Submit manuscript...
Open Access Journal of
eISSN: 2575-9086

Science

Review Article Volume 6 Issue 1

Escape velocity of a body and the delivered velocity required to achieve it in different situations

David Marqués Villarroya

Department of Physics and Chemistry, IES José Vilaplana (Vinaròs), Spain

Correspondence: David Marqués Villarroya, Department of Physics and Chemistry, IES José Vilaplana (Vinaròs)

Received: June 12, 2023 | Published: July 20, 2023

Citation: Villarroya DM. Escape velocity of a body and the delivered velocity required to achieve it in different situations. Open Access J Sci. 2023;6(1):68-72. DOI: 10.15406/oajs.2023.06.00195

Download PDF

Abstract

The escape velocity of an object and the necessary supplied velocity to achieve it are calculated in this paper for several situations of the body, such as from rest, in free fall, and in orbit (several orbital cases are studied). This article clearly and concisely shows that escape velocity and supplied velocity are different magnitudes, as these concepts often cause confusion for students. To address this issue, different initial situations of the body that tries to escape are studied to show in the clearest and the most generic possible way the strategies to address escape problems without conceptual errors.

Keywords: escape velocity, gravitation, conservation of energy, theorem of living forces

Introduction

Cosmology and gravitation are usually one of the most interesting and motivating topics for pre-university physics students. Thus, in recent years, several didactic articles have been published on this branch of physics.1,2 One of the experiences that most surprises students when they first study the subject of gravitation is the escape velocity of a body. In this respect, there is a lot of classical literature on the calculation of the escape velocity, but there are also very interesting didactic articles on this branch of physics3,4 but also very new didactic articles that show new approaches to the problem.1 In addition, there are recent articles on this subject at an advanced level of research, which shows the current importance of the problem.7which shows the current importance of this concept.

However, despite all the existing literature, even today there are still errors and misconceptions about escape velocity. Specifically, pre-university students confuse the escape velocity of a body with the supplied velocity that must be provided to the body in order for it to escape. This topic has not been studied or given sufficient attention in the current literature, and it is the novelty and motivation of this article, which aims to clarify the difference between these two related, but not equal, quantities.

The escape velocity is defined as the minimum velocity that an object must have to escape the gravitational pull of a more massive body.3,4 To achieve this escape velocity, a certain amount of energy or work ( E s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGfb WaaSbaaSqaaiaadohaaeqaaaGccaGLOaGaayzkaaaaaa@3A6F@ in such a way that the principle of conservation of energy is fulfilled, which states that the work done must be equal to the variation of mechanical energy:5

E s =Δ E M = E Mf E Mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGZbaabeaakiabg2da9iabgs5aejaadweadaWgaaWcbaGaamyt aaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaad2eacaWGMbaabeaaki abgkHiTiaadweadaWgaaWcbaGaamytaiaadMgaaeqaaaaa@448B@   (1)

We understand that a body escapes from a gravitational attraction when it reaches infinity with zero velocity.3 Therefore, the final mechanical energy will be zero ( E Mf =0 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGfb WaaSbaaSqaaiaad2eacaWGMbaabeaakiabg2da9iaaicdaaiaawIca caGLPaaacaGGSaaaaa@3DA4@  as we take the origin of potential energies at infinity as usual5 (the potential energy cancels out, E Pf =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGqbGaamOzaaqabaGccqGH9aqpcaaIWaaaaa@3B6E@ ) and the velocity at which it arrives is zero (the kinetic energy cancels out E cf =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGJbGaamOzaaqabaGccqGH9aqpcaaIWaaaaa@3B81@ ), so we can rewrite the principle of energy conservation as:

E Mi + E s =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGnbGaamyAaaqabaGccqGHRaWkcaWGfbWaaSbaaSqaaiaadoha aeqaaOGaeyypa0JaaGimaaaa@3E48@   (2)

On the other hand, it must be fulfilled that the work done ( E s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGfb WaaSbaaSqaaiaadohaaeqaaaGccaGLOaGaayzkaaaaaa@3A6F@ to overcome the initial mechanical energy ( E Mi ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGfb WaaSbaaSqaaiaad2eacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@3B37@  of the body must be equal to the variation of the kinetic energy of that body, as established by the theorem of the living forces.5

E s =Δ E c = 1 2 m( v f 2 v i 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGZbaabeaakiabg2da9iabgs5aejaadweadaWgaaWcbaGaam4y aaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2gada qadaqaaiaadAhadaqhaaWcbaGaamOzaaqaaiaaikdaaaGccqGHsisl caWG2bWaa0baaSqaaiaadMgaaeaacaaIYaaaaaGccaGLOaGaayzkaa aaaa@48E5@   (3)

Where v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGPbaabeaaaaa@3903@ is the initial velocity of the object before the energy was supplied to it E s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGZbaabeaaaaa@38DC@ ; is the velocity after supplying it with the energy necessary for it to escape. This final velocity is what we will call the escape velocity ( v e ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2b WaaSbaaSqaaiaadwgaaeqaaaGccaGLOaGaayzkaaGaaiilaaaa@3B42@  since it is the velocity that the object will have after the application of the E s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGZbaabeaaaaa@38DC@ and therefore it will be the necessary velocity that an object must have to escape from the gravitational attraction.3 We will consider that the energy input ( E s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGfb WaaSbaaSqaaiaadohaaeqaaaGccaGLOaGaayzkaaaaaa@3A6F@  occurs instantaneously, so we will not discuss the accelerations of the system.3 Moreover, taking into account that the escape velocity is the final velocity that the body acquires after supplying it with energy, we can write this velocity in vector terms as:

ν f = ν e = ν i + ν s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyVd4MbaSaada WgaaWcbaGaamOzaaqabaGccqGH9aqpcuaH9oGBgaWcamaaBaaaleaa caWGLbaabeaakiabg2da9iqbe27aUzaalaWaaSbaaSqaaiaadMgaae qaaOGaey4kaSIafqyVd4MbaSaadaWgaaWcbaGaam4Caaqabaaaaa@458D@   (4)

Where ν s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyVd4MbaSaada WgaaWcbaGaam4Caaqabaaaaa@39DC@  corresponds to the velocity supplied through the E s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGZbaabeaaaaa@38DC@  and should not be confused with the escape velocity ( ν e ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacuaH9o GBgaWcamaaBaaaleaacaWGLbaabeaaaOGaayjkaiaawMcaaiaacYca aaa@3C11@  which is the final velocity that the body acquires after the application of the E s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGZbaabeaaaaa@38DC@  and is the minimum velocity that the object must have to escape the gravitational attraction. These two velocities coincide only in the case where the initial velocity ( ν i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacuaH9o GBgaWcamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@3B65@ is zero.

From the equations (2) and (3) an expression can be obtained to calculate the escape velocity in any situation:

v e 2 = v i 2 2 m E Mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDaaale aacaWGLbaabaGaaGOmaaaakiabg2da9iaadAhadaqhaaWcbaGaamyA aaqaaiaaikdaaaGccqGHsisldaWcaaqaaiaaikdaaeaacaWGTbaaai aadweadaWgaaWcbaGaamytaiaadMgaaeqaaaaa@4309@   (5)

Considering the velocity composition shown in (4) the expression can be achieved to obtain the velocity that needs to be supplied to the object to reach the escape velocity:

| v i + v s | 2 = v i 2 2 m E Mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaceWG2b GbaSaadaWgaaWcbaGaamyAaaqabaGccqGHRaWkceWG2bGbaSaadaWg aaWcbaGaam4CaaqabaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaik daaaGccqGH9aqpcaWG2bWaa0baaSqaaiaadMgaaeaacaaIYaaaaOGa eyOeI0YaaSaaaeaacaaIYaaabaGaamyBaaaacaWGfbWaaSbaaSqaai aad2eacaWGPbaabeaaaaa@4994@   (6)

Developing the modulus of the vector and clearing the supplied velocity we obtain:

| v s | 2 +2   v s .  v s + 2 m E Mi =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaceWG2b GbaSaadaWgaaWcbaGaam4CaaqabaaakiaawEa7caGLiWoadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaIYaGaeyyXICneaaaaaaaaa8qaca GGGcGaaiiOa8aaceWG2bGbaSaadaWgaaWcbaGaam4CaaqabaGccaGG UaWdbiaacckapaGabmODayaalaWaaSbaaSqaaiaadohaaeqaaOGaey 4kaSYaaSaaaeaacaaIYaaabaGaamyBaaaacaWGfbWaaSbaaSqaaiaa d2eacaWGPbaabeaakiabg2da9iaaicdaaaa@5128@   (7)

Where the product v s v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadohaaeqaaOGaeyyXICTabmODayaalaWaaSbaaSqaaiaa dMgaaeqaaaaa@3D9A@  is a scalar product, i.e:

| v s | 2 +2  | v s | .  | v i | .cosα+ 2 m E Mi =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaceWG2b GbaSaadaWgaaWcbaGaam4CaaqabaaakiaawEa7caGLiWoadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaIYaGaeyyXICneaaaaaaaaa8qaca GGGcGaaiiOa8aadaabdaqaaiqadAhagaWcamaaBaaaleaacaWGZbaa beaaaOGaay5bSlaawIa7a8qacaGGGcGaaiOlaiaacckacaGGGcWdam aaemaabaGabmODayaalaWaaSbaaSqaaiaadMgaaeqaaaGccaGLhWUa ayjcSdWdbiaacckacaGGUaGaci4yaiaac+gacaGGZbGaeqySdeMaey 4kaSYdamaalaaabaGaaGOmaaqaaiaad2gaaaGaamyramaaBaaaleaa caWGnbGaamyAaaqabaGccqGH9aqpcaaIWaaaaa@6011@   (8)

and α is the angle formed by the supplied velocity ( v s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaceWG2b GbaSaadaWgaaWcbaGaam4CaaqabaaakiaawIcacaGLPaaaaaa@3AB2@  and the initial velocity ( v i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaceWG2b GbaSaadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaa@3AA8@ .

The reasoning and the expressions (1) to (8) deduced in this section are valid for any casuistry or initial situation in which the object that intends to escape from the gravitational attraction is found (disregarding any frictional or dissipative forces). Next, we will calculate the escape velocity and the delivered velocity in various situations and casuistry of the body in question. In all the cases studied we will consider bodies that concentrate their mass at their center of gravity.

Escape velocity of a body at rest

Consider a body of mass m at rest separated by a certain distance r from another more massive body of mass M Figure 1.

Figure 1 A body of mass m at rest at a distance r from a more massive body of mass M.

Since the body is initially at rest, the initial velocity is null v i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGimaaaa@3ADF@  and the body has only potential energy at the initial instant: E Pi =G Mm r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGqbGaamyAaaqabaGccqGH9aqpcqGHsislcaWGhbWaaSaaaeaa caWGnbGaamyBaaqaaiaadkhaaaGaaiOlaaaa@3FED@

Applying the expression (5) to calculate the escape velocity we have:

v e 2 = 2 m ( G Mm r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDaaale aacaWGLbaabaGaaGOmaaaakiabg2da9iabgkHiTmaalaaabaGaaGOm aaqaaiaad2gaaaWaaeWaaeaacqGHsislcaWGhbWaaSaaaeaacaWGnb GaamyBaaqaaiaadkhaaaaacaGLOaGaayzkaaaaaa@4384@   (9)

By subtracting from equation (9) the v e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGLbaabeaaaaa@38FF@  we obtain the expression for the escape velocity of a body at rest:

v e = 2G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiODamaaBaaale aacaWGLbaabeaakiabg2da9maakaaabaGaaGOmaiaadEeadaWcaaqa aiaad2eaaeaacaWGYbaaaaWcbeaaaaa@3D8A@   (10)

Velocity supplied to the body at rest

Applying the expression (4) for this particular case where the body starts from rest ( v i =0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaceWG2b GbaSaadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaaacaGLOaGa ayzkaaaaaa@3C68@ , we have that the delivered velocity coincides with the escape velocity (10), therefore:

v s = v e = 2G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGZbaabeaakiabg2da9iaadAhadaWgaaWcbaGaamyzaaqabaGc cqGH9aqpdaGcaaqaaiaaikdacaWGhbWaaSaaaeaacaWGnbaabaGaam OCaaaaaSqabaaaaa@40BA@   (11)

Applying directly the expression (8) leads to the same result as (11).

This value corresponds to the modulus of the delivered velocity. If this velocity has radial ( u r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaceWG1b GbaSaadaWgaaWcbaGaamOCaaqabaaakiaawIcacaGLPaaaaaa@3AB0@ and tangential ( u t ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaceWG1b GbaSaadaWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaacaGGSaaa aa@3B62@ it should be fulfilled that:

v s = v s radical   u r  +  v s tangencial   u t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadohaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaa dohaqaaaaaaaaaWdbiaacckacaWGYbGaamyyaiaadsgacaWGPbGaam 4yaiaadggacaWGSbaapaqabaGcpeGaaiiOa8aaceWG1bGbaSaadaWg aaWcbaGaamOCaaqabaGcpeGaaiiOaiabgUcaRiaacckapaGabmODay aalaWaaSbaaSqaaiaadohapeGaaiiOaiGacshacaGGHbGaaiOBaiaa dEgacaWGLbGaamOBaiaadogacaWGPbGaamyyaiaadYgaa8aabeaak8 qacaGGGcWdaiqadwhagaWcamaaBaaaleaacaWG0baabeaaaaa@5B2E@   (12)

Therefore, from (12) and (11) it follows that the modulus of should comply:

| v s |= v s radical 2 + v s tangencial 2 = 2G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2b WaaSbaaSqaaiaadohaaeqaaaGccaGLhWUaayjcSdGaeyypa0ZaaOaa aeaacaWG2bWaa0baaSqaamaaBaaameaacaWGZbaeaaaaaaaaa8qaca GGGcGaamOCaiaadggacaWGKbGaamyAaiaadogacaWGHbGaamiBaaWd aeqaaaWcbaGaaGOmaaaakiabgUcaRiaadAhadaqhaaWcbaWaaSbaaW qaaiaadohapeGaaiiOaiGacshacaGGHbGaaiOBaiaadEgacaWGLbGa amOBaiaadogacaWGPbGaamyyaiaadYgaa8aabeaaaSqaaiaaikdaaa aabeaakiabg2da9maakaaabaGaaGOmaiaadEeadaWcaaqaaiaad2ea aeaacaWGYbaaaaWcbeaaaaa@5B3F@   (13)

Escape velocity of a body in free fall

Consider a body of mass m that is allowed to fall freely from an initial distance r0 from another more massive body of mass M and when the body is at a distance r (r < r0) a certain energy (supplied velocity) is applied in the opposite direction of the fall so that it reaches the escape velocity (Figure 2).

Figure 2 Body of mass m in free fall toward a more massive body of mass M.

At the initial instant at which the supplied energy is applied, the object of mass m has a certain velocity v r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGYbaabeaaaaa@390C@  and is at a distance r from the massive body, so it will initially have kinetic and potential energy: E Mi = E ci + E Pi = 1 2 m v r 2 G Mm r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGnbGaamyAaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaadoga caWGPbaabeaakiabgUcaRiaadweadaWgaaWcbaGaamiuaiaadMgaae qaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGTbGaamOD amaaDaaaleaacaWGYbaabaGaaGOmaaaakiabgkHiTiaadEeadaWcaa qaaiaad2eacaWGTbaabaGaamOCaaaacaGGUaaaaa@4CC9@

Applying the expression (5) to calculate the escape velocity we have:

v e 2 = v r 2 2 m ( 1 2 m v r 2 G Mm r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDaaale aacaWGLbaabaGaaGOmaaaakiabg2da9iaadAhadaqhaaWcbaGaamOC aaqaaiaaikdaaaGccqGHsisldaWcaaqaaiaaikdaaeaacaWGTbaaam aabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGTbGaamODamaa DaaaleaacaWGYbaabaGaaGOmaaaakiabgkHiTiaadEeadaWcaaqaai aad2eacaWGTbaabaGaamOCaaaaaiaawIcacaGLPaaaaaa@4BC7@   (14)

Simplifying the previous expression (14) we obtain that the escape velocity for a body in free fall will be:

v e = 2G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGLbaabeaakiabg2da9maakaaabaGaaGOmaiaadEeadaWcaaqa aiaad2eaaeaacaWGYbaaaaWcbeaaaaa@3D8B@   (15)

Velocity supplied to the body in free fall

In this particular case the supplied velocity must go in the opposite direction to the initial velocity that is v r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGYbaabeaaaaa@390C@ , in a positive radial direction, therefore, applying the expression (4) we have:

v f = v e = v r + v s =( v s v r ) u r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadAgaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaa dwgaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaadkhaaeqaaO Gaey4kaSIabmODayaalaWaaSbaaSqaaiaadohaaeqaaOGaeyypa0Za aeWaaeaacaWG2bWaaSbaaSqaaiaadohaaeqaaOGaeyOeI0IaamODam aaBaaaleaacaWGYbaabeaaaOGaayjkaiaawMcaaiqadwhagaWcamaa BaaaleaacaWGYbaabeaaaaa@4CA8@   (16)

We calculate the modulus of v e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadwgaaeqaaaaa@3911@  from the above expression (16):

| v e |=( v s v r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2b WaaSbaaSqaaiaadwgaaeqaaaGccaGLhWUaayjcSdGaeyypa0ZaaeWa aeaacaWG2bWaaSbaaSqaaiaadohaaeqaaOGaeyOeI0IaamODamaaBa aaleaacaWGYbaabeaaaOGaayjkaiaawMcaaaaa@43F8@   (17)

Substituting the escape velocity for its previously calculated value in (15) we can obtain the value of the modulus of the delivered velocity: v s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGZbaabeaaaaa@390D@

v s = v r + 2G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGZbaabeaakiabg2da9iaadAhadaWgaaWcbaGaamOCaaqabaGc cqGHRaWkdaGcaaqaaiaaikdacaWGhbWaaSaaaeaacaWGnbaabaGaam OCaaaaaSqabaaaaa@40A3@   (18)

Where v r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGYbaabeaaaaa@390C@  is the velocity of the body in free fall at the previous instant to which the supplied energy is applied and can be calculated simply by conventional kinematic or energetic methods6 obtaining a value of v r = 2G M r ( r 0 r 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGYbaabeaakiabg2da9maakaaabaGaaGOmaiaadEeadaWcaaqa aiaad2eaaeaacaWGYbaaaaWcbeaakmaabmaabaWaaOaaaeaadaWcaa qaaiaadkhadaWgaaWcbaGaaGimaaqabaaakeaacaWGYbaaaiabgkHi TiaaigdaaSqabaaakiaawIcacaGLPaaacaGGUaaaaa@4498@  Therefore, substituting this value in (18) we obtain that the velocity supplied in this case should be:

v s = 2G M r ( 1+ r 0 r 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGZbaabeaakiabg2da9maakaaabaGaaGOmaiaadEeadaWcaaqa aiaad2eaaeaacaWGYbaaaaWcbeaakmaabmaabaGaaGymaiabgUcaRm aakaaabaWaaSaaaeaacaWGYbWaaSbaaSqaaiaaicdaaeqaaaGcbaGa amOCaaaacqGHsislcaaIXaaaleqaaaGccaGLOaGaayzkaaaaaa@4584@   (19)

Applying directly the expression (8) leads to the same result as (19).

Escape velocity of a body in orbit

Consider a body of mass m orbiting circularly around another more massive body of mass M at a distance r.

With respect to the initial conditions of the body it can be shown that the orbital velocity of a body is given by3: v orb = v i = G M r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGVbGaamOCaiaadkgaaeqaaOGaeyypa0JaamODamaaBaaaleaa caWGPbaabeaakiabg2da9maakaaabaGaam4ramaalaaabaGaamytaa qaaiaadkhaaaaaleqaaOGaaiOlaaaa@4298@  From this definition of orbital velocity it can be deduced that the mechanical energy of a body orbiting a more massive body in circular orbit is3: E Mi =G Mm 2r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGnbGaamyAaaqabaGccqGH9aqpcqGHsislcaWGhbWaaSaaaeaa caWGnbGaamyBaaqaaiaaikdacaWGYbaaaiaac6caaaa@40A6@  

Therefore, applying the expression (5) to calculate the exhaust velocity we have in this case:

v e 2 = v i 2 2 m ( G Mm 2r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDaaale aacaWGLbaabaGaaGOmaaaakiabg2da9iaadAhadaqhaaWcbaGaamyA aaqaaiaaikdaaaGccqGHsisldaWcaaqaaiaaikdaaeaacaWGTbaaam aabmaabaGaeyOeI0Iaam4ramaalaaabaGaamytaiaad2gaaeaacaaI YaGaamOCaaaaaiaawIcacaGLPaaaaaa@471C@   (20)

Substituting in (20) the initial velocity by its value shown above and simplifying the expression we obtain the escape velocity of a body in orbit:

v e 2 =G M r +G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDaaale aacaWGLbaabaGaaGOmaaaakiabg2da9iaadEeadaWcaaqaaiaad2ea aeaacaWGYbaaaiabgUcaRiaadEeadaWcaaqaaiaad2eaaeaacaWGYb aaaaaa@40F8@   (21)

v e = 2G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGLbaabeaakiabg2da9maakaaabaGaaGOmaiaadEeadaWcaaqa aiaad2eaaeaacaWGYbaaaaWcbeaaaaa@3D8B@   (22)

To calculate the velocity delivered to the orbiting body we will initially consider 3 possibilities: (1) that the velocity is delivered tangential to the trajectory; (2) that the velocity is delivered perpendicular to the trajectory; (3) that the velocity is delivered so that it forms a certain angle with the trajectory. In each case we will calculate the value of the delivered velocity required to reach the obtained value of the escape velocity (Figure 3).

Figure 3 Body of mass m orbiting circularly at a distance r from a more massive one of mass M.

Supplied velocity tangential to the trajectory

In this case the supplied velocity will go in the same direction and sense as the initial orbital velocity that is v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGPbaabeaaaaa@3903@ , in tangential direction, therefore, applying the expression (4) we have:

v f = v e = v r + v s =( v i + v s ) u t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadAgaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaa dwgaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaadkhaaeqaaO Gaey4kaSIabmODayaalaWaaSbaaSqaaiaadohaaeqaaOGaeyypa0Za aeWaaeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamODam aaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaiqadwhagaWcamaa BaaaleaacaWG0baabeaaaaa@4C96@   (23)

We calculate from (23) the modulus of v e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadwgaaeqaaaaa@3911@ :

| v e |=( v i + v s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWG2b WaaSbaaSqaaiaadwgaaeqaaaGccaGLhWUaayjcSdGaeyypa0ZaaeWa aeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamODamaaBa aaleaacaWGZbaabeaaaOGaayjkaiaawMcaaaaa@43E4@   (24)

Substituting the escape velocity for its previously calculated value in (22) we have:

v s = 2G M r v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGZbaabeaakiabg2da9maakaaabaGaaGOmaiaadEeadaWcaaqa aiaad2eaaeaacaWGYbaaaaWcbeaakiabgkHiTiaadAhadaWgaaWcba GaaiyAaaqabaaaaa@40A4@   (25)

Since the initial velocity is the orbital velocity indicated above ( v i = G m r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2b WaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaOaaaeaacaWGhbWaaSaa aeaacaWGTbaabaGaamOCaaaaaSqabaaakiaawIcacaGLPaaaaaa@3E86@ , we obtain from expression (25) a value for the supplied velocity of:

v s =( 2 1 ) G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGZbaabeaakiabg2da9maabmaabaWaaOaaaeaacaaIYaaaleqa aOGaeyOeI0IaaGymaaGaayjkaiaawMcaamaakaaabaGaam4ramaala aabaGaamytaaqaaiaadkhaaaaaleqaaaaa@40EF@   (26)

In the case where the supplied velocity was provided in the opposite direction to the initial velocity, it would be approached in the same way, only that the escape velocity would have the following expression:

v f = v e = v i + v s =( v i + v s ) u t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadAgaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaa dwgaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaadMgaaeqaaO Gaey4kaSIabmODayaalaWaaSbaaSqaaiaadohaaeqaaOGaeyypa0Za aeWaaeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaamODam aaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaiqadwhagaWcamaa BaaaleaacaWG0baabeaaaaa@4C8D@   (27)

So, obviously, a higher value of the delivered velocity would be obtained following the same procedure as shown above:

v s =( 2 +1 ) G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGZbaabeaakiabg2da9maabmaabaWaaOaaaeaacaaIYaaaleqa aOGaey4kaSIaaGymaaGaayjkaiaawMcaamaakaaabaGaam4ramaala aabaGaamytaaqaaiaadkhaaaaaleqaaaaa@40E4@   (28)

Applying directly the expression (8) we arrive at the same result in both cases, obtaining the expressions (26) and (28) (Figure 4).

Figure 4 Velocity supplied tangential to the trajectory.

Velocity delivered perpendicular to the trajectory

In this case the supplied velocity is provided perpendicularly to the initial orbital velocity that is v i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGPbaabeaakiaacYcaaaa@39BD@  in radial direction, therefore, applying the expression (4) we have:

v f = v e = v i + v s =( v i u t + v s u r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadAgaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaa dwgaaeqaaOGaeyypa0JabmODayaalaWaaSbaaSqaaiaadMgaaeqaaO Gaey4kaSIabmODayaalaWaaSbaaSqaaiaadohaaeqaaOGaeyypa0Za aeWaaeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGabmyDayaalaWaaS baaSqaaiaadshaaeqaaOGaey4kaSIaamODamaaBaaaleaacaWGZbaa beaakiqadwhagaWcamaaBaaaleaacaWGYbaabeaaaOGaayjkaiaawM caaaaa@4ED0@   (29)

We calculate from the above equation (29) the modulus of v e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadwgaaeqaaaaa@3911@ :

| v e |= ( v i 2 + v s 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadA hadaWgaaWcbaGaamyzaaqabaaakiaawEa7caGLiWoacqGH9aqpdaGc aaqaaiaacIcacaGG2bWaa0baaSqaaiaadMgaaeaacaaIYaaaaOGaey 4kaSIaamODamaaDaaaleaacaWGZbaabaGaaGOmaaaakiaacMcaaSqa baaaaa@446E@   (30)

Substituting the escape velocity (22) and the initial velocity ( v i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWG2b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@3A96@  by their value we have:

2G M r = (G M r + v s 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaaiaaik dacaWGhbWaaSaaaeaacaWGnbaabaGaamOCaaaaaSqabaGccqGH9aqp daGcaaqaaiaacIcacaGGhbWaaSaaaeaacaWGnbaabaGaamOCaaaacq GHRaWkcaWG2bWaa0baaSqaaiaadohaaeaacaaIYaaaaOGaaiykaaWc beaaaaa@4280@   (31)

By subtracting from equation (31) the supplied velocity we obtain:

v s = G M r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaSbaaS qaaiaadohaaeqaaOGaeyypa0ZaaOaaaeaacaWGhbWaaSaaaeaacaWG nbaabaGaamOCaaaaaSqabaaaaa@3C03@   (32)

Applying directly the expression (8) leads to the same result as (32) (Figure 5 & Figure 6).

Figure 5 Velocity supplied perpendicular to the trajectory.

Figure 6 Velocity supplied forming an angle α with the trajectory.

Velocity delivered at an angle α to the trajectory

In this case the supplied velocity is provided forming a certain angle α with the initial orbital velocity Therefore, applying the expression (4) we have:

v f = v e = v i + v s =(( v i + v s cosα) u t + v s sinα u r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWhcaqaaiaadA hadaWgaaWcbaGaamOzaaqabaaakiaawEniaiabg2da9maaFiaabaGa amODamaaBaaaleaacaWGLbaabeaaaOGaay51GaGaeyypa0Zaa8Haae aacaWG2bWaaSbaaSqaaiaadMgaaeqaaaGccaGLxdcacqGHRaWkdaWh caqaaiaadAhadaWgaaWcbaGaam4CaaqabaaakiaawEniaiabg2da9i aacIcacaGGOaGaamODamaaBaaaleaacaWGPbaabeaakiabgUcaRiaa dAhadaWgaaWcbaGaam4CaaqabaGcciGGJbGaai4BaiaacohacqaHXo qycaGGPaWaa8HaaeaacaWG1bWaaSbaaSqaaiaadshaaeqaaaGccaGL xdcacqGHRaWkcaWG2bWaaSbaaSqaaiaadohaaeqaaOGaci4CaiaacM gacaGGUbGaeqySde2aa8HaaeaacaWG1bWaaSbaaSqaaiaadkhaaeqa aaGccaGLxdcacaGGPaaaaa@64DF@   (33)

We calculate the modulus of v e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaalaWaaS baaSqaaiaadwgaaeqaaaaa@3911@  from the previous expression (33):

| v e |= ( v i + v s cosα) 2 + ( v s sinα) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaabdaqaaiaadA hadaWgaaWcbaGaamyzaaqabaaakiaawEa7caGLiWoacqGH9aqpdaGc aaqaaiaacIcacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaam ODamaaBaaaleaacaWGZbaabeaakiGacogacaGGVbGaai4Caiabeg7a HjaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaamODam aaBaaaleaacaWGZbaabeaakiGacohacaGGPbGaaiOBaiabeg7aHjaa cMcadaahaaWcbeqaaiaaikdaaaaabeaaaaa@5213@   (34)

Substituting the escape velocity (22) and the initial velocity ( v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaSbaaS qaaiaadMgaaeqaaaaa@3829@  for their values we have:

2G M r = ( G M r + v s cosα ) 2 + ( v s sinα) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaaiaaik dacaWGhbWaaSaaaeaacaWGnbaabaGaamOCaaaaaSqabaGccqGH9aqp daGcaaqaamaabmaabaWaaOaaaeaacaWGhbWaaSaaaeaacaWGnbaaba GaamOCaaaaaSqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaadohaaeqa aOGaci4yaiaac+gacaGGZbGaeqySdegacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaey4kaSIaaiikaiaadAhadaWgaaWcbaGaam4C aaqabaGcciGGZbGaaiyAaiaac6gacqaHXoqycaGGPaWaaWbaaSqabe aacaaIYaaaaaqabaaaaa@5137@   (35)

We remove from the previous equation (35) the supplied velocity, obtaining:

v s = G M r (cosα± cos 2 α+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaSbaaS qaaiaadohaaeqaaOGaeyypa0ZaaOaaaeaacaWGhbWaaSaaaeaacaWG nbaabaGaamOCaaaaaSqabaGccaGGOaGaeyOeI0Iaci4yaiaac+gaca GGZbGaeqySdeMaeyySae7aaOaaaeaaciGGJbGaai4Baiaacohadaah aaWcbeqaaiaaikdaaaGccqaHXoqycqGHRaWkcaaIXaaaleqaaOGaai ykaaaa@4BDA@   (36)

Since we are calculating the modulus of the delivered velocity, we will always take the positive value of the above expression, since a negative modulus has no physical meaning. Therefore, from expression (36) we obtain:

v s = G M r ( 1+ cos 2 α cosα) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipyI8VfYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaSbaaS qaaiaadohaaeqaaOGaeyypa0ZaaOaaaeaacaWGhbWaaSaaaeaacaWG nbaabaGaamOCaaaaaSqabaGccaGGOaWaaOaaaeaacaaIXaGaey4kaS Iaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqySdega leqaaOGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqySdeMaaiykaaaa@49EC@   (37)

Applying directly the expression (8) leads to the same result as (37).

It is important to note that from the expression (37) it is possible to obtain all the results of the previous sections (sections 4.1 and 4.2) for velocities delivered in different orbital situations by substituting the angle by the corresponding value in each case.

Conclusion

First of all, it has been observed in the previous sections that in all cases the expression of the escape velocity coincides (10), (15) y (22). This fact can be justified by alluding to the classical explanation usually used to obtain the escape velocity, which justifies that the escape velocity is that which an object must have to overcome the potential energy of a body bound to the gravitational attraction of another body (since the final mechanical energy must be zero).3 Therefore, applying the principle of conservation of energy we obtain the same expression that has been obtained in this article through the theorem of the living forces. The advantage of using the theorem of the living forces is that one can very easily distinguish the difference between the escape velocity and the supplied velocity necessary to reach that escape velocity. These two concepts are not the same and should not be confused, since the escape velocity is the velocity that a body must have to escape the gravitational attraction and the supplied velocity is the additional velocity that is provided to the object to achieve the mentioned escape velocity. That is, for a body that is at a distance r from a more massive body, the escape velocity will always be v e = 2G M r , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGLbaabeaakiabg2da9maakaaabaGaaGOmaiaadEeadaWcaaqa aiaad2eaaeaacaWGYbaaaaWcbeaakiaacYcaaaa@3E45@ regardless of its initial state of motion. However, the delivered velocity will depend on the initial state of the body, since the same delivered velocity will not be necessary if the body is at rest, in orbit or in free fall. Throughout the article, the value of the required delivered velocity has been obtained in several casuistry and different situations where it has been verified that, indeed, this delivered velocity is not the same in all cases (as it is the case with the escape velocity). This article has clearly shown the difference between these two concepts: escape velocity and delivered velocity, and is aimed especially at teachers and pre-university and undergraduate students so that they can delve more deeply into this subject from a rigorous point of view without conceptual errors.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Alonso Sánchez M, Martínez Salas S, Carrascosa Alís J. Estudio de la velocidad de escape: un problema planteado como investigación. Alambique: Didáctica de las ciencias experimentales. 2022;109:23–31.
  2. Chinellato L, Luna Santiago Hernan, Pera, María SolIcon, et al. Clasificación de exoplanetas: desarrollo de una estrategia didáctica para abordar la construcción de modelos observacionales en Física Educativa. Latin American Journal of Physics Education. 2022;16(4):4307-1–4307-11.
  3. French AP. Mecánica Newtoniana, Reverté, Barcelona, 1974.
  4. Tipler PA, Mosca G. Física para la ciencia y la tecnología, Reverté, Barcelona, 2006.
  5. Koppelman HH. Determination of the escape velocity of the Milky Way using a proper motion selected halo sample. Astronomy & Astrophysiscs. 2021;649:1–14.
  6. Alonso M, Finn E. Física, Fondo Educativo Interamericano S.A., Buenos Aires, 1967.
  7. Meriam JL. Dinámica. Reverté, Barcelona, 2000.
Creative Commons Attribution License

©2023 Villarroya. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.