Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Conceptual Paper Volume 1 Issue 4

Similarity transformation in PT-symmetry: limitations

Biswanath Rath

Department of Physics, North Orissa University, India

Correspondence: Biswanath Rath, Department of Physics,North Orissa University, Takatpur, Baripada-757003, Odisha,India

Received: July 26, 2018 | Published: August 21, 2018

Citation: Rath B. Similarity transformation in PT-symmetry: limitations. Open Acc J Math Theor Phy. 2018;1(4):164-166. DOI: 10.15406/oajmtp.2018.01.00028

Download PDF

Abstract

We show that proper use of similarity transformation in PT-symmetry operator can justify real spectrum. Further we discuss its limitation. As an example of this we consider harmonic oscillator to demonstrate this. PACS no: 03.65.G; 11.30.Pb

Keywords: spectral reality, harmonic oscillator, similarity transformation, PT-symmetry

Introduction

Fundamental postulates of quantum mechanics are based on self-ad joint operator.

H= H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0Jaamisa8aadaahaaqabKqbGeaapeGaaiii Gaaaaaa@3BAC@  (1)

Almost all the text books discuss real spectra relating to self adjoint operator.#ref1 However contrary to this common understanding, Bender and Boettecher2 have introduced PT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =9q8qjab=nr8ubaa@4515@ -symmetry. Here P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =9q8qbaa@4338@ -stands for parity operator having behavior of space reflection: P( x,y,z )( x,y,z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =9q8qnaabmaapaqaa8qacaWG4bGaaiilaiaadMhacaGGSaGaamOEaa GaayjkaiaawMcaaiabgkziUoaabmaapaqaa8qacqGHsislcaWG4bGa aiilaiabgkHiTiaadMhacaGGSaGaeyOeI0IaamOEaaGaayjkaiaawM caaaaa@53F0@ and T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =nr8ubaa@4340@ -stands for time reversal operator, having behavior of time reversal: T(i)I. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =nr8ujaacIcacaWGPbGaaiykaiabgkziUkaadMeacaGGUaaaaa@48F4@ In fact under PT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =9q8qjab=nr8ubaa@4515@ -operator the commutation relation.

[ x,p ]= i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaWdaeaapeGaamiEaiaacYcacaWGWbaacaGLBbGaayzx aaGaeyypa0JaaiiOaiaadMgaaaa@3FA4@  (2)

Remains invariant. In order to co-relate real spectra with PT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =9q8qjab=nr8ubaa@4515@ - operator, Mostafazadeh3,4 proposed the word pseudo-hermitisity and introduced the condition

Ω H PT Ω 1 =h= h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGPoGaamisa8aadaWgaaqcfasaamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaWdbiab=9q8qjab=nr8ubqcfa4dae qaa8qacaqGPoWdamaaCaaabeqcfasaa8qacqGHsislcaaIXaaaaKqb akabg2da9iaadIgacqGH9aqpcaWGObWdamaaCaaajuaibeqaa8qaca GGGacaaaaa@5119@  (3)

According to author2 all PT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =9q8qjab=nr8ubaa@4515@ -invariant operators satisfying above condition must possess real iso-spectra with the parent operator.3‒6 In other words real iso-spectra nature exists between H and h. The condition proposed in Eq(2) is that Ω must be a bounded one. In order to justify that author3,4 showed that unbound operator Ω

will lead non-iso-spectral behaviour.3,4 The example proposed by the author3,4 is as follows

Ω 1 = e ± x 3 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGPoWdamaaBaaajuaibaWdbiaaigdaa8aabeaajuaGpeGa eyypa0JaamyzamaaCaaajuaibeqaaiabgglaXMqbaoaalaaajuaiba GaamiEaKqbaoaaCaaajuaibeqaaiaaiodaaaaabaGaaG4maaaaaaaa aa@432D@  (4)

Ω 1 1 [ h= p 2 + x 4 ] Ω 1 = p 2 ±i( x 2 p+p x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGPoWdamaaDaaajuaibaWdbiaaigdaa8aabaWdbiabgkHi Tiaaigdaaaqcfa4aamWaa8aabaWdbiaadIgacqGH9aqpcaWGWbWdam aaCaaajuaibeqaa8qacaaIYaaaaKqbakabgUcaRiaadIhapaWaaWba aKqbGeqabaWdbiaaisdaaaaajuaGcaGLBbGaayzxaaGaaeyQd8aada Wgaaqcfasaa8qacaaIXaaapaqabaqcfa4dbiabg2da9iaadchapaWa aWbaaKqbGeqabaWdbiaaikdaaaqcfaOaeyySaeRaamyAaiaacIcaca WG4bWdamaaCaaajuaibeqaa8qacaaIYaaaaKqbakaadchacqGHRaWk caWGWbGaamiEa8aadaahaaqcfasabeaapeGaaGOmaaaajuaGpaGaai ykaaaa@5A08@  (5)

In fact author's justication in above example to stress the bounded nature on Ω is justified.3,4

On the other hand contrary to above justification, we feel only suitably or properly selected bounded operator will yield only real spectra. In fact if Ω is not properly selected then one may lose the iso- spectral nature between H PT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWdamaaBaaajuaibaWefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaapeGae83dXdLae83eXtfajuaGpaqabaaaaa@46ED@ and h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObWdamaaCaaabeqcfasaa8qacaGGGacaaKqba+aacaGG Uaaaaa@3B48@ In other words similarity transformation has certain limitations. However beginners or first readers in quantum mechanics may not accept it so easily. In order to convince the all interested readers, we present few examples relating to harmonic oscillator. The purpose of considering harmonic oscillator is that its wave function and eigenvalues are exactly known [I], the details are given below.

Similarity transformation and spectral invariance

Consider an operator having real eigenvalues as given below

Hψ>=Eψ> MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeqiYdKNaeyOpa4Jaeyypa0JaamyraiabeI8a5jab g6da+aaa@4022@  (6)

Let us consider another operator having the same eigenvalue as

hΦ>=Φ> MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaeuOPdyKaeyOpa4Jaeyypa0JaeyicI4SaeuOPdyKa eyOpa4daaa@4054@  (7)

Then

m | ψ m >< ψ m |= m | Φ m >< Φ m |=I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHris5daWgaaqcfasaaiaad2gaaKqbagqaaiaabYhacqaH ipqEpaWaaSbaaKqbGeaapeGaamyBaaqcfa4daeqaa8qacqGH+aGpcq GH8aapcqaHipqEpaWaaSbaaKqbGeaapeGaamyBaaWdaeqaaKqbakaa cYhacqGH9aqppeGaeyyeIu+aaSbaaKqbGeaacaWGTbaajuaGbeaaca GG8bGaeuOPdy0damaaBaaajuaibaWdbiaad2gaaKqba+aabeaacqGH +aGppeGaeyipaWJaeuOPdy0damaaBaaajuaibaWdbiaad2gaaKqba+ aabeaacaGG8bWdbiabg2da9iaadMeaaaa@5874@  (8)

And

m E m | ψ m >< ψ m |= m m | Φ m >< Φ m | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHris5daWgaaqcfasaaiaad2gaaeqaaKqbakaadweadaWg aaqcfasaaiaad2gaaKqbagqaaiaabYhacqaHipqEpaWaaSbaaKqbGe aapeGaamyBaaWdaeqaaKqba+qacqGH+aGpcqGH8aapcqaHipqEpaWa aSbaaKqbGeaapeGaamyBaaqcfa4daeqaaiaacYhacqGH9aqppeGaey yeIu+aaSbaaKqbGeaacaWGTbaajuaGbeaacqGHiiIZdaWgaaqcfasa aiaad2gaaKqbagqaaiaacYhacqqHMoGrpaWaaSbaaKqbGeaapeGaam yBaaqcfa4daeqaaiabg6da+8qacqGH8aapcqqHMoGrpaWaaSbaaKqb GeaapeGaamyBaaqcfa4daeqaaiaacYhaaaa@5C7C@  (9)

If E m = m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWaaSbaaKqbGeaacaWGTbaajuaGbeaacqGH9aqpcqGH iiIZdaWgaaqcfasaaiaad2gaaKqbagqaaaaa@3ECB@ then we have

< ψ m |H| ψ m >=  E m =< ψ m S 1 ( SH S 1 )S ψ m >=< Φ m |h| Φ m > MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH8aapcqaHipqEpaWaaSbaaKqbGeaapeGaamyBaaWdaeqa aKqbakaabYhapeGaaeisaiaabYhacqaHipqEpaWaaSbaaKqbGeaape GaamyBaaqcfa4daeqaaiabg6da+8qacqGH9aqpcaGGGcGaamyra8aa daWgaaqcfasaa8qacaWGTbaajuaGpaqabaWdbiabg2da9iabgYda8i abeI8a59aadaWgaaqcfasaa8qacaWGTbaajuaGpaqabaWdbiaadofa paWaaWbaaKqbGeqabaWdbiabgkHiTiaaigdaaaqcfa4aaeWaa8aaba WdbiaadofacaWGibGaam4ua8aadaahaaqcfasabeaapeGaeyOeI0Ia aGymaaaaaKqbakaawIcacaGLPaaacaWGtbGaeqiYdK3damaaBaaaju aibaWdbiaad2gaaKqba+aabeaacqGH+aGppeGaeyypa0JaeyipaWJa euOPdy0damaaBaaajuaibaWdbiaad2gaaKqba+aabeaacaGG8bWdbi aadIgacaGG8bGaeuOPdy0damaaBaaajuaibaWdbiaad2gaaKqba+aa beaacqGH+aGpaaa@6C49@  (10)

Implies the following

SH S 1 =h  S 1 hS=H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbGaamisaiaadofapaWaaWbaaKqbGeqabaWdbiabgkHi TiaaigdaaaqcfaOaeyypa0JaamiAaiaacckacqGHuhY2caWGtbWdam aaCaaajuaibeqaa8qacqGHsislcaaIXaaaaKqbakaadIgacaWGtbGa eyypa0Jaamisaaaa@4983@  (11)

Φ m >=S| ψ m > MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrpaWaaSbaaKqbGeaapeGaamyBaaWdaeqaaKqba+qa cqGH+aGpcqGH9aqpcaWGtbGaaiiFaiabeI8a59aadaWgaaqcfasaa8 qacaWGTbaajuaGpaqabaWdbiabg6da+aaa@4429@  (12)

And < Φ m |=< ψ m | S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH8aapcqqHMoGrpaWaaSbaaKqbGeaapeGaamyBaaqcfa4d aeqaaiaacYhapeGaeyypa0JaeyipaWJaeqiYdK3damaaBaaajuaiba Wdbiaad2gaaKqba+aabeaacaGG8bWdbiaadofapaWaaWbaaKqbGeqa baWdbiabgkHiTiaaigdaaaaaaa@4738@  (13)

In the case of bounded operator S 1 S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbWdamaaCaaajuaibeqaa8qacqGHsislcaaIXaaaaKqb akabgcMi5kaadofapaWaaWbaaeqajuaibaWdbiaaccciaaaaaa@3F28@ even then normalization is conserved.

< ψ m || ψ m >=< Φ m || Φ m >=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyipaW deaaaaaaaaa8qacqaHipqEpaWaaSbaaKqbGeaapeGaamyBaaqcfa4d aeqaaiaacYhacaGG8bWdbiabeI8a59aadaWgaaqcfasaa8qacaWGTb aapaqabaqcfaOaeyOpa4Jaeyypa0JaeyipaWZdbiabfA6ag9aadaWg aaqcfasaa8qacaWGTbaajuaGpaqabaGaaiiFaiaacYhapeGaeuOPdy 0damaaBaaajuaibaWdbiaad2gaaKqba+aabeaacqGH+aGpcqGH9aqp caaIXaaaaa@516C@  (14)

This helps us to define few relations as

h= m E m | Φ m >< Φ m |= m E m | Φ m >< ψ m | S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaeyypa0JaeyyeIu+aaSbaaKqbGeaacaWGTbaajuaG beaacaWGfbWaaSbaaKqbGeaacaWGTbaajuaGbeaacaqG8bGaeuOPdy 0damaaBaaajuaibaWdbiaad2gaaKqba+aabeaapeGaeyOpa4Jaeyip aWJaeuOPdy0damaaBaaajuaibaWdbiaad2gaaKqba+aabeaacaGG8b Gaeyypa0ZdbiabggHiLpaaBaaajuaibaGaamyBaaqcfayabaGaamyr amaaBaaajuaibaGaamyBaaqcfayabaGaaiiFaiabfA6ag9aadaWgaa qcfasaa8qacaWGTbaajuaGpaqabaGaeyOpa4ZdbiabgYda8iabeI8a 59aadaWgaaqcfasaa8qacaWGTbaajuaGpaqabaGaaiiFaiaacofada ahaaqcfasabeaacqGHsislcaaIXaaaaaaa@6030@ (15)

H= m E m | ψ m >< ψ m |= m E m S 1 | Φ m >< ψ m | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaeyyeIu+aaSbaaKqbGeaacaWGTbaajuaG beaacaWGfbWaaSbaaKqbGeaacaWGTbaajuaGbeaacaqG8bGaeqiYdK 3damaaBaaajuaibaWdbiaad2gaaKqba+aabeaapeGaeyOpa4Jaeyip aWJaeqiYdK3damaaBaaajuaibaWdbiaad2gaaKqba+aabeaacaGG8b Gaeyypa0ZdbiabggHiLpaaBaaajuaibaGaamyBaaqcfayabaGaamyr amaaBaaajuaibaGaamyBaaqcfayabaWdaiaacofadaahaaqcfasabe aacqGHsislcaaIXaaaaKqba+qacaGG8bGaeuOPdy0damaaBaaajuai baWdbiaad2gaaKqba+aabeaacqGH+aGppeGaeyipaWJaeqiYdK3dam aaBaaajuaibaWdbiaad2gaa8aabeaajuaGcaGG8baaaa@6165@  (16)

< Φ n || Φ m >=0=< ψ n || Φ m >=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyipaW deaaaaaaaaa8qacqqHMoGrpaWaaSbaaKqbGeaapeGaamOBaaqcfa4d aeqaaiaacYhacaGG8bWdbiabfA6ag9aadaWgaaqcfauaa8qacaWGTb aapaqabaqcfaOaeyOpa4Jaeyypa0JaaGimaiabg2da9iabgYda88qa cqaHipqEpaWaaSbaaKqbGeaapeGaamOBaaqcfa4daeqaaiaacYhaca GG8bWdbiabfA6ag9aadaWgaaqcfasaa8qacaWGTbaajuaGpaqabaGa eyOpa4Jaeyypa0JaaGymaaaa@52FA@  (17)

And the restricted normalization constant

[ < Φ n || ψ n > OR< ψ n || Φ n > ]1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaWdaeaapeGaeyipaWJaeuOPdy0damaaBaaajuaibaWd biaad6gaaKqba+aabeaacaGG8bGaaiiFa8qacqaHipqEpaWaaSbaaK qbGeaapeGaamOBaaqcfa4daeqaaiabg6da+8qacaGGGcGaam4taiaa dkfacqGH8aapcqaHipqEpaWaaSbaaKqbGeaapeGaamOBaaqcfa4dae qaaiaacYhacaGG8bWdbiabfA6ag9aadaWgaaqcfasaa8qacaWGUbaa juaGpaqabaGaeyOpa4dapeGaay5waiaaw2faaiabgcMi5kaaigdaaa a@561B@  (18)

This relation we want to address again in example-1 in order to justify the inequality behavior. It is seen that previous work3,4 incorrectly used the relation bi-orthonormality condition

< Φ m || ψ n >= δ m,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH8aapcqqHMoGrpaWaaSbaaKqbGeaapeGaamyBaaqcfa4d aeqaaiaacYhacaGG8bWdbiabeI8a59aadaWgaaqcfasaa8qacaWGUb aapaqabaqcfaOaeyOpa4Jaeyypa0JaeqiTdq2aaSbaaKqbGeaacaWG TbGaaiilaiaad6gaaeqaaaaa@48C7@  (19)

The above relation admits (i) m = n and (ii) m n. In fact the case (i) m = n cannot be incorporated along with case (ii). Hence it is misleading the concept.

Exactly solvable harmonic oscillator

Here we consider the Harmonic Oscillator6 as

H= h 11 p 2 + h 22 x 2 +i h 12 (xp+px) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaamiAa8aadaWgaaqcfasaa8qacaaIXaGa aGymaaqcfa4daeqaa8qacaWGWbWdamaaCaaajuaibeqaa8qacaaIYa aaaKqbakabgUcaRiaadIgapaWaaSbaaKqbGeaapeGaaGOmaiaaikda a8aabeaajuaGpeGaamiEa8aadaahaaqcfasabeaapeGaaGOmaaaaju aGcqGHRaWkcaWGPbGaamiAa8aadaWgaaqcfasaa8qacaaIXaGaaGOm aaqcfa4daeqaa8qacaGGOaGaamiEaiaadchacqGHRaWkcaWGWbGaam iEaiaacMcaaaa@525E@  (20)

Having energy eigenvalue

n = h 11 h 22 + h 12 2 ( 2n+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHiiIZpaWaaSbaaKqbGeaapeGaamOBaaqcfa4daeqaa8qa cqGH9aqpdaGcaaWdaeaapeGaamiAa8aadaWgaaqcfasaa8qacaaIXa GaaGymaaWdaeqaaKqba+qacaWGObWdamaaBaaajuaibaWdbiaaikda caaIYaaajuaGpaqabaWdbiabgUcaRiaadIgapaWaa0baaKqbGeaape GaaGymaiaaikdaa8aabaWdbiaaikdaaaaajuaGbeaadaqadaWdaeaa peGaaGOmaiaad6gacqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaa@4DB0@  (21)

A: Real iso-spectra via bounded operator

Consider the operator

H= p 2 +i(xp+px) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHRaWkcaWGPbGaaiikaiaadIhacaWGWbGaey4kaSIaam iCaiaadIhacaGGPaaaaa@4449@  (22)

And

S= e x 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGtbGaeyypa0JaamyzamaaCaaabeqcfasaaKqbaoaalaaa juaibaGaeyOeI0IaamiEaKqbaoaaCaaajuaibeqaaiaaikdaaaaaba GaaGOmaaaaaaaaaa@3FFB@  (23)

So that

h= h = p 2 + x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaeyypa0JaamiAa8aadaahaaqabKqbGeaapeGaaiii GaaajuaGcqGH9aqpcaWGWbWdamaaCaaajuaibeqaa8qacaaIYaaaaK qbakabgUcaRiaadIhapaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@4338@  (24)

It is seen that one has the iso-spectra behavior.

H  E n =2n+1= n h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaaiiOaiabgkziUkaadweapaWaaSbaaKqbGeaapeGa amOBaaqcfa4daeqaa8qacqGH9aqpcaaIYaGaamOBaiabgUcaRiaaig dacqGH9aqpcqGHiiIZpaWaaSbaaKqbGeaapeGaamOBaaWdaeqaaKqb a+qacqGHqgcRcaWGObaaaa@4A4F@  (25)

Let us consider the ground state function as

Φ 0 = 1 π 1/4 e x 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHMoGrpaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaa8qa cqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqiWda3damaaCa aabeqcfasaaiaaigdacaGGVaGaaGinaaaaaaqcfa4dbiaadwgapaWa aWbaaeqajuaibaqcfa4dbmaalaaajuaipaqaa8qacqGHsislcaWG4b qcfa4damaaCaaajuaibeqaa8qacaaIYaaaaaWdaeaapeGaaGOmaaaa aaaaaa@48DF@  (26)

Then

ψ 0 >= S 1 Φ 0 >= 1 π 1/4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHipqEdaWgaaqcfasaaiaaicdaaeqaaKqbakabg6da+iab g2da9iaadofapaWaaWbaaKqbGeqabaWdbiabgkHiTiaaigdaaaqcfa OaeuOPdy0damaaBaaajuaibaWdbiaaicdaaKqba+aabeaapeGaeyOp a4Jaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiabec8aWnaaCa aabeqcfasaaiaaigdacaGGVaGaaGinaaaaaaaaaa@4B68@  (27)

And

< Φ 0 || ψ 0 > =< Φ 0 | S 1 | Φ 0 >= 1 π e x 2 2  = 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH8aapcqqHMoGrpaWaaSbaaKqbGeaapeGaaGimaaqcfa4d aeqaaiaacYhacaGG8bWdbiabeI8a59aadaWgaaqcfasaa8qacaaIWa aapaqabaqcfaOaeyOpa4ZdbiaacckacqGH9aqpcqGH8aapcqqHMoGr paWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaaiaacYhacaWGtbWaaW baaKqbGeqabaGaeyOeI0IaaGymaaaajuaGcaGG8bWdbiabfA6ag9aa daWgaaqcfasaa8qacaaIWaaapaqabaqcfaOaeyOpa4Jaeyypa0Zdbm aalaaapaqaa8qacaaIXaaapaqaa8qadaGcaaWdaeaapeGaaeiWdaqa baaaamaawahabeqcfaYdaeaapeGaeyOeI0IaeyOhIukapaqaa8qacq GHEisPaKqba+aabaWdbiabgUIiYdaacaWGLbWdamaaCaaabeqcfasa a8qacqGHsisljuaGdaWcaaqcfaYdaeaapeGaamiEaKqba+aadaahaa qcfasabeaapeGaaGOmaaaaa8aabaWdbiaaikdaaaaaaKqbakaabcka cqGH9aqpdaGcaaWdaeaapeGaaGOmaaqabaGaeyiyIKRaaGymaaaa@6AB4@  (28)

Here we show how the bi-orthonormality relation proposed earlier3,4 is no longer a valid relation.

B(1): Real iso-spectra via bounded operator

Let us consider the reverse case as follows. Let

h= p 2 + x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHRaWkcaWG4bWdamaaCaaajuaibeqaa8qacaaIYaaaaa aa@3F84@  (29)

and H = S 1 hS MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaaeiOaiabg2da9iaadofapaWaaWbaaKqbGeqabaWd biabgkHiTiaaigdaaaqcfaOaamiAaiaadofaaaa@4011@  (30)

using S= e 1 2( 1+ x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbGaeyypa0Jaamyza8aadaahaaqabKqbGeaajuaGpeWa aSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaaikdajuaGdaqadaqcfa YdaeaapeGaaGymaiabgUcaRiaadIhajuaGpaWaaWbaaKqbGeqabaWd biaaikdaaaaacaGLOaGaayzkaaaaaaaaaaa@4448@  (31)

we get H= p 2 +i( Dp+pD ) D 2 + x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHRaWkcaWGPbWaaeWaa8aabaWdbiaadseacaWGWbGaey 4kaSIaamiCaiaadseaaiaawIcacaGLPaaacqGHsislcaWGebWdamaa Caaajuaibeqaa8qacaaIYaaaaKqbakabgUcaRiaadIhapaWaaWbaaK qbGeqabaWdbiaaikdaaaaaaa@4AA9@  (32)

Where = x ( 1+ x 2 ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpdaWcaaWdaeaapeGaamiEaaWdaeaapeWaaeWaa8aa baWdbiaaigdacqGHRaWkcaWG4bWdamaaCaaabeqcfasaa8qacaaIYa aaaaqcfaOaayjkaiaawMcaa8aadaahaaqabKqbGeaapeGaaGOmaaaa aaqcfaOaaiOlaaaa@4290@  Interestingly both hand H correspond to same eigenvalues

i.e. E n =2n+1= n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWdamaaBaaajuaibaWdbiaad6gaaKqba+aabeaapeGa eyypa0JaaGOmaiaad6gacqGHRaWkcaaIXaGaeyypa0JaeyicI48dam aaBaaajuaibaWdbiaad6gaaKqba+aabeaacaGGUaaaaa@443D@ However one can arrive at the conclusion

< ψ 0 || Φ 0 >1< Φ 0 || ψ 0 > MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH8aapcqaHipqEpaWaaSbaaKqbGeaapeGaaGimaaWdaeqa aKqbakaacYhacaGG8bWdbiabfA6ag9aadaWgaaqcfasaa8qacaaIWa aajuaGpaqabaGaeyOpa4JaeyiyIKRaaGymaiabgYda88qacqqHMoGr paWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaaiaacYhacaGG8bWdbi abeI8a59aadaWgaaqcfasaa8qacaaIWaaapaqabaqcfaOaeyOpa4da aa@5047@  (33)

Interested reader can use simple computational work to realize the same.

B(2): Complex iso-spectra via bounded operator

H= p 2 5 x 2 +i(xp+px) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHsislcaaI1aGaamiEa8aadaahaaqcfasabeaapeGaaG OmaaaajuaGcqGHRaWkcaWGPbGaaiikaiaadIhacaWGWbGaey4kaSIa amiCaiaadIhacaGGPaaaaa@48AB@  (34)

and using above transformation(first) we get

h= p 2 4 x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHsislcaaI0aGaamiEa8aadaahaaqcfasabeaapeGaaG Omaaaaaaa@404D@  (35)

C: Unequal spectra via bounded operator

H= x 2 +i(x|p|+|p|x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaamiEa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHRaWkcaWGPbGaaiikaiaadIhacaGG8bGaamiCaiaacY hacqGHRaWkcaGG8bGaamiCaiaacYhacaWG4bGaaiykaaaa@4851@  (36)

Using the transformation

S= e |p | 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbGaeyypa0Jaamyza8aadaahaaqabKqbGeaajuaGpeWa aSaaaKqbG8aabaWdbiaacYhacaWGWbGaaiiFaKqba+aadaahaaqcfa sabeaapeGaaGOmaaaaa8aabaWdbiaaikdaaaaaaaaa@4184@  (37)

We get h= p 2 + x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHRaWkcaWG4bWdamaaCaaajuaibeqaa8qacaaIYaaaaa aa@3F84@  (38)

It is seen that using the eigenvalue calculation method, one will get

H  E n =complex 2n+1= n h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaaiiOaiabgkziUkaadweapaWaaSbaaKqbGeaapeGa amOBaaWdaeqaaKqba+qacqGH9aqpcaWGJbGaam4Baiaad2gacaWGWb GaamiBaiaadwgacaWG4bGaeyiyIKRaaiiOaiaaikdacaWGUbGaey4k aSIaaGymaiabg2da9iabgIGio=aadaWgaaqcfasaa8qacaWGUbaapa qabaqcfa4dbiabgcziSkaadIgaaaa@53D5@  (39)

Here the above model remains the same spectra with that of

H= p 2 +i(|x|p+p|x|) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHRaWkcaWGPbGaaiikaiaacYhacaWG4bGaaiiFaiaadc hacqGHRaWkcaWGWbGaaiiFaiaadIhacaGG8bGaaiykaaaa@4849@  (40)

This model has been proposed following the previous work on new class of SUSY.7,8

D(1): Unequal spectra via bounded operator

Consider an operator

H= p 2 x 6 +i( x 3 p+p x 3 )+ x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHsislcaWG4bWdamaaCaaajuaibeqaa8qacaaI2aaaaK qbakabgUcaRiaadMgadaqadaWdaeaapeGaamiEa8aadaahaaqcfasa beaapeGaaG4maaaajuaGcaWGWbGaey4kaSIaamiCaiaadIhapaWaaW baaKqbGeqabaWdbiaaiodaaaaajuaGcaGLOaGaayzkaaGaey4kaSIa amiEa8aadaahaaqcfasabeaapeGaaGOmaaaaaaa@4EBD@  (41)

Using the transformation

S= e x 4 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbGaeyypa0Jaamyza8aadaahaaqabKqbGeaajuaGpeWa aSaaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaais daaaaapaqaa8qacaaI0aaaaaaaaaa@3F90@  (42)

We get

h= p 2 + x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHRaWkcaWG4bWdamaaCaaajuaibeqaa8qacaaIYaaaaa aa@3F84@  (43)

It is seen that using the eigenvalue calculation method, one will get

H  E n =Real complex 2n+1= n h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaaiiOaiabgkziUkaadweapaWaaSbaaKqbGeaapeGa amOBaaqcfa4daeqaa8qacqGH9aqpcaWGsbGaamyzaiaadggacaWGSb GaeyOeI0IaaiiOaiaadogacaWGVbGaamyBaiaadchacaWGSbGaamyz aiaadIhacqGHGjsUcaGGGcGaaGOmaiaad6gacqGHRaWkcaaIXaGaey ypa0JaeyicI48damaaBaaajuaibaWdbiaad6gaa8aabeaajuaGpeGa eyiKHWQaamiAaaaa@597E@  (44)

D(2): Unequal spectra via bounded operator

Consider an operator

H= p 2 x 12 +i( x 5 p+p x 5 )+ x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHsislcaWG4bWdamaaCaaajuaibeqaa8qacaaIXaGaaG OmaaaajuaGcqGHRaWkcaWGPbWaaeWaa8aabaWdbiaadIhapaWaaWba aKqbGeqabaWdbiaaiwdaaaqcfaOaamiCaiabgUcaRiaadchacaWG4b WdamaaCaaajuaibeqaa8qacaaI1aaaaaqcfaOaayjkaiaawMcaaiab gUcaRiaadIhapaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaa@4F78@  (45)

Using the transformation

S= e x 6 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGtbGaeyypa0Jaamyza8aadaahaaqabKqbGeaajuaGpeWa aSaaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaaiA daaaaapaqaa8qacaaI2aaaaaaaaaa@3F94@  (46)

We get h= p 2 + x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGObGaeyypa0JaamiCa8aadaahaaqcfasabeaapeGaaGOm aaaajuaGcqGHRaWkcaWG4bWdamaaCaaajuaibeqaa8qacaaIYaaaaa aa@3F84@  (47)

It is seen that using the eigenvalue calculation method, one will get

H  E n =Real complex 2n+1= n h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaaiiOaiabgkziUkaadweapaWaaSbaaKqbGeaapeGa amOBaaWdaeqaaKqba+qacqGH9aqpcaWGsbGaamyzaiaadggacaWGSb GaeyOeI0IaaiiOaiaadogacaWGVbGaamyBaiaadchacaWGSbGaamyz aiaadIhacqGHGjsUcaGGGcGaaGOmaiaad6gacqGHRaWkcaaIXaGaey ypa0JaeyicI48damaaBaaajuaibaWdbiaad6gaaKqba+aabeaapeGa eyiKHWQaamiAaaaa@597E@  (48)

Conclusion

In this paper we have discussed briefly the correct use of similarity transformation considering harmonic oscillator as an example .So that all the interested reader's including beginner's will know the correct use if it. We notice that while using similarity transformation, one is restricted to use bi-orthonormality condition. Interestingly previous proposition2,3 has ignored it in their mathematical development, which might bring incorrect notion in the minds of first reader ,beginners etc . Further all bounded operator inappropriately associated with similarity transformation may not yield iso-spectra. In above only simple operator has been considered, in fact one can give hundreds of example to show that all bounded operator may not lead iso-spectral relation with the parent Hamiltonian. Lastly authors would like to point out that orthogonality relation should not be mixed with normalization condition to frame a new word2,3 i.e ortho-normality condition in similarity transformation.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Rath. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.