931.502 MeV/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGTbGaeyypa0ZaaSaaa8aabaWdbiaaiodacaGGGcGaamyta8aadaWg aaWcbaWdbiaadIeaa8aabeaak8qacaGGGcGaamyta8aadaWgaaWcba Wdbiaad6eaa8aabeaaaOqaa8qacaWGnbWdamaaBaaaleaapeGaamOt aaWdaeqaaOWdbiabgUcaRiaaiodacaGGGcGaamyta8aadaWgaaWcba WdbiaadIeaa8aabeaaaaGcpeGaaiiOaiaadwhacqGH9aqpdaWcaaWd aeaapeGaaG4maiaacckacaWGnbWdamaaBaaaleaapeGaamisaaWdae qaaOWdbiaacckacaWGnbWdamaaBaaaleaapeGaamOtaaWdaeqaaaGc baWdbiaad2eapaWaaSbaaSqaa8qacaWGobaapaqabaGcpeGaey4kaS IaaG4maiaacckacaWGnbWdamaaBaaaleaapeGaamisaaWdaeqaaaaa k8qacqGHxdaTcaaI5aGaaG4maiaaigdacaGGUaGaaGynaiaaicdaca aIYaGaaiiOaiaad2eacaWGLbGaamOvaiaac+cacaWGJbWdamaaCaaa leqabaWdbiaaikdaaaaaaa@6660@ ; m h =   2 2 m =   2 c 2 2 m  c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGTbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaGGGcGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaak8 aabaWdbiaaikdacaGGGcGaamyBaaaacqGH9aqpdaWcaaWdaeaapeGa aiiOaiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaaaOGaam4ya8aada ahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaaiiOaiaad2ga caGGGcGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@4D7A@ .

The relative total angular momentum of a hydrogen atom and other atoms are as follows:

| 1 1 2 |J1+ 1 2       J= 1 2   ,   3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada abdaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqa a8qacaaIYaaaaaGaay5bSlaawIa7aiabgsMiJkaadQeacqGHKjYOca aIXaGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGa aiiOaiaacckacaGGGcGaeyOKH4QaaiiOaiaacckacaGGGcGaamOsai abg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiaaccka caGGGcGaaiilaiaacckacaGGGcWaaSaaa8aabaWdbiaaiodaa8aaba Wdbiaaikdaaaaaaa@58BE@

Since  J= 3 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOsaiabg2da9maalaaapaqaa8qacaaIZaaapaqaa8qacaaI Yaaaaiaabckaaaa@3CEF@  is not suitable for the smallest energy ( for  q=2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaWdaeaapeGaaeOzaiaab+gacaqGYbGaaeiOaiaabckacaqGXbGa eyypa0JaaGOmaaGaayjkaiaawMcaaiaacYcaaaa@4133@  it is sufficient to take   J= 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaaiiOaiaabQeacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaaaaa@3CEF@ . Since  q=2  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaaeyCaiabg2da9iaaikdacaqGGcaaaa@3C0C@  for the smallest energy state  = 2  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaaeyCaiaabckacqGH9aqpcaqGGcGaaGOmaiaabckaaaa@3E52@  will be taken here. With these data, the following energy values are found by the formulas (34).

Ground state energy

According to the formulas (34): E q1 ( q, j )= E q2 ( q,j )= E q1 ( 2, 0 )= E q2 ( 2, 0 )= ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aaqaaaaaaaaaWdbiaadghacaaIXaaapaqabaGcpeWaaeWaa8aabaWd biaadghacaGGSaGaaiiOaiaadQgaaiaawIcacaGLPaaacqGH9aqpca WGfbWdamaaBaaaleaapeGaamyCaiaaikdaa8aabeaak8qadaqadaWd aeaapeGaamyCaiaacYcacaWGQbaacaGLOaGaayzkaaGaeyypa0Jaam yra8aadaWgaaWcbaWdbiaadghacaaIXaaapaqabaGcpeWaaeWaa8aa baWdbiaaikdacaGGSaGaaiiOaiaaicdaaiaawIcacaGLPaaacqGH9a qpcaWGfbWdamaaBaaaleaapeGaamyCaiaaikdaa8aabeaak8qadaqa daWdaeaapeGaaGOmaiaacYcacaGGGcGaaGimaaGaayjkaiaawMcaai abg2da9iabl+qiOjaacckacqaHjpWDaaa@5E62@ .

According to the formula (35): E q ( q,j )= E q ( 2,   1 2 )= ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aaqaaaaaaaaaWdbiaadghaa8aabeaak8qadaqadaWdaeaapeGaamyC aiaacYcacaWGQbaacaGLOaGaayzkaaGaeyypa0Jaamyra8aadaWgaa WcbaWdbiaadghaa8aabeaak8qadaqadaWdaeaapeGaaGOmaiaacYca caGGGcGaaiiOamaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaa GaayjkaiaawMcaaiabg2da9iabl+qiOjaacckacqaHjpWDaaa@4CDC@

(Since formula (34) gives the energy of the excited states, it is necessary to take  j=0  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGGcGaaeOAaiabg2da9iaaicdacaqGGcaaaa@3C02@  when using this formula when calculating the ground state energy).

Energies of excited states

According to the quantization condition of energy: q=2  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGXbGaeyypa0JaaGOmaiaabckaaaa@3AE8@ for the ground state, q=n π,  ( n=1,2,3... )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGXbGaaeypaiaab6gacaqGGcGaeqiWdaNaaiilaiaabckacaqGGcWa aeWaaeaacaWGUbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaio dacaGGUaGaaiOlaiaac6caaiaawIcacaGLPaaacaGGGcaaaa@49D9@ for the excited states. The smallest energy (ground state energy) value measured in the ammonia molecule is E 0 =9.813× 10 5  eV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGfbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaaiMda caGGUaGaaGioaiaaigdacaaIZaGaey41aqRaaGymaiaaicdapaWaaW baaSqabeaapeGaeyOeI0IaaGynaaaakiaabckacaqGLbGaaeOvaaaa @462C@ ; ( frequency=2.3789× 10 10  Hz ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaWdaeaapeGaaeOzaiaabkhacaqGLbGaaeyCaiaabwhacaqGLbGa aeOBaiaabogacaqG5bGaeyypa0JaaGOmaiaac6cacaaIZaGaaG4nai aaiIdacaaI5aGaey41aqRaaGymaiaaicdapaWaaWbaaSqabeaapeGa aGymaiaaicdaaaGccaqGGcGaaeisaiaabQhaaiaawIcacaGLPaaaaa a@4EDC@ .6 Some excited energy values calculated by taking this energy value as zero are given in Table 2. In this table, the first and second columns experimental energies; third, fifth and seventh columns q1 and q2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGXbGaaGymaiaabckacaqGHbGaaeOBaiaabsgacaqGGcGaaeyCaiaa ikdaaaa@3F70@ parameters giving the energy split Eq1 and Eq2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGfbGaaeyCaiaaigdacaqGGcGaaeyyaiaab6gacaqGKbGaaeiOaiaa bweacaqGXbGaaGOmaaaa@4100@ ; the fourth, sixth and eighth columns are the energies found by the parameters q1 and q2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca qGXbGaaGymaiaabckacaqGHbGaaeOBaiaabsgacaqGGcGaaeyCaiaa ikdaaaa@3F70@ , according to the formulas . The q1 and q2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaameaaaaaaaaa8 qacaqGXbGaaGymaiaabckacaqGHbGaaeOBaiaabsgacaqGGcGaaeyC aiaaikdaaaa@4039@ values are obtained by solving the equations Eq1=Eexp  and  Eq2=Eexp MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaakeaaaaaaaaa8 qacaqGfbGaaeyCaiaaigdacqGH9aqpcaqGfbGaaeyzaiaabIhacaqG WbGaaeiOaiaabckacaqGHbGaaeOBaiaabsgacaqGGcGaaeiOaiaabw eacaqGXbGaaGOmaiabg2da9iaabweacaqGLbGaaeiEaiaabchaaaa@4D37@ . As can be seen in Table 2, it is understood that the energy is divided into two parts in the small energy states observed in the ammonia molecule. The measured energies and the calculated energies are the same. Very complex double wells are sought to explain these small vibrations. However, if there is angular momentum other than zero, it is possible to observe small vibrations in each potential well. When the angular momentum is different from zero, splitting occurs even in high energy states, but it may not be possible to measure it because the difference between the splitting energy values is very small.

Eexp
(unit cm-1)

Eexp
(unit eV)

γ=0
ε=0.00
q1,q2 

Ecal
(unit eV)

γ=0
ε=0.10
q1,q2 

Ecal
(unit eV)

γ=0
ε=0.20
q1,q2 

Ecal
(unit eV)

0.0

0.0

 

0.0

 

0.0

 

0.0

0.79340

9.813x10-5

2.36603q1

1.22474

9.813x10-5

2.35928

1.22474

9.813x10-5

2.33860

1.22474

9.813x10-5

932.400

0.115324

2351.26

2349.52

0.115324

2345.98

2344.25

0.115324

2329.97

2328.23

0.115324

968.1219

0.119742

2441.30

2439.57

0.119742

2435.83

2434.09

0.119742

2419.20

2417.47

0.119742

1597.50

0.197587

4027.84

4026.11

0.197587

4018.80

4017.07

0.197587

3991.36

3989.63

0.197587

1626.2747

0.201146

4100.37

4098.64

0.201146

4091.17

4089.44

0.201146

4063.24

4061.51

0.201146

1627.3724

0.201282

4103.14

4101.41

0.201282

4093.93

4092.20

0.201282

4065.98

4064.25

0.201282

1882.1775

0.232798

4745.45

4743.72

0.232798

4734.80

4733.07

0.232798

4702.48

4700.74

0.232798

2384.200

0.294890

6010.95

6009.22

0.294890

5997.46

5995.72

0.294890

5956.51

5954.78

0.294890

2540.5243

0.314226

6405.01

6403.28

0.314226

6390.63

6388.90

0.314226

6347.00

6345.27

0.314226

2586.1286

0.319866

6519.97

6518.24

0.319866

6505.34

6503.60

0.319866

6460.92

6459.19

0.319866

2895.5219

0.358133

7299.89

7298.16

0.358133

7283.50

7281.77

0.358133

7233.77

7232.04

0.358133

3189.40

0.394482

8040.70

8038.96

0.394482

8022.65

8020.91

0.394482

7967.87

7966.14

0.394482

3215.90

0.397760

8107.50

8105.76

0.397760

8089.30

8087.56

0.397760

8034.07

8032.33

0.397760

3217.5792

0.397967

8111.73

8110.00

0.397967

8093.52

8091.79

0.397967

8038.26

8036.53

0.397967

3240.1630

0.400761

8168.66

8166.93

0.400761

8150.32

8148.59

0.400761

8094.67

8092.94

0.400761

3241.5983

0.400938

8172.28

8170.55

0.400938

8153.93

8152.20

0.400938

8098.26

8096.53

0.400938

Table 2 Calculated vibrational energies in the double potential well of the ammonia molecule

Conclusion

In previous studies, it has been achieved a simple method for the exact general solution of the radial SE for central potential well without using any approach. In this article, by using this simple procedure, the oscillations through a barrier of arbitrary form central potential for a particle in central potential well of any form was solved without any approach. It has been applied to a barrier of quadratic form potential which is found in the quadratic form of a potential wells. It seems that our results are very compatible because there is not any approach in our solutions whereas there is some approach in classical solutions. Our wave functions and our solutions can be applied to the quantum tunneling of particles through potential barriers, and in the solutions of every problem using molecular, atomic, and nuclear wave functions. In the present study, these wave functions were applied to quantum tunneling in a double square well potential which is available in the ammonia molecule. Here, triaxial ellipsoid shaped potential energy was taken, but similar calculations can be made by taking other double-well potentials. If there is a non-zero angular momentum, that is, rotational motion in a quantum system, there is always a double potential well in the excited states. Conversely, there is a rotation if there are double potential wells in a quantum system. Here, the energies can be calculated and compared with the energies found experimentally by taking another suitable double potential well or by changing the parameter. Such a study may be another research topic. Here we have shown how to calculate the double potential well.

Acknowledgments

We would like to express our sincere gratitude to Özel, Işıl, and Beril Erbil for their help in editing.

Conflicts of interest

The author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2024 Erbil, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.