Submit manuscript...
Open Access Journal of
eISSN: 2575-9086

Science

Mini Review Volume 6 Issue 1

Certain integrals involving legendre polynomials

JD Bulnes,1 J López- Bonilla,2 J Prajapati3

1Departamento de Ciencias Exatas e Tecnología, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, Jardin Marco Zero, 68903-419, Macapá, AP, Brasil
2ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
3Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India

Correspondence: José Luis López-Bonilla, ESIME-Zacatenco, National Polytechnic Institute, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México, Tel 55 57296000

Received: December 30, 2022 | Published: January 20, 2023

Citation: Bulnes JD, López-Bonilla J, Prajapati J. Certain integrals involving legendre polynomials. Open Access J Sci. 2023;6(1):1-3. DOI: 10.15406/oajs.2023.06.00184

Download PDF

Abstract

Here we exhibit alternative proofs of the identities given by Persson-Strang and (Huat-Chan)- -Wan-Zudilin for the Legendre polynomials. Besides, we show the connection between the Lanczos derivative and these polynomials via the Rangarajan-Purushothaman’s formula.

Keywords: (Huat-Chan)-Wan-Zudilin’s property, Legendre polynomials, Persson-Strang’s identity, Rangarajan-Purushothaman’s expression, Lanczos derivative

Introduction

The Legendre’s polynomials1 P n ( x ),1x1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaale aacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaacYca cqGHsislcaaIXaGaeyizImQaamiEaiabgsMiJkaaigdacaGGSaaaaa@439C@  can be defined via the following recurrence relation:2–4

( n+1 ) P n+1 =( 2n+1 )x P n n P n1 , P 0 =1, P 1 =x,n=1,2..., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGUb Gaey4kaSIaaGymaaGaayjkaiaawMcaaiaadcfadaWgaaWcbaGaamOB aiabgUcaRiaaigdaaeqaaOGaeyypa0ZaaeWaaeaacaaIYaGaamOBai abgUcaRiaaigdaaiaawIcacaGLPaaacaWG4bGaamiuamaaBaaaleaa caWGUbaabeaakiabgkHiTiaad6gacaWGqbWaaSbaaSqaaiaad6gacq GHsislcaaIXaaabeaakiaacYcacaWGqbWaaSbaaSqaaiaaicdaaeqa aOGaeyypa0JaaGymaiaacYcacaWGqbWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaamiEaiaacYcacaWGUbGaeyypa0JaaGymaiaacYcacaaI YaGaaiOlaiaac6cacaGGUaGaaiilaaaa@5D43@   (1)

hence:

P 2 = 1 2 ( 3 x 2 1 ), P 3 = 1 2 ( 5 x 3 3x ), P 4 = 1 8 ( 35 x 4 30 x 2 +3 ),... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaale aacaaIYaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWa aeWaaeaacaaIZaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTi aaigdaaiaawIcacaGLPaaacaGGSaGaamiuamaaBaaaleaacaaIZaaa beaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaaca aI1aGaamiEamaaCaaaleqabaGaaG4maaaakiabgkHiTiaaiodacaWG 4baacaGLOaGaayzkaaGaaiilaiaadcfadaWgaaWcbaGaaGinaaqaba GccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI4aaaamaabmaabaGaaG4m aiaaiwdacaWG4bWaaWbaaSqabeaacaaI0aaaaOGaeyOeI0IaaG4mai aaicdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4maaGa ayjkaiaawMcaaiaacYcacaGGUaGaaiOlaiaac6caaaa@5FC1@   (2)

These polynomials also are determined univocally through the conditions;5,6

1 1 P m ( x ) P n ( x )dx=0,mn, P n ( 1 )=1,n, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kIi=aa0baaS qaaiabgkHiTiaaigdaaeaacaaIXaaaaOGaamiuamaaBaaaleaacaWG TbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaadcfadaWgaa WcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaWG KbGaamiEaiabg2da9iaaicdacaGGSaGaamyBaiabgcMi5kaad6gaca GGSaGaamiuamaaBaaaleaacaWGUbaabeaakmaabmaabaGaaGymaaGa ayjkaiaawMcaaiabg2da9iaaigdacaGGSaGaeyiaIiIaamOBaiaacY caaaa@5632@   (3)

therefore:

1 1 x m P n ( x )dx=0,m<n, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kIi=aa0baaS qaaiabgkHiTiaaigdaaeaacaaIXaaaaOGaamiEamaaCaaaleqabaGa amyBaaaakiaadcfadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadI haaiaawIcacaGLPaaacaWGKbGaamiEaiabg2da9iaaicdacaGGSaGa amyBaiabgYda8iaad6gacaGGSaaaaa@49EC@   (4)

and the Laplace’s integral formula3–5,7 gives an alternative way to generate the expressions (2):

P n ( x )= 1 2 n π π ( x+ x 2 1 cosβ ) n dβ,n=0,1,2... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaale aacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da 9maalaaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiaad6gaaaaaaO Gaey4kIi=aa0baaSqaaiabgkHiTiabec8aWbqaaiabec8aWbaakmaa bmaabaGaamiEaiabgUcaRmaakaaabaGaamiEamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaaigdaaSqabaGcciGGJbGaai4BaiaacohacqaH YoGyaiaawIcacaGLPaaadaahaaWcbeqaaiaad6gaaaGccaWGKbGaeq OSdiMaaiilaiaad6gacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGa aGOmaiaac6cacaGGUaGaaiOlaaaa@5D2F@   (5)

or equivalently:

P n ( x )= 1 2 n k=0 n 2 ( 1 ) k ( k n )( n 2n2k ) x n2k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaale aacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da 9maalaaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiaad6gaaaaaaO WaaabmaeaadaqadaqaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaah aaWcbeqaaiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaaiiaaje aycqWFWJ=6lmaalaaabaGaamOBaaqaaiaaikdaaaqcbaMae83+4Vpa niabggHiLdGcdaqadaqaamaaDaaaleaacaWGRbaabaGaamOBaaaaaO GaayjkaiaawMcaamaabmaabaWaa0baaSqaaiaad6gaaeaacaaIYaGa amOBaiabgkHiTiaaikdacaWGRbaaaaGccaGLOaGaayzkaaGaamiEam aaCaaaleqabaGaamOBaiabgkHiTiaaikdacaWGRbaaaOGaaiOlaaaa @61AB@   (6)

Persson-Strang & (Huat-Chan)-Wan-Zudilin identities

Here we have interest in the value of the following integral:

Q( m ) 1 1 1 x P 2m+1 ( x )dx,m=01,2,.. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaabmaaba GaamyBaaGaayjkaiaawMcaaiabggMi6kabgUIiYpaaDaaaleaacqGH sislcaaIXaaabaGaaGymaaaakmaalaaabaGaaGymaaqaaiaadIhaaa GaamiuamaaBaaaleaacaaIYaGaamyBaiabgUcaRiaaigdaaeqaaOWa aeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacaGGSaGaam yBaiabg2da9iaaicdacaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaa c6caaaa@5294@   (7)

then from (6) with n=2m+1: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9i aaikdacaWGTbGaey4kaSIaaGymaiaacQdaaaa@3CF0@

Q( m )= 1 2 n 1 1 k=0 m ( 1 ) k ( k n )( n 2n2k ) x 2m2k dk= 1 4 m A( m ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaabmaaba GaamyBaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaa ikdadaahaaWcbeqaaiaad6gaaaaaaOGaey4kIi=aa0baaSqaaiabgk HiTiaaigdaaeaacaaIXaaaaOWaaabmaeaadaqadaqaaiabgkHiTiaa igdaaiaawIcacaGLPaaadaahaaWcbeqaaiaadUgaaaaabaGaam4Aai abg2da9iaaicdaaeaacaWGTbaaniabggHiLdGcdaqadaqaamaaDaaa leaacaWGRbaabaGaamOBaaaaaOGaayjkaiaawMcaamaabmaabaWaa0 baaSqaaiaad6gaaeaacaaIYaGaamOBaiabgkHiTiaaikdacaWGRbaa aaGccaGLOaGaayzkaaGaamiEamaaCaaaleqabaGaaGOmaiaad2gacq GHsislcaaIYaGaam4AaaaakiaadsgacaWGRbGaeyypa0ZaaSaaaeaa caaIXaaabaGaaGinamaaCaaaleqabaGaamyBaaaaaaGccaWGbbWaae WaaeaacaWGTbaacaGLOaGaayzkaaGaaiilaaaa@65E7@   (8)

where A( m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabmaaba GaamyBaaGaayjkaiaawMcaaaaa@3A2F@ can be calculated via the method of Petkovsek-Wilf-Zeilberger,8–18 in fact:

A( m ) k=0 m ( 1 ) k ( 2n2k )! k!( nk )!( n2k )!( n2k ) = ( 2n )! n ( n! ) 2 k=0 t k , t k = ( 1 ) k n ( n! ) 2 ( 2n2k )! ( 2n )!k!( nk )!( n2k )!( n2k ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabmaaba GaamyBaaGaayjkaiaawMcaaiabggMi6oaaqadabaWaaSaaaeaadaqa daqaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaadU gaaaGcdaqadaqaaiaaikdacaWGUbGaeyOeI0IaaGOmaiaadUgaaiaa wIcacaGLPaaacaGGHaaabaGaam4Aaiaacgcadaqadaqaaiaad6gacq GHsislcaWGRbaacaGLOaGaayzkaaGaaiyiamaabmaabaGaamOBaiab gkHiTiaaikdacaWGRbaacaGLOaGaayzkaaGaaiyiamaabmaabaGaam OBaiabgkHiTiaaikdacaWGRbaacaGLOaGaayzkaaaaaaWcbaGaam4A aiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdGccqGH9aqpdaWcaa qaamaabmaabaGaaGOmaiaad6gaaiaawIcacaGLPaaacaGGHaaabaGa amOBamaabmaabaGaamOBaiaacgcaaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaaaaOWaaabmaeaacaWG0bWaaSbaaSqaaiaadUgaaeqa aOGaaiilaiaadshadaWgaaWcbaGaam4AaaqabaaabaGaam4Aaiabg2 da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabg2da9maalaaabaWa aeWaaeaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaaca WGRbaaaOGaamOBamaabmaabaGaamOBaiaacgcaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaaikdacaWGUbGaeyOeI0 IaaGOmaiaadUgaaiaawIcacaGLPaaacaGGHaaabaWaaeWaaeaacaaI YaGaamOBaaGaayjkaiaawMcaaiaacgcacaWGRbGaaiyiamaabmaaba GaamOBaiabgkHiTiaadUgaaiaawIcacaGLPaaacaGGHaWaaeWaaeaa caWGUbGaeyOeI0IaaGOmaiaadUgaaiaawIcacaGLPaaacaGGHaWaae WaaeaacaWGUbGaeyOeI0IaaGOmaiaadUgaaiaawIcacaGLPaaaaaGa aiilaaaa@99C0@   (9)

Therefore t k+1 t k = ( km 1 2 ) 2 ( km ) ( km+ 1 2 )( k2m 1 2 )( k+1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWG0b WaaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaaaOqaaiaadshadaWg aaWcbaGaam4AaaqabaaaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaadU gacqGHsislcaWGTbGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadU gacqGHsislcaWGTbaacaGLOaGaayzkaaaabaWaaeWaaeaacaWGRbGa eyOeI0IaamyBaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaaaca GLOaGaayzkaaWaaeWaaeaacaWGRbGaeyOeI0IaaGOmaiaad2gacqGH sisldaWcaaqaaiaaigdaaeaacaaIYaaaaaGaayjkaiaawMcaamaabm aabaGaam4AaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaaiilaaaa @5D15@  hence:

A( m ) ( 2n )! n ( n! ) 2 3 F 2 ( m,m 1 2 ,m 1 2 ;m+ 1 2 ,2m 1 2 ;1 )= ( 1 ) m 4 n ( m! ) 2 2( n! ) ,n=2m+1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabmaaba GaamyBaaGaayjkaiaawMcaaiabggMi6oaalaaabaWaaeWaaeaacaaI YaGaamOBaaGaayjkaiaawMcaaiaacgcaaeaacaWGUbWaaeWaaeaaca WGUbGaaiyiaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaGc caaIZaGaamOramaaBaaaleaacaaIYaaabeaakmaabmaabaGaeyOeI0 IaamyBaiaacYcacqGHsislcaWGTbGaeyOeI0YaaSaaaeaacaaIXaaa baGaaGOmaaaacaGGSaGaeyOeI0IaamyBaiabgkHiTmaalaaabaGaaG ymaaqaaiaaikdaaaGaai4oaiabgkHiTiaad2gacqGHRaWkdaWcaaqa aiaaigdaaeaacaaIYaaaaiaacYcacqGHsislcaaIYaGaamyBaiabgk HiTmaalaaabaGaaGymaaqaaiaaikdaaaGaai4oaiaaigdaaiaawIca caGLPaaacqGH9aqpdaWcaaqaamaabmaabaGaeyOeI0IaaGymaaGaay jkaiaawMcaamaaCaaaleqabaGaamyBaaaakiaaisdadaahaaWcbeqa aiaad6gaaaGcdaqadaqaaiaad2gacaGGHaaacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaGcbaGaaGOmamaabmaabaGaamOBaiaacgca aiaawIcacaGLPaaaaaGaaiilaiaad6gacqGH9aqpcaaIYaGaamyBai abgUcaRiaaigdacaGGSaaaaa@7700@   (10)

where it was applied the following value of the hypergeometric function in (10):

3 F 2 ( )= ( 16 ) m n! ( m! ) 2 ( 4m+1 )! . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadAeada WgaaWcbaGaaGOmaaqabaGcdaqadaqaaaGaayjkaiaawMcaaiabg2da 9maalaaabaWaaeWaaeaacqGHsislcaaIXaGaaGOnaaGaayjkaiaawM caamaaCaaaleqabaGaamyBaaaakiaad6gacaGGHaWaaeWaaeaacaWG TbGaaiyiaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaam aabmaabaGaaGinaiaad2gacqGHRaWkcaaIXaaacaGLOaGaayzkaaGa aiyiaaaacaGGUaaaaa@4CF9@   (11)

then (8) and (10) imply the result:

Q( m )= 2 ( 4 ) m ( m! ) 2 ( 2m+1 )! . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaabmaaba GaamyBaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGOmamaabmaa baGaeyOeI0IaaGinaaGaayjkaiaawMcaamaaCaaaleqabaGaamyBaa aakmaabmaabaGaamyBaiaacgcaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaakeaadaqadaqaaiaaikdacaWGTbGaey4kaSIaaGymaa GaayjkaiaawMcaaiaacgcaaaGaaiOlaaaa@4AAC@   (12)

 On the other hand, from (6) for n=2m+1: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9i aaikdacaWGTbGaey4kaSIaaGymaiaacQdaaaa@3CF0@

[ P 2m+1 ( x ) x ] 2 = 1 2 n k=0 m ( 1 ) k ( k n ) ( n 2n2k ) x 2m2k P 2m+1 ( x ) x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4wamaalaaaba GaamiuamaaBaaaleaacaaIYaGaamyBaiabgUcaRiaaigdaaeqaaOWa aeWaaeaacaWG4baacaGLOaGaayzkaaaabaGaamiEaaaacaGGDbWaaW baaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOm amaaCaaaleqabaGaamOBaaaaaaGcdaaeWaqaamaabmaabaGaeyOeI0 IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaam4Aaaaakmaabmaa baWaa0baaSqaaiaadUgaaeaacaWGUbaaaaGccaGLOaGaayzkaaaale aacaWGRbGaeyypa0JaaGimaaqaaiaad2gaa0GaeyyeIuoakmaabmaa baWaa0baaSqaaiaad6gaaeaacaaIYaGaamOBaiabgkHiTiaaikdaca WGRbaaaaGccaGLOaGaayzkaaGaamiEamaaCaaaleqabaGaaGOmaiaa d2gacqGHsislcaaIYaGaam4AaaaakmaalaaabaGaamiuamaaBaaale aacaaIYaGaamyBaiabgUcaRiaaigdaaeqaaOWaaeWaaeaacaWG4baa caGLOaGaayzkaaaabaGaamiEaaaacaGGSaaaaa@67F9@

where we can integrate in the interval [1,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgkHiTi aaigdacaGGSaGaaGymaiaac2faaaa@3BC1@  and apply the properties (4) and (12) to obtain the relation:

1 1 [ P 2m+1 ( x ) x ] 2 dx= ( 1 ) m 2 n ( k n )( n 2n2k )Q( m )=2,m=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kIi=aa0baaS qaaiabgkHiTiaaigdaaeaacaaIXaaaaOGaai4wamaalaaabaGaamiu amaaBaaaleaacaaIYaGaamyBaiabgUcaRiaaigdaaeqaaOWaaeWaae aacaWG4baacaGLOaGaayzkaaaabaGaamiEaaaacaGGDbWaaWbaaSqa beaacaaIYaaaaOGaamizaiaadIhacqGH9aqpdaWcaaqaamaabmaaba GaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaamyBaaaa aOqaaiaaikdadaahaaWcbeqaaiaad6gaaaaaaOWaaeWaaeaadaqhaa WcbaGaam4Aaaqaaiaad6gaaaaakiaawIcacaGLPaaadaqadaqaamaa DaaaleaacaWGUbaabaGaaGOmaiaad6gacqGHsislcaaIYaGaam4Aaa aaaOGaayjkaiaawMcaaiaadgfadaqadaqaaiaad2gaaiaawIcacaGL PaaacqGH9aqpcaaIYaGaaiilaiaad2gacqGH9aqpcaaIWaGaaiilai aaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6caaaa@67DB@   (13)

deduced by Persson-Strang;19 Amdeberhan et al.20 generalized the identity (13) in the form:

1 1 [ P 1 ( x ) P 1 (0) x ] 2 dx=2[1 β 2 ( l )],l=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kIi=aa0baaS qaaiabgkHiTiaaigdaaeaacaaIXaaaaOGaai4wamaalaaabaGaamiu amaaBaaaleaacaaIXaaabeaakmaabmaabaGaamiEaaGaayjkaiaawM caaiabgkHiTiaadcfadaWgaaWcbaGaaGymaaqabaGccaGGOaGaaGim aiaacMcaaeaacaWG4baaaiaac2fadaahaaWcbeqaaiaaikdaaaGcca WGKbGaamiEaiabg2da9iaaikdacaGGBbGaaGymaiabgkHiTiabek7a InaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamiBaaGaayjkaiaawM caaiaac2facaGGSaGaamiBaiabg2da9iaaicdacaGGSaGaaGymaiaa cYcacaaIYaGaaiilaiaac6cacaGGUaGaaiOlaaaa@5D41@   (14)

such that:

β( l )={ 21( 1/2 l )     ,  if l is even 0, if is odd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaeWaae aacaWGSbaacaGLOaGaayzkaaGaeyypa0ZaaiqaaeaacaaIYaGaeyOe I0IaaGymamaabmaabaWaa0baaSqaaiaaigdacaGGVaGaaGOmaaqaai aadYgaaaaakiaawIcacaGLPaaaaiaawUhaaabaaaaaaaaapeGaaiiO aiaacckapaWaa0baaKqaahaacaGGSaWdbiaacckacaGGGcGaamyAai aadAgacaGGGcGaamiBaiaacckacaWGPbGaam4CaiaacckacaWGLbGa amODaiaadwgacaWGUbaapaqaaiaaicdacaGGSaWdbiaacckapaGaam yAaiaadAgapeGaaiiOa8aacaWGPbGaam4Ca8qacaGGGcWdaiaad+ga caWGKbGaamizaaaaaaa@6278@   . (15)

 Remark. - In (6) we may use x= b b 2 4c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiEaiabg2da9m aalaaabaGaamOyaaqaamaakaaabaGaamOyamaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaisdacaWGJbaaleqaaaaaaaa@3E6F@  to obtain:

P n ( b b 2 4c )= 1 ( b 2 4c ) n/2 j=0 n/2 b n2j ( 4c ) j 2 n j! R( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiuamaaBaaale aacaWGUbaabeaakmaabmaabaWaaSaaaeaacaWGIbaabaWaaOaaaeaa caWGIbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinaiaadogaaS qabaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaWa aeWaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinai aadogaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6gacaGGVaGaaGOm aaaaaaGcdaaeWaqaamaalaaabaGaamOyamaaCaaaleqabaGaamOBai abgkHiTiaaikdacaWGQbaaaOWaaeWaaeaacqGHsislcaaI0aGaam4y aaGaayjkaiaawMcaamaaCaaaleqabaGaamOAaaaaaOqaaiaaikdada ahaaWcbeqaaiaad6gaaaGccaWGQbGaaiyiaaaaaSqaaiaadQgacqGH 9aqpcaaIWaaabaaccaqcbaMae8h84V+ccaqGUbGaae4laiaabkdaje aycqWF7J=+a0GaeyyeIuoakiaadkfadaqadaqaaiaad6gaaiaawIca caGLPaaaaaa@69EC@   (16)

where:   

R( n ) k=j n/2 ( 1 ) k ( 2n2k )! ( 2n2k )!( ki )!( nk )! = ( 1 ) j 2 n2j n! j!( n2j )! ,0jn/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaabmaaba GaamOBaaGaayjkaiaawMcaaiabggMi6oaaqadabaWaaSaaaeaadaqa daqaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaadU gaaaGcdaqadaqaaiaaikdacaWGUbGaeyOeI0IaaGOmaiaadUgaaiaa wIcacaGLPaaacaGGHaaabaWaaeWaaeaacaaIYaGaamOBaiabgkHiTi aaikdacaWGRbaacaGLOaGaayzkaaGaaiyiamaabmaabaGaam4Aaiab gkHiTiaadMgaaiaawIcacaGLPaaacaGGHaWaaeWaaeaacaWGUbGaey OeI0Iaam4AaaGaayjkaiaawMcaaiaacgcaaaaaleaacaWGRbGaeyyp a0JaamOAaaqaaGGaaiab=bp+Rlaab6gacaqGVaGaaeOmaiab=Tp+7d qdcqGHris5aOGaeyypa0ZaaSaaaeaadaqadaqaaiabgkHiTiaaigda aiaawIcacaGLPaaadaahaaWcbeqaaiaadQgaaaGccaaIYaWaaWbaaS qabeaacaWGUbGaeyOeI0IaaGOmaiaadQgaaaGccaWGUbGaaiyiaaqa aiaadQgacaGGHaWaaeWaaeaacaWGUbGaeyOeI0IaaGOmaiaadQgaai aawIcacaGLPaaacaGGHaaaaiaacYcacaaIWaGaeyizImQaamOAaiab gsMiJMaaGiab=bp+RRGaamOBaiaac+cacaaIYaqcaaIae83+4Vpaaa@878F@   (17)

thus (16) and (17) imply the interesting identity of (Huat-Chan)-Wan-Zudilin:21,22

( b 2 4c ) n/2 P n ( b b 2 4c )= j=0 n/2 ( 2j n )( j 2j ) b n2 j   c j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGIb WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinaiaadogaaiaawIca caGLPaaadaahaaWcbeqaaiaad6gacaGGVaGaaGOmaaaakiaadcfada WgaaWcbaGaamOBaaqabaGcdaqadaqaamaalaaabaGaamOyaaqaamaa kaaabaGaamOyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdaca WGJbaaleqaaaaaaOGaayjkaiaawMcaaiabg2da9maaqadabaWaaeWa aeaadaqhaaWcbaGaaGOmaiaadQgaaeaacaWGUbaaaaGccaGLOaGaay zkaaWaaeWaaeaadaqhaaWcbaGaamOAaaqaaiaaikdacaWGQbaaaaGc caGLOaGaayzkaaaaleaacaWGQbGaeyypa0JaaGimaaqaaGGaaiab=b p+Rlaad6gacaGGVaGaaGOmaiab=Tp+7dqdcqGHris5aOGaamOyamaa CaaaleqabaGaamOBaiabgkHiTiaaikdaaaGcdaahaaWcbeqaaiaadQ gaaaGcqaaaaaaaaaWdbiaacckapaGaam4yamaaCaaaleqabaGaamOA aaaaaaa@6874@   (18)

We may indicate two useful relations:23,24

[ P n ( x )] 2 = k=0 n ( k n ) ( n n+k ) ( k 2k ) ( 1 x 2 4 ) k  , n=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadcfada WgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaa caGGDbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0Zaaabmaeaadaqada qaamaaDaaaleaacaWGRbaabaGaamOBaaaaaOGaayjkaiaawMcaaaba aaaaaaaapeGaaiiOamaabmaabaWaa0baaSqaaiaad6gaaeaacaWGUb Gaey4kaSIaam4AaaaaaOGaayjkaiaawMcaaiaacckadaqadaqaamaa DaaaleaacaWGRbaabaGaaGOmaiaadUgaaaaakiaawIcacaGLPaaaaS WdaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaa cIcacqGHsisldaWcaaqaaiaaigdacqGHsislcaWG4bWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGinaaaacaGGPaWaaWbaaSqabeaacaWGRbaa aOWdbiaacckacaGGSaGaaiiOaiaad6gacqGH9aqpcaaIWaGaaiilai aaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6caaaa@67F3@   (19)

f 1 1 x m P n ( x )dx= 2 n+1 m+1 . ( m+n n 2 ) ( n m+n+1 ) ,mn=0,2,4,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDaaale aacqGHsislcaaIXaaabaGaaGymaaaakiaadIhadaahaaWcbeqaaiaa d2gaaaGccaWGqbWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG4b aacaGLOaGaayzkaaGaamizaiaadIhacqGH9aqpdaWcaaqaaiaaikda daahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaGaamyBaiabgU caRiaaigdaaaGaaiOlamaalaaabaWaaeWaaeaadaWcaaqaaiaad2ga cqGHRaWkcaWGUbaabaWaa0baaSqaaiaad6gaaeaacaaIYaaaaaaaaO GaayjkaiaawMcaaaqaamaabmaabaWaa0baaSqaaiaad6gaaeaacaWG TbGaey4kaSIaamOBaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaaa Gaaiilaiaad2gacqGHsislcaWGUbGaeyypa0JaaGimaiaacYcacaaI YaGaaiilaiaaisdacaGGSaGaaiOlaiaac6cacaGGUaaaaa@632C@   (20)

We emphasize the importance of the method of Petkovsek-Wilf-Zeilberger to obtain (10) and (17).

Lanczos generalized derivative

Rangarajan-Purushothaman25,26 obtained the following generalization of the Lanczos derivative:27,28

f ( m ) ( x )=li m ε0 ( 2m+1 )!! 2 ε m+1 ε ε P m ( t ε )f( x+t )dt,m=1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaale qabaWaaeWaaeaacaWGTbaacaGLOaGaayzkaaaaaOWaaeWaaeaacaWG 4baacaGLOaGaayzkaaGaeyypa0JaamiBaiaadMgacaWGTbWaaSbaaS qaaiabew7aLjabgkziUkaaicdaaeqaaOWaaSaaaeaadaqadaqaaiaa ikdacaWGTbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaacgcacaGGHa aabaGaaGOmaiabew7aLnaaCaaaleqabaGaamyBaiabgUcaRiaaigda aaaaaOWaa8qmaeaacaWGqbWaaSbaaSqaaiaad2gaaeqaaaqaaiabgk HiTiabew7aLbqaaiabew7aLbqdcqGHRiI8aOWaaeWaaeaadaWcaaqa aiaadshaaeaacqaH1oqzaaaacaGLOaGaayzkaaGaamOzamaabmaaba GaamiEaiabgUcaRiaadshaaiaawIcacaGLPaaacaWGKbGaamiDaiaa cYcacaWGTbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaac6caca GGUaGaaiOlaaaa@6C15@   (21)

involving the Legendre polynomials.

If f( x )=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaaba GaamiEaaGaayjkaiaawMcaaiabg2da9iaaigdacaGGSaaaaa@3CD0@  then (21) implies the property:

f 1 1 P n ( u ) du=0, n=2,4,6,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDaaale aacqGHsislcaaIXaaabaGaaGymaaaakiaadcfadaWgaaWcbaGaamOB aaqabaGcdaqadaqaaiaadwhaaiaawIcacaGLPaaaqaaaaaaaaaWdbi aacckapaGaamizaiaadwhacqGH9aqpcaaIWaGaaiila8qacaGGGcGa amOBaiabg2da9iaaikdacaGGSaGaaGinaiaacYcacaaI2aGaaiilai aac6cacaGGUaGaaiOlaaaa@4E27@   (22)

From (21) for f( x )= x N : MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaaba GaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqaaiaa d6eaaaGccaGG6aaaaa@3E2A@

f 1 1 P n ( u ) u k  du=0, k<n, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDaaale aacqGHsislcaaIXaaabaGaaGymaaaakiaadcfadaWgaaWcbaGaamOB aaqabaGcdaqadaqaaiaadwhaaiaawIcacaGLPaaacaWG1bWaaWbaaS qabeaacaWGRbaaaOaeaaaaaaaaa8qacaGGGcWdaiaadsgacaWG1bGa eyypa0JaaGimaiaacYcapeGaaiiOa8aacaGGRbGaeyipaWJaaiOBai aacYcaaaa@4B93@   (23)

f 0 1 P n ( u ) u n du= n! ( 2n+1 )!! = 2 n ( n! ) 2 ( 2n+1 )! ,n=0,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDaaale aacaaIWaaabaGaaGymaaaakiaadcfadaWgaaWcbaGaamOBaaqabaGc daqadaqaaiaadwhaaiaawIcacaGLPaaacaWG1bWaaWbaaSqabeaaca WGUbaaaOGaamizaiaadwhacqGH9aqpdaWcaaqaaiaad6gacaGGHaaa baWaaeWaaeaacaaIYaGaamOBaiabgUcaRiaaigdaaiaawIcacaGLPa aacaGGHaGaaiyiaaaacqGH9aqpdaWcaaqaaiaaikdadaahaaWcbeqa aiaad6gaaaGcdaqadaqaaiaad6gacaGGHaaacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaGcbaWaaeWaaeaacaaIYaGaamOBaiabgUca RiaaigdaaiaawIcacaGLPaaacaGGHaaaaiaacYcacaWGUbGaeyypa0 JaaGimaiaacYcacaaIYaGaaiilaiaac6cacaGGUaGaaiOlaaaa@5EF9@   (24)

On the other hand, we know the relations:

f 0 1 P 2l ( u ) u m du= ( 1 ) l Γ( l m 2 )Γ( m+1 2 ) 2Γ( m 2 )Γ( l+ m+3 2 ) ,m>1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDaaale aacaaIWaaabaGaaGymaaaakiaadcfadaWgaaWcbaGaaGOmaiaadYga aeqaaOWaaeWaaeaacaWG1baacaGLOaGaayzkaaGaamyDamaaCaaale qabaGaamyBaaaakiaadsgacaWG1bGaeyypa0ZaaSaaaeaadaqadaqa aiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaadYgaaa GccqqHtoWrdaqadaqaaiaadYgacqGHsisldaWcaaqaaiaad2gaaeaa caaIYaaaaaGaayjkaiaawMcaaiabfo5ahjaacIcadaWcaaqaaiaad2 gacqGHRaWkcaaIXaaabaGaaGOmaaaacaGGPaaabaGaaGOmaiabfo5a hnaabmaabaGaeyOeI0YaaSaaaeaacaWGTbaabaGaaGOmaaaaaiaawI cacaGLPaaacqqHtoWrdaqadaqaaiaadYgacqGHRaWkdaWcaaqaaiaa d2gacqGHRaWkcaaIZaaabaGaaGOmaaaaaiaawIcacaGLPaaaaaGaai ilaiaad2gacqGH+aGpcqGHsislcaaIXaGaaiilaaaa@6859@   (25)

f 0 1 P 2l+1 ( u ) u m du= ( 1 ) l Γ( l+ 1m 2 )Γ(1+ m 2 ) 2Γ( 1+2+ m 2 )Γ( 1m 2 ) ,m>2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDaaale aacaaIWaaabaGaaGymaaaakiaadcfadaWgaaWcbaGaaGOmaiaadYga cqGHRaWkcaaIXaaabeaakmaabmaabaGaamyDaaGaayjkaiaawMcaai aadwhadaahaaWcbeqaaiaad2gaaaGccaWGKbGaamyDaiabg2da9maa laaabaWaaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaS qabeaacaWGSbaaaOGaeu4KdC0aaeWaaeaacaWGSbGaey4kaSYaaSaa aeaacaaIXaGaeyOeI0IaamyBaaqaaiaaikdaaaaacaGLOaGaayzkaa Gaeu4KdCKaaiikaiaaigdacqGHRaWkdaWcaaqaaiaad2gaaeaacaaI YaaaaiaacMcaaeaacaaIYaGaeu4KdC0aaeWaaeaacaaIXaGaey4kaS IaaGOmaiabgUcaRmaalaaabaGaamyBaaqaaiaaikdaaaaacaGLOaGa ayzkaaGaeu4KdC0aaeWaaeaadaWcaaqaaiaaigdacqGHsislcaWGTb aabaGaaGOmaaaaaiaawIcacaGLPaaaaaGaaiilaiaad2gacqGH+aGp cqGHsislcaaIYaGaaiilaaaa@6C18@   (26)

thus (24) can be deduced from (25) and (26) for m=n=2l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2da9i aad6gacqGH9aqpcaaIYaGaamiBaaaa@3C8C@  and m=n=2l+1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2da9i aad6gacqGH9aqpcaaIYaGaamiBaiabgUcaRiaaigdacaGGSaaaaa@3ED9@  respectively.

 We have the following Schmied’s formula (2005):29

u m = l=m,m2,... m!( 2l+1 ) 2 m1 2 ( m1 2 )!( m+l+1 )!! P l ( u ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCaaale qabaGaamyBaaaakiabg2da9maaqadabaWaaSaaaeaacaWGTbGaaiyi amaabmaabaGaaGOmaiaadYgacqGHRaWkcaaIXaaacaGLOaGaayzkaa aabaGaaGOmamaalaaabaGaamyBaiabgkHiTiaaigdaaeaacaaIYaaa amaabmaabaWaaSaaaeaacaWGTbGaeyOeI0IaaGymaaqaaiaaikdaaa aacaGLOaGaayzkaaGaaiyiamaabmaabaGaamyBaiabgUcaRiaadYga cqGHRaWkcaaIXaaacaGLOaGaayzkaaGaaiyiaiaacgcaaaaaleaaca WGSbGaeyypa0JaamyBaiaacYcacaWGTbGaeyOeI0IaaGOmaiaacYca caGGUaGaaiOlaiaac6caaeaaa0GaeyyeIuoakiaadcfadaWgaaWcba GaamiBaaqabaGcdaqadaqaaiaadwhaaiaawIcacaGLPaaacaGGSaaa aa@61B1@   (27)

which gives (20), and for m=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2da9i aad6gaaaa@39D9@  implies (24).

 The Legendre polynomials can be written in terms of the Gauss hypergeometric function:

P n ( 0 )= ( 2n1 )!! n! k=0 n ( k n )    2 F 1 ( kn,n; 2n;  2 ) x k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaale aacaWGUbaabeaakmaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da 9maalaaabaWaaeWaaeaacaaIYaGaamOBaiabgkHiTiaaigdaaiaawI cacaGLPaaacaGGHaGaaiyiaaqaaiaad6gacaGGHaaaamaaqadabaWa aeWaaeaadaqhaaWcbaGaam4Aaaqaaiaad6gaaaaakiaawIcacaGLPa aaqaaaaaaaaaWdbiaacckacaGGGcWdamaaDaaaleaacaaIYaaabaaa aOGaamOramaaBaaaleaacaaIXaaabeaaaeaacaWGRbGaeyypa0JaaG imaaqaaiaad6gaa0GaeyyeIuoakmaabmaabaGaam4AaiabgkHiTiaa d6gacaGGSaGaeyOeI0IaamOBaiaacUdapeGaaiiOaiabgkHiTiaaik dacaWGUbGaai4oaiaacckacaGGGcGaaGOmaaWdaiaawIcacaGLPaaa caWG4bWaaWbaaSqabeaacaWGRbaaaOGaaiilaaaa@6488@   (28)

and we know the result:

2 F 1 ( n,n;2n;2 )=  {   ( 1 ) n 2 n!( n1 )!! n!!( 2n1 )!!  , n=2, 4, 6,...       0,n=1, 3, 5,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaKqaGgaaca aIYaaabaaaaKaaGkaadAeakmaaBaaajeaObaGaaGymaaqabaGcdaqa daqcaaAaaiabgkHiTiaad6gacaGGSaGaeyOeI0IaamOBaiaacUdacq GHsislcaaIYaGaamOBaiaacUdacaaIYaaacaGLOaGaayzkaaGaeyyp a0deaaaaaaaaa8qacaGGGcGaaiiOaOWdamaaceaajaaWbaGcdaqhaa qcbaCaa8qacaGGGcWcpaWaaSaaaKqaGgaalmaabmaajeaObaGaaGym aiabgkHiTaGaayjkaiaawMcaaSWaaWbaaKGaGgqabaaddaahaaqcca AabWqaamaalaaabaGaamOBaaqaaiaaikdaaaaaaaaajeaOcaWGUbGa aiyiaSWaaeWaaKqaGgaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaacgcacaGGHaaabaGaamOBaiaacgcacaGGHaWcdaqadaqcbaAa aiaaikdacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaca GGHaaaaKqaa=qacaGGGcqcba6daiaacYcajeaWpeGaaiiOaKqaG+aa caWGUbGaeyypa0JaaGOmaiaacYcajeaWpeGaaiiOaKqaG+aacaaI0a GaaiilaKqaa=qacaGGGcqcba6daiaaiAdacaGGSaGaaiOlaiaac6ca caGGUaaajeaWbaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaaicdacaGGSaGaamOBaiabg2da9iaaigdacaGGSaGaaiiOaiaa iodacaGGSaGaaiiOaiaaiwdacaGGSaGaaiOlaiaac6cacaGGUaaaaa qcaa6daiaawUhaaaaa@909E@ ,  (29)

then from (28) and (29):

P n ( 0 ) = 2 F 1 ( n,n+1;1; 1 2 )=  {   ( 1 ) n 2 n!( n1 )!! n!!  , n=2, 4, 6,...       0,n=1, 3, 5,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaQaamiuaOWaaS baaKqaGgaacaWGUbaabeaakmaabmaajaaObaGaaGimaaGaayjkaiaa wMcaaiabg2da9OWaa0baaKqaGgaacaaIYaaabaaaaKaaGkaadAeakm aaBaaajeaObaGaaGymaaqabaGcdaqadaqcaaAaaiabgkHiTiaad6ga caGGSaGaamOBaiabgUcaRiaaigdacaGG7aGaaGymaiaacUdakmaala aajaaObaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaGaeyypa0de aaaaaaaaa8qacaGGGcGaaiiOaOWdamaaceaajaaWbaGcdaqhaaqcba Caa8qacaGGGcWcpaWaaSaaaKqaGgaalmaabmaajeaObaGaaGymaiab gkHiTaGaayjkaiaawMcaaSWaaWbaaKGaGgqabaaddaahaaqccaAabW qaamaalaaabaGaamOBaaqaaiaaikdaaaaaaaaajeaOcaWGUbGaaiyi aSWaaeWaaKqaGgaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaai aacgcacaGGHaaabaGaamOBaiaacgcacaGGHaaaaKqaa=qacaGGGcqc ba6daiaacYcajeaWpeGaaiiOaKqaG+aacaWGUbGaeyypa0JaaGOmai aacYcajeaWpeGaaiiOaKqaG+aacaaI0aGaaiilaKqaa=qacaGGGcqc ba6daiaaiAdacaGGSaGaaiOlaiaac6cacaGGUaaajeaWbaWdbiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaicdacaGGSaGaamOB aiabg2da9iaaigdacaGGSaGaaiiOaiaaiodacaGGSaGaaiiOaiaaiw dacaGGSaGaaiOlaiaac6cacaGGUaaaaaqcaa6daiaawUhaaaaa@9158@ .  (30)

Finally, the expression:

P n ( x ) 1 2 n ( 1 ) k ( 1x ) k ( 1+x ) nk ( k n ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaale aacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiabggMi 6oaalaaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiaad6gaaaaaaO WaaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaa caGGRbaaaOWaaeWaaeaacaaIXaGaeyOeI0IaamiEaaGaayjkaiaawM caamaaCaaaleqabaGaam4AaaaakmaabmaabaGaaGymaiabgUcaRiaa dIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6gacqGHsislcaWGRb aaaOWaaeWaaeaadaqhaaWcbaGaam4Aaaqaaiaad6gaaaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGccaGGSaaaaa@5608@   (31)

and (30) imply the relation:

k=0 n ( 1 ) k ( k n ) 2 =  {   ( 1 ) n 2 2 n ( n1 )!! n!!  , n=2, 4, 6, ...       0,n=1, 3, 5,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaKaaahaakm aabmaajaaWbaGaeyOeI0IaaGymaaGaayjkaiaawMcaaOWaaWbaaKqa ahqabaGaam4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaad6gaaK WaalabggHiLdGcdaqadaqcaaCaaOWaa0baaKqaahaacaWGRbaabaGa amOBaaaaaKaaalaawIcacaGLPaaakmaaCaaajeaWbeqaaiaaikdaaa qcaaSaeyypa0deaaaaaaaaa8qacaGGGcGaaiiOaOWdamaaceaajaa4 baGcdaqhaaqcbaEaa8qacaGGGcWcpaWaaSaaaKqaahaalmaabmaaje aWbaGaaGymaiabgkHiTaGaayjkaiaawMcaaSWaaWbaaKGaahqabaad daahaaqccaCabKGaGgaammaalaaajiaObaGaamOBaaqaaiaaikdaaa aaaaaajeaWcaaIYaWcdaahaaqccaCabeaacaWGUbaaaSWaaeWaaKqa ahaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcacaGGHa aabaGaamOBaiaacgcacaGGHaaaaKqaG=qacaGGGcqcba8daiaacYca jea4peGaaiiOaKqaa=aacaWGUbGaeyypa0JaaGOmaiaacYcajea4pe GaaiiOaKqaa=aacaaI0aGaaiilaKqaG=qacaGGGcqcba8daiaaiAda caGGSaqcba+dbiaacckajeaWpaGaaiOlaiaac6cacaGGUaaajea4ba WdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaicdacaGG SaGaamOBaiabg2da9iaaigdacaGGSaGaaiiOaiaaiodacaGGSaGaai iOaiaaiwdacaGGSaGaaiOlaiaac6cacaGGUaaaaaqcaa8daiaawUha aaaa@96D2@   . (32)

Thus, we see that the Rangarajan-Purushothaman’s formula for the Lanczos derivative allows deduce some properties of Legendre polynomials, and it represents differentiation by integration. The P n ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaale aacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3B72@ are orthogonal polynomials, hence Diekema-Koornwinder30 consider that the name “orthogonal derivative” is adequate for (21).

Remark. - From (3) we have the property P n ( 1 )=1n, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaale aacaWGUbaabeaakmaabmaabaGaaGymaaGaayjkaiaawMcaaiabg2da 9iaaigdaiiaacqWFaiIicaWGUbGaaiilaaaa@3F67@ then (6) for x=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9i aaigdaaaa@39AC@  gives the identity:

2n= k=0 n 2 ( 1 ) k ( k n ) ( n 2n2k ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaad6gacq GH9aqpdaaeWaqaamaabmaabaGaeyOeI0IaaGymaaGaayjkaiaawMca amaaCaaaleqabaGaam4AaaaakmaabmaabaWaa0baaSqaaiaadUgaae aacaWGUbaaaaGccaGLOaGaayzkaaaaleaacaWGRbGaeyypa0JaaGim aaqaaGGaaiab=bp+RpaalaaabaGaamOBaaqaaiaaikdaaaGae83+4V paniabggHiLdGcdaqadaqaamaaDaaaleaacaWGUbaabaGaaGOmaiaa d6gacqGHsislcaaIYaGaam4AaaaaaOGaayjkaiaawMcaaiaacUdaaa a@56A8@   (33)

on the other hand, we know the relation:31

k=0 n ( 1 ) k ( k n ) ( n z+ky )= ( y ) n ,y0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaadaqada qaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaadUga aaGcdaqadaqaamaaDaaaleaacaWGRbaabaGaamOBaaaaaOGaayjkai aawMcaaaWcbaGaam4Aaiabg2da9iaaicdaaeaacaWGUbaaniabggHi LdGcdaqadaqaamaaDaaaleaacaWGUbaabaGaamOEaiabgUcaRiaadU gacaWG5baaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacqGHsisl caWG5baacaGLOaGaayzkaaWaaWbaaSqabeaacaWGUbaaaOGaaiilai aadMhacqGHGjsUcaaIWaGaaiilaaaa@559D@   (34)

which for  and is equivalent to (33) because ( n 2n2k )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaadaqhaa WcbaGaamOBaaqaaiaaikdacaWGUbGaeyOeI0IaaGOmaiaadUgaaaaa kiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3FA9@ for k> n 2  . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4Aaiabg6da+G GaaKaaGiab=bp+RRWaaSaaaeaacaWGUbaabaGaaGOmaaaajaaicqWF 7J=+kabaaaaaaaaapeGaaiiOaKaaG8aacqWFUaGlaaa@443C@

Finally, we consider that the publications32–37 have useful relationship with the study realized in the present paper.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. AM Legendre. Mémoires de mathématique et de physique : prés. à l´Académie Royale des Sciences, par divers savans, et lûs dans ses assemblées. Universitätsbibliothek Johann Christian Senckenberg. 1785;10:411–435.
  2. Lanczos C. Legendre versus Chebyshev polynomials, in “Topics in Numerical Analysis”. In:  JJH Miller editor. (Proc. Roy.  Irish Acad. Conf. on Numerical Analysis, Aug. 14-18, 1972), Academic Press, London. 1973. p. 191–201.
  3. Chihara TS. An introduction to orthogonal polynomials, Gordon & Breach, New York. 1978. p. 1–5.
  4. Oldham KB, Spanier J. An atlas of functions. Hemisphere Pub. Co., London. 1987.
  5. Sommerfeld A. Partial differential equations in PhysicS. Academic Press, New York. 1964.
  6. Broman A. Introduction to partial differential equations: From Fourier series to boundary-value problems. Dover, New York. 1989.
  7. López-Bonilla J, López-Vázquez R, Torres-Silva H. On the Legendre polynomials. Prespacetime Journal. 2015;6(8):735–739.
  8. Petkovsek M, Wilf HS, ZeilbergerD. A = B, symbolic summation algorithms. In:AK Peters editor, Wellesley, Mass. USA. 1996.
  9. Koepf W. Hypergeometric summation. An algorithmic approach to summation and special function identities. Vieweg, Braunschweig/Wiesbaden. 1998.
  10. Koepf W. Orthogonal polynomials and recurrence equations, operator equations and factorization. Electronic Transactions on Numerical Analysis. 2007;27:113–123.
  11. Hannah JP. Identities for the gamma and hypergeometric functions: an overview from Euler to the present. Master of Science Thesis, University of the Witwatersrand, Johannesburg, South Africa. 2013.
  12. Guerrero-Moreno I, López-Bonilla J. Combinatorial identities from the Lanczos approximation for gamma function. Comput Appl Math Sci. 2016;1(2):23–24.
  13. López-Bonilla J, López-Vázquez R, Vidal-Beltrán S. Hypergeometric approach to the Munarini and Ljunggren binomial identities. Comput Appl Math Sci. 2018;3(1):4–6.
  14. Barrera-Figueroa V, Guerrero-Moreno I, López-Bonilla J, et al. Some applications of hypergeometric functions. Comput Appl Math Sci. 2018;3(2):23–25.
  15. Léon-Vega CG, López-Bonilla J, Vidal-Beltrán S. On a combinatorial identity of Cheon-Seol-Elmikkawy. Comput Appl Math Sci. 2018;3(2):31–32.
  16. López-Bonilla L, Miranda-Sánchez I. Hypergeometric version of a combinatorial identity. Comput Appl Math Sci. 2020;5(1):6–7.
  17. López-Bonilla J, Morales-García M. Hypergeometric version of Engbers-Stocker’s combinatorial identity. Studies in Nonlinear Sci. 2021;6(3):41–42.
  18. López-Bonilla J, Ovando G. On q-Hypergeometric series. Studies in Nonlinear Sci. 2021;6(4):56–58.
  19. Persson PE, Strang G. Smoothing by Savitzky-Golay and Legendre filters, in “Mathematical systems theory of biology, communications, computations, and finance”. IMA. 2003;134:301–316.
  20. Amdeberhan T, Duncan A, Moll VH, et al. Filter integrals for orthogonal polynomials. Hardy- Ramanujan Journal. 2021;44:116–135.
  21. Huat-Chan H, Wan J, Zudilin W. Legendre polynomials and Ramanujan-type series for 1/π. Israel J of Maths. 2013;194(1):183–207.
  22. López-Bonilla L, López-Vázquez R, Vidal-Beltrán S. On an identity involving Legendre polynomials. Studies in Nonlinear Sci. 2019;4(2):10–11.
  23. Zudilin W. A generating function of the squares of Legendre polynomials. 2012. p. 7.
  24. Guerrero-Moreno I, López-Bonilla J, Zúñiga-Segundo A. Binomial identities via Legendre polynomials. Open J Appl Theor Maths. 2017;3(3):1–3.
  25. Rangarajan SK, Purushothaman SP. Lanczos generalized derivative for higher orders. J Comp Appl Maths. 2005;177(2):461–465.
  26. López-Bonilla J, López-Vázquez R, Vidal-Beltrán S. Orthogonal derivative for higher orders. Comput Appl Math Sci. 2018;3(1):7–8.
  27. Lanczos C. Applied analysis. Dover, New York. 1988.
  28. Hernández-Galeana A, Laurian Ioan P, López-Bonilla J, et al. On the Cioranescu-(Haslam-Jones)-Lanczos generalized derivative. Global J Adv Res Class Mat Geom. 2014;3(1):44–49.
  29. Diekema E, Koornwinder T. Differentiation by integration using orthogonal polynomials, a survey. J of Approximation Theory. 2012;164:637667.
  30. Quaintance J, Gould HW. Combinatorial identities for Stirling numbers. World Scientific, Singapore. 2016.
  31. Mishra VN, Mishra LN. Trigonometric approximation of signals (functions) in Lp -norm. Int J of Contemporary Math Sci. 2012;7(19):909–918.
  32. Mishra VN, Khatri K, Mishra LN. Using linear operators to approximate signals of Lip ((α,p),(p≥1) – class. Filomat. 2013;27(2):353–363.
  33. Mishra VN, Khatri K, Mishra LN, et al. Trigonometric approximation of periodic signals belonging to generalized weightedLipschitz W(Lr,ξ(t)),(r≥1)  – class by Nörlund – Euler (N, pn)   (E, q) operator of conjugate series of its Fourier series. J of Classical Anal. 2014;5(2):91–105.
  34. Mishra LN, Mishra VN, Khatri K, et al. On the trigonometric approximation of signals belonging to generalized weighted Lipschitz W(Lr,ξ(t),(r≥1)  class by matrix (C^1∙N_p) operator of conjugate series of its Fourier series. Appl Maths and Comp. 2014;237:252–263.
  35. Sahani SK, Mishra VN, Pahari NP. Some problems on approximations of functions (signals) in matrix summability of Legendreseries. Nepal J of Math Sci. 2021;2(1):43–50.
  36. Mishra LN, Raiz M, Rathour L, et al. Tauberian theorems for weighted means of double sequences in intuitionistic fuzzy normedspaces. Yugoslav J of Operations Res. 2022;32(3):277–388.
Creative Commons Attribution License

©2023 Bulnes, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.