Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Mini Review Volume 1 Issue 5

The universal vector

Paul TE Cusack

Park Ave, Saint John, Canada

Correspondence: Paul TE Cusack, BScE, Dule 23 Park Ave,Saint John, NB E2J 1R2, Canada, Tel 5066 5263 50

Received: August 01, 2018 | Published: September 12, 2018

Citation: Cusack PTE. The universal vector. Open Acc J Math Theor Phy. 2018;1(5):186-190. DOI: 10.15406/oajmtp.2018.01.00032

Download PDF

Abstract

This paper takes Astrotheology mathematics and puts some of it in terms of linear algebra. All of physics can be described by two vectors. The dot product and cross product has important results. Here we describe the Gravity Equation. And we provide the coordinates of the universal and what they mean.

Keywords: linear algebra, astrotheology, gravity, mass, space

Introduction

In this paper, we provide calculations on Astrotheology from Linear Algebra.1 Einstein was wrong about no absolute space and time and these calculations show how. Gravity, Mass, Density, and the zero vectors are used in calculations that show that the universe can be modelled as a tupple. We begin with gravity.

Product

G0=|D| c c Ω

=4×3×3×π

=6.52

Dot Product

M= E·t==|E|t|cos θ=0

Sum

M0=|D| +c+c +Ω

=4+3+4+π

=118.72

Mass in the periodic table of the elements.

Cross Product

s=E×t=|E||tsin θ

G0· M=1

xnx=1

xnx2/2=1

x2n=2

Let n=4

x8=2

x=1.0905=1/917

=csc 66.6°

Dot Product /Cross Product=cosθ /sinθ=cot θ=ρ

θ=117.02

=Mass=2.04 rads

xnx=6.52=118

n=4

x2n=/776

x=126.7

=ρ

Z=ρ[cos φ+i sin φ]

0.917i=1.5

1/ [xnx ] i=1.5

i=1.5 xnx

=1.5 x4x2/2 

[1.5/2] x6

x=116.28 =Mass =1.86

i=1/G MnMn

i=M2+n/G

i=i6/G

G=[1/i]M6

=1.618 M6

=1.618(4.486)6

=131866

=1+1/π

G=E+ freq.

G=1/t+1/T

G=1/t+t

G=1+t]/t

G1+1/1=2=dM/dt

G=1/t+1/T

=1/1+1/251=1+1/(1/4)=5

x2x1=5

Roots 3, -2 = Eigenvalues.

F=G [M1 M2 ]/R2

2(2)(1)/(12)

=4

|D|

=Ma ρ

=Max

=Ma xnx

=Ma (1)

=Ma

=F

Golden mean

x2x1=0

:  x+iy

(x+iy)2(x+iy)1=0

Reduces to the bilinear form

x2y2=1

x=a11x  +a12y

=a21 x+a22y

Rotation matrix

Let θ=π 

π=Ω

||cos θ sin θ/sin θ   cos θ||=[1   0   /0  1]

[1  0  /  0  /1 ] [a  b]

[a+0b  / 0a b]  = [a   b] 

[x  y ][a11  a22==1

x a11  a22 y1=0

a11=x

a22=y

x2y21=0

a11=Ax

a22=Cy

Ax2+2Bxy+Cy2=D

(1)x2+2(1)xy+1y2=0

x22xy+y2=0 

(1/2)22(1/2)(1/(2) + (1/2)2=0

1/2 1+1/2=0

0=0

x22xy+y2=0 

(xy)(xy)=0

x=y

a=v

P=F

Figure 1

Figure 1 The universal vector space.

396,0
412,142
462,142
462,396
396,396
110,254
254,0
0,0
−−−−−
2492, 1330

[T,s]

Multiple be Operator Matrix

[cos 60°    sin 60°,  sin 60°,  cos 60°] 

[1/2    3/2,   3/2    1/2]

|D|=[1/2 × 1/2   3/2 3/2]

[1/4  3/4]

=[1/2]

Multiple by [T,s]

[1/2 251, 4/3 1/2] 

[1/8, 2/3]

[Emin, Antigravity]

Subspace & the zero vector.

(1,0,0) =(t, E, s)is Perpendicular to 

(0, 1,0)=(t, E,s) 

This point lies on the y axis on the E-t golden mean parabola. 

T=1/freq.=1/(1/π)=π

s=|E|t|sin θ

E=t=1

s=sin θ

θ=sin 60°

=3/2

=0.866

(3,4,0)Perpendicular to (4,3,0) 

(-x,y,z) Perpendicular to (y,x,z)

t=E

y=x  E=t

z=z

L1=(x2+y2+z2)=L2=(x2+y2+z2) 

(t, E,s)= (E, t,s)

(Likewise, for vectors in the III And IV Quadrant.

Multiple be Operator Matrix

[cos 60°    sin 60°,  sin 60°  cos 60°] 

[1/2    3/2,   3/2    1/2]

|D|=[1/2 × 1/2   3/2 3/2]

[1/4  3/4]

Multiple by [T,s]

1/8 +1,   3/8+1

=Emin+1,   S.F. +1]

Period T=251

[2492/251,  1330/251] 

[T,s] 

[π, sin π] 

[π, 0]

Subspace on te zero vector.

(1,0,0) =(t, E, s)

is Perpendicular to 

(0, 1,0)=(t, E,s)

This point lies on the y axis on the E-t golden mean parabola. 

T=1/freq.=1/(1/π)=π

s=|E|t|sin θ

E=t=1

s=sin θ

=sin 60°

=3/2

=0.866

(3,4,0) Perpendicular to (4,3,0)

(-x,y,z) Perpendicular to (y,x,z)

t=E

y=x  E=t

z=z

L1=(x2+y2+z2)=L2=(x2+y2+z2)

(t, E,s)= (E, t,s)

(Likewise, for vectors in the III and IV Quadrant.

Because you can’t have negative K.E., there is no such thing as negative time, so there is no orthogonal vector to the zero vectors (Figure 2). 

Figure 2 Orthogonal vectors.

s=|E||t|sin θ

Let s=z=0

sin θ=0

θ=π

E=t

E=t

s=s=0

E=1/t

1=t2

t=(1)=i

E=t

E=1/t

E2=1

E=±1

εεF=0

x+iy

y=0

x εR

x+iy=0

E+ t × t=0

E=t2

E=t2

t=1=i

E+t×t=0

E+t2=1

1+12=2=dM/dt

E+t2=0

1+(1)=0

0=0 True!

Since time is K.E., and K.E is time, we measure K.E. relative to something - the zero vector. We also know that Mass is the dot product of E and t (Figure 3).

Figure 3 The zero vector.

M=|E||t| cos θ

M=(1)(1) cos θ

θ=1 rad

And we know that Momentum, P, or v=cos θ

So K.E. =1/2 Mv2

=1/2 (cos θ) (cos θ)2

=(cos θ)3/2

=0.785

=1/127.3

=1/ρ

ρ=Density

This disproves Einstein’s Relativity. There is a stationary point in the universe. It is the Zero Vector. Space and time are absolute.2

So this is how the universe crystallized into existence.3

M=|E||t| cos θ

But E=P.E. =dM/dt=2

M=(dM/dt)(1)cos θ

s=|E|t| sinθ

s=(dM/dt)(1) sin θ

Density ρ =M/ Vol.

=[dM/dt cos θ]/[dM/dt sin θ]

=cos θ /sinθ

=cot θ

cot π/3=1/3 =0.5774=1.0076 rads= Mass  H+

Equation of a plane

(ra)n=0

(ra)(ba)×(ca)=0

(ra)n=0 {r(0,0,0)}(15,0,0)=

|E||t|cos θ=0

a=(0,0,0)= position vector

(ba)=(3,0,0)(0,0,π)=(3,0,π)

(Ca)=(3,0,0)(2,0,0)=(5,0,0)

n=(3,0,π) × (5,0,0)=(15,0,0)Mass Gap

=1/G=3/2

n=c/ (dM/dt)=3/2= 1/G

(ra)n=0

[r (0,0,0)][(3,0,0)]

=|r||0|cos θ

=0 

rεR

[r(0,0,0)]  [(15,0,0)]=0

|r||15| cos θ=0

r=0 or cos θ=0

θ=π/2, 3π/2  

r is orthogonal to n

s=|E||t| sin θ

0= 0(0)(0)sin θ

θ=±π; ±2π

E=0 =t=0

M=|E||t| cos θ

M= cos π=1 

G0=t2

=02=0

E=t=s=G0=0

M=1

ρ=M/Vol. =1(χ)/19905=5.024π

19905 (4π)=χ

χ=250.1=Period T

Cusack’s gravity equation

G0=ρ c c

G0=ρ c1.5

G0=ρcMASS GAP

=4π ×3×3

=6.522

|[40000300003000oπ]|=G0

[4,3,3,π][1111]=M

[|D|CCΩ][EtsM]=M

Figure 4

Figure 4 Mass an the Ln function.

Add two vectors

[4  3  3  π]  + [1  1  1  1]

={5  4  2.73   4.14 ]

length =[((52)+(42))+(2.732)+(4.142)]

=781.8=π/4=45°

=1/ρ

1/ρ=Vol. /Mass= [dVol. /dt]/[dM/dt]

=19905/3/ 2

=57.46=1 rad

Universal vector

[4  3  3  π]=615

[1 1 1 1]=6

For the angle of this universal vector

c2=a2+b22abcos θ

c2=738692=62+0.61522 (6)(0.615) cos θ

cos θ=0.7393

θ=7387=1/ 0.4233

=1/ cuz

=1/ (πe)

So the Universal Vector produces G0; ρ,t=E=1 rad;;cuz (or PTEC)(Figure 5).

Figure 5 The universal vector and time.

The Norm

||v||= (u,v)

For the universal vector

=(4, 3, 3, π)

=G0

But we know G=t2

=t

And,

||λt||=|λ||||t||

λ=Eigen value=3

1 rad= 57.29°

3 t=3 (57.29°)

=3=Eigen vector

Characteristic Equation

x2x1=0

Let x=π= Operator

π2π1=57.29° = 1 rad

Conclusion

We see that the universe can be well modelled by linear algebra.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Axler S. Linear Algebra Done Right. 3rd ed. Springer, USA; 2015.
  2. Shilov G. Linear Algebra. USA: Dover; 1971.
  3. Cusack P. Astrotheology, Cusack’s universe. J of Phys Math. 2016;7(2):8.
Creative Commons Attribution License

©2018 Cusack. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.