Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Mini Review Volume 1 Issue 5

On the Van der Waals equation

M Aposto

Department of Theoretical Physics, Institute of Atomic Physics, Romania

Correspondence: M Apostol, Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6,PO Box MG-35, Romania

Received: September 29, 2018 | Published: October 15, 2018

Citation: Apostol M. On the Van der Waals equation. Open Acc J Math Theor Phy. 2018;1(5):215-217. DOI: 10.15406/oajmtp.2018.01.00037

Download PDF

Abstract

It is shown that the usual derivations of the van der Waals equation are inconsistent. The van der Waals equation is derived here in a more general framework, which employs the mean-field approximation.

PACS: 05.20.Gg; 51.30.+1; 0570.Ce

Keywords: Van der Waals equation, non-ideal gases, equation of state

Introduction

Let us consider a classical gas of N identical point like particles enclosed in a volume V with the interaction energy

E= 1 2 ij U( r i r j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb Gaeyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaOWa aabuaeaajugibiaadwfakmaabmaabaqcLbsacaWGYbGcdaWgaaqcKf aG=haajugWaiaadMgaaSqabaqcLbsacqGHsislcaWGYbGcdaWgaaqc KfaG=haajugWaiaadQgaaSqabaaakiaawIcacaGLPaaaaKazba4=ba qcLbmacaWGPbGaeyiyIKRaamOAaaWcbeqcLbsacqGHris5aaaa@557A@  (1)

where U( r i r j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb GcdaqadaqaaKqzGeGaamOCaOWaaSbaaKazba4=baqcLbmacaWGPbaa leqaaKqzGeGaeyOeI0IaamOCaOWaaSbaaKqaGeaajugWaiaadQgaaS qabaaakiaawIcacaGLPaaaaaa@4531@ is the two-particle interaction and i, j = 1, 2, ...N denote the particles. For point like particles U( r i r j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb GcdaqadaqaaKqzGeGaamOCaOWaaSbaaKazba4=baqcLbmacaWGPbaa leqaaKqzGeGaeyOeI0IaamOCaOWaaSbaaKqaGeaajugWaiaadQgaaS qabaaakiaawIcacaGLPaaaaaa@4531@  is a function only of | r i r j | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaju gibiaadkhakmaaBaaajqwaa+FaaKqzadGaamyAaaWcbeaajugibiab gkHiTiaadkhakmaaBaaajqwaa+FaaKqzadGaamOAaaWcbeaaaOGaay 5bSlaawIa7aaaa@471A@ .The correction to the free energy is given by

ΔF=Τln( 1 V N e βE d r 1 ..d r N )=        =Τln[ 1 V N ( e βE 1 )d r 1 ..d r N +1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfs5aejaadAeacqGH9aqpcqGHsisliiGacqWFKoavciGGSbGaaiOB aOWaaeWaaeaadaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaWGwbGcda ahaaWcbeqcbasaaKqzadGaamOtaaaaaaGcdaWdbaqaaKqzGeGaamyz aOWaaWbaaSqabKqaGeaajugWaiabgkHiTiabek7aIjaadweaaaqcLb sacaWGKbGaamOCaOWaaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsa caGGUaGaaiOlaiaadsgacaWGYbGcdaWgaaqcbasaaKqzadGaamOtaa WcbeaaaeqabeqcLbsacqGHRiI8aaGccaGLOaGaayzkaaqcLbsacqGH 9aqpaOqaaKqzGeaeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaeyypa0ZdaiabgkHiTiab=r6aujGacYga caGGUbGcdaWadaqaamaalaaabaqcLbsacaaIXaaakeaajugibiaadA fakmaaCaaaleqajeaibaqcLbmacaWGobaaaaaakmaapeaabaWaaeWa aeaajugibiaadwgakmaaCaaaleqajeaibaqcLbmacqGHsislcqaHYo GycaWGfbaaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsa caWGKbGaamOCaOWaaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsaca GGUaGaaiOlaiaadsgacaWGYbGcdaWgaaqcbasaaKqzadGaamOtaaWc beaajugibiabgUcaRiaaigdaaSqabeqajugibiabgUIiYdaakiaawU facaGLDbaaaaaa@8AE4@  (2)

where Τ=1/β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacciqcLbsacq WFKoavcqGH9aqpcaaIXaGaai4laiabek7aIbaa@3DA6@  is the temperature. We assume that the interaction U( r i r j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb GcdaqadaqaaKqzGeGaamOCaOWaaSbaaKazba4=baqcLbmacaWGPbaa leqaaKqzGeGaeyOeI0IaamOCaOWaaSbaaKqaGeaajugWaiaadQgaaS qabaaakiaawIcacaGLPaaaaaa@4531@ is short range (integrable) and, moreover, it proceeds by collisions. More, we assume that the amount of gas is so small, that only one collision takes place at one time; since the free energy is a function of the form F=Nf( Τ,V/N ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb Gaeyypa0JaamOtaiaadAgakmaabmaabaacciqcLbsacqWFKoavcaGG SaGaamOvaiaac+cacaWGobaakiaawIcacaGLPaaajugibiaacYcaaa a@439C@ it follows that the result will be valid for any amount of gas. In addition, we neglect the multi-particle collisions, as for a rarefied gas. In these conditions equation (2) can be written as

ΔF=Τln[ N( N1 ) 2 V 2 ( e βU ( r 1 r 2 ) 1 )d r 1 d r 2 +1 ]      Τln[ 1 N 2 2 V 2 ( 1 e βU ( r 1 r 2 ) )d r 1 d r 2 ]; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfs5aejaadAeacqGH9aqpcqGHsisliiGacqWFKoavciGGSbGaaiOB aOWaamWaaeaadaWcaaqaaKqzGeGaamOtaOWaaeWaaeaajugibiaad6 eacqGHsislcaaIXaaakiaawIcacaGLPaaaaeaajugibiaaikdacaWG wbGcdaahaaWcbeqcKfaG=haajugWaiaaikdaaaaaaOWaa8qaaeaada qadaqaaKqzGeGaamyzaSWaaWbaaKqaGeqajqwaa+FaaKqzadGaeyOe I0IaeqOSdiMaamyvaaaalmaaCaaajeaibeqaaSWaaeWaaKqaGeaaju gWaiaadkhalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugWaiab gkHiTiaadkhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaiaawI cacaGLPaaaaaqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaajugi biaadsgacaWGYbGcdaWgaaWcbaGcdaWgaaqccasaaKqzadGaaGymaa adbeaaaSqabaqcLbsacaWGKbGaamOCaOWaaSbaaKqaGeaakmaaBaaa jeaibaqcLbmacaaIYaaaleqaaaqabaqcLbsacqGHRaWkcaaIXaaale qabeqcLbsacqGHRiI8aaGccaGLBbGaayzxaaqcLbsacqWIdjYoaOqa aKqzGeaeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8 aacqWIdjYocqGHsislcqWFKoavciGGSbGaaiOBaOWaamWaaeaajugi biaaigdacqGHsislkmaalaaabaqcLbsacaWGobGcdaahaaWcbeqcba saaKqzadGaaGOmaaaaaOqaaKqzGeGaaGOmaiaadAfakmaaCaaaleqa jeaibaqcLbmacaaIYaaaaaaakmaapeaabaWaaeWaaeaajugibiaaig dacqGHsislcaWGLbGcdaahaaWcbeqcKfaG=haajugWaiabgkHiTiab ek7aIjaadwfaaaGcdaahaaWcbeqaaOWaaeWaaKqaGeaajugWaiaadk halmaaBaaajqwaa+FaaKqzGbGaaGymaaqcbasabaqcLbmacqGHsisl caWGYbWcdaWgaaqcKfaG=haajugyaiaaikdaaKqaGeqaaaWccaGLOa GaayzkaaaaaaGccaGLOaGaayzkaaqcLbsacaWGKbGaamOCaOWaaSba aKqaGeaajugWaiaaigdaaSqabaqcLbsacaWGKbGaamOCaOWaaSbaaK qaGeaakmaaBaaajeaibaqcLbmacaaIYaaaleqaaaqabaaabeqabKqz GeGaey4kIipaaOGaay5waiaaw2faaKqzGeGaai4oaaaaaa@B6F5@  (3)

if the amount of gas is still sufficiently large (such as to neglect the surface effects), we may write

ΔF=Τln( 1 N 2 V B ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arieGacaWFgbGaeyypa0JaeyOeI0ccciGae4hPdqLaciiBaiaac6ga kmaabmaabaqcLbsacaaIXaGaeyOeI0IcdaWcaaqaaKqzGeGaamOtaO WaaWbaaSqabKazba4=baqcLbmacaaIYaaaaaGcbaqcLbsacaWGwbaa aiaadkeaaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@4C77@  (4)

B= 1 2 ( 1 e βU( r ) ) dr. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb Gaeyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaOWa a8qaaeaadaqadaqaaKqzGeGaaGymaiabgkHiTiaadwgakmaaCaaabe qcaasaaKqzadGaeyOeI0IaeqOSdiMaamyvaSWaaeWaaKaaGeaajugW aiaadkhaaKaaGiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaaeqabe qcLbsacqGHRiI8aiaadsgacaWGYbGaaiOlaaaa@4F43@  (5)

The interaction U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbmacaWGvb WcdaqadaqcaasaaKqzadGaamOCaaqcaaIaayjkaiaawMcaaaaa@3D89@ is very repulsive for small r and very small in comparison with T at large distances; consequently, we may approximate the parameter B as

B=b+a/Τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb Gaeyypa0JaamOyaiabgUcaRiaadggacaGGVaacciGae8hPdqfaaa@3EC0@ , (6)

b=2π 0 2 r 0 dr. r 2 , a=2π 2 r 0 dr. r 2 U( r ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb Gaeyypa0JaaGOmaiabec8aWPWaa8qCaeaajugibiaadsgacaWGYbGa aiOlaiaadkhakmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaai ilaaqcKfaG=haajugWaiaaicdaaKqaGeaajugWaiaaikdacaWGYbWc daWgaaqcbasaaKqzadGaaGimaaqcbasabaaajugibiabgUIiYdGaam yyaiabg2da9iaaikdacqaHapaCkmaapefabaqcLbsacaWGKbGaamOC aiaac6cacaWGYbGcdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaKqaGe aajugWaiaaikdacaWGYbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasa baaaleqajugibiabgUIiYdGaamyvaOWaaeWaaeaajugibiaadkhaaO GaayjkaiaawMcaaKqzGeGaaiilaaaa@688C@  (7)

2 r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaamOCaOWaaSbaaKazba4=baqcLbmacaaIWaaajeaibeaaaaa@3DE2@  being a scale distance which separates the "hard-core" part of U( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbmacaWGvb WcdaqadaqcaasaaKqzadGaamOCaaqcaaIaayjkaiaawMcaaaaa@3D89@ . From equation (4) we get the correction to pressure

Δp= Τ N 2 V 2 B 1 N 2 V B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWGWbGaeyypa0JcdaWcaaqaaGGacKqzGeGae8hPdqLcdaWcaaqa aKqzGeGaamOtaOWaaWbaaSqabKqaGeaajugWaiaaikdaaaaakeaaju gibiaadAfakmaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiaa dkeaaOqaaKqzGeGaaGymaiabgkHiTOWaaSaaaeaajugibiaad6eakm aaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGwbaaaiaa dkeaaaaaaa@4EBA@  (8)

and the total pressure

p= NT V + Τ N 2 V 2 B 1 N 2 V B = NT V ( 1+ N V B 1 N 2 V B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb Gaeyypa0JcdaWcaaqaaKqzGeGaamOtaiaadsfaaOqaaKqzGeGaamOv aaaacqGHRaWkkmaalaaabaacciqcLbsacqWFKoavkmaalaaabaqcLb sacaWGobGcdaahaaWcbeqcKfaG=haajugWaiaaikdaaaaakeaajugi biaadAfakmaaCaaaleqajqwaa+FaaKqzadGaaGOmaaaaaaqcLbsaca WGcbaakeaajugibiaaigdacqGHsislkmaalaaabaqcLbsacaWGobGc daahaaWcbeqcKfaG=haajugWaiaaikdaaaaakeaajugibiaadAfaaa GaamOqaaaacqGH9aqpkmaalaaabaqcLbsacaWGobGaamivaaGcbaqc LbsacaWGwbaaaOWaaeWaaeaajugibiaaigdacqGHRaWkkmaalaaaba WaaSaaaeaajugibiaad6eaaOqaaKqzGeGaamOvaaaacaWGcbaakeaa jugibiaaigdacqGHsislkmaalaaabaqcLbsacaWGobGcdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOvaaaacaWGcbaaaaGc caGLOaGaayzkaaaaaa@6BEA@  (9)

or

p= NT V 1 N 2 V B( 11/N ) 1 N 2 V B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb Gaeyypa0JcdaWcaaqaaKqzGeGaamOtaiaadsfaaOqaaKqzGeGaamOv aaaakmaalaaabaqcLbsacaaIXaGaeyOeI0IcdaWcaaqaaKqzGeGaam OtaOWaaWbaaSqabKazba4=baqcLbmacaaIYaaaaaGcbaqcLbsacaWG wbaaaiaadkeakmaabmaabaqcLbsacaaIXaGaeyOeI0IaaGymaiaac+ cacaWGobaakiaawIcacaGLPaaaaeaajugibiaaigdacqGHsislkmaa laaabaqcLbsacaWGobGcdaahaaWcbeqcKfaG=haajugWaiaaikdaaa aakeaajugibiaadAfaaaGaamOqaaaaaaa@57F0@  (10)

Since N is still much larger than 1, we get p=NT/V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb Gaeyypa0JaamOtaiaadsfacaGGVaGaamOvaaaa@3D3A@ , which shows that the interaction does not change the equation of state of the ideal gases.

It is customary to use the approximation

p= NT V ( 1+ N V B 1 N 2 V B ) NT V ( 1+ NB V )=     = NT V ( 1+ NB V )+ N 2 a V 2 NT VNb + N 2 a V 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadchacqGH9aqpkmaalaaabaqcLbsacaWGobGaamivaaGcbaqcLbsa caWGwbaaaOWaaeWaaeaajugibiaaigdacqGHRaWkkmaalaaabaWaaS aaaeaajugibiaad6eaaOqaaKqzGeGaamOvaaaacaWGcbaakeaajugi biaaigdacqGHsislkmaalaaabaqcLbsacaWGobGcdaahaaWcbeqcba saaKqzadGaaGOmaaaaaOqaaKqzGeGaamOvaaaacaWGcbaaaaGccaGL OaGaayzkaaqcLbsacqWIdjYokmaalaaabaqcLbsacaWGobGaamivaa GcbaqcLbsacaWGwbaaaOWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaa jugibiaad6eacaWGcbaakeaajugibiaadAfaaaaakiaawIcacaGLPa aacqGH9aqpaeaaqaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaaccka paGaeyypa0ZaaSaaaeaajugibiaad6eacaWGubaakeaajugibiaadA faaaGcdaqadaqaaKqzGeGaaGymaiabgUcaROWaaSaaaeaajugibiaa d6eacaWGcbaakeaajugibiaadAfaaaaakiaawIcacaGLPaaajugibi abgUcaROWaaSaaaeaajugibiaad6eakmaaCaaaleqajqwaa+FaaKqz adGaaGOmaaaakiaadggaaeaajugibiaadAfakmaaCaaaleqajqwaa+ FaaKqzadGaaGOmaaaaaaGccqWIdjYodaWcaaqaaKqzGeGaamOtaiaa dsfaaOqaaKqzGeGaamOvaiabgkHiTiaad6eacaWGIbaaaOGaey4kaS YaaSaaaeaajugibiaad6eakmaaCaaaleqajqwaa+FaaKqzadGaaGOm aaaakiaadggaaeaajugibiaadAfakmaaCaaaleqajqwaa+FaaKqzad GaaGOmaaaaaaGccaGGSaaaaaa@8EAF@          (11)

which leads to the van der Waals equation1

( p N 2 a V 2 )( VNb )=NT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiaadchacqGHsislkmaalaaabaqcLbsacaWGobGcdaahaaWcbeqc KfaG=haajugWaiaaikdaaaGccaWGHbaabaqcLbsacaWGwbGcdaahaa WcbeqcKfaG=haajugWaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaeWa aeaacaWGwbGaeyOeI0IaamOtaiaadkgaaiaawIcacaGLPaaajugibi abg2da9iaad6eacaWGubaaaa@4FB8@ (12)

(written, usually, with a<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb GaeyipaWJaaGimaaaa@3AA9@ , as for attractive interaction at large distances. However, if we neglect N 2 B/V1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjY=Pj0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajugibiaad6eakm aaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaamOqaiaac+cacaWGwbGa eSOAI0JaaGymaaaa@404E@ in the denominator of equation (11), we should also neglect NB/V=( N 2 B/V )/N N 2 B/V1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob GaamOqaiaac+cacaGGwbGaeyypa0JcdaqadaqaaKqzGeGaamOtaOWa aWbaaSqabKazba4=baqcLbmacaaIYaaaaKqzGeGaamOqaiaac+caca WGwbaakiaawIcacaGLPaaajugibiaac+cacaWGobGaeSOAI0JaamOt aOWaaWbaaSqabKazba4=baqcLbmacaaIYaaaaKqzGeGaamOqaiaac+ cacaWGwbGaeSOAI0JaaGymaaaa@536C@ in the numerator, which removes any effect of the interaction in the final formula.

The difficulties related to the van der Waals equation have been discussed previously.2 The expansion of the thermodynamic potential Ω=pV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcqGH9aqpcqGHsislcaWGWbGaamOvaaaa@3D56@ in powers of ξ= ( mT/2π 2 ) 3/2 e μ/T 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEcqGH9aqpkmaabmaabaqcLbsacaWGTbGaamivaiaac+cacaaIYaGa eqiWdaNaeS4dHGMcdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOGaay jkaiaawMcaamaaCaaaleqajeaibaqcLbmacaaIZaGaai4laiaaikda aaqcLbsacaWGLbGcdaahaaWcbeqcbasaaKqzadGaeqiVd0Maai4lai aadsfaaaqcLbsacqWIQjspcaaIXaGaaiilaaaa@52B4@ where μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBaaa@39BB@ is the chemical potential (and MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqWIpe cAaaa@392E@ is Planck’s constant),3 exhibits the same drawback; indeed, we Ω=Τln( 1+ξV+.... ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcqGH9aqpcqGHsisliiGacqWFKoavciGGSbGaaiOBaOWaaeWaaeaa jugibiaaigdacqGHRaWkcqaH+oaEcaWGwbGaey4kaSIaaiOlaiaac6 cacaGGUaGaaiOlaaGccaGLOaGaayzkaaaaaa@4907@ and N=Vξ+..., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob Gaeyypa0JaamOvaiabe67a4jabgUcaRiaac6cacaGGUaGaaiOlaiaa cYcaaaa@4024@ such that Ω=pV=Τln(1+N....) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcqGH9aqpcqGHsislcaWGWbGaamOvaiabg2da9iabgkHiTGGaciab =r6aujGacYgacaGGUbGaaiikaiaaigdacqGHRaWkcaGGobGaaiOlai aac6cacaGGUaGaaiOlaiaacMcaaaa@4949@ which is written usually as Ω=pV=Τln(1+N....)NT; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvcqGH9aqpcqGHsislcaWGWbGaamOvaiabg2da9iabgkHiTGGaciab =r6aujGacYgacaGGUbGaaiikaiaaigdacqGHRaWkcaGGobGaaiOlai aac6cacaGGUaGaaiOlaiaacMcacqWIdjYocqGHsislieGacaGFobGa a4hvaiaa+Tdaaaa@4DCF@ however, this approximation is valid for N1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaca WFobGaeSOAI0Jaa8xmaaaa@3AEB@ , a condition which is not satisfied.

The difficulties with the usual derivations of the van der Waals equation reside in the fact that an ensemble of interacting particles are not statistically independent; consequently, we need to solve first the problem of interaction. First, we leave aside correlations (which may lead to sound waves in a gas (collective excitations), which contribute to the statistical properties, though to a lesser extent); then, from equation (1) we see that each particle i is acted by the rest of the particles by a potential

Φ( r i )= j ' U( r i r j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrkmaabmaabaqcLbsacaWGYbGcdaWgaaqcKfaG=haajugWaiaadMga aSqabaaakiaawIcacaGLPaaajugibiabg2da9OWaaabCaeaajugibi aadwfakmaabmaabaqcLbsacaWGYbGcdaWgaaqcKfaG=haajugWaiaa dMgaaSqabaqcLbsacqGHsislcaWGYbGcdaWgaaWcbaGcdaWgaaqcKj aG=haajugWaiaadQgaaWqabaaaleqaaaGccaGLOaGaayzkaaaajqwa a+FaaKqzadGaamOAaaqcKfaG=haajugWaiaacEcaaKqzGeGaeyyeIu oaaaa@5CCA@  (13)

where the prime means ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGQb GaeyiyIKRaaiyAaaaa@3BA7@ ; the total energy can be written as

E= 1 2 i Φ( r i ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGfb Gaeyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaOWa aabuaeaajugibiabfA6agPWaaeWaaeaajugibiaadkhakmaaBaaajq waa+FaaKqzadGaamyAaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaiOl aaqcbasaaKqzadGaamyAaaWcbeqcLbsacqGHris5aaaa@4C2E@  (14)

The integration over ri in equation (2) must take into account the requirement ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb GaeyiyIKRaamyAaaaa@3BA9@ , i.e., r j r i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaamOAaaWcbeaajugibiabgcMi5kaadkha kmaaBaaaleaakmaaBaaajiaibaqcLbmacaWGPbaameqaaaWcbeaaaa a@4185@ for any pairs ( i,j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibiaadMgacaGGSaGaamOAaaGccaGLOaGaayzkaaaaaa@3C25@ . It follows that the correction to the free energy is given by

ΔF=Τln( 1 V N e βE d r 1 ...d r N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arieGacaWFgbGaeyypa0JaeyOeI0ccciGae4hPdqLaciiBaiaac6ga kmaabmaabaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaamOvaOWaaW baaSqabeaajugibiaad6eaaaaaaOWaa8qaaeaajugibiaadwgakmaa CaaaleqajeaibaqcLbmacqGHsislcqaHYoGycaWGfbaaaKqzGeGaam izaiaadkhakmaaBaaajqwaa+FaaKqzadGaaGymaaWcbeaajugibiaa c6cacaGGUaGaaiOlaiaadsgacaWGYbGcdaWgaaqcKfaG=haajugWai aad6eaaSqabaaabeqabKqzGeGaey4kIipaaOGaayjkaiaawMcaaaaa @5DA3@ , (15)

where the prime means r j r i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaamOAaaWcbeaajugibiabgcMi5kaadkha kmaaBaaaleaakmaaBaaajiaibaqcLbmacaWGPbaameqaaaWcbeaaaa a@4185@ . We perform this integration over a volume VNb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb GaeyOeI0IaamOtaiaadkgaaaa@3B87@ , where b is an "excluded" volume for each particle. In a mean-field approximation the potential Φ( r i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrkmaabmaabaqcLbsacaWGYbGcdaWgaaqcbasaaKqzadGaamyAaaWc beaaaOGaayjkaiaawMcaaaaa@3F1E@ does not depend on Φ( r i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrkmaabmaabaqcLbsacaWGYbGcdaWgaaqcbasaaKqzadGaamyAaaWc beaaaOGaayjkaiaawMcaaaaa@3F1E@  and the summation in equation (13) is computed by

Φ= j i U( r j ) = N V 2 r 0 drU( r ) = 2Na V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrcqGH9aqpkmaaqahabaqcLbsacaWGvbGcdaqadaqaaKqzGeGaamOC aOWaaSbaaKqaGeaajugWaiaadQgaaSqabaaakiaawIcacaGLPaaaaK qaGeaajugWaiaadQgaaKqaGeaajugWaiaadMgaaKqzGeGaeyyeIuoa cqGH9aqpkmaalaaabaqcLbsacaWGobaakeaajugibiaadAfaaaGcda WdrbqaaKqzGeGaamizaiaadkhacaWGvbGcdaqadaqaaKqzGeGaamOC aaGccaGLOaGaayzkaaaajeaibaqcLbmacaaIYaGaamOCaSWaaSbaaK GaGeaajugWaiaaicdaaKGaGeqaaaWcbeqcLbsacqGHRiI8aiabg2da 9OWaaSaaaeaajugibiaaikdacaWGobGaamyyaaGcbaqcLbsacaWGwb aaaaaa@6123@ (16)

where b 1 2 .4π ( 2 r 0 ) 3 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GaeS4qISJcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaa c6cacaaI0aGaeqiWdaNcdaqadaqaaKqzGeGaaGOmaiaadkhakmaaBa aajeaibaqcLbmacaaIWaaaleqaaaGccaGLOaGaayzkaaWaaWbaaSqa bKqaGeaajugWaiaaiodaaaqcLbsacaGGVaGaaG4maaaa@4A6B@ ; the factor 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa Gaai4laiaaikdaaaa@3A2F@ in estimating the volume b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb aaaa@38EC@  arises from the fact that the independent integration with respect to any pair r i , r j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugibiaacYcacaWGYbGc daWgaaqcbasaaKqzadGaamOAaaWcbeaaaaa@402B@ counts twice the excluded volume. The change in the free energy becomes (equation (15))

ΔF=Tln( ( VNb ) N V N e 1 2 βNΦ )= = 1 2 NΦNTln( 1 Nb V )= N 2 a V NTln( 1 Nb V ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfs5aejaadAeacqGH9aqpcqGHsislcaWGubGaciiBaiaac6gakmaa bmaabaWaaSaaaeaadaqadaqaaKqzGeGaamOvaiabgkHiTiaad6eaca WGIbaakiaawIcacaGLPaaadaahaaWcbeqcKfaG=haajugWaiaad6ea aaaakeaajugibiaadAfakmaaCaaaleqajqwaa+FaaKqzadGaamOtaa aaaaqcLbsacaWGLbGcdaahaaWcbeqcKfaG=haajugWaiabgkHiTSWa aSaaaKazba4=baqcLbmacaaIXaaajqwaa+FaaKqzadGaaGOmaaaacq aHYoGycaWGobGaeuOPdyeaaaGccaGLOaGaayzkaaqcLbsacqGH9aqp aOqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsaca aIYaaaaiaad6eacqqHMoGrcqGHsislcaWGobGaamivaiGacYgacaGG UbGcdaqadaqaaKqzGeGaaGymaiabgkHiTOWaaSaaaeaajugibiaad6 eacaWGIbaakeaajugibiaadAfaaaaakiaawIcacaGLPaaajugibiab g2da9OWaaSaaaeaajugibiaad6eakmaaCaaaleqajeaibaqcLbmaca aIYaaaaKqzGeGaamyyaaGcbaqcLbsacaWGwbaaaiabgkHiTiaad6ea caWGubGaciiBaiaac6gakmaabmaabaqcLbsacaaIXaGaeyOeI0Icda WcaaqaaKqzGeGaamOtaiaadkgaaOqaaKqzGeGaamOvaaaaaOGaayjk aiaawMcaaKqzGeGaaiOlaaaaaa@8B70@ (17)

We get the pressure

p= NT V + N 2 a V 2 +NT Nb/ V 2 1Nb/V = = NT V ( 1+ Nb/V 1Nb/V )+ N 2 a V 2 = NT VNb + N 2 a V 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadchacqGH9aqpkmaalaaabaqcLbsacaWGobGaamivaaGcbaqcLbsa caWGwbaaaiabgUcaROWaaSaaaeaajugibiaad6eakmaaCaaaleqajq waa+FaaKqzadGaaGOmaaaajugibiaadggaaOqaaKqzGeGaamOvaOWa aWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqzGeGaey4kaSIaamOtai aadsfakmaalaaabaqcLbsacaWGobGaamOyaiaac+cacaWGwbGcdaah aaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGymaiabgkHiTi aad6eacaWGIbGaai4laiaadAfaaaGaeyypa0dakeaajugibiabg2da 9OWaaSaaaeaajugibiaad6eacaWGubaakeaajugibiaadAfaaaGcda qadaqaaKqzGeGaaGymaiabgUcaROWaaSaaaeaajugibiaad6eacaWG IbGaai4laiaadAfaaOqaaKqzGeGaaGymaiabgkHiTiaad6eacaWGIb Gaai4laiaadAfaaaaakiaawIcacaGLPaaajugibiabgUcaROWaaSaa aeaajugibiaad6eakmaaCaaaleqajqwaa+FaaKqzadGaaGOmaaaaju gibiaadggaaOqaaKqzGeGaamOvaOWaaWbaaSqabKqaGeaajugWaiaa ikdaaaaaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaamOtaiaadsfaaO qaaKqzGeGaamOvaiabgkHiTiaad6eacaWGIbaaaiabgUcaROWaaSaa aeaajugibiaad6eakmaaCaaaleqajqwaa+FaaKqzadGaaGOmaaaaju gibiaadggaaOqaaKqzGeGaamOvaOWaaWbaaSqabKqaGeaajugWaiaa ikdaaaaaaKqzGeGaai4oaaaaaa@8D25@ (18)

Hence, it follows immediately the van der Waals equation (12). It is worth noting that we use the same cutoff 2 r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaamOCaOWaaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3C00@  to account for the prime in the integration in equation (15) and the prime in the potential given by equation (16). In general, we should employ two distinct cutoffs, but if the potential has a very sharp repulsive hard core the two cutoffs coincide. Also, we note that the mean-field approximation is equivalent with restricting ourselves only to one-particle elementary excitations (quasi-particles). We have assumed that a and b do not depend on V, and b>0 (by its definition).

It may happen that an external potential φ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHgp GAcaGGOaGaaiOCaiaacMcaaaa@3C11@ is present and we wish to estimate its effects in the presence of the internal interaction. Then, the total energy is written as

E= i φ( r i ) + 1 2 NΦ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGfb Gaeyypa0JcdaaeqbqaaKqzGeGaeqOXdOMaaiikaiaackhakmaaBaaa jeaibaqcLbmacaGGPbaaleqaaKqzGeGaaiykaaqcbasaaKqzadGaam yAaaWcbeqcLbsacqGHris5aiabgUcaROWaaSaaaeaajugibiaaigda aOqaaKqzGeGaaGOmaaaacaWGobGaeuOPdyeaaa@4C56@ (19)

where Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjY=Pj0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqqHMoGraaa@394C@ is a mean-field potential (also, the external potential may derive from a mean-field approximation). The ensemble has not translational symmetry anymore, since φ(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHgp GAcaGGOaGaaiOCaiaacMcaaaa@3C11@ depends on position. The change in the free energy is

ΔF=Tln( 1 V N ' e β i φ( r i ) 1 2 NΦ d r 1 ..d r N )=        =Tln[ ( 1 V ' e βφ(r) dr ) N e 1 2 βNΦ ]=       =Tln( 1 V ' e βφ(r) dr )+ 1 2 NΦ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfs5aejaadAeacqGH9aqpcqGHsislcaWGubGaciiBaiaac6gakmaa bmaabaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaamOvaOWaaWbaaS qabKqaGeaajugWaiaad6eaaaaaaOWaa8qaaeaadaahaaWcbeqaaKqz GeGaai4jaaaacaWGLbGcdaahaaqcbasabKazba4=baqcLbmacqGHsi slcqaHYoGylmaaqabajqwaa+FaaKqzadGaeqOXdOMaaiikaiaackha lmaaBaaajqMaa+FaaKqzadGaaiyAaaqcKjaG=hqaaKqzadGaaiykai abgkHiTSWaaSaaaKazba4=baqcLbmacaaIXaaajqwaa+FaaKqzadGa aGOmaaaacaWGobGaeuOPdyeajqMaa+FaaKqzadGaamyAaaqcKjaG=h qajugWaiabggHiLdaaaKqzGeGaamizaiaadkhakmaaBaaajeaibaqc LbmacaaIXaaaleqaaKqzGeGaaiOlaiaac6cacaWGKbGaamOCaOWaaS baaKqaGeaajugWaiaad6eaaSqabaaabeqabKqzGeGaey4kIipaaOGa ayjkaiaawMcaaKqzGeGaeyypa0dakeaajugibabaaaaaaaaapeGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOa8aacqGH9aqp cqGHsislcaWGubGaciiBaiaac6gakmaadmaabaWaaeWaaeaadaWcaa qaaKqzGeGaaGymaaGcbaqcLbsacaWGwbaaaOWaa8qaaeaadaahbaWc beqaaKqzGeGaai4jaaaaaSqabeqajugibiabgUIiYdGaamyzaOWaaW baaKqaGeqajqwaa+FaaKqzadGaeyOeI0IaeqOSdiMaeqOXdOMaaiik aiaackhacaGGPaaaaKqzGeGaamizaiaadkhaaOGaayjkaiaawMcaam aaCaaaleqajqwaa+FaaKqzadGaamOtaaaajugibiaadwgakmaaCaaa leqajqwaa+FaaKqzadGaeyOeI0YcdaWcaaqcKfaG=haajugWaiaaig daaKazba4=baqcLbmacaaIYaaaaiabek7aIjaad6eacqqHMoGraaaa kiaawUfacaGLDbaajugibiabg2da9aGcbaWdbiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaKqzGeGaeyypa0ZdaiabgkHiTiaadsfa ciGGSbGaaiOBaOWaaeWaaeaadaWcaaqaaKqzGeGaaGymaaGcbaqcLb sacaWGwbaaaOWaa8qaaeaadaahbaWcbeqaaKqzGeGaai4jaaaaaSqa beqajugibiabgUIiYdGaamyzaOWaaWbaaKqaGeqajqwaa+FaaKqzad GaeyOeI0IaeqOSdiMaeqOXdOMaaiikaiaackhacaGGPaaaaKqzGeGa amizaiaadkhaaOGaayjkaiaawMcaaKqzGeGaey4kaSIcdaWcaaqaaK qzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaad6eacqqHMoGrcaGG7aaa aaa@E4FE@ (20)

The integral in equation (20) can be written as

       ' e βφ(r) dr= e βφ(r) drb i e βφ( r i ) dr = = e βφ(r) dr Nb V e βφ(r) dr=1 Nb V e βφ(r) dr, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGc paWaa8qaaeaadaahbaWcbeqaaKqzGeGaai4jaaaaaSqabeqajugibi abgUIiYdGaamyzaOWaaWbaaKqaGeqajqwaa+FaaKqzadGaeyOeI0Ia eqOSdiMaeqOXdOMaaiikaiaackhacaGGPaaaaKqzGeGaamizaiaadk hacqGH9aqpkmaapeaabaqcLbsacaWGLbGcdaahaaqcbasabKazba4= baqcLbmacqGHsislcqaHYoGycqaHgpGAcaGGOaGaaiOCaiaacMcaaa qcLbsacaWGKbGaamOCaiabgkHiTiaadkgakmaaqababaqcLbsacaWG LbGcdaahaaqcbasabKazba4=baqcLbmacqGHsislcqaHYoGycqaHgp GAcaGGOaGaaiOCaSWaaSbaaKGaGeaajugWaiaacMgaaKGaGeqaaKqz adGaaiykaaaajugibiaadsgacaWGYbaaleaajugibiaadMgaaSqabK qzGeGaeyyeIuoaaSqabeqajugibiabgUIiYdGaeyypa0dakeaajugi biabg2da9OWaa8qaaeaajugibiaadwgakmaaCaaajeaibeqcKfaG=h aajugWaiabgkHiTiabek7aIjabeA8aQjaacIcacaGGYbGaaiykaaaa jugibiaadsgacaWGYbGaeyOeI0caleqabeqcLbsacqGHRiI8aOWaaS aaaeaajugibiaad6eacaWGIbaakeaajugibiaadAfaaaGcdaWdbaqa aKqzGeGaamyzaOWaaWbaaKqaGeqajqwaa+FaaKqzadGaeyOeI0Iaeq OSdiMaeqOXdOMaaiikaiaackhacaGGPaaaaKqzGeGaamizaiaadkha cqGH9aqpcaaIXaGaeyOeI0IcdaWcaaqaaKqzGeGaamOtaiaadkgaaO qaaKqzGeGaamOvaaaaaSqabeqajugibiabgUIiYdGcdaWdbaqaaKqz GeGaamyzaOWaaWbaaKqaGeqajqwaa+FaaKqzadGaeyOeI0IaeqOSdi MaeqOXdOMaaiikaiaackhacaGGPaaaaKqzGeGaamizaiaadkhacaGG SaaaleqabeqcLbsacqGHRiI8aaaaaa@B97B@ (21)

Such that we get

       ' e βφ(r) dr= e βφ(r) drb i e βφ( r i ) dr = = e βφ(r) dr Nb V e βφ(r) dr=( 1 Nb V ) e βφ(r) dr, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGc paWaa8qaaeaadaahbaWcbeqaaKqzGeGaai4jaaaaaSqabeqajugibi abgUIiYdGaamyzaOWaaWbaaKqaGeqajqwaa+FaaKqzadGaeyOeI0Ia eqOSdiMaeqOXdOMaaiikaGqabiaa=jhacaGGPaaaaKqzGeGaamizai aa=jhacqGH9aqpkmaapeaabaqcLbsacaWGLbGcdaahaaqcbasabKaz ba4=baqcLbmacqGHsislcqaHYoGycqaHgpGAcaGGOaGaa8NCaiaacM caaaqcLbsacaWGKbGaa8NCaiabgkHiTiaadkgakmaaqababaqcLbsa caWGLbGcdaahaaqcbasabKazba4=baqcLbmacqGHsislcqaHYoGycq aHgpGAcaGGOaGaa8NCaSWaaSbaaKGaGeaajugWaiaacMgaaKGaGeqa aKqzadGaaiykaaaajugibiaadsgacaWGYbaaleaajugWaiaadMgaaS qabKqzGeGaeyyeIuoaaSqabeqajugibiabgUIiYdGaeyypa0dakeaa jugibiabg2da9OWaa8qaaeaajugibiaadwgakmaaCaaajeaibeqcKf aG=haajugWaiabgkHiTiabek7aIjabeA8aQjaacIcacaWFYbGaaiyk aaaajugibiaadsgacaWFYbGaeyOeI0caleqabeqcLbsacqGHRiI8aO WaaSaaaeaajugibiaad6eacaWGIbaakeaajugibiaadAfaaaGcdaWd baqaaKqzGeGaamyzaOWaaWbaaKqaGeqajqwaa+FaaKqzadGaeyOeI0 IaeqOSdiMaeqOXdOMaaiikaiaa=jhacaGGPaaaaKqzGeGaamizaiaa =jhacqGH9aqpkmaabmaabaqcLbsacaaIXaGaeyOeI0IcdaWcaaqaaK qzGeGaamOtaiaadkgaaOqaaKqzGeGaamOvaaaaaOGaayjkaiaawMca aaWcbeqabKqzGeGaey4kIipakmaapeaabaqcLbsacaWGLbGcdaahaa qcbasabKazba4=baqcLbmacqGHsislcqaHYoGycqaHgpGAcaGGOaGa a8NCaiaacMcaaaqcLbsacaWGKbGaa8NCaiaacYcaaSqabeqajugibi abgUIiYdaaaaa@BC2A@ (22)

we can see that we recover the van der Waals equation and get also the effects of the external field; for a finite ensemble, such effects may include surface contributions.

The general way of deriving the van der Waals equation consists in estimating the effects of the interaction in the mean-field equation (16) and taking account of the excluded volume, according to the definition of the interaction energy.

Acknowledgements

None.

Conflict of interest

The authors declare that there are no conflict of interest regarding the publication of this paper.

References

Creative Commons Attribution License

©2018 Apostol. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.