Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Research Article Volume 1 Issue 3

Theoretical treatment of cold penning ion source with axial extraction

OA Mostafa, Samah I Radwan, H El-Khabeary

Accelerators and Ion Sources Department, Basic Nuclear Science Division, Egypt

Correspondence: H El-Khabeary, Accelerators and Ion Sources Department, Basic Nuclear Science Division, Nuclear Research Center, Atomic Energy Authority, P No.13759, Cairo,Egypt

Received: March 27, 2018 | Published: May 24, 2018

Citation: Mostafa OA, El-Khabeary H, Radwan SI. Theoretical treatment of cold penning ion source with axial extraction. Open Acc J Math Theor Phy. 2018;1(3):102-105 DOI: 10.15406/oajmtp.2018.01.00015

Download PDF

Abstract

The present work investigates theoretical treatment of proposed design for high ion beam efficiency using cold Penning ion source with axial extraction. The derivation of the electric field at any point on the axis of symmetry of the source has been carried out. The electric field is given taking into consideration the effect of the anode radius cylinder, the length of the cylindrical anode and the distance between the center and any of the two flat earthed cathodes. Two different shapes of the electric field near the symmetrical axis have been deduced and the condition of producing an electrostatic confined discharge was obtained. A proposed design of cold Penning discharge ion source with axial extraction is obtained according to the theoretical treatment.

Keywords: cold cathode penning ion source, axial extraction, electric field distribution

Introduction

The Penning ion source is one of the plasma ion sources that produce high voltage, low pressure plasma discharge between cold cathodes and the anode.1–4 In the Penning ion source, a DC voltage in the range of 500 - 5000volts is applied between the anode and the cathode, while the two cathodes are at the same potential. The primary electrons oscillate along the axial direction between the two cathodes cause ionization by collision with the gas molecules.4 Arrangement of the electrodes increases the efficiency of the discharge by increasing the path length of the ionizing electrons through the discharge region; the electric field distribution induced by the applied voltage forces the ionizing electrons to oscillate between the two cathodes.5 The cylinderical anode must be made of high ionization coefficient material such as stainless steel, copper, carbon, etc., whilethe cathode material must have high secondary electrons emission coefficient as aluminium, magnesium and beryllium which yields an increase for the plasma density and therefore a higher ion current can be produced.

The ions can be extracted either axially through one cathode in the direction parallel to the discharge axis or, more commonly, radially through a slit in the anode normal to the discharge axis direction.6,7

The cold cathode Penning ion source is more successful than other sources for many types of accelerators.8,9 It is characterised by simple design, comapct in size, maintenance free, long time of operation with no filament and operates at low pressure and can be used for different applications such as production of multicharged ions from heavy gaseous atoms,10 sputtering,11 materials surface modification,12 ion implantation and thin films deposition of different materials.13

Theoretical analysis

Consider a cylindrical electrode with inner radius, a, and length, 2h, is placed between two electrodes such that the distance between the center of the cylinder and any of the two plane electrodes is, d, as shown in Figure 1A. Assume a charge of density ρ is produced on the inner surface of the cylinder due to applied potential, V, on it. The electric field intensity and potential at any point on the symmetrical axis, Z, can be obtained by applying the image theory.14 Figure 1B shows a cylindrical electrode of charge density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ which has two images of charge density at the two sides of the cylindrical electrode, such that the center of any image is at distance equal to 2d from the cylindrical electrode center.

Figure 1Determination of the electric field using image theory.

Electric field intensity at point P on the axis of symmetry

The electric field intensity, ΔE, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGfbGaaiilaaaa@3984@ at a point P on the axis of symmetry at a distance Z from the cylinder center due to an elementary area, ΔA, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGbbGaaiilaaaa@3980@ of the original cylinder in the form of a sector of radius, a, and length, dl, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbGaamiBaiaacYcaaaa@392E@ is given by:

ΔE=  ρ ΔA 4 π  o r 2 cosθ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFuoGaa8xraiaa=1dacaWFGcWaaSaaa8aabaWdbiaa =f8acaWFGcGaa8hLdiaa=feaa8aabaWdbiaa=rdacaWFGcGaa8hWdi aa=bkacqGHiiIZpaWaaSbaaKqbGeaapeGaa83BaaWdaeqaaKqba+qa caWFYbWdamaaCaaajuaibeqaa8qacaWFYaaaaaaajuaGcaWFJbGaa8 3Baiaa=nhacaWF4oGaa8hOaaaa@4E8C@  (1)

Where o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHiiIZpaWaaSbaaKqbGeaapeGaam4Baaqcfa4daeqaaaaa @3A28@ is the permitivity of the medium.

ΔE= ρ  2π a dl 4π  o r 2 ( Z-l ) r =  ρ a 2 o ( Z-l ) r 3 dl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFuoGaa8xraiaa=1dacaWFGcGaa8xWdiaa=bkadaWc aaWdaeaapeGaa8Nmaiaa=b8acaWFGcGaa8xyaiaa=bkacaWFKbGaa8 hBaaWdaeaapeGaa8hnaiaa=b8acaWFGcGaeyicI48damaaBaaajuai baWdbiaa=9gaa8aabeaajuaGpeGaa8NCa8aadaahaaqcfasabeaape Gaa8Nmaaaaaaqcfa4aaSaaa8aabaWdbmaabmaapaqaa8qacaWFAbGa a8xlaiaa=XgaaiaawIcacaGLPaaaa8aabaWdbiaa=jhaaaGaa8xpai aa=bkadaWcaaWdaeaapeGaa8xWdiaa=bkacaWFHbaapaqaa8qacaWF YaGaeyicI48damaaBaaajuaibaWdbiaa=9gaa8aabeaaaaqcfa4dbm aalaaapaqaa8qadaqadaWdaeaapeGaa8Nwaiaa=1cacaWFSbaacaGL OaGaayzkaaaapaqaa8qacaWFYbWdamaaCaaajuaibeqaa8qacaWFZa aaaaaajuaGcaWFKbGaa8hBaaaa@6551@ (2)

Since r 2 =[ ( Z-l ) 2 +  a 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFYbWdamaaCaaajuaibeqaa8qacaWFYaaaaKqbakaa =1dadaWadaWdaeaapeWaaeWaa8aabaWdbiaa=PfacaWFTaGaa8hBaa GaayjkaiaawMcaa8aadaahaaqcfasabeaapeGaa8NmaaaajuaGcaWF RaGaa8hOaiaa=fgapaWaaWbaaKqbGeqabaWdbiaa=jdaaaaajuaGca GLBbGaayzxaaaaaa@464F@ Therefore r=  a 2 + ( Z-l ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFYbGaa8xpaiaa=bkadaGcaaWdaeaapeGaa8xya8aa daahaaqcfasabeaapeGaa8NmaaaajuaGcaWFRaWaaeWaa8aabaWdbi aa=PfacaWFTaGaa8hBaaGaayjkaiaawMcaa8aadaahaaqcfasabeaa peGaa8NmaaaaaKqbagqaaaaa@42BD@ Consequently r 3 = [ a 2 + (Zl) 2 ] 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbWdamaaCaaajuaibeqaa8qacaaIZaaaaKqbakabg2da 9iaacUfacaWGHbWdamaaCaaajuaibeqaa8qacaaIYaaaaKqbakabgU caRiaacIcacaWGAbGaeyOeI0IaamiBaiaacMcapaWaaWbaaKqbGeqa baWdbiaaikdaaaqcfaOaaiyxa8aadaahaaqabKqbGeaapeGaaG4mai aac+cacaaIYaaaaaaa@4807@ (3) Substituting equation (3) in equation (2) gives:  ΔE=  ρa 2  o ( Z-l ) [ a 2  +  ( Z-l ) 2 ] 3/2  dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFGcGaa8hLdiaa=veacaWF9aGaa8hOamaalaaapaqa a8qacaWFbpGaa8xyaaWdaeaapeGaa8Nmaiaa=bkacqGHiiIZpaWaaS baaKqbGeaapeGaa83Baaqcfa4daeqaaaaapeWaaSaaa8aabaWdbmaa bmaapaqaa8qacaWFAbGaa8xlaiaa=XgaaiaawIcacaGLPaaaa8aaba Wdbiaa=TfacaWFHbWdamaaCaaajuaibeqaa8qacaWFYaGaa8hOaaaa juaGcaWFRaGaa8hOamaabmaapaqaa8qacaWFAbGaa8xlaiaa=Xgaai aawIcacaGLPaaapaWaaWbaaKqbGeqabaWdbiaa=jdaaaqcfaOaa8xx a8aadaahaaqcfasabeaapeGaa83maiaa=9cacaWFYaaaaaaajuaGca WFGcGaa8hzaiaa=Xgaaaa@5AE1@ Therefore, the electric field intensity at P is:

E 1 =  h h ΔE =  ρ a 2  o  [  1 a 2 + ( Z-h ) 2 -  1 a 2 + ( Z+h ) 2 ]       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFfbWdamaaBaaajuaibaWdbiaa=fdaaKqba+aabeaa peGaa8xpaiaa=bkadaWdXbqaaiabgs5aejaadweaaKqbGeaacqGHsi slcaWGObaabaGaamiAaaqcfaOaey4kIipacaWF9aGaa8hOamaalaaa paqaa8qacaWFbpGaa8hOaiaa=fgaa8aabaWdbiaa=jdacaWFGcGaey icI48damaaBaaajuaibaWdbiaa=9gaaKqba+aabeaaaaWdbiaa=bka caWFBbGaa8hOamaalaaapaqaa8qacaWFXaaapaqaa8qadaGcaaWdae aapeGaa8xya8aadaahaaqabKqbGeaapeGaa8NmaaaajuaGcaWFRaWa aeWaa8aabaWdbiaa=PfacaWFTaGaa8hAaaGaayjkaiaawMcaa8aada ahaaqabKqbGeaapeGaa8NmaaaaaKqbagqaaaaacaWFTaGaa8hOamaa laaapaqaa8qacaWFXaaapaqaa8qadaGcaaWdaeaapeGaa8xya8aada ahaaqabKqbGeaapeGaa8NmaaaajuaGcaWFRaWaaeWaa8aabaWdbiaa =PfacaWFRaGaa8hAaaGaayjkaiaawMcaa8aadaahaaqabKqbGeaape Gaa8NmaaaaaKqbagqaaaaacaWFDbGaa8hOaiaa=bkacaWFGcGaa8hO aiaa=bkacaWFGcaaaa@6EFB@ (4)

  The electric field Intensity due to the upper cylinder of density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaeqyWdihaaa@3931@ as shown in Figure 1B can be obtained by putting (2d-Z) instead of Z in equation (4) then

E 2 =  ρa 2  o  [ 1 a 2 + ( 2d-Z-h ) 2 1 a 2 + ( 2d-Z+h ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFfbWdamaaBaaajuaibaWdbiaa=jdaaKqba+aabeaa peGaa8xpaiaa=bkadaWcaaWdaeaapeGaa8xWdiaa=fgaa8aabaWdbi aa=jdacaWFGcGaeyicI48damaaBaaajuaibaWdbiaa=9gaaKqba+aa beaaaaWdbiaa=bkadaWadaWdaeaapeWaaSaaa8aabaWdbiaa=fdaa8 aabaWdbmaakaaapaqaa8qacaWFHbWdamaaCaaabeqcfasaa8qacaWF YaaaaKqbakaa=TcadaqadaWdaeaapeGaa8Nmaiaa=rgacaWFTaGaa8 Nwaiaa=1cacaWFObaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qa caWFYaaaaaqcfayabaaaaiabgkHiTmaalaaapaqaa8qacaWFXaaapa qaa8qadaGcaaWdaeaapeGaa8xya8aadaahaaqabKqbGeaapeGaa8Nm aaaajuaGcaWFRaWaaeWaa8aabaWdbiaa=jdacaWFKbGaa8xlaiaa=P facaWFRaGaa8hAaaGaayjkaiaawMcaa8aadaahaaqabKqbGeaapeGa a8NmaaaaaKqbagqaaaaaaiaawUfacaGLDbaaaaa@6012@  (5)

The electric field intensity due to the lower cylinder of charge density as shown in Figure 1B can be obtained by putting (2d+Z) instead of Z andinstead of in equation (4) then

E 3 =  -ρa 2 o  [ 1 a 2 + ( 2d+Z-h ) 2 1 a 2 + ( 2d+Z+h ) 2   ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFfbWdamaaBaaajuaibaWdbiaa=ndaa8aabeaajuaG peGaa8xpaiaa=bkadaWcaaWdaeaapeGaa8xlaiaa=f8acaWFHbaapa qaa8qacaWFYaGaeyicI48damaaBaaajuaibaWdbiaa=9gaaKqba+aa beaaaaWdbiaa=bkadaWadaWdaeaapeWaaSaaa8aabaWdbiaa=fdaa8 aabaWdbmaakaaapaqaa8qacaWFHbWdamaaCaaabeqcfasaa8qacaWF YaaaaKqbakaa=TcadaqadaWdaeaapeGaa8Nmaiaa=rgacaWFRaGaa8 Nwaiaa=1cacaWFObaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qa caWFYaaaaaqcfayabaaaaiabgkHiTmaalaaapaqaa8qacaWFXaaapa qaa8qadaGcaaWdaeaapeGaa8xya8aadaahaaqcfasabeaapeGaa8Nm aaaajuaGcaWFRaWaaeWaa8aabaWdbiaa=jdacaWFKbGaa83kaiaa=P facaWFRaGaa8hAaaGaayjkaiaawMcaa8aadaahaaqcfasabeaapeGa a8NmaaaaaKqbagqaaaaacaWFGcaacaGLBbGaayzxaaaaaa@60BD@  (6)

so, the total electric field at point P is:

E= E 1 + E 2 + E 3 = ρa 2 o [ { 1 a 2 + ( Z-h ) 2 1 a 2 + ( Z+h ) 2 }+{ 1 a 2 + ( 2d-Z-h ) 2 1 a 2 + ( 2d-Z+h ) 2 }-  { 1 a 2 + ( 2d+Z-h ) 2 1 a 2 + ( 2d+Z+h ) 2 } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFfbGaa8xpaiaa=veapaWaaSbaaKqbGeaapeGaa8xm aaqcfa4daeqaa8qacaWFRaGaa8xra8aadaWgaaqcfasaa8qacaWFYa aajuaGpaqabaWdbiaa=TcacaWFfbWdamaaBaaajuaibaWdbiaa=nda aKqba+aabeaapeGaa8xpamaalaaapaqaa8qacaWFbpGaa8xyaaWdae aapeGaa8NmaiabgIGio=aadaWgaaqcfasaa8qacaWFVbaajuaGpaqa baaaa8qadaWadaWdaqaabeqaa8qadaGadaWdaeaapeWaaSaaa8aaba Wdbiaa=fdaa8aabaWdbmaakaaapaqaa8qacaWFHbWdamaaCaaajuai beqaa8qacaWFYaaaaKqbakaa=TcadaqadaWdaeaapeGaa8Nwaiaa=1 cacaWFObaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaWFYaaa aaqcfayabaaaaiabgkHiTiaaykW7daWcaaWdaeaapeGaa8xmaaWdae aapeWaaOaaa8aabaWdbiaa=fgapaWaaWbaaKqbGeqabaWdbiaa=jda aaqcfaOaa83kamaabmaapaqaa8qacaWFAbGaa83kaiaa=HgaaiaawI cacaGLPaaapaWaaWbaaeqajuaibaWdbiaa=jdaaaaajuaGbeaaaaaa caGL7bGaayzFaaGaa83kamaacmaapaqaa8qadaWcaaWdaeaapeGaa8 xmaaWdaeaapeWaaOaaa8aabaWdbiaa=fgapaWaaWbaaKqbGeqabaWd biaa=jdaaaqcfaOaa83kamaabmaapaqaa8qacaWFYaGaa8hzaiaa=1 cacaWFAbGaa8xlaiaa=HgaaiaawIcacaGLPaaapaWaaWbaaeqajuai baWdbiaa=jdaaaaajuaGbeaaaaGaeyOeI0IaaGPaVpaalaaapaqaa8 qacaWFXaaapaqaa8qadaGcaaWdaeaapeGaa8xya8aadaahaaqabKqb GeaapeGaa8NmaaaajuaGcaWFRaWaaeWaa8aabaWdbiaa=jdacaWFKb Gaa8xlaiaa=PfacaWFRaGaa8hAaaGaayjkaiaawMcaa8aadaahaaqa bKqbGeaapeGaa8NmaaaaaKqbagqaaaaaaiaawUhacaGL9baacaWFTa Gaa8hOaaqaamaacmaapaqaa8qadaWcaaWdaeaapeGaa8xmaaWdaeaa peWaaOaaa8aabaWdbiaa=fgapaWaaWbaaeqajuaibaWdbiaa=jdaaa qcfaOaa83kamaabmaapaqaa8qacaWFYaGaa8hzaiaa=TcacaWFAbGa a8xlaiaa=HgaaiaawIcacaGLPaaapaWaaWbaaeqajuaibaWdbiaa=j daaaaajuaGbeaaaaGaeyOeI0IaaGPaVpaalaaapaqaa8qacaWFXaaa paqaa8qadaGcaaWdaeaapeGaa8xya8aadaahaaqabKqbGeaapeGaa8 NmaaaajuaGcaWFRaWaaeWaa8aabaWdbiaa=jdacaWFKbGaa83kaiaa =PfacaWFRaGaa8hAaaGaayjkaiaawMcaa8aadaahaaqabKqbGeaape Gaa8NmaaaaaKqbagqaaaaaaiaawUhacaGL9baaaaGaay5waiaaw2fa aaaa@A1FF@ (7)

 

Total potential at point P on the axis of symmetry

The potential ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGwbaaaa@38E5@ due to an elementary area ΔA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarcaWGbbaaaa@38D0@ of the original cylinder of charge density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ will be: ΔV=  ρ.ΔA 4π  o  r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFuoGaa8Nvaiaa=1dacaWFGcWaaSaaa8aabaWdbiaa =f8acaWFUaGaa8hLdiaa=feaa8aabaWdbiaa=rdacaWFapGaa8hOai abgIGio=aadaWgaaqcfasaa8qacaWFVbGaa8hOaaWdaeqaaKqba+qa caWFYbaaaaaa@4757@

ΔV=  ρ.2πa.dl 4π o  r =  ρa 2 o dl a 2 + ( Z-l ) 2 =  ρa 2 o dl l 2 -2Zl+( a 2  + Z 2  ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFuoGaa8Nvaiaa=1dacaWFGcWaaSaaa8aabaWdbiaa =f8acaWFUaGaa8Nmaiaa=b8acaWFHbGaa8Nlaiaa=rgacaWFSbaapa qaa8qacaWF0aGaa8hWdiabgIGio=aadaWgaaqcfasaa8qacaWFVbaa paqabaqcfa4dbiaa=bkacaWFYbaaaiaa=1dacaWFGcWaaSaaa8aaba Wdbiaa=f8acaWFHbaapaqaa8qacaWFYaGaeyicI48damaaBaaajuai baWdbiaa=9gaaKqba+aabeaaaaWdbmaalaaapaqaa8qacaWFKbGaa8 hBaaWdaeaapeWaaOaaa8aabaWdbiaa=fgapaWaaWbaaKqbGeqabaWd biaa=jdaaaqcfaOaa83kamaabmaapaqaa8qacaWFAbGaa8xlaiaa=X gaaiaawIcacaGLPaaapaWaaWbaaeqajuaibaWdbiaa=jdaaaaajuaG beaaaaGaa8xpaiaa=bkadaWcaaWdaeaapeGaa8xWdiaa=fgaa8aaba Wdbiaa=jdacqGHiiIZpaWaaSbaaKqbGeaapeGaa83BaaWdaeqaaaaa juaGpeWaaSaaa8aabaWdbiaa=rgacaWFSbaapaqaa8qadaGcaaWdae aapeGaa8hBa8aadaahaaqabKqbGeaapeGaa8NmaaaajuaGcaWFTaGa a8Nmaiaa=PfacaWFSbGaa83kamaabmaapaqaa8qacaWFHbWdamaaCa aabeqcfasaa8qacaWFYaGaa8hOaaaajuaGpaGaa83ka8qacaWFAbWd amaaCaaabeqaaKqbG8qacaWFYaqcfaOaa8hOaaaaaiaawIcacaGLPa aaaeqaaaaaaaa@78D0@

Therefore, the potential at P is:

V 1 = h h ΔV =  ρa 2 o  ln[ 2h-2Z+2 h 2 + a 2 -2Zh+ Z 2  -2h-2Z+2 h 2 +  a 2 +2Zh+ Z 2  ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFwbWdamaaBaaajuaibaWdbiaa=fdaaKqba+aabeaa peGaa8xpamaapehabaGaeyiLdqKaamOvaaqcfasaaiabgkHiTiaadI gaaeaacaWGObaajuaGcqGHRiI8aiaa=1dacaWFGcWaaSaaa8aabaWd biaa=f8acaWFHbaapaqaa8qacaWFYaGaeyicI48damaaBaaajuaiba Wdbiaa=9gaaKqba+aabeaaaaWdbiaa=bkacaWFSbGaa8NBamaadmaa paqaa8qadaWcaaWdaeaapeGaa8Nmaiaa=HgacaWFTaGaa8Nmaiaa=P facaWFRaGaa8Nmamaakaaapaqaa8qacaWFObWdamaaCaaabeqcfasa a8qacaWFYaaaaKqbakaa=TcacaWFHbWdamaaCaaajuaibeqaa8qaca WFYaaaaKqbakaa=1cacaWFYaGaa8Nwaiaa=HgacaWFRaGaa8Nwa8aa daahaaqabeaajuaipeGaa8NmaKqbakaa=bkaaaaabeaaa8aabaWdbi aa=1cacaWFYaGaa8hAaiaa=1cacaWFYaGaa8Nwaiaa=TcacaWFYaWa aOaaa8aabaWdbiaa=HgapaWaaWbaaeqajuaibaWdbiaa=jdaaaqcfa Oaa83kaiaa=bkacaWFHbWdamaaCaaajuaibeqaa8qacaWFYaaaaKqb akaa=TcacaWFYaGaa8Nwaiaa=HgacaWFRaGaa8Nwa8aadaahaaqabe aajuaipeGaa8NmaKqbakaa=bkaaaaabeaaaaaacaGLBbGaayzxaaaa aa@775B@ (8)

The potential due to the upper cylinder of charge density, ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaeqyWdihaaa@3931@ can be obtained by putting (2d-Z) and (ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai abgkHiTiabeg8aYjaacMcaaaa@3A8A@ instead of (Z) and (ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai abeg8aYjaacMcaaaa@399D@ respectively in equation (8). Therefore, the potential will be:

V 2 = -ρa 2 o  ln [ 2h-2( 2d-Z )+2 h 2 + a 2 -2h( 2d-Z )+ ( 2d-Z ) 2 -2h-2( 2d-Z )+2 h 2 + a 2 +2h( 2d-Z )+ ( 2d-Z ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFwbWdamaaBaaajuaibaWdbiaa=jdaaKqba+aabeaa peGaa8xpamaalaaapaqaa8qacaWFTaGaa8xWdiaa=fgaa8aabaWdbi aa=jdacqGHiiIZpaWaaSbaaKqbGeaapeGaa83Baaqcfa4daeqaaaaa peGaa8hOaiaa=XgacaWFUbGaa8hOamaadmaapaqaa8qadaWcaaWdae aapeGaa8Nmaiaa=HgacaWFTaGaa8Nmamaabmaapaqaa8qacaWFYaGa a8hzaiaa=1cacaWFAbaacaGLOaGaayzkaaGaa83kaiaa=jdadaGcaa WdaeaapeGaa8hAa8aadaahaaqcfasabeaapeGaa8NmaaaajuaGcaWF RaGaa8xya8aadaahaaqcfasabeaapeGaa8NmaaaajuaGcaWFTaGaa8 Nmaiaa=HgadaqadaWdaeaapeGaa8Nmaiaa=rgacaWFTaGaa8NwaaGa ayjkaiaawMcaaiaa=TcadaqadaWdaeaapeGaa8Nmaiaa=rgacaWFTa Gaa8NwaaGaayjkaiaawMcaa8aadaahaaqcfasabeaapeGaa8Nmaaaa aKqbagqaaaWdaeaapeGaa8xlaiaa=jdacaWFObGaa8xlaiaa=jdada qadaWdaeaapeGaa8Nmaiaa=rgacaWFTaGaa8NwaaGaayjkaiaawMca aiaa=TcacaWFYaWaaOaaa8aabaWdbiaa=HgapaWaaWbaaeqajuaiba Wdbiaa=jdaaaqcfaOaa83kaiaa=fgapaWaaWbaaKqbGeqabaWdbiaa =jdaaaqcfaOaa83kaiaa=jdacaWFObWaaeWaa8aabaWdbiaa=jdaca WFKbGaa8xlaiaa=PfaaiaawIcacaGLPaaacaWFRaWaaeWaa8aabaWd biaa=jdacaWFKbGaa8xlaiaa=PfaaiaawIcacaGLPaaapaWaaWbaae qajuaibaWdbiaa=jdaaaaajuaGbeaaaaaacaGLBbGaayzxaaaaaa@8367@  (9)

The potential due to the lower cylinder of charge density,can be obtained by putting (2d+Z) and instead of (Z) and respectively in equation (8). Therefore, the potential will be:

V 3 =  -ρa 2 o  ln [ 2h-2( 2d+Z )+2 h 2 + a 2 -2h( 2d+Z )+ ( 2d+Z ) 2 -2h-2( 2d+Z )+2 h 2 + a 2 +2h( 2d+Z )+ ( 2d+Z ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFwbWdamaaBaaajuaibaWdbiaa=ndaaKqba+aabeaa peGaa8xpaiaa=bkadaWcaaWdaeaapeGaa8xlaiaa=f8acaWFHbaapa qaa8qacaWFYaGaeyicI48damaaBaaajuaibaWdbiaa=9gaaKqba+aa beaaaaWdbiaa=bkacaWFSbGaa8NBaiaa=bkadaWadaWdaeaapeWaaS aaa8aabaWdbiaa=jdacaWFObGaa8xlaiaa=jdadaqadaWdaeaapeGa a8Nmaiaa=rgacaWFRaGaa8NwaaGaayjkaiaawMcaaiaa=TcacaWFYa WaaOaaa8aabaWdbiaa=HgapaWaaWbaaeqajuaibaWdbiaa=jdaaaqc faOaa83kaiaa=fgapaWaaWbaaeqajuaibaWdbiaa=jdaaaqcfaOaa8 xlaiaa=jdacaWFObWaaeWaa8aabaWdbiaa=jdacaWFKbGaa83kaiaa =PfaaiaawIcacaGLPaaacaWFRaWaaeWaa8aabaWdbiaa=jdacaWFKb Gaa83kaiaa=PfaaiaawIcacaGLPaaapaWaaWbaaeqajuaibaWdbiaa =jdaaaaajuaGbeaaa8aabaWdbiaa=1cacaWFYaGaa8hAaiaa=1caca WFYaWaaeWaa8aabaWdbiaa=jdacaWFKbGaa83kaiaa=PfaaiaawIca caGLPaaacaWFRaGaa8Nmamaakaaapaqaa8qacaWFObWdamaaCaaabe qcfasaa8qacaWFYaaaaKqbakaa=TcacaWFHbWdamaaCaaabeqcfasa a8qacaWFYaaaaKqbakaa=TcacaWFYaGaa8hAamaabmaapaqaa8qaca WFYaGaa8hzaiaa=TcacaWFAbaacaGLOaGaayzkaaGaa83kamaabmaa paqaa8qacaWFYaGaa8hzaiaa=TcacaWFAbaacaGLOaGaayzkaaWdam aaCaaabeqcfasaa8qacaWFYaaaaaqcfayabaaaaaGaay5waiaaw2fa aaaa@847D@  (10)

So, the total potential, V T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWdamaaBaaajuaibaWdbiaadsfaaKqba+aabeaacaGG Saaaaa@3A13@ at a point P will be: V T =  V 1 + V 2 + V 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFwbWdamaaBaaajuaibaWdbiaa=rfaaKqba+aabeaa peGaa8xpaiaa=bkacaWFwbWdamaaBaaajuaibaWdbiaa=fdaa8aabe aajuaGpeGaa83kaiaa=zfapaWaaSbaaKqbGeaapeGaa8NmaaWdaeqa aKqba+qacaWFRaGaa8Nva8aadaWgaaqcfasaa8qacaWFZaaapaqaba aaaa@43FF@ By substituting Z = 0 in equations (8), (9) and (10) and finding V T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWdamaaBaaajuaibaWdbiaadsfaaKqba+aabeaaaaa@3963@ which is equal to the potential of original cylinder V V=  ρa 2 ε o [ ln{ 2h+2 a 2 + h 2 -2h+2 a 2 + h 2 }-2ln{ 2h-4d+2 h 2 + a 2 -4hd+4 d 2 -2h-4d+2 h 2 + a 2 +4hd+4 d 2 } ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcfaieaa aaaaaaa8qacaWFwbGaa8xpaiaa=bkadaWcaaWdaeaapeGaa8xWdiaa =fgaa8aabaWdbiaa=jdacaWF1oWdamaaBaaajuaibaWdbiaa=9gaaK qba+aabeaaaaWdbmaadmaapaqaa8qacaWFSbGaa8NBamaacmaapaqa a8qadaWcaaWdaeaapeGaa8Nmaiaa=HgacaWFRaGaa8Nmamaakaaapa qaa8qacaWFHbWdamaaCaaajuaibeqaa8qacaWFYaaaaKqbakaa=Tca caWFObWdamaaCaaajuaibeqaa8qacaWFYaaaaaqcfayabaaapaqaa8 qacaWFTaGaa8Nmaiaa=HgacaWFRaGaa8Nmamaakaaapaqaa8qacaWF HbWdamaaCaaajuaibeqaa8qacaWFYaaaaKqbakaa=TcacaWFObWdam aaCaaajuaibeqaa8qacaWFYaaaaaqcfayabaaaaaGaay5Eaiaaw2ha aiaa=1cacaWFYaGaa8hBaiaa=5gadaGadaWdaeaapeWaaSaaa8aaba Wdbiaa=jdacaWFObGaa8xlaiaa=rdacaWFKbGaa83kaiaa=jdadaGc aaWdaeaapeGaa8hAa8aadaahaaqcfasabeaapeGaa8NmaaaajuaGca WFRaGaa8xya8aadaahaaqcfasabeaapeGaa8NmaaaajuaGcaWFTaGa a8hnaiaa=HgacaWFKbGaa83kaiaa=rdacaWFKbWdamaaCaaajuaibe qaa8qacaWFYaaaaaqcfayabaaapaqaa8qacaWFTaGaa8Nmaiaa=Hga caWFTaGaa8hnaiaa=rgacaWFRaGaa8Nmamaakaaapaqaa8qacaWFOb WdamaaCaaajuaibeqaa8qacaWFYaaaaKqbakaa=TcacaWFHbWdamaa Caaajuaibeqaa8qacaWFYaaaaKqbakaa=TcacaWF0aGaa8hAaiaa=r gacaWFRaGaa8hnaiaa=rgapaWaaWbaaeqajuaibaWdbiaa=jdaaaaa juaGbeaaaaaacaGL7bGaayzFaaaacaGLBbGaayzxaaaaaa@8474@ Therefore

ρa 2 ε o = V ln{ 2h+2 a 2 + h 2 -2h+2 a 2 + h 2 } - 2ln { 2h-4d+2 h 2 + a 2 -4hd+4 d 2 -2h-4d+2 h 2 + a 2 +4hd+4 d 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaaieGapeGaa8xWdiaa=fgaa8aabaWdbiaa=jda caWF1oWdamaaBaaajuaibaWdbiaa=9gaaKqba+aabeaaaaWdbiaa=1 dadaWcaaWdaeaapeGaa8NvaaWdaeaapeGaa8hBaiaa=5gadaGadaWd aeaapeWaaSaaa8aabaWdbiaa=jdacaWFObGaa83kaiaa=jdadaGcaa WdaeaapeGaa8xya8aadaahaaqcfasabeaapeGaa8NmaaaajuaGcaWF RaGaa8hAa8aadaahaaqcfasabeaapeGaa8NmaaaaaKqbagqaaaWdae aapeGaa8xlaiaa=jdacaWFObGaa83kaiaa=jdadaGcaaWdaeaapeGa a8xya8aadaahaaqcfasabeaapeGaa8NmaaaajuaGcaWFRaGaa8hAa8 aadaahaaqcfasabeaapeGaa8NmaaaaaKqbagqaaaaaaiaawUhacaGL 9baacaWFGcGaa8xlaiaa=bkacaWFYaGaa8hBaiaa=5gacaWFGcWaai Waa8aabaWdbmaalaaapaqaa8qacaWFYaGaa8hAaiaa=1cacaWF0aGa a8hzaiaa=TcacaWFYaWaaOaaa8aabaWdbiaa=HgapaWaaWbaaKqbGe qabaWdbiaa=jdaaaqcfaOaa83kaiaa=fgapaWaaWbaaKqbGeqabaWd biaa=jdaaaqcfaOaa8xlaiaa=rdacaWFObGaa8hzaiaa=TcacaWF0a Gaa8hza8aadaahaaqcfasabeaapeGaa8NmaaaaaKqbagqaaaWdaeaa peGaa8xlaiaa=jdacaWFObGaa8xlaiaa=rdacaWFKbGaa83kaiaa=j dadaGcaaWdaeaapeGaa8hAa8aadaahaaqcfasabeaapeGaa8Nmaaaa juaGcaWFRaGaa8xya8aadaahaaqcfasabeaapeGaa8NmaaaajuaGca WFRaGaa8hnaiaa=HgacaWFKbGaa83kaiaa=rdacaWFKbWdamaaCaaa juaibeqaa8qacaWFYaaaaaqcfayabaaaaaGaay5Eaiaaw2haaaaaaa a@84F3@  (11)

By substituting ρa 2 ε o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaaieGapeGaa8xWdiaa=fgaa8aabaWdbiaa=jda caWF1oWdamaaBaaajuaibaWdbiaa=9gaaKqba+aabeaaaaaaaa@3D0C@ of equation (11) in equation (7) then E can be obtained in terms of V, a, h and d.

Results and discussion

Figures 2-5 show the distribution of ( E/V ).a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadweacaGGVaGaamOvaaWdaiaawIcacaGLPaaa peGaaiOlaiaadggaaaa@3C3C@ along the symmetrical axis for different values of h at d/a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aac+cacaGGHbaaaa@3905@ equal to 1.5, 2, 2.5 and 3 respectively. Each of these distribution is characterized by a maximum value exists between the center of the source and any of the two earthed plane electrodes for h/a < 0.4, h/a < 1.2, h/a < 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaai4laiaadggacaqGGaGaeyipaWJaaeiiaiaaicda caGGUaGaaGinaiaacYcacaqGGaGaamiAaiaac+cacaWGHbGaaeiiai abgYda8iaabccacaaIXaGaaiOlaiaaikdacaGGSaGaaeiiaiaadIga caGGVaGaamyyaiaabccacqGH8aapcaqGGaGaaGOmaaaa@4CC9@ and h/a < 2.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaai4laiaadggacaqGGaGaeyipaWJaaeiiaiaaikda caGGUaGaaGinaaaa@3DA0@ at d/a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aac+cacaGGHbaaaa@3905@ equal to 1.5, 2, 2.5 and 3 respectively. It is clear in this case that the field near the symmetrical axis has a saddle configuration. The maximum value of ( E/V ).a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadweacaGGVaGaamOvaaWdaiaawIcacaGLPaaa peGaaiOlaiaadggaaaa@3C3C@ only exists at any of the plane earthed cathodes when h/a  0.4, h/a  1.2, h/a  2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaai4laiaadggacaqGGaGaeyyzImRaaeiiaiaaicda caGGUaGaaGinaiaacYcacaqGGaGaamiAaiaac+cacaWGHbGaaeiiai abgwMiZkaabccacaaIXaGaaiOlaiaaikdacaGGSaGaaeiiaiaadIga caGGVaGaamyyaiaabccacqGHLjYScaqGGaGaaGOmaaaa@4F0F@ and h/a  2.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaai4laiaadggacaqGGaGaeyyzImRaaeiiaiaaikda caGGUaGaaGinaaaa@3E62@ at d/a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aac+cacaGGHbaaaa@3905@ equal to 1.5, 2, 2.5 and 3 respectively. This maximum value of ( E/V ).a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadweacaGGVaGaamOvaaWdaiaawIcacaGLPaaa peGaaiOlaiaadggaaaa@3C3C@ increases by increasing h. Hence the field is a convergent type and its degree of convergence increases by increasing h.

Figure 6 shows the two-different d - h domains from d/a = 1.5 to d/a = 3 for saddle field and convergent field types. Figure 7 represents the relation of Δ[ ( E/V ).a ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHuoarpaWaamWaaeaadaqadaqaa8qacaWGfbGaai4laiaa dAfaa8aacaGLOaGaayzkaaWdbiaac6cacaWGHbaapaGaay5waiaaw2 faa8qacaGGSaaaaa@4082@ difference of ( E/V ).a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadweacaGGVaGaamOvaaWdaiaawIcacaGLPaaa peGaaiOlaiaadggaaaa@3C3C@ between the center of the source and any of the two plane earthed cathodes, and d/a for h = 0.8d which lies in the convergent field domain of Figure 6. It is clear that the degree of convergence increases by decreasing d from 3 to 1.5. Accordingly, proposed design of the source for good confinement by choosing, d/a = 1.5 and h = 0.8d. The value of cylinder radius, a, may be chosen equal to 2 cm.

Figure 2The distribution of (E/V).a along the symmetrical axis at different values of h for d/a=1.5.

Figure 3The distribution of (E/V).a along the symmetrical axis at different values of h for d/a=2.

Figure 4The distribution of (E/V).a along the symmetrical axis at different values of h for d/a=2.5.

Figure 5The distribution of (E/V).a along the symmetrical axis at different values of h for d/a=3.

Figure 6Different d - h domains for different field types.

Figure 7Δ(E/V).a versus d/a for h=0.8d.

Conclusion

The theoretical analysis of the electric field distribution shows two different shapes, convergent field and saddle field, depending on the source parameters. The domains h–d is obtained for such field shapes, assuming positive polarity on the cylindrical electrode and two plane earthed cathodes. Convergent field type of such polarity confine the discharge at the two plane earthed cathodes such that an ion source of high ion beam efficiency is available. Proposed design optimum dimensions of such source for good confinement are d/a=1.5, h=0.8d and the radius of the cylinder, a, may be chosen equal to 2cm.

Acknowledgements

None.

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Rovey JL, Ruzic BP, Houlahan TJ. Simple Penning ion source for laboratory research and development applications. Review of Scientific Instruments. 2007;78:106101.
  2. Rovey JL. Design parameter investigation of a cold-cathode Penning ion source for general laboratory applications. Plasma Sources Science and Technology. 2008;17(3).
  3. Das BK, Shyam A, Das R, et al. Development of hollow anode penning ion source for laboratory application. Nuclear Instruments and Methods in Physics Research A. 2012;669:19–21.
  4. Brown IG. The Physics and Technology of Ion Sources. New York: Wiley; 2004. 396 p.
  5. Sy AV. Nuclear Engineering. Berkeley; California University; 2013.
  6. Abdelrahman MM, Zakhary SG. Simulation studies for ion beam extraction systems. Brazilian J Phys. 2009;39(2):275‒279.
  7. Giannuzzi LA, Stevie FA. Introduction to Focused Ion Beams. USA: Springer; 2005.
  8. Abdel Rahman MM. Ion Sources for Use in Research and Low Energy Accelerators. International Journal of Instrumentation Science. 2012;1(5):63‒77.
  9. Abdelbaki MM, Abdelrahman MM, Basal NI. D.C. cold cathode penning ion source for low energy accelerator. Radiation Physics and Chemistry. 1996;47(5):669‒671.
  10. Cun H, Spescha A, Schuler A, et al. Characterization of a cold cathode Penning ion source for the implantation of noble gases beneath 2D monolayers on metals: Ions and neutrals. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2016;34(2).
  11. Nouria Z, Lib R, Holta RA, et al. A Penning sputter ion source with very low energy spread. Nuclear Instruments and Methods in Physics Research Section A. 2010;614(2):174–178.
  12. Das BK, Das R, Shyam A. Solid State Physics, Proceedings of The 55th Dae Solid State Physics Symposium 2010. AIP Conference Proceedings. 2011;1349(1):447‒448.
  13. Manova D, Gerlach JW, Mandl S. Thin Film Deposition Using Energetic Ions. Materials. 2010;3(8):4109‒4141.
  14. Ramsey S. Electricity and Magnetism: An introduction to the mathematical theory. Cambridge University Press. 1st ed. 2009; 284 p.
Creative Commons Attribution License

©2018 Mostafa, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.