Submit manuscript...
Open Access Journal of
eISSN: 2575-9086

Science

Mini Review Volume 6 Issue 1

Certain integrals involving legendre polynomials

JD Bulnes,1 J López- Bonilla,2 J Prajapati3

1Departamento de Ciencias Exatas e Tecnología, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, Jardin Marco Zero, 68903-419, Macapá, AP, Brasil
2ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
3Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India

Correspondence: José Luis López-Bonilla, ESIME-Zacatenco, National Polytechnic Institute, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México, Tel 55 57296000

Received: December 30, 2022 | Published: January 20, 2023

Citation: Bulnes JD, López-Bonilla J, Prajapati J. Certain integrals involving legendre polynomials. Open Access J Sci. 2023;6(1):1-3. DOI: 10.15406/oajs.2023.06.00184

Download PDF

Abstract

Here we exhibit alternative proofs of the identities given by Persson-Strang and (Huat-Chan)- -Wan-Zudilin for the Legendre polynomials. Besides, we show the connection between the Lanczos derivative and these polynomials via the Rangarajan-Purushothaman’s formula.

Keywords: (Huat-Chan)-Wan-Zudilin’s property, Legendre polynomials, Persson-Strang’s identity, Rangarajan-Purushothaman’s expression, Lanczos derivative

Introduction

The Legendre’s polynomials1 Pn(x),1x1,Pn(x),1x1,  can be defined via the following recurrence relation:2–4

(n+1)Pn+1=(2n+1)xPnnPn1,P0=1,P1=x,n=1,2...,(n+1)Pn+1=(2n+1)xPnnPn1,P0=1,P1=x,n=1,2...,   (1)

hence:

P2=12(3x21),P3=12(5x33x),P4=18(35x430x2+3),...P2=12(3x21),P3=12(5x33x),P4=18(35x430x2+3),...   (2)

These polynomials also are determined univocally through the conditions;5,6

11Pm(x)Pn(x)dx=0,mn,Pn(1)=1,n,11Pm(x)Pn(x)dx=0,mn,Pn(1)=1,n,   (3)

therefore:

11xmPn(x)dx=0,m<n,11xmPn(x)dx=0,m<n,   (4)

and the Laplace’s integral formula3–5,7 gives an alternative way to generate the expressions (2):

Pn(x)=12nππ(x+x21cosβ)ndβ,n=0,1,2...Pn(x)=12nππ(x+x21cosβ)ndβ,n=0,1,2...   (5)

or equivalently:

Pn(x)=12nn2k=0(1)k(nk)(2n2kn)xn2k.Pn(x)=12nn2k=0(1)k(nk)(2n2kn)xn2k.   (6)

Persson-Strang & (Huat-Chan)-Wan-Zudilin identities

Here we have interest in the value of the following integral:

Q(m)111xP2m+1(x)dx,m=01,2,..Q(m)111xP2m+1(x)dx,m=01,2,..   (7)

then from (6) with n=2m+1:n=2m+1:

Q(m)=12n11mk=0(1)k(nk)(2n2kn)x2m2kdk=14mA(m),Q(m)=12n11mk=0(1)k(nk)(2n2kn)x2m2kdk=14mA(m),   (8)

where A(m)A(m) can be calculated via the method of Petkovsek-Wilf-Zeilberger,8–18 in fact:

A(m)mk=0(1)k(2n2k)!k!(nk)!(n2k)!(n2k)=(2n)!n(n!)2k=0tk,tk=(1)kn(n!)2(2n2k)!(2n)!k!(nk)!(n2k)!(n2k),A(m)mk=0(1)k(2n2k)!k!(nk)!(n2k)!(n2k)=(2n)!n(n!)2k=0tk,tk=(1)kn(n!)2(2n2k)!(2n)!k!(nk)!(n2k)!(n2k),   (9)

Therefore tk+1tk=(km12)2(km)(km+12)(k2m12)(k+1),  hence:

A(m)(2n)!n(n!)23F2(m,m12,m12;m+12,2m12;1)=(1)m4n(m!)22(n!),n=2m+1,   (10)

where it was applied the following value of the hypergeometric function in (10):

3F2()=(16)mn!(m!)2(4m+1)!.   (11)

then (8) and (10) imply the result:

Q(m)=2(4)m(m!)2(2m+1)!.   (12)

 On the other hand, from (6) for n=2m+1:

[P2m+1(x)x]2=12nmk=0(1)k(nk)(2n2kn)x2m2kP2m+1(x)x,

where we can integrate in the interval [1,1]  and apply the properties (4) and (12) to obtain the relation:

11[P2m+1(x)x]2dx=(1)m2n(nk)(2n2kn)Q(m)=2,m=0,1,2,...   (13)

deduced by Persson-Strang;19 Amdeberhan et al.20 generalized the identity (13) in the form:

11[P1(x)P1(0)x]2dx=2[1β2(l)],l=0,1,2,...   (14)

such that:

β(l)={21(l1/2)  0, if is odd,  if l is even   . (15)

 Remark. - In (6) we may use x=bb24c  to obtain:

Pn(bb24c)=1(b24c)n/2n/2j=0bn2j(4c)j2nj!R(n)   (16)

where:   

R(n)n/2k=j(1)k(2n2k)!(2n2k)!(ki)!(nk)!=(1)j2n2jn!j!(n2j)!,0jn/2   (17)

thus (16) and (17) imply the interesting identity of (Huat-Chan)-Wan-Zudilin:21,22

(b24c)n/2Pn(bb24c)=n/2j=0(n2j)(2jj)bn2j cj   (18)

We may indicate two useful relations:23,24

[Pn(x)]2=nk=0(nk) (n+kn) (2kk)(1x24)k , n=0,1,2,...   (19)

f11xmPn(x)dx=2n+1m+1.(m+n2n)(m+n+1n),mn=0,2,4,...   (20)

We emphasize the importance of the method of Petkovsek-Wilf-Zeilberger to obtain (10) and (17).

Lanczos generalized derivative

Rangarajan-Purushothaman25,26 obtained the following generalization of the Lanczos derivative:27,28

f(m)(x)=limε0(2m+1)!!2εm+1εεPm(tε)f(x+t)dt,m=1,2,...   (21)

involving the Legendre polynomials.

If f(x)=1,  then (21) implies the property:

f11Pn(u) du=0, n=2,4,6,...   (22)

From (21) for f(x)=xN:

f11Pn(u)uk du=0, k<n,   (23)

f10Pn(u)undu=n!(2n+1)!!=2n(n!)2(2n+1)!,n=0,2,...   (24)

On the other hand, we know the relations:

f10P2l(u)umdu=(1)lΓ(lm2)Γ(m+12)2Γ(m2)Γ(l+m+32),m>1,   (25)

f10P2l+1(u)umdu=(1)lΓ(l+1m2)Γ(1+m2)2Γ(1+2+m2)Γ(1m2),m>2,   (26)

thus (24) can be deduced from (25) and (26) for m=n=2l  and m=n=2l+1,  respectively.

 We have the following Schmied’s formula (2005):29

um=l=m,m2,...m!(2l+1)2m12(m12)!(m+l+1)!!Pl(u),   (27)

which gives (20), and for m=n  implies (24).

 The Legendre polynomials can be written in terms of the Gauss hypergeometric function:

Pn(0)=(2n1)!!n!nk=0(nk)  2F1(kn,n; 2n;  2)xk,   (28)

and we know the result:

2F1(n,n;2n;2)=  {      0,n=1, 3, 5,... (1)n2n!(n1)!!n!!(2n1)!! , n=2, 4, 6,... ,  (29)

then from (28) and (29):

Pn(0)=2F1(n,n+1;1;12)=  {      0,n=1, 3, 5,... (1)n2n!(n1)!!n!! , n=2, 4, 6,... .  (30)

Finally, the expression:

Pn(x)12n(1)k(1x)k(1+x)nk(nk)2,   (31)

and (30) imply the relation:

nk=0(1)k(nk)2=  {      0,n=1, 3, 5,... (1)n22n(n1)!!n!! , n=2, 4, 6, ...   . (32)

Thus, we see that the Rangarajan-Purushothaman’s formula for the Lanczos derivative allows deduce some properties of Legendre polynomials, and it represents differentiation by integration. The Pn(x) are orthogonal polynomials, hence Diekema-Koornwinder30 consider that the name “orthogonal derivative” is adequate for (21).

Remark. - From (3) we have the property Pn(1)=1n, then (6) for x=1  gives the identity:

2n=n2k=0(1)k(nk)(2n2kn);   (33)

on the other hand, we know the relation:31

nk=0(1)k(nk)(z+kyn)=(y)n,y0,   (34)

which for  and is equivalent to (33) because (2n2kn)=0 for k>n2 .

Finally, we consider that the publications32–37 have useful relationship with the study realized in the present paper.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. AM Legendre. Mémoires de mathématique et de physique : prés. à l´Académie Royale des Sciences, par divers savans, et lûs dans ses assemblées. Universitätsbibliothek Johann Christian Senckenberg. 1785;10:411–435.
  2. Lanczos C. Legendre versus Chebyshev polynomials, in “Topics in Numerical Analysis”. In:  JJH Miller editor. (Proc. Roy.  Irish Acad. Conf. on Numerical Analysis, Aug. 14-18, 1972), Academic Press, London. 1973. p. 191–201.
  3. Chihara TS. An introduction to orthogonal polynomials, Gordon & Breach, New York. 1978. p. 1–5.
  4. Oldham KB, Spanier J. An atlas of functions. Hemisphere Pub. Co., London. 1987.
  5. Sommerfeld A. Partial differential equations in PhysicS. Academic Press, New York. 1964.
  6. Broman A. Introduction to partial differential equations: From Fourier series to boundary-value problems. Dover, New York. 1989.
  7. López-Bonilla J, López-Vázquez R, Torres-Silva H. On the Legendre polynomials. Prespacetime Journal. 2015;6(8):735–739.
  8. Petkovsek M, Wilf HS, ZeilbergerD. A = B, symbolic summation algorithms. In:AK Peters editor, Wellesley, Mass. USA. 1996.
  9. Koepf W. Hypergeometric summation. An algorithmic approach to summation and special function identities. Vieweg, Braunschweig/Wiesbaden. 1998.
  10. Koepf W. Orthogonal polynomials and recurrence equations, operator equations and factorization. Electronic Transactions on Numerical Analysis. 2007;27:113–123.
  11. Hannah JP. Identities for the gamma and hypergeometric functions: an overview from Euler to the present. Master of Science Thesis, University of the Witwatersrand, Johannesburg, South Africa. 2013.
  12. Guerrero-Moreno I, López-Bonilla J. Combinatorial identities from the Lanczos approximation for gamma function. Comput Appl Math Sci. 2016;1(2):23–24.
  13. López-Bonilla J, López-Vázquez R, Vidal-Beltrán S. Hypergeometric approach to the Munarini and Ljunggren binomial identities. Comput Appl Math Sci. 2018;3(1):4–6.
  14. Barrera-Figueroa V, Guerrero-Moreno I, López-Bonilla J, et al. Some applications of hypergeometric functions. Comput Appl Math Sci. 2018;3(2):23–25.
  15. Léon-Vega CG, López-Bonilla J, Vidal-Beltrán S. On a combinatorial identity of Cheon-Seol-Elmikkawy. Comput Appl Math Sci. 2018;3(2):31–32.
  16. López-Bonilla L, Miranda-Sánchez I. Hypergeometric version of a combinatorial identity. Comput Appl Math Sci. 2020;5(1):6–7.
  17. López-Bonilla J, Morales-García M. Hypergeometric version of Engbers-Stocker’s combinatorial identity. Studies in Nonlinear Sci. 2021;6(3):41–42.
  18. López-Bonilla J, Ovando G. On q-Hypergeometric series. Studies in Nonlinear Sci. 2021;6(4):56–58.
  19. Persson PE, Strang G. Smoothing by Savitzky-Golay and Legendre filters, in “Mathematical systems theory of biology, communications, computations, and finance”. IMA. 2003;134:301–316.
  20. Amdeberhan T, Duncan A, Moll VH, et al. Filter integrals for orthogonal polynomials. Hardy- Ramanujan Journal. 2021;44:116–135.
  21. Huat-Chan H, Wan J, Zudilin W. Legendre polynomials and Ramanujan-type series for 1/π. Israel J of Maths. 2013;194(1):183–207.
  22. López-Bonilla L, López-Vázquez R, Vidal-Beltrán S. On an identity involving Legendre polynomials. Studies in Nonlinear Sci. 2019;4(2):10–11.
  23. Zudilin W. A generating function of the squares of Legendre polynomials. 2012. p. 7.
  24. Guerrero-Moreno I, López-Bonilla J, Zúñiga-Segundo A. Binomial identities via Legendre polynomials. Open J Appl Theor Maths. 2017;3(3):1–3.
  25. Rangarajan SK, Purushothaman SP. Lanczos generalized derivative for higher orders. J Comp Appl Maths. 2005;177(2):461–465.
  26. López-Bonilla J, López-Vázquez R, Vidal-Beltrán S. Orthogonal derivative for higher orders. Comput Appl Math Sci. 2018;3(1):7–8.
  27. Lanczos C. Applied analysis. Dover, New York. 1988.
  28. Hernández-Galeana A, Laurian Ioan P, López-Bonilla J, et al. On the Cioranescu-(Haslam-Jones)-Lanczos generalized derivative. Global J Adv Res Class Mat Geom. 2014;3(1):44–49.
  29. Diekema E, Koornwinder T. Differentiation by integration using orthogonal polynomials, a survey. J of Approximation Theory. 2012;164:637667.
  30. Quaintance J, Gould HW. Combinatorial identities for Stirling numbers. World Scientific, Singapore. 2016.
  31. Mishra VN, Mishra LN. Trigonometric approximation of signals (functions) in Lp -norm. Int J of Contemporary Math Sci. 2012;7(19):909–918.
  32. Mishra VN, Khatri K, Mishra LN. Using linear operators to approximate signals of Lip ((α,p),(p≥1) – class. Filomat. 2013;27(2):353–363.
  33. Mishra VN, Khatri K, Mishra LN, et al. Trigonometric approximation of periodic signals belonging to generalized weightedLipschitz W(Lr,ξ(t)),(r≥1)  – class by Nörlund – Euler (N, pn)   (E, q) operator of conjugate series of its Fourier series. J of Classical Anal. 2014;5(2):91–105.
  34. Mishra LN, Mishra VN, Khatri K, et al. On the trigonometric approximation of signals belonging to generalized weighted Lipschitz W(Lr,ξ(t),(r≥1)  class by matrix (C^1∙N_p) operator of conjugate series of its Fourier series. Appl Maths and Comp. 2014;237:252–263.
  35. Sahani SK, Mishra VN, Pahari NP. Some problems on approximations of functions (signals) in matrix summability of Legendreseries. Nepal J of Math Sci. 2021;2(1):43–50.
  36. Mishra LN, Raiz M, Rathour L, et al. Tauberian theorems for weighted means of double sequences in intuitionistic fuzzy normedspaces. Yugoslav J of Operations Res. 2022;32(3):277–388.
Creative Commons Attribution License

©2023 Bulnes, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.