Mini Review Volume 6 Issue 1
1Departamento de Ciencias Exatas e Tecnología, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, Jardin Marco Zero, 68903-419, Macapá, AP, Brasil
2ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
3Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India
Correspondence: José Luis López-Bonilla, ESIME-Zacatenco, National Polytechnic Institute, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México, Tel 55 57296000
Received: December 30, 2022 | Published: January 20, 2023
Citation: Bulnes JD, López-Bonilla J, Prajapati J. Certain integrals involving legendre polynomials. Open Access J Sci. 2023;6(1):1-3. DOI: 10.15406/oajs.2023.06.00184
Here we exhibit alternative proofs of the identities given by Persson-Strang and (Huat-Chan)- -Wan-Zudilin for the Legendre polynomials. Besides, we show the connection between the Lanczos derivative and these polynomials via the Rangarajan-Purushothaman’s formula.
Keywords: (Huat-Chan)-Wan-Zudilin’s property, Legendre polynomials, Persson-Strang’s identity, Rangarajan-Purushothaman’s expression, Lanczos derivative
The Legendre’s polynomials1 Pn(x),−1≤x≤1,Pn(x),−1≤x≤1, can be defined via the following recurrence relation:2–4
(n+1)Pn+1=(2n+1)xPn−nPn−1,P0=1,P1=x,n=1,2...,(n+1)Pn+1=(2n+1)xPn−nPn−1,P0=1,P1=x,n=1,2..., (1)
hence:
P2=12(3x2−1),P3=12(5x3−3x),P4=18(35x4−30x2+3),...P2=12(3x2−1),P3=12(5x3−3x),P4=18(35x4−30x2+3),... (2)
These polynomials also are determined univocally through the conditions;5,6
∫1−1Pm(x)Pn(x)dx=0,m≠n,Pn(1)=1,∀n,∫1−1Pm(x)Pn(x)dx=0,m≠n,Pn(1)=1,∀n, (3)
therefore:
∫1−1xmPn(x)dx=0,m<n,∫1−1xmPn(x)dx=0,m<n, (4)
and the Laplace’s integral formula3–5,7 gives an alternative way to generate the expressions (2):
Pn(x)=12n∫π−π(x+√x2−1cosβ)ndβ,n=0,1,2...Pn(x)=12n∫π−π(x+√x2−1cosβ)ndβ,n=0,1,2... (5)
or equivalently:
Pn(x)=12n∑n2k=0(−1)k(nk)(2n−2kn)xn−2k.Pn(x)=12n∑n2k=0(−1)k(nk)(2n−2kn)xn−2k. (6)
Here we have interest in the value of the following integral:
Q(m)≡∫1−11xP2m+1(x)dx,m=01,2,..Q(m)≡∫1−11xP2m+1(x)dx,m=01,2,.. (7)
then from (6) with n=2m+1:n=2m+1:
Q(m)=12n∫1−1∑mk=0(−1)k(nk)(2n−2kn)x2m−2kdk=14mA(m),Q(m)=12n∫1−1∑mk=0(−1)k(nk)(2n−2kn)x2m−2kdk=14mA(m), (8)
where A(m)A(m) can be calculated via the method of Petkovsek-Wilf-Zeilberger,8–18 in fact:
A(m)≡∑mk=0(−1)k(2n−2k)!k!(n−k)!(n−2k)!(n−2k)=(2n)!n(n!)2∑∞k=0tk,tk=(−1)kn(n!)2(2n−2k)!(2n)!k!(n−k)!(n−2k)!(n−2k),A(m)≡∑mk=0(−1)k(2n−2k)!k!(n−k)!(n−2k)!(n−2k)=(2n)!n(n!)2∑∞k=0tk,tk=(−1)kn(n!)2(2n−2k)!(2n)!k!(n−k)!(n−2k)!(n−2k), (9)
Therefore tk+1tk=(k−m−12)2(k−m)(k−m+12)(k−2m−12)(k+1), hence:
A(m)≡(2n)!n(n!)23F2(−m,−m−12,−m−12;−m+12,−2m−12;1)=(−1)m4n(m!)22(n!),n=2m+1, (10)
where it was applied the following value of the hypergeometric function in (10):
3F2()=(−16)mn!(m!)2(4m+1)!. (11)
then (8) and (10) imply the result:
Q(m)=2(−4)m(m!)2(2m+1)!. (12)
On the other hand, from (6) for n=2m+1:
[P2m+1(x)x]2=12n∑mk=0(−1)k(nk)(2n−2kn)x2m−2kP2m+1(x)x,
where we can integrate in the interval [−1,1] and apply the properties (4) and (12) to obtain the relation:
∫1−1[P2m+1(x)x]2dx=(−1)m2n(nk)(2n−2kn)Q(m)=2,m=0,1,2,... (13)
deduced by Persson-Strang;19 Amdeberhan et al.20 generalized the identity (13) in the form:
∫1−1[P1(x)−P1(0)x]2dx=2[1−β2(l)],l=0,1,2,... (14)
such that:
β(l)={2−1(l1/2) 0, if is odd, if l is even . (15)
Remark. - In (6) we may use x=b√b2−4c to obtain:
Pn(b√b2−4c)=1(b2−4c)n/2∑n/2j=0bn−2j(−4c)j2nj!R(n) (16)
where:
R(n)≡∑n/2k=j(−1)k(2n−2k)!(2n−2k)!(k−i)!(n−k)!=(−1)j2n−2jn!j!(n−2j)!,0≤j≤n/2 (17)
thus (16) and (17) imply the interesting identity of (Huat-Chan)-Wan-Zudilin:21,22
(b2−4c)n/2Pn(b√b2−4c)=∑n/2j=0(n2j)(2jj)bn−2j cj (18)
We may indicate two useful relations:23,24
[Pn(x)]2=∑nk=0(nk) (n+kn) (2kk)(−1−x24)k , n=0,1,2,... (19)
f1−1xmPn(x)dx=2n+1m+1.(m+n2n)(m+n+1n),m−n=0,2,4,... (20)
We emphasize the importance of the method of Petkovsek-Wilf-Zeilberger to obtain (10) and (17).
Rangarajan-Purushothaman25,26 obtained the following generalization of the Lanczos derivative:27,28
f(m)(x)=limε→0(2m+1)!!2εm+1∫ε−εPm(tε)f(x+t)dt,m=1,2,... (21)
involving the Legendre polynomials.
If f(x)=1, then (21) implies the property:
f1−1Pn(u) du=0, n=2,4,6,... (22)
From (21) for f(x)=xN:
f1−1Pn(u)uk du=0, k<n, (23)
f10Pn(u)undu=n!(2n+1)!!=2n(n!)2(2n+1)!,n=0,2,... (24)
On the other hand, we know the relations:
f10P2l(u)umdu=(−1)lΓ(l−m2)Γ(m+12)2Γ(−m2)Γ(l+m+32),m>−1, (25)
f10P2l+1(u)umdu=(−1)lΓ(l+1−m2)Γ(1+m2)2Γ(1+2+m2)Γ(1−m2),m>−2, (26)
thus (24) can be deduced from (25) and (26) for m=n=2l and m=n=2l+1, respectively.
We have the following Schmied’s formula (2005):29
um=∑l=m,m−2,...m!(2l+1)2m−12(m−12)!(m+l+1)!!Pl(u), (27)
which gives (20), and for m=n implies (24).
The Legendre polynomials can be written in terms of the Gauss hypergeometric function:
Pn(0)=(2n−1)!!n!∑nk=0(nk) 2F1(k−n,−n; −2n; 2)xk, (28)
and we know the result:
2F1(−n,−n;−2n;2)= { 0,n=1, 3, 5,... (1−)n2n!(n−1)!!n!!(2n−1)!! , n=2, 4, 6,... , (29)
then from (28) and (29):
Pn(0)=2F1(−n,n+1;1;12)= { 0,n=1, 3, 5,... (1−)n2n!(n−1)!!n!! , n=2, 4, 6,... . (30)
Finally, the expression:
Pn(x)≡12n(−1)k(1−x)k(1+x)n−k(nk)2, (31)
and (30) imply the relation:
∑nk=0(−1)k(nk)2= { 0,n=1, 3, 5,... (1−)n22n(n−1)!!n!! , n=2, 4, 6, ... . (32)
Thus, we see that the Rangarajan-Purushothaman’s formula for the Lanczos derivative allows deduce some properties of Legendre polynomials, and it represents differentiation by integration. The Pn(x) are orthogonal polynomials, hence Diekema-Koornwinder30 consider that the name “orthogonal derivative” is adequate for (21).
Remark. - From (3) we have the property Pn(1)=1∀n, then (6) for x=1 gives the identity:
2n=∑n2k=0(−1)k(nk)(2n−2kn); (33)
on the other hand, we know the relation:31
∑nk=0(−1)k(nk)(z+kyn)=(−y)n,y≠0, (34)
which for and is equivalent to (33) because (2n−2kn)=0 for k>n2 .
Finally, we consider that the publications32–37 have useful relationship with the study realized in the present paper.
None.
The author declares there is no conflict of interest.
©2023 Bulnes, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.