Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Research Article Volume 1 Issue 3

High power optics

Apollonov VV

Prokhorov GPI RAS Vavilov, Russia

Correspondence: Apollonov VV, Prokhorov GPI RAS Vavilov str.38, Moscow, 119991, Russia

Received: February 27, 2018 | Published: May 11, 2018

Citation: Apollonov VV. High power optics. Open Acc J Math Theor Phy. 2018;1(3):79-88. DOI: 10.15406/oajmtp.2018.01.00013

Download PDF

Abstract

The advent of the laser has placed stringent requirements on the fabrication, performance and quality of optical elements employed within systems for most practical applications. Their high power performance is generally governed by three distinct steps, firstly the absorption of incident optical radiation (governed primarily by various absorption mechanisms); secondly, followed by a temperature increase and response governed primarily by thermal properties and finally the elements thermo-optical and thermomechanical response, e.g., distortion, stress birefringenous fracture, etc. All of which needs to be understood in the design of efficient, compact, reliable and useful for many applications high power systems, under a variety of operating conditions, pulsed, continuous wave, rep-rated or burst mode of varying duty cycles which is the most important for the wide spectrum of applications.

Introduction

On the basis of the theory we developed in the early 1970s, a broad range of phenomena is considered in the paper for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature gradients, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations between the quantities characterising the thermal stress state in any non-stationary regimes of energy input into a solid, which are similar to Duhamel’s integral formula from the theory of heat conduction. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high power level, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics Journal,1 the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the possibility of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the paper we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The theoretical estimates are compared with the experimental data. Review represents the issues related to the technology of fabrication of power optics elements based on materials with a porous structure, of lightweight highly stable large optics based on highly porous materials, multi-layer honeycomb structures and silicon carbide, as well as problems of application of physical and technical fundamentals of power optics in modern high-end technology.

The second part of the review is devoted to the problem of high power high repetition rate lasers pulse periodic laser systems, which in the nearest time will find a lot of applications in the field of space ecology, long range energy transfer, heavy machinery, space engineering, nuclear technologies and many others. Our paper has considered in details a new approach to the problem of a laser jet engine creation, which is based on the resonance merging of shock waves generated by an optical pulsating discharge, produced by such a lasers. To obtain an optical pulsating discharge, we suggested the usage of high-power pulse-periodic laser radiation, which can be generated by wide aperture carbon dioxide, chemical and mono-module disk type solid-state laser systems. Future developments of the disk laser technology as the most effective and scalable to the level of many hundreds of kW as well are under consideration in the paper.

The history of high power optics is inextricably associated with the creation of a single-mode  laser (P = 1.2kW), operating in the master oscillator−power amplifier regime and employing the principle of a quasi-optical transmission line, at the Laboratory of Oscillations of the P.N. Lebedev Physics Institute headed at the time by AM Prokhorov. Its creator was A.I. Barchukov, who worked with a team of young scientists on the problem of scaling of single-mode electric-discharge laser systems.2‒5 Due to the research conducted on such a laser system, we managed to study many physical phenomena occurring when high intensity radiation interacts with matter, including with the elements of the optical path of laser systems, which subsequently greatly facilitated creation of high-power lasers. Then, in the early 1970s, we paid attention to a phenomenon that was to limit undoubtedly the further growth of the power generated by lasers being developed.6 More than twenty years of fundamental and applied research devoted to the study of this phenomenon and to the solution of problems associated with it allow a conclusion that its essence consists in the following. An optical surface of a highly reflecting power optics element (POE) or any element of an optical path does not fully reflect radiation falling on it. A small portion of energy (fractions of a percent, depending on the wavelength) is absorbed by this reflecting element and turns into heat. As the output power increases, even a small amount of it is sufficient to induce thermal stresses in a POE. Thermal stresses distort the geometry of the reflecting surface, affecting thereby, for example, the possibility of long-distance delivery of radiation and its concentration in a small volume. The discovered effect of thermal deformations of a POE required a theoretical study of the problem that had not been solved in such a setting ever before. Very useful was the experience in solving the problems of thermoelasticity, gained by the theoretical department headed at that time at by B.L. Indenbom at the Institute of Crystallography, USSR Academy of Sciences. Minimisation of the thermoelastic response of the optical surface of the POE exposed to intense laser radiation is one of the key problems of power optics. Improving the efficiency of laser systems, increasing the output power and imposing stricter requirements to the directivity of generated radiation fluxes are inextricably linked with the need to design and create a POE with elastic distortions  ( is the wavelength) at specific radiation loads up to several tens of kW∙cm−2.7‒10

Interest in high power optics and its physical, technical and technological solutions is unabated to this day. An almost simultaneous creation of first lasers in the USA and the USSR gave birth to annual symposia on Optical Materials for High-Power Lasers (Boulder, USA) and Nonresonant Laser−Matter Interaction (Leningrad, USSR). Regular meetings of scientists and engineers, as well as proceedings of the symposia have had a significant impact on the development of research in the field of high power optics in many countries.11‒13

The data presented in this review allow one to reconsider important aspects of temperature gradients, thermoelastic stresses and thermal deformations in POEs, resulting from the exposure of their surfaces to high-power laser radiation. In this case, use is made of the relations between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid, which are similar to Duhamel’s integral formula from the theory of heat conduction. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that these relations comprise time  not as an independent variable, which is used in the differentiation (as, for example, in review14) but as a parameter, which is a consequence of incoherence of the quasi-stationary problem of thermoelasticity presented below. Thus, by using the theory we developed in the early 1970s, we consider in this review a wide range of phenomena related to the thermal stress state of a solid-body surface exposed to radiation arbitrarily varying in time.15‒21 This consideration is particularly important for the optics of high-power, high-pulse repetition rate laser systems that are being actively developed. In review14 we analysed important for the development of high power optics problems of using capillary-porous structures with different degrees of development for the enhancement of heat transfer surface with water temperatures below the boiling point. The review published14 contains data (important for the development of high power optics) on the use of capillary porous structures with a different degree of the surface development, which can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. The evaporation−condensation mechanism of heat transfer in the POE on the basis of porous structures and the idea of lowering the boiling temperature under reduced pressure of the coolant in cellular materials, developed by us at the same time,14,21 are not considered in this review.

Static POEs based on monolithic materials

Consider the most important aspects of the problem of static POE fabrication, namely, the conditions needed to achieve high optical efficiency thresholds for a mirror surface. Note that in our first studies4‒9 we obtained only stationary expression for the limiting intensities, leading to the optical destruction of POEs, and the stability parameters of optical surfaces based on them.

Thermal stress state of a body exposed to laser radiation

Temperature field

We considered a strongly absorbing isotropic body, which at the initial moment of time has a fixed temperature. The body surface with the absorption coefficient A is exposed to an axisymmetric radiation flux of arbitrary temporal shape. It is assumed that the intensity distribution in the laser beam cross section obeys the Gaussian law: I( r )= I 0 exp( K 0 r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysai aacIcaieGaceWFYbGbaSaacaGGPaGaeyypa0JaamysamaaBaaajuai baGaaGimaaqcfayabaGaciyzaiaacIhacaGGWbGaaiikaiabgkHiTi aadUeadaWgaaqcfasaaiaaicdaaeqaaKqbakaadkhadaahaaqcfasa beaacaaIYaaaaKqbakaacMcaaaa@473F@ , where K 0 =2/ r 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4sam aaBaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGOmaiaac+cacaWG YbWaa0baaKqbGeaacaaIWaaabaGaaGOmaaaaaaa@3E1D@ . Energy absorption takes place directly on the irradiated surface. Physically, this means that the skin-layer depth δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq gaaa@3829@  is smaller than the depth of the temperature field penetration in the body under consideration during the characteristic times τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcfaOae8 hXdqhaaa@384E@  of changes in the radiation intensity, i.e., δ<< a 2 τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeyipaWJaeyipaWZaaOaaaeaacaWGHbWaaWbaaeqajuaibaGaaGOm aaaaiiaajuaGcqWFepaDaeqaaaaa@3E8B@ , where a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaCaaabeqcfasaaiaaikdaaaaaaa@3876@  is the thermal diffusivity of the material.

The problem of determining the temperature field was considered in the linear formulation: it was assumed that all thermal and mechanical characteristics of the materials are independent of temperature and energy loss by radiation and convection was neglected. Provided that the characteristic size of the beam is r 0 <L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaajuaibaGaaGimaaqcfayabaGaeyipaWJaamitaaaa@3AE7@ , where L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitaa aa@3755@  is the characteristic size of the irradiated body, and the energy input time is t< L 2 / a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgYda8iaadYeadaahaaqabKqbGeaacaaIYaaaaKqbakaac+cacaWG HbWaaWbaaKqbGeqabaGaaGOmaaaaaaa@3D91@ , in solving this problem one can use the half-space model. The heating of the sample material is described in this case by the heat conduction equation22

T t = a 2 ΔT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGubaabaGaeyOaIyRaamiDaaaacqGH9aqpcaWGHbWa aWbaaeqajuaibaGaaGOmaaaajuaGcqqHuoarcaWGubaaaa@40F7@     (1)

at the following initial and boundary conditions:

T z | z=0 = I 0 A λ f(t)exp( K 0 r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqGaae aadaWcaaqaaiabgkGi2kaadsfaaeaacqGHciITcaWG6baaaaGaayjc SdWaaSbaaKqbGeaacaWG6bGaeyypa0JaaGimaaqcfayabaGaeyypa0 JaeyOeI0YaaSaaaeaacaWGjbWaaSbaaKqbGeaacaaIWaaabeaajuaG caWGbbaabaGaeq4UdWgaaiaadAgacaGGOaGaamiDaiaacMcaciGGLb GaaiiEaiaacchacaGGOaGaeyOeI0Iaam4samaaBaaajuaibaGaaGim aaqabaqcfaOaamOCamaaCaaabeqcfasaaiaaikdaaaqcfaOaaiykaa aa@54A2@ ,

T(r,z,0)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivai aacIcacaWGYbGaaiilaiaadQhacaGGSaGaaGimaiaacMcacqGH9aqp caaIWaGaaiilaaaa@3F36@  (2)

lim r,z T<M, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaciGGSbGaaiyAaiaac2gaaKqbGeaacaWGYbGaaiilaiaadQhacqGH sgIRcqGHEisPaKqbagqaaiaadsfacqGH8aapcaWGnbGaaiilaaaa@43A1@

where M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaa aa@3756@  is the finite quantity; f(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzai aacIcacaWG0bGaaiykaaaa@39C1@  is the time function of the laser beam intensity normalised to I 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGimaaqcfayabaGaai4oaaaa@39A8@ A 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aaBaaajuaibaGaaGimaaqcfayabaaaaa@38E1@  is the absorption coefficient of laser radiation on a metal surface; λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gaaa@3838@  is the thermal conductivity of the body material; and T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivaa aa@375D@  is the temperature.

Using the method of successive integral Hankel and Laplace transforms, we obtain the solution to (1)

T(r,z,t)= T * I 0 A 2λ K 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivai aacIcacaWGYbGaaiilaiaadQhacaGGSaGaamiDaiaacMcacqGH9aqp caWGubWaaWbaaeqabaGaaiOkaaaadaWcaaqaaiaadMeadaWgaaqcfa saaiaaicdaaKqbagqaaiaadgeaaeaacaaIYaGaeq4UdW2aaOaaaeaa caWGlbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaeqaaaaacaGGSaaaaa@4886@

T * = 1 2πi K 0 σi σ+i dpψ(p)exp(pt)× MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaCaaabeqaaiaacQcaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOm aiabec8aWjaadMgadaGcaaqaaiaadUeadaWgaaqcfasaaiaaicdaae qaaaqcfayabaaaamaapehabaGaamizaiaadchacqaHipqEcaGGOaGa amiCaiaacMcaciGGLbGaaiiEaiaacchacaGGOaGaamiCaiaadshaca GGPaGaey41aqlajuaibaGaeq4WdmNaeyOeI0IaamyAaiabg6HiLcqa aiabeo8aZjabgUcaRiaadMgacqGHEisPaKqbakabgUIiYdaaaa@5B2F@  (3)

× 0 ξ exp( ξ 2 /4 K 0 ) γ exp(yz) J 0 (ξr)dξ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey41aq 7aa8qCaeaacqaH+oaEdaWcaaqaaiGacwgacaGG4bGaaiiCaiaacIca cqGHsislcqaH+oaEdaahaaqabKqbGeaacaaIYaaaaKqbakaac+caca aI0aGaam4samaaBaaajuaibaGaaGimaaqabaqcfaOaaiykaaqaaiab eo7aNbaaaKqbGeaacaaIWaaabaGaeyOhIukajuaGcqGHRiI8aiGacw gacaGG4bGaaiiCaiaacIcacqGHsislcaWG5bGaamOEaiaacMcacaWG kbWaaSbaaKqbGeaacaaIWaaabeaajuaGcaGGOaGaeqOVdGNaamOCai aacMcacaWGKbGaeqOVdGNaaiilaaaa@5E96@

where p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCaa aa@3779@  and ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG haaa@3847@  are the parameters of Laplace and Hankel transforms; γ 2 =p/ a 2 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaWbaaeqajuaibaGaaGOmaaaajuaGcqGH9aqpcaWGWbGaai4laiaa dggadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiabe67a4naaCa aajuaibeqaaiaaikdaaaaaaa@42A4@ ; ψ(p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaai ikaiaadchacaGGPaaaaa@3A12@  is the image of the Laplace transform of f(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzai aacIcacaWG0bGaaiykaaaa@39C1@ ; and J 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaGimaaqcfayabaaaaa@38EA@  is the zero-order Bessel function.

This expression allows us to describe the thermal state of a solid body heated by laser radiation, whose intensity varies with time in an arbitrary manner.

Thermoelastic stresses

The thermoelastic behaviour of the body is analysed by using the system of equations:22,23

μ 2 u +(λ'+μ)graddiv u (3λ'+2μ) α T T+ F ρ u ¨ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 Maey4bIe9aaWbaaeqajuaibaGaaGOmaaaajuaGceWG1bGbaSaacqGH RaWkcaGGOaGaeq4UdWMaai4jaiabgUcaRiabeY7aTjaacMcacaWGNb GaamOCaiaadggacaWGKbGaaGPaVlaadsgacaWGPbGaamODaiaaykW7 ceWG1bGbaSaacqGHsislcaGGOaGaaG4maiabeU7aSjaacEcacqGHRa WkcaaIYaGaeqiVd0Maaiykaiabeg7aHnaaBaaajuaibaGaamivaaqc fayabaGaey4bIeTaamivaiabgUcaRiqadAeagaWcaiabgkHiTiabeg 8aYjqadwhagaWcgaWaaiabg2da9iaaicdaaaa@63E9@ ,

2 T 1 a 2 T t + W λ (3λ'+2μ) α T T λ div u =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaeqajuaibaGaaGOmaaaajuaGcaWGubGaeyOeI0YaaSaaaeaa caaIXaaabaGaamyyamaaCaaabeqcfasaaiaaikdaaaaaaKqbaoaala aabaGaeyOaIyRaamivaaqaaiabgkGi2kaadshaaaGaey4kaSYaaSaa aeaacaWGxbaabaGaeq4UdWgaaiabgkHiTmaalaaabaGaaiikaiaaio dacqaH7oaBcaGGNaGaey4kaSIaaGOmaiabeY7aTjaacMcacqaHXoqy daWgaaqcfasaaiaadsfaaKqbagqaaiaadsfaaeaacqaH7oaBaaGaam izaiaadMgacaWG2bGaaGPaVlqadwhagaWcaiabg2da9iaaicdacaGG Saaaaa@5D66@  (4)

where λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW gccaGae8NmGikaaa@39BB@  and μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 gaaa@383A@  are the Lam coefficients;24 u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmyDay aalaaaaa@3790@  is the deformation vector; ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ is the density of the material; F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOray aalaaaaa@3761@  is the external force; α T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2aaSbaaKqbGeaacaWGubaajuaGbeaaaaa@39D9@  is the coefficient of thermal expansion; and W 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vam aaBaaajuaibaGaaGimaaqcfayabaaaaa@38F7@  is the density of volume heat sources.

In considering the deformation of an elastic metal half-space whose surface is exposed to pulsed laser radiation, when the inequalities

|ρ u ¨ |<<(3λ+2μ) α T |T| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiiFai abeg8aYjqadwhagaWcgaWaaiaacYhacqGH8aapcqGH8aapcaGGOaGa aG4maiabeU7aSHGaaiab=jdiIkabgUcaRiaaikdacqaH8oqBcaGGPa GaeqySde2aaSbaaKqbGeaacaWGubaajuaGbeaacaGG8bGae83bIeTa amivaiaacYhaaaa@4DAF@ ,

2 T~ 1 a 2 T t >> (3λ+2μ) α T T λ div u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaeqajuaibaGaaGOmaaaajuaGcaWGubGaaiOFamaalaaabaGa aGymaaqaaiaadggadaahaaqabKqbGeaacaaIYaaaaaaajuaGdaWcaa qaaiabgkGi2kaadsfaaeaacqGHciITcaWG0baaaiabg6da+iabg6da +maalaaabaGaaiikaiaaiodacqaH7oaBiiaacqWFYaIOcqGHRaWkca aIYaGaeqiVd0Maaiykaiabeg7aHnaaBaaajuaibaGaamivaaqcfaya baGaamivaaqaaiabeU7aSbaacaWGKbGaamyAaiaadAhacaaMc8Uabm yDayaalaaaaa@5984@      (5)

are fulfilled, we can pass to the system of equations of the quasi-stationary thermoelasticity theory:

μ 2 u +(λ+μ)graddiv u (3λ+2μ) α T T=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 Maey4bIe9aaWbaaeqajuaibaGaaGOmaaaajuaGceWG1bGbaSaacqGH RaWkcaGGOaGaeq4UdWgccaGae8NmGiQaey4kaSIaeqiVd0Maaiykai aadEgacaWGYbGaamyyaiaadsgacaaMc8UaamizaiaadMgacaWG2bGa aGPaVlqadwhagaWcaiabgkHiTiaacIcacaaIZaGaeq4UdWMae8NmGi Qaey4kaSIaaGOmaiabeY7aTjaacMcacqaHXoqydaWgaaqcfasaaiaa dsfaaKqbagqaaiabgEGirlaadsfacqGH9aqpcaaIWaGaaiilaaaa@60BE@

2 T 1 a 2 T t =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaeqajuaibaGaaGOmaaaajuaGcaWGubGaeyOeI0YaaSaaaeaa caaIXaaabaGaamyyamaaCaaabeqcfasaaiaaikdaaaaaaKqbaoaala aabaGaeyOaIyRaamivaaqaaiabgkGi2kaadshaaaGaeyypa0JaaGim aiaac6caaaa@45D5@      (6)

In this case, from the first inequality we obtain the duration of a single pulse

τ>>max( ρ a 2 λ ; ρ a 2 μ )~ 10 6 ÷ 10 8 s, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcfaOae8 hXdqNaeyOpa4JaeyOpa4JaciyBaiaacggacaGG4bWaaeWaaeaadaWc aaqaaiabeg8aYjaadggadaahaaqabKqbGeaacaaIYaaaaaqcfayaai abeU7aSjab=jdiIcaacaGG7aWaaSaaaeaacqaHbpGCcaWGHbWaaWba aeqajuaibaGaaGOmaaaaaKqbagaacqaH8oqBaaaacaGLOaGaayzkaa GaaiOFaiaaigdacaaIWaWaaWbaaKqbGeqabaGaeyOeI0IaaGOnaaaa juaGcqGH3daUcaaIXaGaaGimamaaCaaajuaibeqaaiabgkHiTiaaiI daaaqcfaOaaGPaVlaadohacaGGSaaaaa@5B6F@       (7a)

and from the second −

τ 3/2 << ρ 2 c 2 a 2 μ α T 2 I 0 A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaWbaaKqbGeqabaGaaG4maiaac+cacaaIYaaaaKqbakabgYda8iab gYda8maalaaabaGaeqyWdi3aaWbaaeqajuaibaGaaGOmaaaajuaGca WGJbWaaWbaaeqajuaibaGaaGOmaaaajuaGdaGcaaqaaiaadggadaah aaqcfasabeaacaaIYaaaaaqcfayabaaabaGaeqiVd0MaeqySde2aa0 baaKqbGeaacaWGubaabaGaaGOmaaaajuaGcaWGjbWaaSbaaKqbGeaa caaIWaaabeaajuaGcaWGbbaaaiaaykW7aaa@5055@          (7b)

We represented the stress tensor components in the general form:21

σ zz =2GD 0 ξ 2 J 0 (ξr)ϕ(ξ)[ e γz e ξz ( 1+z( ξγ ) ) ] dξ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWG6bGaamOEaaqaaiabgEIizdaajuaGcqGH9aqp caaIYaGaam4raiaadseadaWdXbqaaiabe67a4naaCaaajuaibeqaai aaikdaaaqcfaOaamOsamaaBaaajuaibaGaaGimaaqabaqcfaOaaiik aiabe67a4jaadkhacaGGPaGaeqy1dyMaaiikaiabe67a4jaacMcada WadaqaaiaadwgadaahaaqcfasabeaacqGHsislcqaHZoWzcaWG6baa aKqbakabgkHiTiaadwgadaahaaqcfasabeaacqGHsislcqaH+oaEca WG6baaaKqbaoaabmaabaGaaGymaiabgUcaRiaadQhadaqadaqaaiab e67a4jabgkHiTiabeo7aNbGaayjkaiaawMcaaaGaayjkaiaawMcaaa Gaay5waiaaw2faaaqcfasaaiaaicdaaeaacqGHEisPaKqbakabgUIi YdGaaGPaVlaadsgacqaH+oaEcaaMc8UaaiilaiaaykW7aaa@73CD@

σ rr =2GD 0 ϕ( ξ ){ J 0 ( ξr )[ξ( ξz2 )( ξγ ) e ξz + ξ 2 e ξz γ 2 e γz ]+ J 1 ( ξr ) r [ ξ e γz ( ( ξγ )( ξz2( 1ν ) )+ξ ) e ξz ]}dξ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHdpWCdaqhaaqcfasaaiaadkhacaWGYbaabaGaey4jIKnaaKqbakab g2da9iaaikdacaWGhbGaamiramaapehabaGaeqy1dy2aaeWaaeaacq aH+oaEaiaawIcacaGLPaaacaGG7bGaamOsamaaBaaajuaibaGaaGim aaqcfayabaWaaeWaaeaacqaH+oaEcaWGYbaacaGLOaGaayzkaaGaai 4waiabe67a4naabmaabaGaeqOVdGNaamOEaiabgkHiTiaaikdaaiaa wIcacaGLPaaadaqadaqaaiabe67a4jabgkHiTiabeo7aNbGaayjkai aawMcaaiaadwgadaahaaqabKqbGeaacqGHsislcqaH+oaEcaWG6baa aKqbakabgUcaRiabe67a4naaCaaabeqcfasaaiaaikdaaaqcfaOaam yzamaaCaaabeqcfasaaiabgkHiTiabe67a4jaadQhaaaqcfaOaeyOe I0cajuaibaGaaGimaaqaaiabg6HiLcqcfaOaey4kIipaaeaacqGHsi slcqaHZoWzdaahaaqcfasabeaacaaIYaaaaKqbakaadwgadaahaaqa bKqbGeaacqGHsislcqaHZoWzcaWG6baaaKqbakaac2facqGHRaWkda WcaaqaaiaadQeadaWgaaqcfasaaiaaigdaaeqaaKqbaoaabmaabaGa eqOVdGNaamOCaaGaayjkaiaawMcaaaqaaiaadkhaaaWaamWaaeaacq aH+oaEcaWGLbWaaWbaaeqajuaibaGaeyOeI0Iaeq4SdCMaamOEaaaa juaGcqGHsisldaqadaqaamaabmaabaGaeqOVdGNaeyOeI0Iaeq4SdC gacaGLOaGaayzkaaWaaeWaaeaacqaH+oaEcaWG6bGaeyOeI0IaaGOm amaabmaabaGaaGymaiabgkHiTiabe27aUbGaayjkaiaawMcaaaGaay jkaiaawMcaaiabgUcaRiabe67a4bGaayjkaiaawMcaaiaadwgadaah aaqabKqbGeaacqGHsislcqaH+oaEcaWG6baaaaqcfaOaay5waiaaw2 faaiaac2hacaWGKbGaeqOVdGNaaeilaaaaaa@AC5B@  (8)

σ rz =2GD 0 ξϕ( ξ ) J 1 ( ξr )[ γ( e γz e ξz )ξz( ξγ ) e ξz ] dξ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaeaacaWGYbGaamOEaaqaaiabgEIizdaacqGH9aqpcaaIYaGa am4raiaadseadaWdXbqaaiabe67a4jabew9aMnaabmaabaGaeqOVdG hacaGLOaGaayzkaaGaamOsamaaBaaajuaibaGaaGymaaqabaqcfa4a aeWaaeaacqaH+oaEcaWGYbaacaGLOaGaayzkaaWaamWaaeaacqaHZo WzdaqadaqaaiaadwgadaahaaqabKqbGeaacqGHsislcqaHZoWzcaWG 6baaaKqbakabgkHiTiaadwgadaahaaqabKqbGeaacqGHsislcqaH+o aEcaWG6baaaaqcfaOaayjkaiaawMcaaiabgkHiTiabe67a4jaadQha daqadaqaaiabe67a4jabgkHiTiabeo7aNbGaayjkaiaawMcaaiaadw gadaahaaqcfasabeaacqGHsislcqaH+oaEcaWG6baaaaqcfaOaay5w aiaaw2faaaqcfasaaiaaicdaaeaacqGHEisPaKqbakabgUIiYdGaaG PaVlaadsgacqaH+oaEcaGGSaaaaa@76EB@

σ ϕϕ =2GD 0 ϕ( ξ ){ J 0 ( ξr )[ ( ξ 2 γ 2 ) e γz 2νξ( ξγ ) e ξz ]+ + J 1 ( ξr ) r [ ( ( ξγ )( ξz2( 1ν ) )+ξ ) e ξz ξ e γz ]}dξ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHdpWCdaqhaaqcfasaaiabew9aMjabew9aMbqaaiabgEIizdaajuaG cqGH9aqpcaaIYaGaam4raiaadseadaWdXbqaaiabew9aMnaabmaaba GaeqOVdGhacaGLOaGaayzkaaGaai4EaiaadQeadaWgaaqcfasaaiaa icdaaKqbagqaamaabmaabaGaeqOVdGNaamOCaaGaayjkaiaawMcaam aadmaabaWaaeWaaeaacqaH+oaEdaahaaqcfasabeaacaaIYaaaaKqb akabgkHiTiabeo7aNnaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLOa GaayzkaaGaamyzamaaCaaabeqcfasaaiabgkHiTiabeo7aNjaadQha aaqcfaOaeyOeI0IaaGOmaiabe27aUjabe67a4naabmaabaGaeqOVdG NaeyOeI0Iaeq4SdCgacaGLOaGaayzkaaGaamyzamaaCaaabeqcfasa aiabgkHiTiabe67a4jaadQhaaaaajuaGcaGLBbGaayzxaaGaey4kaS cajuaibaGaaGimaaqaaiabg6HiLcqcfaOaey4kIipaaeaacqGHRaWk daWcaaqaaiaadQeadaWgaaqcfasaaiaaigdaaKqbagqaamaabmaaba GaeqOVdGNaamOCaaGaayjkaiaawMcaaaqaaiaadkhaaaWaamWaaeaa daqadaqaamaabmaabaGaeqOVdGNaeyOeI0Iaeq4SdCgacaGLOaGaay zkaaWaaeWaaeaacqaH+oaEcaWG6bGaeyOeI0IaaGOmamaabmaabaGa aGymaiabgkHiTiabe27aUbGaayjkaiaawMcaaaGaayjkaiaawMcaai abgUcaRiabe67a4bGaayjkaiaawMcaaiaadwgadaahaaqabKqbGeaa cqGHsislcqaH+oaEcaWG6baaaKqbakabgkHiTiabe67a4jaadwgada ahaaqcfasabeaacqGHsislcqaHZoWzcaWG6baaaaqcfaOaay5waiaa w2faaiaac2hacaWGKbGaeqOVdGNaaiilaaaaaa@A6C2@

where G is the shear modulus; J 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaGymaaqcfayabaaaaa@38EB@  is the first-order Bessel function;

D= α T 2 1+ν 1ν I 0 A a 2 K 0 λp ψ(p); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamirai abg2da9maalaaabaGaeqySde2aaSbaaKqbGeaacaWGubaajuaGbeaa aeaacaaIYaaaamaalaaabaGaaGymaiabgUcaRiabe27aUbqaaiaaig dacqGHsislcqaH9oGBaaWaaSaaaeaacaWGjbWaaSbaaKqbGeaacaaI WaaabeaajuaGcaWGbbGaamyyamaaCaaabeqcfasaaiaaikdaaaaaju aGbaGaam4samaaBaaajuaibaGaaGimaaqcfayabaGaeq4UdWwcfaIa amiCaaaajuaGcqaHipqEcaGGOaGaamiCaiaacMcacaGG7aaaaa@539B@   ϕ( ξ )= ξ γ exp( ξ 2 /4 K 0 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy 2aaeWaaeaacqaH+oaEaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiab e67a4bqaaiabeo7aNbaaciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0 IaeqOVdG3aaWbaaKqbGeqabaGaaGOmaaaajuaGcaGGVaGaaGinaiaa dUeadaWgaaqcfasaaiaaicdaaeqaaKqbakaacMcacaGG7aaaaa@4D2D@

and v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODaa aa@377F@  is Poisson's ratio. Analysis of the expression reveals the nature of the time changes at any point in the half-space.

Thermal deformations

The stress state occurring in a solid body is accompanied by its deformation, its largest amplitude being achieved on the irradiated surface. The expression for the normal displacement of the surface, corresponding to a given temperature distribution, has the form:

W(r,z,t)= W (1+v) α T I 0 A λ K 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vai aacIcacaWGYbGaaiilaiaadQhacaGGSaGaamiDaiaacMcacqGH9aqp caWGxbWaaWbaaeqabaGaey4fIOcaamaalaaabaGaaiikaiaaigdacq GHRaWkcaWG2bGaaiykaiabeg7aHnaaBaaajuaibaGaamivaaqcfaya baGaamysamaaBaaajuaibaGaaGimaaqabaqcfaOaamyqaaqaaiabeU 7aSjaadUeadaWgaaqcfasaaiaaicdaaeqaaaaajuaGcaGGSaaaaa@4F47@        (9)

W * = F 0 2πi 0 dv σi σ+i dp ψ(p/t) p exp(pv)× × J 0 ( v δ r ) v v+p/ F 0 v+p/ F 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGxbWaaWbaaeqabaGaaiOkaaaacqGH9aqpdaWcaaqaaiaadAeadaWg aaqcfasaaiaaicdaaKqbagqaaaqaaiaaikdacqaHapaCcaWGPbaaam aapehabaGaamizaiaadAhadaWdXbqaaiaadsgacaWGWbWaaSaaaeaa cqaHipqEcaGGOaGaamiCaiaac+cacaWG0bGaaiykaaqaaiaadchaaa aajuaibaGaeq4WdmNaeyOeI0IaamyAaiabg6HiLcqaaiabeo8aZjab gUcaRiaadMgacqGHEisPaKqbakabgUIiYdaajuaibaGaaGimaaqaai abg6HiLcqcfaOaey4kIipaciGGLbGaaiiEaiaacchacaGGOaGaamiC aiabgkHiTiaadAhacaGGPaGaey41aqlabaGaey41aqRaamOsamaaBa aajuaibaGaaGimaaqabaqcfa4aaeWaaeaadaGcaaqaaiaadAhaaeqa aiabes7aKnaaBaaabaGaamOCaaqabaaacaGLOaGaayzkaaWaaSaaae aadaGcaaqaaiaadAhaaeqaaiabgkHiTmaakaaabaGaamODaiabgUca RiaadchacaGGVaGaamOramaaBaaajuaibaGaaGimaaqcfayabaaabe aaaeaadaGcaaqaaiaadAhacqGHRaWkcaWGWbGaai4laiaadAeadaWg aaqcfasaaiaaicdaaKqbagqaaaqabaaaaiaacYcaaaaa@7D99@  (10)

where F 0 =4 K 0 a 2 τ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGinaiaadUeadaWg aaqcfasaaiaaicdaaeqaaKqbakaadggadaahaaqcfasabeaacaaIYa aaaGGaaKqbakab=r8a0jaaykW7caaMc8UaaiOlaaaa@4523@  The resulting expression allows us to trace the changes in the surface shape during irradiation.

Thus, this consideration has made it possible to describe fully the characteristics of temperature fields, thermoelastic stresses and thermal deformations occurring in solids whose surface is exposed to high-power laser radiation varying with time in an arbitrary manner. In addition, the following relations are fulfilled between the quantities characterising the thermal stress state in the continuous-wave and any other nonstationary regime of energy input into the solid:22,24

T tr = 0 t f(tτ) T st τ dτ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaCaaabeqcfasaaiaabshacaqGYbaaaKqbakabg2da9maapehabaGa amOzaiaacIcacaWG0bGaeyOeI0cccaGae8hXdqNaaiykamaalaaaba GaeyOaIyRaamivamaaCaaabeqcfasaaiaabohacaqG0baaaaqcfaya aiabgkGi2kab=r8a0baaaKqbGeaacaaIWaaabaGaamiDaaqcfaOaey 4kIipacaWGKbGae8hXdqNaaiilaaaa@517A@

σ ik tr = 0 t f(tτ) σ ik st τ dτ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGPbGaam4AaaqaaiaabshacaqGYbaaaKqbakab g2da9maapehabaGaamOzaiaacIcacaWG0bGaeyOeI0cccaGae8hXdq NaaiykamaalaaabaGaeyOaIyRaeq4Wdm3aa0baaKqbGeaacaWGPbGa am4AaaqaaiaabohacaqG0baaaaqcfayaaiabgkGi2kab=r8a0baaaK qbGeaacaaIWaaabaGaamiDaaqcfaOaey4kIipacaWGKbGae8hXdqNa aiilaaaa@570A@     (11)

W tr = 0 t f(tτ) W st τ dτ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vam aaCaaabeqcfasaaiaabshacaqGYbaaaKqbakabg2da9maapehabaGa amOzaiaacIcacaWG0bGaeyOeI0cccaGae8hXdqNaaiykamaalaaaba GaeyOaIyRaam4vamaaCaaajuaibeqaaiaabohacaqG0baaaaqcfaya aiabgkGi2kab=r8a0baaaKqbGeaacaaIWaaabaGaamiDaaqcfaOaey 4kIipacaWGKbGae8hXdqNaaiOlaaaa@5182@

These relations are similar to Duhamel’s integral formula from the theory of heat conduction. It should be noted that the local deformation of the POE surface is the determining factor of the laser impact and the bending deformation component of the POE as a whole can be reduced to zero due to the large thickness of its effectively cooled base. Later, both components of the POE deformation were examined in the book of L.S. Tsesnek et al.25

Continuous-wave irradiation

Temperature field

If the time of laser irradiation satisfies the inequality r 0 2 / a 2 t L 2 / a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaDaaajuaibaGaaGimaaqaaiaaikdaaaqcfaOaae4laiaadggadaah aaqcfasabeaacaaIYaaaaKqbakabgsMiJkaadshacqGHKjYOcaWGmb WaaWbaaKqbGeqabaGaaGOmaaaajuaGcaGGVaGaamyyamaaCaaabeqc fasaaiaaikdaaaaaaa@4674@ , a steady-state temperature field can be established in the sample material. The main property of the process of its establishment is described by the expression21

T * = 2 π arctg( F 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaCaaabeqaaiaacQcaaaGaeyypa0ZaaSaaaeaacaaIYaaabaWaaOaa aeaacqaHapaCaeqaaaaacaqGHbGaaeOCaiaabogacaqG0bGaae4zam aabmaabaWaaOaaaeaacaWGgbWaaSbaaKqbGeaacaaIWaaajuaGbeaa aeqaaaGaayjkaiaawMcaaaaa@4467@ .              (12)

It follows from (12) that for instants of times t, at which F 0 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaeyyzImRaaGinaaaa@3B6A@ , the current temperature is 10% less than the steady-state value. We therefore assume that, starting at time t, at which F 0 >4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaeyOpa4JaaGinaaaa@3AAC@ , a stationary thermal state is established in the sample material (Figure 1).

Figure 1 Time dependence of the sample surface temperature at the centre of the region (number F0) exposed to cw radiation.

The expression for the temperature field in the half-space has the form21

T * = 0 J 0 ( v δ r )exp[ v ( δ z + v ) ] dv v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaCaaabeqaaiaacQcaaaGaeyypa0Zaa8qCaeaacaWGkbWaaSbaaKqb GeaacaaIWaaajuaGbeaadaqadaqaamaakaaabaGaamODaaqabaGaeq iTdq2aaSbaaKqbGeaacaWGYbaajuaGbeaaaiaawIcacaGLPaaaciGG LbGaaiiEaiaacchadaWadaqaaiabgkHiTmaakaaabaGaamODaaqaba WaaeWaaeaacqaH0oazdaWgaaqcfasaaiaadQhaaKqbagqaaiabgUca RmaakaaabaGaamODaaqabaaacaGLOaGaayzkaaaacaGLBbGaayzxaa WaaSaaaeaacaWGKbGaamODaaqaamaakaaabaGaamODaaqabaaaaaqc fasaaiaaicdaaeaacqGHEisPaKqbakabgUIiYdGaaiilaaaa@5849@  (13)

where δ z =2 K 0 z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aaSbaaKqbGeaacaWG6baabeaajuaGcqGH9aqpcaaIYaWaaOaaaeaa caWGlbWaaSbaaKqbGeaacaaIWaaabeaaaKqbagqaaiaadQhaaaa@3F3D@  and δ r =2 K 0 r. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aaSbaaKqbGeaacaWGYbaajuaGbeaacqGH9aqpcaaIYaWaaOaaaeaa caWGlbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaeqaaiaadkhacaGGUa aaaa@3FDF@  From this expression we obtain the locality of the temperature field, the characteristic values of which decrease with increasing distance from the centre of the surface irradiation region and inside the material (Figures 2−4).

Figure 2 Temperature field distributions on the z axis.
Figure 3 Temperature field distributions on the sample surface.
Figure 4 Dependence of the axial stress σ zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWG6bGaamOEaaqcfayabaaaaa@3B22@ on the exposure time of laser irradiation.

Thermoelastic stresses

In the steady-state regime (p0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadchacqGHsgIRcaaIWaGaaiykaaaa@3B79@ , nonzero are only the components of the tensor of thermal stresses σ rr * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOCaaqaaiaacQcaaaaaaa@3B33@  and σ ϕϕ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacqaHvpGzcqaHvpGzaeaacaGGQaaaaaaa@3CD5@ :21

σ rr * =2(1v) 0 exp[ v ( v + δ z ) ][ J 1 ( v δ r )/ v δ r J 0 ( v δ r ) ] dv v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOCaaqaaiaacQcaaaqcfaOaeyypa0Ja aGOmaiaacIcacaaIXaGaeyOeI0IaamODaiaacMcadaWdXbqaaiGacw gacaGG4bGaaiiCamaadmaabaGaeyOeI0YaaOaaaeaacaWG2baabeaa daqadaqaamaakaaabaGaamODaaqabaGaey4kaSIaeqiTdq2aaSbaaK qbGeaacaWG6baabeaaaKqbakaawIcacaGLPaaaaiaawUfacaGLDbaa caaMc8+aamWaaeaacaWGkbWaaSbaaKqbGeaacaaIXaaabeaajuaGda qadaqaamaakaaabaGaamODaaqabaGaeqiTdq2aaSbaaKqbGeaacaWG YbaajuaGbeaaaiaawIcacaGLPaaacaGGVaWaaOaaaeaacaWG2baabe aacqaH0oazdaWgaaqcfasaaiaadkhaaKqbagqaaiabgkHiTiaadQea daWgaaqcfasaaiaaicdaaeqaaKqbaoaabmaabaWaaOaaaeaacaWG2b aabeaacqaH0oazdaWgaaqcfasaaiaadkhaaKqbagqaaaGaayjkaiaa wMcaaaGaay5waiaaw2faaaqcfasaaiaaicdaaeaacqGHEisPaKqbak abgUIiYdWaaSaaaeaacaWGKbGaamODaaqaamaakaaabaGaamODaaqa baaaaiaacYcaaaa@72AA@     (14)

σ ϕϕ * =2(1ν) 0 exp[ v ( v + δ z ) ][ J 1 ( v δ r )/(v δ r ) ] dv, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacqaHvpGzcqaHvpGzaeaacaGGQaaaaKqbakabg2da 9iaaikdacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcadaWdXbqaai GacwgacaGG4bGaaiiCamaadmaabaGaeyOeI0YaaOaaaeaacaWG2baa beaadaqadaqaamaakaaabaGaamODaaqabaGaey4kaSIaeqiTdq2aaS baaeaacaWG6baabeaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaM c8+aamWaaeaacqGHsislcaWGkbWaaSbaaKqbGeaacaaIXaaabeaaju aGdaqadaqaamaakaaabaGaamODaaqabaGaeqiTdq2aaSbaaKqbGeaa caWGYbaajuaGbeaaaiaawIcacaGLPaaacaGGVaGaaiikaiaadAhacq aH0oazdaWgaaqcfasaaiaadkhaaeqaaKqbakaacMcaaiaawUfacaGL DbaaaKqbGeaacaaIWaaabaGaeyOhIukajuaGcqGHRiI8aiaadsgaca WG2bGaaiilaaaa@6C08@

where

σ ik * = λ K 0 (1v) I 0 AG α T (1+v) σ ik ( r ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGPbGaam4AaaqaaiaacQcaaaqcfaOaeyypa0Za aSaaaeaacqaH7oaBdaGcaaqaaiaadUeadaWgaaqcfasaaiaaicdaaK qbagqaaaqabaGaaiikaiaaigdacqGHsislcaWG2bGaaiykaaqaaiaa dMeadaWgaaqcfasaaiaaicdaaKqbagqaaiaadgeacaWGhbGaeqySde 2aaSbaaKqbGeaacaWGubaajuaGbeaacaGGOaGaaGymaiabgUcaRiaa dAhacaGGPaaaaiabeo8aZnaaBaaajuaibaGaamyAaiaadUgaaeqaaK qbakaacIcaceWGYbGbaSaacaGGPaGaaiOlaaaa@57BD@

The maximum values of these components are achieved in the centre of the irradiated region (Figure 5) on the surface of the half-space, where the stationary field of thermoelastic stresses have the form (Figure 6) (Figure 7)

Figure 5 Distribution of the peripheral ( σ φφ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacqaHgpGAcqaHgpGAaeqaaaaa@3C10@ ) and radial ( σ rr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOCaaqabaaaaa@3A84@ ) tensor components on the z axis for different exposure times of laser irradiation.
Figure 6 Stress field σ rr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOCaaqabaaaaa@3A84@ on the surface of the half-space.
Figure 7 Stress field σ φφ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacqaHgpGAcqaHgpGAaeqaaaaa@3C10@ on the surface of the half-space.

σ rr * = π (1ν) 2 F 1 1 ( 1 2 ;2; δ r 2 /4 ), σ ϕϕ * = π (1ν) 2 [ F 1 1 ( 1 2 ;2; δ r 2 /4 ) F 1 1 ( 1 2 ;1; δ r 2 /4 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHdpWCdaqhaaqcfasaaiaadkhacaWGYbaabaGaaiOkaaaajuaGcqGH 9aqpdaWcaaqaamaakaaabaGaeqiWdahabeaacaGGOaGaaGymaiabgk HiTiabe27aUjaacMcaaeaacaaIYaaaamaaBeaajuaibaGaaGymaaqa baqcfaOaamOramaaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaada WcaaqaaiaaigdaaeaacaaIYaaaaiaacUdacaaIYaGaai4oaiabgkHi Tiabes7aKnaaDaaajuaibaGaamOCaaqaaiaaikdaaaqcfaOaai4lai aaisdaaiaawIcacaGLPaaacaGGSaaakeaajuaGcqaHdpWCdaqhaaqc fasaaiabew9aMjabew9aMbqaaiaacQcaaaqcfaOaeyypa0ZaaSaaae aadaGcaaqaaiabec8aWbqabaGaaiikaiaaigdacqGHsislcqaH9oGB caGGPaaabaGaaGOmaaaadaWadaqaamaaBeaajuaibaGaaGymaaqaba qcfaOaamOramaaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaadaWc aaqaaiaaigdaaeaacaaIYaaaaiaacUdacaaIYaGaai4oaiabgkHiTi abes7aKnaaDaaajuaibaGaamOCaaqaaiaaikdaaaqcfaOaai4laiaa isdaaiaawIcacaGLPaaacqGHsisldaWgbaqcfasaaiaaigdaaeqaaK qbakaadAeadaWgaaqcfasaaiaaigdaaKqbagqaamaabmaabaWaaSaa aeaacaaIXaaabaGaaGOmaaaacaGG7aGaaGymaiaacUdacqGHsislcq aH0oazdaqhaaqcfasaaiaadkhaaeaacaaIYaaaaKqbakaac+cacaaI 0aaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiOlaaaaaa@87BD@      (15)

The main property in establishing a steady state for σ rr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOCaaqabaaaaa@3A84@  and σ ϕϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacqaHvpGzcqaHvpGzaeqaaaaa@3C26@  are characterised by the dependence shown in Figure 8:

Figure 8 Establishment of a stationary strain state on the surface, in the centre of the irradiated region.

σ ii * ( δ r = δ z =0)= 1+ν π [ F 0 ( arctan 1 F 0 1 F 0 ) 1ν 1+ν arctan F 0 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGPbGaamyAaaqaaiaacQcaaaqcfaOaaiikaiab es7aKnaaBaaajuaibaGaamOCaaqcfayabaGaeyypa0JaeqiTdq2aaS baaKqbGeaacaWG6baabeaajuaGcqGH9aqpcaaIWaGaaiykaiabg2da 9maalaaabaGaaGymaiabgUcaRiabe27aUbqaamaakaaabaGaeqiWda habeaaaaWaamWaaeaacaWGgbWaaSbaaKqbGeaacaaIWaaabeaajuaG daqadaqaaiGacggacaGGYbGaai4yaiaacshacaGGHbGaaiOBamaala aabaGaaGymaaqaamaakaaabaGaamOramaaBaaajuaibaGaaGimaaqc fayabaaabeaaaaGaeyOeI0YaaSaaaeaacaaIXaaabaWaaOaaaeaaca WGgbWaaSbaaKqbGeaacaaIWaaabeaaaKqbagqaaaaaaiaawIcacaGL PaaacqGHsisldaWcaaqaaiaaigdacqGHsislcqaH9oGBaeaacaaIXa Gaey4kaSIaeqyVd4gaaiGacggacaGGYbGaai4yaiaacshacaGGHbGa aiOBamaakaaabaGaamOramaaBaaajuaibaGaaGimaaqcfayabaaabe aaaiaawUfacaGLDbaacaGGUaaaaa@7040@       (16)

This expression completely describes the characteristics of the stressed state arising in a solid when its surface is irradiated by cw laser radiation.

Thermal deformation of the surface

The expression for the displacement W * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vam aaCaaabeqcfasaaiaacQcaaaaaaa@385E@ of the reflective surface in the half-space model has the form:21

W * = 1 2 { F 0 exp( δ r 2 /4 )[ 4 F 0 1+ F 0 2ln( F 0 + F 0 +1 ) ] F 1 1 ( 3 2 ;1; δ r 2 4 ) }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vam aaCaaabeqcfasaaiaacQcaaaqcfaOaeyypa0JaeyOeI0YaaSaaaeaa caaIXaaabaGaaGOmaaaadaGadaqaaiaadAeadaWgaaqcfasaaiaaic daaeqaaKqbakGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaeqiT dq2aa0baaKqbGeaacaWGYbaabaGaaGOmaaaajuaGcaGGVaGaaGinaa GaayjkaiaawMcaaiabgkHiTmaadmaabaWaaSaaaeaacaaI0aWaaOaa aeaacaWGgbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaeqaaaqaaiaaig dacqGHRaWkcaWGgbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaaGaeyOe I0IaaGOmaiGacYgacaGGUbWaaeWaaeaadaGcaaqaaiaadAeadaWgaa qcfasaaiaaicdaaeqaaaqcfayabaGaey4kaSYaaOaaaeaacaWGgbWa aSbaaKqbGeaacaaIWaaajuaGbeaacqGHRaWkcaaIXaaabeaaaiaawI cacaGLPaaaaiaawUfacaGLDbaadaWgbaqcfasaaiaaigdaaeqaaKqb akaadAeadaWgaaqcfasaaiaaigdaaeqaaKqbaoaabmaabaWaaSaaae aacaaIZaaabaGaaGOmaaaacaGG7aGaaGymaiaacUdacqGHsisldaWc aaqaaiabes7aKnaaDaaajuaibaGaamOCaaqaaiaaikdaaaaajuaGba GaaGinaaaaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGUaaaaa@7272@     (17)

Deformation surface profiles for different exposure times are shown in Figure 9.

Figure 9 Establishment of a quasi-stationary deformation state on the surface, in the centre of the irradiated region.

Pulsed irradiation

Temperature field

In the case of short irradiation times, the depth of the temperature field penetration into the material is proportional to a 2 t << r 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaae aacaWGHbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaWG0baabeaacqGH 8aapcqGH8aapcaWGYbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaaMc8 Uaai4oaaaa@40ED@ therefore, the radial heat spreading can be ignored, and the temperature distribution over the surface repeats the laser beam intensity distribution profile:26

T * = 2 π [ Θ( t * )arctg( F 0 t * )Θ( t * 1)arctg( F 0 ( t * 1) ) ]exp( K 0 r 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaCaaajuaibeqaaiaacQcaaaqcfaOaeyypa0ZaaSaaaeaacaaIYaaa baWaaOaaaeaacqaHapaCaeqaaaaadaWadaqaaiabfI5arjaacIcaca WG0bWaaWbaaKqbGeqabaGaaiOkaaaajuaGcaGGPaGaaeyyaiaabkha caqGJbGaaeiDaiaabEgacaaMc8+aaeWaaeaadaGcaaqaaiaadAeada WgaaqcfasaaiaaicdaaeqaaKqbakaadshadaahaaqcfasabeaacaGG QaaaaaqcfayabaaacaGLOaGaayzkaaGaeyOeI0IaeuiMdeLaaiikai aadshadaahaaqcfasabeaacaGGQaaaaKqbakabgkHiTiaaigdacaGG PaGaaeyyaiaabkhacaqGJbGaaeiDaiaabEgacaaMc8+aaeWaaeaada GcaaqaaiaadAeadaWgaaqcfasaaiaaicdaaKqbagqaaiaacIcacaWG 0bWaaWbaaKqbGeqabaGaaiOkaaaajuaGcqGHsislcaaIXaGaaiykaa qabaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaciyzaiaacIhacaGG WbGaaiikaiabgkHiTiaadUeadaWgaaqcfasaaiaaicdaaeqaaKqbak aadkhadaahaaqcfasabeaacaaIYaaaaKqbakaacMcacaGGSaaaaa@72D9@     (18)

where Θ( t * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiMde LaaiikaiaadshadaahaaqcfasabeaacaGGQaaaaKqbakaacMcaaaa@3BD9@ is the Heaviside function; t * =t/τ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDam aaCaaajuaibeqaaiaacQcaaaqcfaOaeyypa0JaamiDaiaac+cacqaH epaDcaaMc8UaaGPaVlaacUdaaaa@4155@ and τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@3849@ is the pulse duration.

Thermoelastic stresses

Thermoelastic stresses arising in a solid irradiated by laser light play an important role in the destruction of the optical surface of the POE. Under pulsed irradiation (F 0 <<1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeikai aabAeadaWgaaqcfasaaiaabcdaaKqbagqaaiabgYda8iabgYda8iaa bgdacaqGPaaaaa@3CF0@ the expressions for the stress tensor components are given by (15), because in this case the propagation of heat in a solid is of quasi-one-dimensional character and the radial heat spreading can be neglected. The depth of penetration of thermal stresses in the material is a 2 τ << r 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaae aacaWGHbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqaHepaDaeqaaiab gYda8iabgYda8iaadkhadaWgaaqcfasaaiaaicdaaeqaaiaaykW7ca GGSaaaaa@411C@ which follows from the form of σ ik MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGPbGaam4Aaaqabaaaaa@3A74@ on the z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaa aa@3783@  axis:

σ rr * ( δ r =0)= 2 π F 0 [ exp( δ z 2 /4 F 0 ) π δ z 2 F 0 erfc( δ z 2 F 0 ) ] 8 F 0 3/2 π δ z 2 exp( δ z 2 4 F 0 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHdpWCdaqhaaqcfasaaiaadkhacaWGYbaabaGaaiOkaaaajuaGcaGG OaGaeqiTdq2aaSbaaKqbGeaacaWGYbaabeaajuaGcqGH9aqpcaaIWa Gaaiykaiabg2da9iabgkHiTmaalaaabaGaaGOmaaqaamaakaaabaGa eqiWdahabeaaaaWaaOaaaeaacaWGgbWaaSbaaKqbGeaacaaIWaaaju aGbeaaaeqaamaadmaabaGaciyzaiaacIhacaGGWbGaaiikaiabgkHi Tiabes7aKnaaDaaajuaibaGaamOEaaqaaiaaikdaaaqcfaOaai4lai aaisdacaWGgbWaaSbaaKqbGeaacaaIWaaabeaajuaGcaGGPaGaeyOe I0YaaSaaaeaadaGcaaqaaiabec8aWbqabaGaeqiTdq2aaSbaaKqbGe aacaWG6baabeaaaKqbagaacaaIYaGaamOramaaBaaajuaibaGaaGim aaqcfayabaaaaiaabwgacaqGYbGaaeOzaiaabogadaqadaqaamaala aabaGaeqiTdq2aaSbaaKqbGeaacaWG6baajuaGbeaaaeaacaaIYaWa aOaaaeaacaWGgbWaaSbaaKqbGeaacaaIWaaabeaaaKqbagqaaaaaai aawIcacaGLPaaaaiaawUfacaGLDbaacqGHijYUaOqaaKqbakabgIKi 7kabgkHiTmaalaaabaGaaGioaiaadAeadaqhaaqcfasaaiaaicdaae aacaaIZaGaai4laiaaikdaaaaajuaGbaWaaOaaaeaacqaHapaCaeqa aiabes7aKnaaDaaajuaibaGaamOEaaqaaiaaikdaaaaaaKqbakGacw gacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacqaH0oazdaqh aaqcfasaaiaadQhaaeaacaaIYaaaaaqcfayaaiaaisdacaWGgbWaaS baaKqbGeaacaaIWaaajuaGbeaaaaaacaGLOaGaayzkaaGaaiilaaaa aa@8B9B@  (19)

where δ z 2 F 0 >>1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaH0oazdaWgaaqcfasaaiaadQhaaKqbagqaaaqaaiaaikdadaGc aaqaaiaadAeadaWgaaqcfasaaiaaicdaaKqbagqaaaqabaaaaiabg6 da+iabg6da+iaaigdacaaMc8UaaiOlaaaa@424B@

The maximum values of the components σ rr * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOCaaqaaiaacQcaaaaaaa@3B33@  and σ ϕϕ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacqaHvpGzcqaHvpGzaeaacaGGQaaaaaaa@3CD5@  are achieved on the surface,

σ rr * = σ ϕϕ * =2 F 0 π exp( δ r 2 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOCaaqaaiaacQcaaaqcfaOaeyypa0Ja eq4Wdm3aa0baaKqbGeaacqaHvpGzcqaHvpGzaeaacaGGQaaaaKqbak abg2da9iabgkHiTiaaikdadaGcaaqaamaalaaabaGaamOramaaBaaa juaibaGaaGimaaqabaaajuaGbaGaeqiWdahaaaqabaGaciyzaiaacI hacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabes7aKnaaDaaajuai baGaamOCaaqaaiaaikdaaaaajuaGbaGaaGinaaaaaiaawIcacaGLPa aacaaMc8Uaaiilaaaa@5724@       (20)

i.e., the distribution of the components σ rr * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOCaaqaaiaacQcaaaaaaa@3B33@ and σ ϕϕ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacqaHvpGzcqaHvpGzaeaacaGGQaaaaaaa@3CD5@ on the surface repeat the laser beam intensity distribution. The components σ rr * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOCaaqaaiaacQcaaaaaaa@3B33@ and σ ϕϕ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacqaHvpGzcqaHvpGzaeaacaGGQaaaaaaa@3CD5@ on the surface z=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOEai abg2da9iaabcdaaaa@393A@ are equal, and the expression for σ ii * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGPbGaamyAaaqaaiaacQcaaaaaaa@3B21@ ( δ r , δ z =0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai abes7aKnaaBaaajuaibaGaamOCaaqabaqcfaOaaiilaiabes7aKnaa BaaajuaibaGaamOEaaqcfayabaGaeyypa0JaaGimaiaacMcaaaa@4147@  has the form:

σ ii * = 2 π [ Θ( t * ) F 0 t * Θ( t * 1) F 0 ( t * 1) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGPbGaamyAaaqaaiaacQcaaaqcfaOaeyypa0Ja eyOeI0YaaSaaaeaacaaIYaaabaWaaOaaaeaacqaHapaCaeqaaaaada WadaqaaiabfI5arjaacIcacaWG0bWaaWbaaKqbGeqabaGaaiOkaaaa juaGcaGGPaWaaOaaaeaacaWGgbWaaSbaaKqbGeaacaaIWaaajuaGbe aacaWG0bWaaWbaaKqbGeqabaGaaiOkaaaaaKqbagqaaiabgkHiTiab fI5arjaacIcacaWG0bWaaWbaaKqbGeqabaGaaiOkaaaajuaGcqGHsi slcaaIXaGaaiykamaakaaabaGaamOramaaBaaajuaibaGaaGimaaqa baqcfaOaaiikaiaadshadaahaaqcfasabeaacaGGQaaaaKqbakabgk HiTiaaigdacaGGPaaabeaaaiaawUfacaGLDbaacaaMc8UaaiOlaaaa @5E98@    (21)

In the case of small irradiation times

σ zz * =2 δ z F 0 t * 0 V 3 exp( V 2 V δ z )dV, σ rz * = δ r 2 exp( δ r 2 /4)[ F 0 t * erf( δ z 2 F 0 t * )+ F 0 t * π δ z exp( δ z 2 4 F 0 t * ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHdpWCdaqhaaqcfasaaiaadQhacaWG6baabaGaaiOkaaaajuaGcqGH 9aqpcaaIYaGaeqiTdq2aaSbaaKqbGeaacaWG6baabeaajuaGcaWGgb WaaSbaaKqbafaacaaIWaaabeaajuaGcaWG0bWaaWbaaKqbGeqabaGa aiOkaaaajuaGdaWdXbqaaiaadAfadaahaaqcfasabeaacaaIZaaaaK qbakGacwgacaGG4bGaaiiCaiaacIcacqGHsislcaWGwbWaaWbaaKqb GeqabaGaaGOmaaaajuaGcqGHsislcaWGwbGaeqiTdq2aaSbaaKqbGe aacaWG6baajuaGbeaacaGGPaGaamizaiaadAfacaGGSaaajuaibaGa aGimaaqaaiabg6HiLcqcfaOaey4kIipaaOqaaKqbakabeo8aZnaaDa aajuaibaGaamOCaiaadQhaaeaacaGGQaaaaKqbakabg2da9iabgkHi TmaalaaabaGaeqiTdq2aaSbaaKqbGeaacaWGYbaajuaGbeaaaeaaca aIYaaaaiGacwgacaGG4bGaaiiCaiaacIcacqGHsislcqaH0oazdaqh aaqcfasaaiaadkhaaeaacaaIYaaaaKqbakaac+cacaaI0aGaaiykam aadmaabaGaamOramaaBaaajuaibaGaaGimaaqabaqcfaOaamiDamaa CaaajuaibeqaaiaacQcaaaqcfaOaamyzaiaadkhacaWGMbWaaeWaae aadaWcaaqaaiabes7aKnaaBaaajuaibaGaamOEaaqabaaajuaGbaGa aGOmamaakaaabaGaamOramaaBaaajuaibaGaaGimaaqcfayabaGaam iDamaaCaaabeqcfasaaiaacQcaaaaajuaGbeaaaaaacaGLOaGaayzk aaGaey4kaSYaaSaaaeaadaGcaaqaaiaadAeadaWgaaqcfasaaiaaic daaeqaaKqbakaadshadaahaaqcfasabeaacaGGQaaaaaqcfayabaaa baGaeqiWdahaaiabes7aKnaaBaaajuaibaGaamOEaaqabaqcfaOaci yzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabes7aKnaa DaaajuaibaGaamOEaaqaaiaaikdaaaaajuaGbaGaaGinaiaadAeada WgaaqcfasaaiaaicdaaeqaaKqbakaadshadaahaaqcfasabeaacaGG QaaaaaaaaKqbakaawIcacaGLPaaaaiaawUfacaGLDbaacaGGSaaaaa a@A38D@     (22)

where V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaa aa@375F@ is a transform variable. The difference in signs of the components means that in the case of thermal deformation of the sample by laser radiation, for σ zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWG6bGaamOEaaqcfayabaaaaa@3B22@ tension of a material is realised, whereas for σ rz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOEaaqcfayabaaaaa@3B1A@  − compression. The maximum value of σ zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWG6bGaamOEaaqcfayabaaaaa@3B22@  is achieved on the z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaa aa@3783@  axis; in this case, δ z max 12 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aa0baaKqbGeaacaWG6baabaGaciyBaiaacggacaGG4baaaKqbakab gIKi7oaakeaabaGaaGymaiaaikdaaKqbGeaacaaI0aaaaKqbakaacY caaaa@423C@ i.e., z 0 max 0.66 r 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEam aaDaaajuaibaGaaGimaaqaaiGac2gacaGGHbGaaiiEaaaajuaGcqGH ijYUcaaIWaGaaiOlaiaaiAdacaaI2aGaamOCamaaBaaajuaibaGaaG imaaqcfayabaGaaGPaVlaacYcaaaa@4555@ and σ zz *max 1.9 F 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWG6bGaamOEaaqaaiaacQcacaaMc8UaciyBaiaa cggacaGG4baaaKqbakabgIKi7kaaigdacaGGUaGaaGyoaiaadAeada WgaaqcfasaaiaaicdaaeqaaiaaykW7caGGUaaaaa@4822@ The component σ rz * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOEaaqaaiaacQcaaaaaaa@3B3B@  reaches its maximum value at point r 0 max = r 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaDaaajuaibaGaaGimaaqaaiGac2gacaGGHbGaaiiEaaaajuaGcqGH 9aqpdaWcaaqaaiaadkhadaWgaaqcfasaaiaaicdaaeqaaaqcfayaai aaikdaaaaaaa@4047@  and z 0 max 2 a 2 τ : MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEam aaDaaajuaibaGaaGimaaqaaiGac2gacaGGHbGaaiiEaaaajuaGcqGH ijYUcaaIYaWaaOaaaeaacaWGHbWaaWbaaKqbGeqabaGaaGOmaaaaju aGcqaHepaDaeqaaiaaykW7caaMc8UaaGPaVlaaykW7caGG6aaaaa@499B@

σ rz *max 0.5 F 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOEaaqaaiaacQcacaaMc8UaciyBaiaa cggacaGG4baaaKqbakabgIKi7kabgkHiTiaaicdacaGGUaGaaGynai aadAeadaWgaaqcfasaaiaaicdaaKqbagqaaiaaykW7caaMc8UaaiOl aaaa@4B1B@      (23)

A distinctive feature of the behaviour of the σ zz * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWG6bGaamOEaaqaaiaacQcaaaaaaa@3B43@  component is that if the inequality F 0 <<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaeyipaWJaeyipaWJaaGymaaaa @3BA9@  is fulfilled, the position of its maximum on the z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaa aa@3783@  axis is determined by the spatial characteristics of the laser beam rather than the irradiation time. The maximum of this component is achieved by the end of the laser pulse. This feature is explained by the fact that at F 0 t * <<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaamiDamaaCaaajuaibeqaaiaa cQcaaaqcfaOaeyipaWJaeyipaWJaaGymaaaa@3E2E@  the region of thermoelastic perturbations lies on the sample surface and localizes in the irradiation region, because heat due to heat conduction has no time to spread over the sample material. In the opposite case, i.e., at F 0 t * >1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaamiDamaaCaaajuaibeqaaiaa cQcaaaqcfaOaeyOpa4JaaGymaiaaykW7caGGSaaaaa@3F69@ the point of this component maximum is determined from the condition (δ z 2 /4 F 0 t * )=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai abes7aKjaadQhadaahaaqcfasabeaacaaIYaaaaKqbakaac+cacaaI 0aGaamOramaaBaaajuaibaGaaGimaaqabaqcfaOaamiDamaaCaaaju aibeqaaiaacQcaaaqcfaOaaiykaiabg2da9iaaigdacaaMc8UaaiOl aaaa@4671@

Thermal deformations

The expression for the thermal deformation of the reflecting surface irradiated by a rectangular laser pulse, whose duration satisfies the condition F 0 <<1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaeyipaWJaeyipaWJaaGymaiaa ykW7caGGSaaaaa@3DE4@ , has the form:21

W * = F 0 2 exp( K 0 r 2 )[ Θ( t * ) t * Θ( t * 1)( t * 1) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vam aaCaaajuaibeqaaiaacQcaaaqcfaOaeyypa0JaeyOeI0YaaSaaaeaa caWGgbWaaSbaaKqbGeaacaaIWaaabeaaaKqbagaacaaIYaaaaiGacw gacaGG4bGaaiiCaiaacIcacqGHsislcaWGlbWaaSbaaKqbGeaacaaI WaaajuaGbeaacaWGYbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaGGPa WaamWaaeaacqqHyoqucaGGOaGaamiDamaaCaaajuaibeqaaiaacQca aaqcfaOaaiykaiaadshadaahaaqcfasabeaacaGGQaaaaKqbakabgk HiTiabfI5arjaacIcacaWG0bWaaWbaaKqbGeqabaGaaiOkaaaajuaG cqGHsislcaaIXaGaaiykaiaacIcacaWG0bWaaWbaaKqbGeqabaGaai OkaaaajuaGcqGHsislcaaIXaGaaiykaaGaay5waiaaw2faaiaaykW7 caGGUaaaaa@619F@      (24)

The distribution of thermal deformations of the reflecting surface repeats the laser beam intensity distribution (Figure 10), which we used in our method of the dynamic control of the intensity distribution of laser radiation.27

Figure 10 Deformation surface profiles for different exposure times.

Repetitively pulsed irradiation

Thermal deformations of a solid body exposed to repetitively pulsed laser radiation were analysed by using the previously derived relations that are similar to Duhamel’s integral formulas. The energy flow was treated as a train of rectangular pulses having a duration τ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq NaaGPaVlaacYcaaaa@3A84@ period T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGimaaqcfayabaaaaa@38F4@  (repetition rate ν 0 =1/ T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 2aaSbaaKqbGeaacaaIWaaajuaGbeaacqGH9aqpcaaIXaGaai4laiaa dsfadaWgaaqcfasaaiaaicdaaeqaaaaa@3E29@ ) and off-duty ratio SQ V=τ/ T 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai abg2da9iabes8a0jaac+cacaWGubWaaSbaaKqbGeaacaaIWaGaaGPa VdqcfayabaGaaGPaVlaac6caaaa@4115@ It was assumed that F 0 =4 K 0 a 2 T 0 <1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGinaiaadUeadaWg aaqcfasaaiaaicdaaKqbagqaaiaadggadaahaaqcfasabeaacaaIYa aaaKqbakaadsfadaWgaaqcfasaaiaaicdaaKqbagqaaiabgYda8iaa igdacaaMc8UaaiOlaaaa@45FD@ . The thermal stresses and deformations of the temperature field are expressed in terms of the integrals (typical of the cw regime) that are similar to Duhamel’s integrals:28

F PP = 0 t f(tτ) F cw τ dτ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaCaaajuaibeqaaiaadcfacaWGqbaaaKqbakabg2da9maapehabaGa amOzaiaacIcacaWG0bGaeyOeI0IaeqiXdqNaaiykamaalaaabaGaey OaIyRaamOramaaCaaajuaibeqaaiaadogacaWG3baaaaqcfayaaiab gkGi2kabes8a0baacaWGKbGaeqiXdqNaaiOlaaqcfasaaiaaicdaae aacaWG0baajuaGcqGHRiI8aaaa@511A@     (25)

At the initial instants of time, i.e., when F 0 t * <1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaamiDamaaCaaajuaibeqaaiaa cQcaaaqcfaOaeyipaWJaaGymaiaaykW7caGGSaaaaa@3F65@ repetitively pulsed irradiation is similar to pulsed irradiation. The geometric meaning of (25) is characterised by the area of the integrals in Figure 11. (For the temperature and the components σ ϕϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacqaHvpGzcqaHvpGzaKqbagqaaaaa@3CB4@ and σ rr , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOCaaqcfayabaGaaGPaVlaacYcaaaa@3D4D@ the value of F cw τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGgbWaaWbaaeqajuaibaGaam4yaiaadEhaaaaajuaG baGaeyOaIyRaeqiXdqhaaaaa@3EB2@  tend to infinity as 1/ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aac+cadaGcaaqaaiaadshaaeqaaaaa@38FB@  at t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgkziUkaaicdaaaa@3A24@  and to zero at t, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgkziUkabg6HiLkaacYcaaaa@3B8B@ for deformation F cw τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGgbWaaWbaaeqajuaibaGaam4yaiaadEhaaaaajuaG baGaeyOaIyRaeqiXdqhaaaaa@3EB2@ tends to const at t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgkziUkaaicdaaaa@3A24@  and to zero at t. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgkziUkabg6HiLkaaykW7caGGUaaaaa@3D18@ ) In the case of long irradiation times, i.e., when F 0 t * >1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaBaaajuaibaGaaGimaaqcfayabaGaamiDamaaCaaajuaibeqaaiaa cQcaaaqcfaOaeyOpa4JaaGymaiaaykW7caGGSaaaaa@3F69@ the temperature and thermal stresses reach their quasi-steady states, i.e., a constant component of these values becomes similar to that in the cw regime of energy input with a reduced intensity I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGimaaqabaaaaa@385B@  SQV. In this case, against the background of this component, along with changes in the laser beam intensity, there will be the characteristic peaks of temperature and stress, which are similar to peaks during pulsed irradiation. A separate ‘pulse’ of thermal deformations of the reflecting surface exists against the background of a ‘stationary component’ tending to infinity.

Figure 11 Geometrical interpretations of Duhamel’s integrals.

Temperature field

The expression for the temperature has the form21

T * = 1 2πi σ i i σ i +i dpψ(p) e p 0 e V J 0 ( V δ r )exp[ V ( V + δ z ) ] 8/ F 0 +V dV, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaCaaajuaibeqaaiaacQcaaaqcfaOaeyypa0ZaaSaaaeaacaaIXaaa baGaaGOmaiabec8aWjaadMgaaaWaa8qCaeaacaWGKbGaamiCaiabeI 8a5jaacIcacaWGWbGaaiykaiaadwgadaahaaqabKqbGeaacaWGWbaa aaqcfayaaiabeo8aZnaaBaaajuaibaGaamyAaaqcfayabaGaeyOeI0 IaamyAaiabg6HiLcqaaiabeo8aZnaaBaaajuaibaGaamyAaaqabaqc faOaey4kaSIaamyAaiabg6HiLcGaey4kIipadaWdXbqaamaalaaaba GaamyzamaaCaaajuaibeqaaiabgkHiTiaadAfaaaqcfaOaamOsamaa BaaajuaibaGaaGimaaqabaqcfa4aaeWaaeaadaGcaaqaaiaadAfaae qaaiabes7aKnaaBaaajuaibaGaamOCaaqcfayabaaacaGLOaGaayzk aaGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsisldaGcaaqaaiaadA faaeqaamaabmaabaWaaOaaaeaacaWGwbaabeaacqGHRaWkcqaH0oaz daWgaaqcfasaaiaadQhaaKqbagqaaaGaayjkaiaawMcaaaGaay5wai aaw2faaaqaamaakaaabaGaaGioaiaac+cacaWGgbWaaSbaaKqbGeaa caaIWaaajuaGbeaacqGHRaWkcaWGwbaabeaaaaaajuaibaGaaGimaa qaaiabg6HiLcqcfaOaey4kIipacaWGKbGaamOvaiaacYcaaaa@7D91@     (26)

since for a train of pulses

ψ(p)= [ 1exp( pτ ) ]{ 1exp[ p( N+1 )T ] } p[ 1exp( pT ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK NaaiikaiaadchacaGGPaGaeyypa0ZaaSaaaeaadaWadaqaaiaaigda cqGHsislciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiaadchacq aHepaDaiaawIcacaGLPaaaaiaawUfacaGLDbaadaGadaqaaiaaigda cqGHsislciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTiaadchada qadaqaaiaad6eacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaamivaaGa ay5waiaaw2faaaGaay5Eaiaaw2haaaqaaiaadchadaWadaqaaiaaig dacqGHsislciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiaadcha caWGubaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaaa@6263@     (27)

is the image of the Laplace transform of f(t); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzai aacIcacaWG0bGaaiykaiaaykW7caGG7aaaaa@3C0B@ and N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtaa aa@3757@ is the number of propagated laser pulses.

In the centre of the irradiation region the temperature reaches a maximum value by the time the next pulse terminates ( F 0 >1): MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadAeadaWgaaqcfasaaiaaicdaaKqbagqaaiabg6da+iaaigdacaGG PaGaaiOoaaaa@3CC0@  

T max * = π SQV+ 2 π arctg F 0 SQV , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaDaaajuaibaGaciyBaiaacggacaGG4baabaGaaiOkaaaajuaGcqGH 9aqpdaGcaaqaaiabec8aWbqabaGaam4uaiaadgfacaWGwbGaey4kaS YaaSaaaeaacaaIYaaabaWaaOaaaeaacqaHapaCaeqaaaaacaqGHbGa aeOCaiaabogacaqG0bGaae4zamaakaaabaGaamOramaaBaaajuaiba GaaGimaaqcfayabaGaam4uaiaadgfacaWGwbaabeaacaGGSaaaaa@4EDF@         (28)

where SQV is the off-duty ration of the temporal structure of radiation.

Thermoelastic stresses

Maximum values of the radial and circumferential tangential stress are achieved in the centre of the irradiation region, where they are equal to each other:

σ ii PP = 0 t f(tτ) σ ii cw τ dτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGPbGaamyAaaqaaiaadcfacaWGqbaaaKqbakab g2da9maapehabaGaamOzaiaacIcacaWG0bGaeyOeI0IaeqiXdqNaai ykamaalaaabaGaeyOaIyRaeq4Wdm3aa0baaKqbGeaacaWGPbGaamyA aaqaaiaadogacaWG3baaaaqcfayaaiabgkGi2kabes8a0baaaKqbGe aacaaIWaaabaGaamiDaaqcfaOaey4kIipacaWGKbGaeqiXdqhaaa@5610@     (29)

[ σ ii cw MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGPbGaamyAaaqaaiaadogacaWG3baaaaaa@3C57@ is determined from (16)]. The field distribution of stresses σ ii * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGPbGaamyAaaqaaiaacQcaaaaaaa@3B21@ on the surface by the time when the next laser pulse terminates has the form:

σ ii * =SQV σ ii *(1) + + n=0 N Θ( n+1 t * )[ Θ( t * n) σ ii *(2) ( t * n)Θ( t * nSQV) σ ii *(2) ( t * nSQV) ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHdpWCdaqhaaqcfasaaiaadMgacaWGPbaabaGaaiOkaaaajuaGcqGH 9aqpcaWGtbGaamyuaiaadAfacqaHdpWCdaqhaaqcfasaaiaadMgaca WGPbaabaGaaiOkaiaacIcacaaIXaGaaiykaaaajuaGcqGHRaWkaOqa aKqbakabgUcaRmaaqahabaGaeuiMde1aaeWaaeaacaWGUbGaey4kaS IaaGymaiabgkHiTiaadshadaahaaqcfasabeaacaGGQaaaaaqcfaOa ayjkaiaawMcaamaadmaabaGaeuiMdeLaaiikaiaadshadaahaaqcfa uabeaacaGGQaaaaKqbakabgkHiTiaad6gacaGGPaGaeq4Wdm3aa0ba aKqbGeaacaWGPbGaamyAaaqaaiaacQcacaGGOaGaaGOmaiaacMcaaa qcfaOaaiikaiaadshadaahaaqcfasabeaacaGGQaaaaKqbakabgkHi Tiaad6gacaGGPaGaeyOeI0IaeuiMdeLaaiikaiaadshadaahaaqcfa sabeaacaGGQaaaaKqbakabgkHiTiaad6gacqGHsislcaWGtbGaamyu aiaadAfacaGGPaGaeq4Wdm3aa0baaKqbGeaacaWGPbGaamyAaaqaai aacQcacaGGOaGaaGOmaiaacMcaaaqcfaOaaiikaiaadshadaahaaqc fasabeaacaGGQaaaaKqbakabgkHiTiaad6gacqGHsislcaWGtbGaam yuaiaadAfacaGGPaaacaGLBbGaayzxaaaajuaibaGaamOBaiabg2da 9iaaicdaaeaacaWGobaajuaGcqGHris5aiaabYcaaaaa@8B4E@       (30)

where σ ϕϕ *(1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacqaHvpGzcqaHvpGzaeaacaGGQaGaaiikaiaaigda caGGPaaaaaaa@3EE9@ and σ rr *(1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOCaaqaaiaacQcacaGGOaGaaGymaiaa cMcaaaaaaa@3D47@ are determined from (16), and σ rr *(2) = σ ϕϕ *(2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaWGYbGaamOCaaqaaiaacQcacaGGOaGaaGOmaiaa cMcaaaqcfaOaeyypa0Jaeq4Wdm3aa0baaKqbGeaacqaHvpGzcqaHvp GzaeaacaGGQaGaaiikaiaaikdacaGGPaaaaaaa@4742@  − from (21). Because in the steady stress state σ zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWG6bGaamOEaaqcfayabaaaaa@3B22@  and σ rz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOEaaqcfayabaaaaa@3B1A@  are identically zero, their values in the case of repetitively pulsed irradiation are the same as in the case of pulsed irradiation (accuracy ~SQV).

Deformation of the surface

The displacement of a solid-body surface exposed to repetitively pulsed radiation also has stationary and pulse components:21 W * =SQV W (1)* + W (2)* . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vam aaCaaajuaibeqaaiaacQcaaaqcfaOaeyypa0Jaam4uaiaadgfacaWG wbGaam4vamaaCaaabeqcfasaaiaacIcacaaIXaGaaiykaiaacQcaaa qcfaOaey4kaSIaam4vamaaCaaabeqcfasaaiaacIcacaaIYaGaaiyk aiaacQcaaaqcfaOaaiOlaaaa@4708@

When the quasi-stationary state is reached

W * =SQVln2 F 0 F 1 ( 3 2 ;1; δ r 2 π ) F 0 2 n=0 N Θ(n+1 t * )[ Θ( t * n)( t * n)Θ( t * nSQV)( t * nSQV) ]exp( K 0 r 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGxbWaaWbaaKqbGeqabaGaaiOkaaaajuaGcqGH9aqpcqGHsislcaWG tbGaamyuaiaadAfacaaMc8UaciiBaiaac6gacaaIYaWaaOaaaeaaca WGgbWaaSbaaKqbGeaacaaIWaaabeaaaKqbagqaaiaadAeadaWgaaqc fasaaiaaigdaaKqbagqaamaabmaabaWaaSaaaeaacaaIZaaabaGaaG OmaaaacaGG7aGaaGymaiaacUdacqGHsisldaWcaaqaaiabes7aKnaa DaaajuaibaGaamOCaaqaaiaaikdaaaaajuaGbaGaeqiWdahaaaGaay jkaiaawMcaaiabgkHiTaGcbaqcfaOaeyOeI0YaaSaaaeaacaWGgbWa aSbaaKqbGeaacaaIWaaajuaGbeaaaeaacaaIYaaaamaaqahabaGaeu iMdeLaaiikaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaamiDamaaCaaa juaibeqaaiaacQcaaaqcfaOaaiykamaadmaabaGaeuiMdeLaaiikai aadshadaahaaqcfasabeaacaGGQaaaaKqbakabgkHiTiaad6gacaGG PaGaaiikaiaadshadaahaaqcfasabeaacaGGQaaaaKqbakabgkHiTi aad6gacaGGPaGaeyOeI0IaeuiMdeLaaiikaiaadshadaahaaqcfasa beaacaGGQaaaaKqbakabgkHiTiaad6gacqGHsislcaWGtbGaamyuai aadAfacaGGPaGaaiikaiaadshadaahaaqcfasabeaacaGGQaaaaKqb akabgkHiTiaad6gacqGHsislcaWGtbGaamyuaiaadAfacaGGPaaaca GLBbGaayzxaaGaciyzaiaacIhacaGGWbGaaiikaiabgkHiTiaadUea daWgaaqcfasaaiaaicdaaeqaaKqbakaadkhadaahaaqcfasabeaaca aIYaaaaKqbakaacMcacaGGUaaajuaibaGaamOBaiabg2da9iaaicda aeaacaWGobaajuaGcqGHris5aaaaaa@9604@  (31)

Criteria for the optical surface stability

Expressions given for the characteristics of the thermal stress state of a solid whose surface is irradiated by high-power cw, pulsed and repetitively pulsed laser radiation allowed us to determine the limiting intensities corresponding to different stages of the optical damage of mirror surfaces.21,29 To this end, the parameters of the optical surface stability include not only the thermo physical and mechanical properties of the material but also the parameters of a Gaussian-like beam, namely the intensity in the centre of the irradiation region, the size of the irradiation region and the duration of a single pulse and, in the case of repetitively pulsed irradiation, − the pulse train off-duty ratio. The stability parameters of the reflector contain the ratio of a maximum value of the thermal stress state characteristic to its value at which the solid material experiences irreversible macroscopic changes – melting, plastic (brittle) or fatigue deformation or achievement of a critical value λ 0 /20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIWaaajuaGbeaacaqGVaGaaeOmaiaabcdaaaa@3BE9@ by the amplitude of thermal deformation of the optical surface, where λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIWaaabeaaaaa@3941@ is the wavelength of the laser used. The thus introduced stability parameters of mirrored POE surfaces made it possible not only to compare different pure metals and their alloys in terms of applicability in power optics but also to create specific types of combined POEs capable of withstanding high-power fluxes of cw, pulsed and repetitively pulsed laser radiation.

Continuous-wave regime

A solid body whose surface is exposed to cw laser radiation is destroyed when the temperature field in the centre of the irradiation region reaches the melting point of the material and the components of the stress field reach the yield point. The stability of the optical surface under cw irradiation is characterised by the parameters

γ T melt cw = π I 0 A 2λ K 0 T melt ; γ σ T cw = 3π (1+ν) I 0 AG α T 2λ K 0 σ T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacaWGubqcfa4aaSbaaKqbGeaacaqGTbGaaeyzaiaa bYgacaqG0baabeaaaeaacaqGJbGaae4DaaaajuaGcqGH9aqpdaWcaa qaamaakaaabaGaeqiWdahabeaacaWGjbWaaSbaaKqbGeaacaaIWaaa juaGbeaacaWGbbaabaGaaGOmaiabeU7aSnaakaaabaGaam4samaaBa aajuaibaGaaGimaaqabaaajuaGbeaacaWGubWaaSbaaKqbGeaacaWG TbGaamyzaiaadYgacaWG0baajuaGbeaaaaGaai4oaiaaykW7caaMc8 UaaGPaVlaaykW7cqaHZoWzdaqhaaqcfasaaiabeo8aZLqbaoaaBaaa juaibaGaamivaaqabaaabaGaae4yaiaabEhaaaqcfaOaeyypa0ZaaS aaaeaadaGcaaqaaiaaiodacqaHapaCaeqaaiaacIcacaaIXaGaey4k aSIaeqyVd4MaaiykaiaadMeadaWgaaqcfasaaiaaicdaaKqbagqaai aadgeacaWGhbGaeqySde2aaSbaaKqbGeaacaWGubaabeaaaKqbagaa caaIYaGaeq4UdW2aaOaaaeaacaWGlbWaaSbaaKqbGeaacaaIWaaabe aaaKqbagqaaiabeo8aZnaaBaaajuaibaGaamivaaqcfayabaaaaiaa ykW7caGGUaaaaa@79CE@    (32)

If γ T melt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaKqbGeaacaWGubqcfa4aaSbaaKqbGeaacaWGTbGaamyzaiaa dYgacaWG0baabeaaaKqbagqaaaaa@3E84@ and γ σ T <1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaKqbGeaacqaHdpWCjuaGdaWgaaqcfasaaiaadsfaaeqaaaqa baqcfaOaeyipaWJaaGymaiaaykW7caGGSaaaaa@407B@ the material will undergo no irreversible changes. The values of these parameters in the case of cw laser radiation at a power density I 0 A=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGimaaqcfayabaGaamyqaiabg2da9iaaigdaaaa@3B70@  kWcm−2 and K 0 =8 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4sam aaBaaajuaibaGaaGimaaqabaqcfaOaeyypa0JaaGioaiabgwSixlaa igdacaaIWaWaaWbaaKqbGeqabaGaaGOmaaaaaaa@3F7E@ >m−2 are shown in Table 1 for Cu, Al and Mo. The main reason for the damage of the optical surface can be determined from the relation

γ rel cw = γ σ T cw γ T melt cw = 3 (1+ν)G α T T melt σ T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacaqGYbGaaeyzaiaabYgaaeaacaqGJbGaae4Daaaa juaGcqGH9aqpdaWcaaqaaiabeo7aNnaaDaaajuaibaGaeq4Wdmxcfa 4aaSbaaKqbGeaacaWGubaabeaaaeaacaqGJbGaae4DaaaaaKqbagaa cqaHZoWzdaqhaaqcfasaaiaadsfajuaGdaWgaaqcfasaaiaab2gaca qGLbGaaeiBaiaabshaaeqaaaqaaiaabogacaqG3baaaaaajuaGcqGH 9aqpdaWcaaqaamaakaaabaGaaG4maaqabaGaaiikaiaaigdacqGHRa WkcqaH9oGBcaGGPaGaam4raiabeg7aHnaaBaaajuaibaGaamivaaqc fayabaGaamivamaaBaaajuaibaGaaeyBaiaabwgacaqGSbGaaeiDaa qabaaajuaGbaGaeq4Wdm3aaSbaaKqbGeaacaWGubaajuaGbeaaaaGa aGPaVlaac6caaaa@665E@       (33)

If σ rel сw >1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aa0baaKqbGeaacaqGYbGaaeyzaiaabYgaaeaacaqGbrGaae4Daaaa juaGcqGH+aGpcaaIXaGaaiilaaaa@4026@  the material will be destroyed when the component σ ii MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGPbGaamyAaaqcfayabaaaaa@3B00@  reaches the yield point, or when the melting point of the material, T(0,0,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivai aacIcacaaIWaGaaiilaiaaicdacaGGSaGaeyOhIuQaaiykaaaa@3CFB@ is reached.

For the materials in question (Table 1), the main reason for the deterioration of the optical surface at lower laser intensities is irreversible plastic deformations of the POE in the centre of the irradiation region. There is another important reason for the deterioration of the optical surface − excess of the critical value λ 0 /20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIWaaajuaGbeaacaGGVaGaaGOmaiaaicdaaaa@3BF8@  by the value of thermal deformation of the optical surface − which is implemented at long exposure times of high power laser radiation and in the range of the parameters corresponding to the elastic deformation of the material. In this case, phase and energy characteristics of the reflected laser beam are markedly impaired. The criterion for the optical surface stability to such changes in the optical characteristics of the reflector is given by parameter

γ λ 0 /20 cw = 20(1+ν) α T I 0 A λ K 0 λ 0 ln2 F 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacqaH7oaBjuaGdaWgaaqcfasaaiaaicdaaeqaaiaa c+cacaaIYaGaaGimaaqaaiaabogacaqG3baaaKqbakabg2da9maala aabaGaaGOmaiaaicdacaGGOaGaaGymaiabgUcaRiabe27aUjaacMca cqaHXoqydaWgaaqcfasaaiaadsfaaKqbagqaaiaadMeadaWgaaqcfa saaiaaicdaaKqbagqaaiaadgeaaeaacqaH7oaBcaWGlbWaaSbaaKqb GeaacaaIWaaajuaGbeaacqaH7oaBdaWgaaqcfasaaiaaicdaaKqbag qaaaaaciGGSbGaaiOBaiaaikdadaGcaaqaaiaadAeadaWgaaqcfasa aiaaicdaaKqbagqaaaqabaGaaiOlaaaa@5B41@      (34)

The value γ λ 0 /20 cw <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacqaH7oaBjuaGdaWgaaqcfasaaiaaicdaaeqaaiaa c+cacaaIYaGaaGimaaqaaiaabogacaqG3baaaKqbakabgYda8iaaig daaaa@421C@  can be reached if use is made of some types of reflector designs with efficient cooling.30

Pulsed regime

The parameters of the optical surface stability under pulsed irradiation by a Gaussian-like laser beam having a duration τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@3849@ and intensity I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGimaaqcfayabaaaaa@38E9@  in the centre of the irradiation region, determined by the ability to reach critical values T melt , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaeyBaiaabwgacaqGSbGaaeiDaiaaykW7aKqbagqa aiaacYcaaaa@3E33@ σ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGubaajuaGbeaaaaa@39FD@ and λ 0 /20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIWaaajuaGbeaacaGGVaGaaGOmaiaaicdaaaa@3BF8@ by temperature T(0,0,τ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivai aacIcacaaIWaGaaiilaiaaicdacaGGSaGaeqiXdqNaaiykaiaacYca aaa@3DFF@ thermoelastic stresses σ ii (0,0,τ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGPbGaamyAaaqcfayabaGaaiikaiaaicdacaGG SaGaaGimaiaacYcacqaHepaDcaGGPaaaaa@40F2@ and thermal deformations W(0,0,τ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4vai aacIcacaaIWaGaaiilaiaaicdacaGGSaGaeqiXdqNaaiykaiaaykW7 caGGSaaaaa@3F8D@  have the form:27‒29

γ T melt P = 2 I 0 A π λ T melt a 2 τ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacaWGubqcfa4aaSbaaKqbGeaacaqGTbGaaeyzaiaa bYgacaqG0baabeaaaeaacaWGqbaaaKqbakabg2da9maalaaabaGaaG OmaiaadMeadaWgaaqcfasaaiaaicdaaKqbagqaaiaadgeaaeaadaGc aaqaaiabec8aWbqabaGaeq4UdWMaamivamaaBaaajuaibaGaaeyBai aabwgacaqGSbGaaeiDaaqabaaaaKqbaoaakaaabaGaamyyamaaCaaa beqcfasaaiaaikdaaaqcfaOaeqiXdqhabeaacaGGSaaaaa@5249@

γ σ T P =4 3 π I 0 AG α T (1+ν) λ G T (1ν) a 2 τ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacqaHdpWCjuaGdaWgaaqcfasaaiaadsfaaeqaaaqa aiaadcfaaaqcfaOaeyypa0JaaGinamaakaaabaWaaSaaaeaacaaIZa aabaGaeqiWdahaaaqabaWaaSaaaeaacaWGjbWaaSbaaKqbGeaacaaI WaaabeaajuaGcaWGbbGaam4raiabeg7aHnaaBaaajuaibaGaamivaa qcfayabaGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaaabaGaeq4U dWMaam4ramaaBaaajuaibaGaamivaaqcfayabaGaaiikaiaaigdacq GHsislcqaH9oGBcaGGPaaaamaakaaabaGaamyyamaaCaaajuaibeqa aiaaikdaaaqcfaOaeqiXdqhabeaacaaMc8Uaaiilaaaa@5D3E@      (35)

γ λ 0 /20 P = 40(1+ν) I 0 A α T a 2 τ λ λ 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacqaH7oaBjuaGdaWgaaqcfasaaiaaicdaaeqaaiaa c+cacaaIYaGaaGimaaqaaiaadcfaaaqcfaOaeyypa0ZaaSaaaeaaca aI0aGaaGimaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaadMea daWgaaqcfasaaiaaicdaaKqbagqaaiaadgeacqaHXoqydaWgaaqcfa saaiaadsfaaKqbagqaaiaadggadaahaaqcfasabeaacaaIYaaaaKqb akabes8a0bqaaiabeU7aSjabeU7aSnaaBaaajuaibaGaaGimaaqcfa yabaaaaiaac6caaaa@5704@

The values of these parameters, found for copper, aluminium and molybdenum at I 0 A=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGimaaqcfayabaGaamyqaiabg2da9iaaigdaaaa@3B70@  kWcm−2, K 0 =2.82× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4sam aaBaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGOmaiaac6cacaaI 4aGaaGOmaiabgEna0kaaigdacaaIWaWaaWbaaKqbGeqabaGaaGOmaa aaaaa@4175@ m−2 and τ=50μs, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq Naeyypa0JaaGynaiaaicdacaaMc8UaeqiVd0Maam4CaiaaykW7caGG Saaaaa@413C@ and the heat flow values I 0 A, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGimaaqcfayabaGaamyqaiaacYcaaaa@3A5F@ at which γ i P =1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacaWGPbaabaGaamiuaaaajuaGcqGH9aqpcaaIXaGa aiilaaaa@3D3D@  are presented in Table 1. In the cw regime, the optical surface properties are mainly degraded due to irreversible plastic deformations in the centre of the irradiation region. Under pulsed irradiation the behaviour of the thermal stress state is more complicated than under cw irradiation. Thus, in contrast to the stationary thermal stress state, the nonstationary state in the material of a solid is characterised by the presence of the nonzero components σ zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWG6bGaamOEaaqabaaaaa@3A94@  and σ rz . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOEaaqabaGaaGPaVlaac6caaaa@3CC9@  In this case, the highest value is reached by the component σ zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWG6bGaamOEaaqabaaaaa@3A94@ on the z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaa aa@3783@ axis at a distance of ~0.66 r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiOFai aaicdacaGGUaGaaGOnaiaaiAdacaWGYbWaaSbaaKqbGeaacaaIWaaa juaGbeaaaaa@3D00@  from the optical surface. If at some level of these I 0 A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGimaaqcfayabaGaamyqaaaa@39AF@ values the component σ zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWG6bGaamOEaaqcfayabaaaaa@3B22@ is greater than the strength σ b , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGIbaajuaGbeaacaaMc8Uaaiilaaaa@3C46@ it is possible to implement the conditions of brittle fracture, at which the surface layer of the POE material will be detached. For this type of destruction the parameter of the optical surface stability has the form:

γ σ b u = 4 I 0 AE α T a 2 τ K 0 (1ν)λ σ b , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacqaHdpWCjuaGdaWgaaqcfasaaiaadkgaaeqaaaqa aiaadwhaaaqcfaOaeyypa0ZaaSaaaeaacaaI0aGaamysamaaBaaaju aibaGaaGimaaqabaqcfaOaamyqaiaadweacqaHXoqydaWgaaqcfasa aiaadsfaaeqaaKqbakaadggadaahaaqcfasabeaacaaIYaaaaKqbak abes8a0naakaaabaGaam4samaaBaaajuaibaGaaGimaaqcfayabaaa beaaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqaH7oaBcq aHdpWCdaWgaaqcfasaaiaadkgaaeqaaaaajuaGcaGGSaaaaa@5808@

and the stability parameter defined with respect to plastic deformation, has the form:

γ σ T P = 3 I 0 AE α T F 0 λ K 0 (1ν) σ T ( 1+2 F 0 3π exp( 3 2 F 0 ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacqaHdpWCjuaGdaWgaaqcfasaaiaadsfaaeqaaaqa aiaadcfaaaqcfaOaeyypa0ZaaSaaaeaadaGcaaqaaiaaiodaaeqaai aadMeadaWgaaqcfasaaiaaicdaaeqaaKqbakaadgeacaWGfbGaeqyS de2aaSbaaKqbGeaacaWGubaajuaGbeaacaWGgbWaaSbaaKqbGeaaca aIWaaajuaGbeaaaeaacqaH7oaBdaGcaaqaaiaadUeadaWgaaqcfasa aiaaicdaaKqbagqaaaqabaGaaiikaiaaigdacqGHsislcqaH9oGBca GGPaGaeq4Wdm3aaSbaaKqbGeaacaWGubaabeaaaaqcfa4aaeWaaeaa caaIXaGaey4kaSIaaGOmamaalaaabaWaaOaaaeaacaWGgbWaaSbaaK qbafaacaaIWaaajuaGbeaaaeqaaaqaaiaaiodacqaHapaCaaGaciyz aiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaamaakaaabaGaaG 4maaqabaaabaGaaGOmaiaadAeadaWgaaqcfasaaiaaicdaaeqaaaaa aKqbakaawIcacaGLPaaaaiaawIcacaGLPaaacaaMc8UaaiOlaaaa@69CA@ (36)

The values of the parameters and their corresponding intensities for Al, Mo and Cu are listed in Table 1.

Parameter

Material

Cu

Mo

Al

CW regime

γ T melt = π I 0 A 2λ K 0 1 T melt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC McdaWgaaWcbaGaamivamaaBaaameaacaWGTbGaamyzaiaadYgacaWG 0baabeaaaSqabaqcfaOaeyypa0ZaaSaaaeaadaGcaaqaaiabec8aWb qabaGaamysamaaBaaajuaibaGaaGimaaqcfayabaGaamyqaaqaaiaa ikdacqaH7oaBdaGcaaqaaiaadUeadaWgaaqcfasaaiaaicdaaKqbag qaaaqabaaaaiaaykW7daWcaaqaaiaaigdaaeaacaWGubWaaSbaaKqb GeaacaWGTbGaamyzaiaadYgacaWG0baabeaaaaaaaa@4FFF@

0.74

0.8

2.3

I th = 1 γ T melt /kWc m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaiaadIgaaKqbagqaaiabg2da9maalaaabaGa aGymaaqaaiabeo7aNnaaBaaajuaibaGaamivaKqbaoaaBaaajuaiba GaamyBaiaadwgacaWGSbGaamiDaaqabaaabeaaaaqcfaOaai4laiaa dUgacaWGxbGaaGPaVlaadogacaWGTbWaaWbaaeqajuaibaGaeyOeI0 IaaGOmaaaaaaa@4BC3@

1.4

1.3

0.44

γ σ T = 3π I 0 AG α T (1+v) 2λ K 0 σ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSbaae aacqaHZoWzdaWgaaqcfasaaiabeo8aZLqbaoaaBaaajuaibaGaamiv aaqabaaabeaajuaGcqGH9aqpdaWcaaqaamaakaaabaGaaG4maiabec 8aWbqabaGaamysamaaBaaajuaibaGaaGimaaqabaqcfaOaamyqaiaa dEeacqaHXoqydaWgaaqcfasaaiaadsfaaKqbagqaaiaacIcacaaIXa Gaey4kaSIaamODaiaacMcaaeaacaaIYaGaeq4UdW2aaOaaaeaacaWG lbWaaSbaaKqbGeaacaaIWaaajuaGbeaaaeqaaiabeo8aZnaaBaaaju aibaGaamivaaqcfayabaaaaaqabaaaaa@53DF@

19.3

104

38.3

I th = 1 γ σ T /kWc m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaiaadIgaaKqbagqaaiabg2da9maalaaabaGa aGymaaqaaiabeo7aNnaaBaaajuaibaGaeq4Wdmxcfa4aaSbaaKqbGe aacaWGubaabeaaaKqbagqaaaaacaGGVaGaam4AaiaadEfacaaMc8Ua am4yaiaad2gadaahaaqcfasabeaacqGHsislcaaIYaaaaaaa@49C0@

0.05

10-4

2.6x10-2

Pulsed regime

γ T melt = 2 I 0 A a 2 τ π λ T melt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC McdaWgaaWcbaGaamivamaaBaaameaacaWGTbGaamyzaiaadYgacaWG 0baabeaaaSqabaqcfaOaeyypa0ZaaSaaaeaacaaIYaGaamysamaaBa aajuaibaGaaGimaaqcfayabaGaamyqamaakaaabaGaamyyamaaCaaa beqcfasaaiaaikdaaaaccaqcfaOae8hXdqhabeaaaeaadaGcaaqaai abec8aWbqabaGaeq4UdWMaamivamaaBaaajuaibaGaamyBaiaadwga caWGSbGaamiDaaqcfayabaaaaaaa@501A@

2.0x10-3

1.45x10-3

5.4x10-3

I th = 1 γ T melt /kWc m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaiaadIgaaKqbagqaaiabg2da9maalaaabaGa aGymaaqaaiabeo7aNnaaBaaajuaibaGaamivaKqbaoaaBaaajuaiba GaamyBaiaadwgacaWGSbGaamiDaaqabaaajuaGbeaaaaGaai4laiaa dUgacaWGxbGaaGPaVlaadogacaWGTbWaaWbaaKqbGeqabaGaeyOeI0 IaaGOmaaaaaaa@4BC3@

500

700

190

γ σ T = ( 3 a 2 τ π ) 1/2 2 I 0 AE α T λ(1v) σ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC McdaWgaaWcbaGaeq4Wdm3aaSbaaWqaaiaadsfaaeqaaaWcbeaajuaG cqGH9aqpdaqadaqaamaalaaabaGaaG4maiaadggadaahaaqabKqbGe aacaaIYaaaaGGaaKqbakab=r8a0bqaaiabec8aWbaaaiaawIcacaGL PaaadaahaaqabKqbGeaacaaIXaGaai4laiaaikdaaaqcfa4aaSaaae aacaaIYaGaamysamaaBaaajuaibaGaaGimaaqcfayabaGaamyqaiaa dweacqaHXoqydaWgaaqcfasaaiaadsfaaKqbagqaaaqaaiabeU7aSj aacIcacaaIXaGaeyOeI0IaamODaiaacMcacqaHdpWCdaWgaaqcfasa aiaadsfaaeqaaaaaaaa@58DF@

0.16

55

0.28

I th = 1 γ σ T /kWc m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaiaadIgaaKqbagqaaiabg2da9maalaaabaGa aGymaaqaaiabeo7aNnaaBaaabaGaeq4Wdm3aaSbaaKqbGeaacaWGub aabeaaaKqbagqaaaaacaGGVaGaam4AaiaadEfacaaMc8Uaam4yaiaa d2gadaahaaqcfasabeaacqGHsislcaaIYaaaaaaa@4904@

6.3

1.8x10-2

3.6

γ λ 0 /20 = 40(1+v) I 0 A α T a 2 τ λ λ c o 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC McdaWgaaWcbaGaeq4UdW2aaSbaaWqaaiaaicdaaeqaaSGaai4laiaa ikdacaaIWaaabeaajuaGcqGH9aqpdaWcaaqaaiaaisdacaaIWaGaai ikaiaaigdacqGHRaWkcaWG2bGaaiykaiaadMeadaWgaaqcfasaaiaa icdaaKqbagqaaiaadgeacqaHXoqydaWgaaqcfasaaiaadsfaaKqbag qaaiaadggadaahaaqcfasabeaacaaIYaaaaGGaaKqbakab=r8a0bqa aiabeU7aSjabeU7aSnaaBaaajuaibaGaam4yaiaad+gajuaGdaWgaa qcfasaaiaaikdaaeqaaaqabaaaaaaa@5633@

0.013

4.6x10-3

2.6x10-2

I th = 1 γ λ 0 /20 /kWc m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaiaadIgaaeqaaKqbakabg2da9maalaaabaGa aGymaaqaaiabeo7aNnaaBaaabaqcfaIaeq4UdWwcfa4aaSbaaKqbGe aacaaIWaaabeaajuaGcaGGVaGaaGOmaiaaicdaaeqaaaaacaGGVaGa am4AaiaadEfacaaMc8Uaam4yaiaad2gadaahaaqcfasabeaacqGHsi slcaaIYaaaaaaa@4BBB@

80

230

39

γ σ b = 40 I 0 AE α T a 2 τ K 0 (1v)λ σ b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC McdaWgaaWcbaGaeq4Wdm3aaSbaaWqaaiaadkgaaeqaaaWcbeaajuaG cqGH9aqpdaWcaaqaaiaaisdacaaIWaGaamysamaaBaaajuaibaGaaG imaaqcfayabaGaamyqaiaadweacqaHXoqydaWgaaqcfasaaiaadsfa aKqbagqaaiaadggadaahaaqabKqbGeaacaaIYaaaaGGaaKqbakab=r 8a0naakaaabaGaam4samaaBaaajuaibaGaaGimaaqabaaajuaGbeaa aeaacaGGOaGaaGymaiabgkHiTiaadAhacaGGPaGaeq4UdWMaeq4Wdm 3aaSbaaKqbGeaacaWGIbaabeaaaaaaaa@5513@

2

1.6x10-2

7.4

I th = 1 γ σ B /kWc m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaiaadIgaaKqbagqaaiabg2da9maalaaabaGa aGymaaqaaiabeo7aNjabeo8aZnaaBaaajuaibaGaamOqaaqcfayaba aaaiaac+cacaWGRbGaam4vaiaaykW7caWGJbGaamyBamaaCaaajuai beqaaiabgkHiTiaaikdaaaaaaa@48D1@

0.5

6.3x10-4

0.14

γ σ f ( σ rz )= I 0 AG α T (1+v) F 0 2λ K 0 σ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaKqbGeaacqaHdpWCjuaGdaWgaaqcfasaaiaadAgaaeqaaaqa baqcfaOaaiikaiabeo8aZnaaBaaajuaibaGaamOCaiaadQhaaeqaaK qbakaacMcacqGH9aqpdaWcaaqaaiaadMeadaWgaaqcfasaaiaaicda aeqaaKqbakaadgeacaWGhbGaeqySde2aaSbaaKqbGeaacaWGubaaju aGbeaacaGGOaGaaGymaiabgUcaRiaadAhacaGGPaGaamOramaaBaaa juaibaGaaGimaaqcfayabaaabaGaaGOmaiabeU7aSnaakaaabaGaam 4samaaBaaajuaibaGaaGimaaqabaqcfaOaeq4Wdm3aaSbaaKqbGeaa caWGMbaabeaaaKqbagqaaaaaaaa@59A9@

1.8x10-4

0.04

2.7x10-4

I th = 1 γ σ T /kWc m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaiaadIgaaKqbagqaaiabg2da9maalaaabaGa aGymaaqaaiabeo7aNnaaBaaabaGaeq4Wdm3aaSbaaKqbGeaacaWGub aajuaGbeaaaeqaaaaacaGGVaGaam4AaiaadEfacaaMc8Uaam4yaiaa d2gadaahaaqcfasabeaacqGHsislcaaIYaaaaaaa@4904@

5.5x103

25

3.7x103

γ σ f ( σ zz )= 2 I 0 AG α T (1+v) F 0 λ K 0 (1v) σ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaeaajuaicqaHdpWCjuaGdaWgaaqcfasaaiaadAgaaKqbagqa aaqabaGaaiikaiabeo8aZnaaBaaajuaibaGaamOEaiaadQhaaKqbag qaaiaacMcacqGH9aqpdaWcaaqaaiaaikdacaWGjbWaaSbaaKqbGeaa caaIWaaabeaajuaGcaWGbbGaam4raiabeg7aHnaaBaaajuaibaGaam ivaaqcfayabaGaaiikaiaaigdacqGHRaWkcaWG2bGaaiykaiaadAea daWgaaqcfasaaiaaicdaaKqbagqaaaqaaiabeU7aSnaakaaabaGaam 4samaaBaaajuaibaGaaGimaaqabaaajuaGbeaacaGGOaGaaGymaiab gkHiTiaadAhacaGGPaGaeq4Wdm3aaSbaaKqbGeaacaWGMbaajuaGbe aaaaaaaa@5DAD@ >

1.2x10-3

0.26

1.8x10-3

I th = 1 γ λ 0 /20 /kWc m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaiaadIgaaKqbagqaaiabg2da9maalaaabaGa aGymaaqaaiabeo7aNnaaBaaabaqcfaIaeq4UdWwcfa4aaSbaaKqbGe aacaaIWaaabeaacaGGVaGaaGOmaiaaicdaaKqbagqaaaaacaGGVaGa am4AaiaadEfacaaMc8Uaam4yaiaad2gadaahaaqcfasabeaacqGHsi slcaaIYaaaaaaa@4BBB@

830

3.8

560

Table 1 Parameters of stability and threshold intensities for Al, Mo and Cu at I 0 A=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGimaaqcfayabaGaamyqaiabg2da9iaaigdaaaa@3B70@ kW cm−2, r 0 =5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGynaaaa@3AD7@ cm and

Repetitively pulsed regime

The state of a solid body, whose surface is irradiated by repetitively pulsed laser pulses, combines the characteristic features of thermal stress states implemented under pulsed and cw irradiation. In this case, for the temperature fields, the fields of the components σ rr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOCaaqabaaaaa@3A84@ and σ ϕϕ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacqaHvpGzcqaHvpGzaKqbagqaaiaaykW7caGGSaaa aa@3EEF@ the stress tensor and the thermal deformation fields the realisable temperature and thermal stress states are a combination of stationary and nonstationary states. In this regard, the stability parameters of the reflecting surfaces, defined by the ability of the temperature to reach the melting point of the material, of the components σ rr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaWGYbGaamOCaaqabaaaaa@3A84@ and σ ϕϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacqaHvpGzcqaHvpGzaKqbagqaaaaa@3CB4@ to reach the yield point and of thermal deformation to reach the threshold λ 0 /20, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIWaaajuaGbeaacaGGVaGaaGOmaiaaicdacaaM c8Uaaiilaaaa@3E33@ are as follows:21

γ i PP =SQV γ i cw + γ i P . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aa0baaKqbGeaacaWGPbaabaGaamiuaiaadcfaaaqcfaOaeyypa0Ja am4uaiaadgfacaWGwbGaeq4SdC2aa0baaKqbGeaacaWGPbaabaGaae 4yaiaabEhaaaqcfaOaey4kaSIaeq4SdC2aa0baaKqbGeaacaWGPbaa baGaamiuaaaajuaGcaGGUaaaaa@4A5F@  (37)

Under repetitively pulsed irradiation, a nonstationary, cyclically repeated stress state arises on a solid surface in the material. As a result, the material of the solid body may experience irreversible fatigue damage. The conditions under which the POE surface undergoes macroscopic fatigue fracture can be assessed by Wöhler curves, determining the dependence of modulus of the amplitude of fatigue stresses on the number of cycles of the loading pulses N p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtam aaBaaajuaibaGaamiCaaqcfayabaGaaGPaVlaac6caaaa@3B66@ 21‒31

 Irreversible changes of the optical surface

Dynamics of the fatigue and brittle fracture is characterised by the emergence and extension of microcracks. Therefore, inadmissibility of destruction of the optical POE surface is dictated by the need to preserve the diffusely scattered component of laser radiation at negligible levels. Moreover, the origin and development of microcracks is accompanied by microstructural and phase transformations of the material, leading to a change in the structural and phase composition of the reflecting surface and, as a consequence-to an increase in its absorption coefficient A, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai aaykW7caGGSaaaaa@3985@ whereas the adsorption of various substances on the resulting system of microcracks initiating an optical breakdown leads to a decrease in radiation resistance of the reflecting surface. Furthermore, the optical breakdown of air near the target can occur without the segregation of impurities directly in the vicinity of emergence of microcracks, because they become the nucleus of the electric fields, etc. We considered sequentially the basic mechanisms of microstructural and phase transformations preceding the stage of plastic, fatigue and brittle fracture or accompanying these stages, as well as analysed the possible reasons for the change in the optical surface quality. The expressions obtained are important not only for the problems of power optics. They are effectively used today for the analysis of the conditions of fracture of solids of different nature due to excess of limiting stresses for the various components of the stress tensor.

Conclusion

In conclusion, one very important and true to our life relationship should be mentioned in this rather difficult time for science. The resources invested effectively in the development of any field of advanced technology will as a rule afford a feedback in a number of ancillary applications in other ancillary and sometimes rather remote fields of science and technology. Thus, phase-locked 1-d and 2-dLD arrays with high level of radiation fluxes and new configuration of solid - state laser–single module scalable disk laser- appears to be due in part to achievements in the field of HPO. HPO is a universally recognized contributor to other advanced laser systems and applications for the 21st century.

Acknowledgements

None

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. Apollonov VV. High-power optics and its new manifestations. Laser Phys. 2013;23(6).
  2. Barchukov AI, Karlov NV, Konyukhov VK, et al. Moscow: FIAN Report; 1968–1970.
  3. Barchukov AI, Konev YuB, Prokhorov AM. RadiotekhElectron. 1970;15:2193.
  4. Apollonov VV, Barchukov AI, Konyukhov VK, et al. Moscow: FIAN Report; 1971.
  5. Apollonov VV, Barchukov AI, Konyukhov VK, et al. Moscow: FIAN Report; 1972.
  6. Apollonov VV, Barchukov AI, Konyukhov VK, et al. Pis’ma Zh Eksp Teor Fiz. 1972;15:248.
  7. Apollonov VV, Barchukov AI, Prokhorov AM. Proceedings on First European Conference on Lasers and Applications, Drezden: GDR; 1972.
  8. Apollonov VV, Barchukov AI, Konyukhov VK, et al. Sov J Quantum Electron. 1973;3(3):244.
  9. Apollonov VV, Barchukov AI, Prokhorov AM. Proceedings on Second European Conference in Lasers and Applications. Drezden: GDR; 1973: Moscow: Preprint FIAN No 157; 1973.
  10. Apollonov VV, Barchukov AI, Lubin AA, et al. Moscow: FIAN Report; 1973.
  11. Glass AJ, Guenther AH. Appl Opt. 1973;12:34.
  12. Cytron SJ. Memorandum Report M73-17-1, Philadelphia, PA; 1973.
  13. Jacobson DH, Bickford W, Kidd J, et al. AIAA paper No. 75‒719;1975.
  14. Apollonov VV. High power optics. Springer. 2014.
  15. Apollonov VV, Barchukov AI, Prokhorov AM. Radiotekh Electron. 1974;19:204.
  16. Apollonov VV, Barchukov AI, Prokhorov AM. Characteristics of a high-power nitrogen laser. J Quantum Electron. 1974;10: 505.
  17. Apollonov VV, Shefter EM. Proceedings on Second European Conference in Lasers and Applications. Moscow: Preprint FIAN No. 105; 1974.
  18. Barchukov AI. Doctoral Dissertation. Moscow: FIAN; 1974.
  19. Apollonov VV, Barchukov AI, Karlov NV, et al. Sov J Quantum Electron. 1975;5:216.
  20. Apollonov VV. Candian Dissertation. Moscow: FIAN; 1975.
  21. Apollonov VV. Doctoral Dissertation. Moscow: FIAN; 1982.
  22. Parkus H. Thermoelasticity. Moscow: Fizmatgiz; 1963.
  23. Nowacki W. Problems of Thermoelasticity. Moscow: Izd. AN SSSR; 1962.
  24. Jahnke E, Emde F, Lusch F. Special functions. Moscow: Nauka; 1964.
  25. Tsesnek LS, Sorokin OV, Zolotukhin AA. Metal mirrors. Moscow: Mashinostroenie; 1983.
  26. Apollonov VV, Barchukov AI, Prokhorov AM. Proc. V All-Union Meeting on Nonresonant Interaction of Optical Radiation with Matter. Leningrad: 1977.
  27. Apollonov VV, Barchukov AI, Kir’yanova LT, et al. Moscow: FIAN Report; 1977.
  28. Apollonov VV, Barchukov AI, Ostrovskaya LM, et al. Patent No. 103162.
  29. Apollonov VV, Barchukov AI, Prokhorov AM, et al. Letters to JTP. 1978;4:433.
  30. Apollonov VV, Barchukov AI, Borodin VI, et al. Letters to JTP. 1978;4:1193.
  31. Apollonov VV, Barchukov AI, Ostrovskaya LM, et al. Sov J Quantum Electron. 1978;5:446.
Creative Commons Attribution License

©2018 Apollonov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.