Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Review Article Volume 1 Issue 4

Electromagnetic-radiation effect on alpha decay

M Apostol

Department of Theoretical Physics, Romania

Correspondence: M Apostol, Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6,POBox MG-35, Romania

Received: July 12, 2018 | Published: August 13, 2018

Citation: M Apostol. Electromagnetic-radiation effect on alpha decay. Open Acc J Math Theor Phy. 2018;1(4):155-159. DOI: 10.15406/oajmtp.2018.01.00026

Download PDF

Abstract

The effect of the electromagnetic radiation on the spontaneous charge emission from heavy atomic nuclei is estimated in a model which may be relevant for proton emission and alpha-particle decay in laser fields. Arguments are given that the electronic cloud in heavy atoms screens appreciably the electric field acting on the nucleus and the nucleus "sees" rather low fields. In these conditions, it is shown that the electromagnetic radiation brings second-order corrections in the electric field to the disintegration rate, with a slight anisotropy. These corrections give a small enhancement of the disintegration rate. The case of a static electric field is also discussed.

PACS: 23.60.+e; 23.50.+z; 03.65.xp; 03.65.Sq; 03.50.de

Keywords: alpha decay, electromagnetic radiation, proton emission, laser radiation

Introduction

In the context of an active topical research in laser-related physics,1‒5 the problem of charge emission from bound-states under the action of the electromagnetic radiation is receiving an increasing interest. Some investigations focus especially on the effect the optical-laser radiation may have on the spontaneous alpha-particle decay of the atomic nuclei,6‒11 or nuclear proton emission,12,13 but the area may be extended to atom ionization or molecular or atomic clusters fragmentation.14‒17 The aim of the present paper is to estimate the effect of the adiabatically-applied electromagnetic radiation upon the rate of spontaneous nuclear alpha decay and proton emission. Specifically, the paper is motivated by the interest in computing the rate of tunneling through a Coulomb potential barrier in the presence of electric fields. It is claimed that the rate of alpha decay is practically not affected by electric fields,8 nor it is greatly enhanced by strong electric fields.18 On the other side, the atomic electron cloud may screen appreciably the external electric fields, such that the atomic nucleus may experience, in fact, rather low electric fields. It is this point, related to low electric fields, which may raise technical difficulties in estimating the small effect of these external fields upon the alpha decay.

We adopt a nuclear model with Z protons and A − Z neutrons, where A is the mass number of the nucleus, moving in the nuclear mean field. The experiments proceed usually by placing a collection of heavy atoms in the focal region of a laser beam, and focusing radiation pulses upon that collection of atoms. We consider an optical-laser radiation with a typical frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@  of the order 1015s−1 (corresponding to a period T 10 15 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeivai abloKi7iaabgdacaqGWaWaaWbaaKqbGeqabaGaeyOeI0IaaGymaiaa iwdaaaqcfaOaam4Caaaa@3E30@ and a wavelength λ0.8μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW MaeS4qISJaaGimaiaac6cacaaI4aGaeqiVd0MaamyBaaaa@3E3F@ ). We assume that the motion of the charges under the action of the electromagnetic radiation remains non-relativistic, i.e. qA 0 /mc 2 <<1,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeyCai aabgeadaWgaaqcfasaaiaabcdaaeqaaKqbakaab+cacaqGTbGaae4y amaaCaaajuaibeqaaiaabkdaaaqcfaOaaeipaiaabYdacaqGXaGaae ilaiaabccaaaa@416B@ where q is the particle charge, m is the particle mass and A0 is the amplitude of the vector potential (c denotes the speed of light in vacuum). For protons in atomic nuclei (q=4.8× 10 10 esu,m2× 10 24 g,c=3× 10 10 cm/s) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeikai aabghacaqG9aGaaeinaiaab6cacaqG4aGaey41aqRaaeymaiaabcda daahaaqcfasabeaacqGHsislcaaIXaGaaGimaaaajuaGcaWGLbGaam 4CaiaadwhacaGGSaGaaGPaVlaad2gacqWIdjYocaaIYaGaey41aqRa aGymaiaaicdadaahaaqcfasabeaacqGHsislcaaIYaGaaGinaaaaju aGcaWGNbGaaiilaiaaykW7caWGJbGaeyypa0JaaG4maiabgEna0kaa igdacaaIWaWaaWbaaKqbGeqabaGaaGymaiaaicdaaaqcfaOaam4yai aad2gacaGGVaGaam4CaiaacMcaaaa@606E@  this condition yields a very high electric field E 0 = 3× 10 13 V/cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaapeGa eyypa0JaaeiiaiaaiodacqGHxdaTcaaIXaGaaGima8aadaahaaqcfa sabeaapeGaaGymaiaaiodaaaqcfaOaamOvaiaac+cacaWGJbGaamyB aaaa@4512@  (1011 electro-static units), which corresponds to a maximum intensity of the laser beam in the focal region of the order I=cE 0 2 /8π  = 10 24 w/cm 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeysai aab2dacaqGJbGaaeyramaaDaaajuaibaGaaGimaaqaaiaaikdaaaqc faOaae4laiaabIdacqaHapaCcaqGGaGaaeypaiaabccacaqGXaGaae imamaaCaaajuaibeqaaiaabkdacaqG0aaaaKqbakaabEhacaqGVaGa ae4yaiaab2gadaahaaqcfasabeaacaqGYaaaaKqbakaab6caaaa@4AB9@  Typically, the duration of the laser pulse is of the order of tens of radiation period (or longer), such that we may consider the action of the electromagnetic radiation much longer than the period of the radiation. The repetition rate of the laser pulses is usually much longer than the pulse duration. For simplification we consider linearly-polarized radiation plane waves; the calculations can be extended to a general polarization. The laser-beam shape or multi-mode operation has little relevance upon the results presented here.

The electric fields are appreciably screened by the electronic cloud of the heavy atoms. The screening effects on the thermonuclear reactions, alpha decay and lifetimes have been considered previously.10,11,19,20 A convenient means of treating the electron cloud in heavy atoms is the linearized Thomas-Fermi model.21 According to this model, the radial electron distribution is concentrated at distance R = a H /Z 1/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOuai aabccacaqG9aGaaeiiaiaabggadaWgaaqcfasaaiaabIeaaKqbagqa aiaab+cacaqGAbWaaWbaaKqbGeqabaGaaeymaiaab+cacaqGZaaaaa aa@3FE6@ (screening distance), where a H  =  2 /mq 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeyyam aaBaaajuaibaGaaeisaaqcfayabaGaaeiiaiaab2dacaqGGaWefv3y SLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpeY=daahaa qcfasabeaacaaIYaaaaKqbakaab+cacaqGTbGaaeyCamaaCaaabeqc fasaaiaabkdaaaaaaa@4B89@  is the Bohr radius and Z is the atomic number (Z ≫ 1); q and m denote the electron charge and mass, respectively. The atomic binding energy depends on R, and the atom exhibits an eigenmode related to the change in R (a breathing-type mode), with an eigenfrequency ω 0 Z| q |/ m a H 3 4.5Z× 10 16 s 1 ( ω 0 28Z(eV)). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIWaaajuaGbeaacqWIdjYocaWGAbWaaqWaaeaa caWGXbaacaGLhWUaayjcSdGaai4lamaakaaabaGaamyBaiaadggada qhaaqcfasaaiaadIeaaeaacaaIZaaaaaqcfayabaGaeS4qISJaaGin aiaac6cacaaI1aGaamOwaiabgEna0kaaigdacaaIWaWaaWbaaKqbGe qabaGaaGymaiaaiAdaaaqcfaOaam4CamaaCaaajuaibeqaaiabgkHi TiaaigdaaaqcfaOaaiikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaGae83dH8VaeqyYdC3aaSbaaKqbGeaacaaIWaaajuaG beaacqWIdjYocaaIYaGaaGioaiaadQfacaGGOaGaamyzaiaadAfaca GGPaGaaiykaiaac6caaaa@6A0E@  We recognize in ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIWaaajuaGbeaaaaa@39E8@  the plasma frequency 4π n ¯ q 2 /m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS4qIS JaaGinaiabec8aWjqad6gagaqeaiaadghadaahaaqcfasabeaacaaI YaaaaKqbakaac+cacaWGTbaaaa@3F70@  of a mean electron density n ¯ Z/R 3  = Z 2 /a H 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOBay aaraGaeS4qISJaaeOwaiaab+cacaqGsbWaaWbaaKqbGeqabaGaae4m aaaajuaGcaqGGaGaaeypaiaabccacaqGAbWaaWbaaKqbGeqabaGaae OmaaaajuaGcaqGVaGaaeyyamaaDaaajuaibaGaaeisaaqaaiaaioda aaqcfaOaaiOlaaaa@45DC@ It corresponds to the atomic giant-dipole oscillations discussed in Ref.21 In the presence of an external electric field E oriented along the z-direction the electrons are displaced by u(with fixed nucleus), a displacement which produces an energy change z 2 u 2 / R 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeSipIO JaamOEamaaCaaajuaibeqaaiaaikdaaaqcfaOaamyDamaaCaaajuai beqaaiaaikdaaaqcfaOaai4laiaadkfadaahaaqcfasabeaacaaIYa aaaKqbakaac6caaaa@40B0@  By integrating over z, we get a factor 1/ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aac+cadaGcaaqaaiaaiodaaeqaaaaa@38BF@  in the eigenfrequency ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIWaaajuaGbeaaaaa@39E8@ , as expected. It follows that the displacement u obeys the equation of motion u ¨ + Ω 2 u=qE/m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmyDay aadaGaey4kaSIaeyyQdC1aaWbaaKqbGeqabaGaaGOmaaaajuaGcaWG 1bGaeyypa0JaamyCaiaadweacaGGVaGaamyBaiaacYcaaaa@41A8@ where Ω= ω 0 / 3 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyyQdC Laeyypa0JaeqyYdC3aaSbaaKqbGeaacaaIWaaajuaGbeaacaGGVaWa aOaaaeaacaaIZaaabeaacaGG7aaaaa@3EBC@ the internal field is (polarization and the dipole moment p=Zqu). For E=E 0 sinωt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeyrai aab2dacaqGfbWaaSbaaKqbGeaacaaIWaaabeaajuaGcaaMc8Uaci4C aiaacMgacaGGUbGaaGPaVlabeM8a3jaadshaaaa@431F@  the solution of this equation is u= u 0 sinωt, u 0 =(q E 0 /m)/( ω 2 Ω 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai abg2da9iaadwhadaWgaaqcfasaaiaaicdaaKqbagqaaiaaykW7ciGG ZbGaaiyAaiaac6gacaaMc8UaeqyYdCNaamiDaiaacYcacaWG1bWaaS baaKqbGeaacaaIWaaabeaajuaGcqGH9aqpcqGHsislcaGGOaGaamyC aiaadweadaWgaaqcfasaaiaaicdaaKqbagqaaiaac+cacaWGTbGaai ykaiaac+cacaGGOaGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaajuaG cqGHsislcqGHPoWvdaahaaqcfasabeaacaaIYaaaaKqbakaacMcaca GGSaaaaa@598B@ and the internal field is E i = Ω 2 E/( ω 2 Ω 2 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaeyyQdC1aaWbaaeqa juaibaGaaGOmaaaajuaGcaWGfbGaai4laiaacIcacqaHjpWDdaahaa qcfasabeaacaaIYaaaaKqbakabgkHiTiabgM6axnaaCaaajuaibeqa aiaaikdaaaqcfaOaaiykaiaacUdaaaa@485A@ the total electric field acting upon the atomic nucleus is

F=E+ E i = ω 2 ω 2 Ω 2 E 0 sinωt; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOrai abg2da9iaadweacqGHRaWkcaWGfbWaaSbaaKqbGeaacaWGPbaabeaa juaGcqGH9aqpdaWcaaqaaiabeM8a3naaCaaajuaibeqaaiaaikdaaa aajuaGbaGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHsisl cqGHPoWvdaahaaqabKqbGeaacaaIYaaaaaaajuaGcaWGfbWaaSbaaK qbGeaacaaIWaaajuaGbeaacaaMc8Uaci4CaiaacMgacaGGUbGaaGPa VlabeM8a3jaadshacaGG7aaaaa@5464@  (1)

since ω<<Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaeyipaWJaeyipaWJaeyyQdCLaaiilaaaa@3C98@ we may use the approximation F( ω 2 / Ω 2 )E 10 3 / Z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOrai abloKi7iabgkHiTiaacIcacqaHjpWDdaahaaqcfasabeaacaaIYaaa aKqbakaac+cacqGHPoWvdaahaaqcfasabeaacaaIYaaaaKqbakaacM cacaWGfbGaeS4qISJaeyOeI0IaaGymaiaaicdadaahaaqcfasabeaa cqGHsislcaaIZaaaaKqbakaac+cacaWGAbWaaWbaaKqbGeqabaGaaG Omaaaaaaa@4B8C@ (where ω =10 15 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaeypaiaabgdacaqGWaWaaWbaaKqbGeqabaGaaeymaiaabwdaaaqc faOaae4CamaaCaaajuaibeqaaiabgkHiTiaaigdaaaaaaa@3FB0@ ); we can see that the total field acting upon the nucleus is appreciably reduced by the electron screening. For Z = 50 this reduction factor is 4× 10 7 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS4qIS JaaeinaiabgEna0kaaigdacaaIWaWaaWbaaKqbGeqabaGaeyOeI0Ia aG4naaaajuaGcaGG7aaaaa@3F43@ the maximum field 3 × 1013V /cm is reduced to 107V /cm ( 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS4qIS JaaGymaiaaicdadaahaaqabKqbGeaacaaI0aaaaaaa@3A38@ electrostatic units). It follows that we may limit ourselves here to low fields acting upon the atomic nuclei. The cases of strong fields have been analyzed in Refs.8,9,18,22,23 At the same time, an induced electric field generated by the dipolar eigenmodes occurs inside the atom, which oscillates with the higher eigenfrequency Ω. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHPoWvcaGGUaaaaa@38E5@

If the field is low, the bound-state charge oscillates, emits higher-order harmonics of electromagnetic radiation and tunneling may appear; in this latter case, the charge accommodates itself in the field, in a long time, which amounts to an adiabatically-introduced interaction; this regime allows the usual, standard application of the tunneling approach. As we shall see below, the threshold field which separates the two regimes (low-field regime from high-field regime) can be obtained from | q | E 0 /m ω 2 a=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaabdaqaaiaadghaaiaawEa7caGLiWoacaaMc8Uaamyramaa BaaajuaibaGaaGimaaqcfayabaGaai4laiaad2gacqaHjpWDdaahaa qcfasabeaacaaIYaaaaKqbakaadggacqGH9aqpcaaIXaGaaiilaaaa @470B@  where a is a distance of the order of the bound-state dimension (a = 10−13cm) (for protons, the threshold field is E 0 10 5 V/cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyraa baaaaaaaaapeWaaSbaaKqbGeaacaaIWaaajuaGbeaacqWIdjYocaaI XaGaaGimamaaCaaajuaibeqaaiaaiwdaaaqcfaOaamOvaiaac+caca WGJbGaamyBaaaa@40B0@ (102 electrostatic units)).

Originally, the charge emission from bound states, like atom ionization, has been treated by using adiabatic hypothesis, either by time-dependent perturbation theory, or by imaginary-time tunneling, or other equivalent approaches.24‒32 Quasi-classical tunneling through the potential barrier generated by the field has been applied in classical works to static fields and the hydrogen atom (in parabollic coordinates).33‒35 For alpha-particle decay or proton emission the situation is different. First, in spontaneous decay, the alpha particle (and, in general, the ejected charge) is preformed and, second, the tunneling through the Coulomb potential barrier must be included.36‒40 We analyze below the spontaneous charge emission, affected by the presence of an adiabatically-introduced electromagnetic radiation, in the presence of a Coulomb barrier; the problem may exhibit relevance for studies of alpha-particle decay or proton emission.

The standard model of spontaneous alpha decay is based on Bohr’s concept of compound nuclei.41 In an alpha-unstable nucleus the pre-formed alpha particle acquires a kinetic energy and penetrates (tunnels through) the Coulomb potential barrier. Consequently, the alpha-unstable nucleus is in fact in a "metastable state". In this simple model, the spontaneous alpha-particle decay and proton emission proceed by tunneling through the Coulomb potential barrier, as a result of many "attempts" the charge makes to penetrate the barrier. The (high) frequency of this process is of the order 1/ta, where ta corresponds, approximately, to the energy level spacing; in atomic nuclei this spacing, for the relevant energy levels, is of the order Δε=200keV, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHuoarcqaH1oqzcqGH9aqpcaaIYaGaaGimaiaaicdacaWG RbGaamyzaiaadAfacaGGSaaaaa@404D@ which gives41 t a 3× 10 21 s; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8UaaGPaVlaadshadaWgaaqcfasaaiaadggaaKqbagqa aiabloKi7iaaiodacqGHxdaTcaaIXaGaaGimamaaCaaajuaibeqaai abgkHiTiaaikdacaaIXaaaaKqbakaadohacaGG7aaaaa@46E9@ also, the broadening of the charge energy levels introduces an energy uncertainty (we leave aside the so-called tunneling through the internal potential barrier and the pre-formation factor of the alpha particle). The order of magnitude of the energy of the charge is a few M eV , which ensures a quasi-classical tunneling. The effect of the electromagnetic radiation upon the initial preparation of the charge for tunneling may be neglected. Similarly, we consider a sufficiently low electromagnetic radiation, such that we may neglect its effects upon the mean-field potential. We limit ourselves to the effect of the electromagnetic interaction on the tunneling rate.

Let us consider a charge q >0 with mass m in the potential barrier V(r) in the presence of an electromagnetic radiation with the vector potential A= A 0 cos(ωtkr), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbGaeyypa0JaamyqamaaBaaajuaibaGaaGimaaqcfaya baGaaGPaVlGacogacaGGVbGaai4CaiaacIcacqaHjpWDcaWG0bGaey OeI0Iaam4AaiaadkhacaGGPaGaaiilaaaa@46CE@  where A0 is the amplitude of the vector potential, ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDaaa@3871@  is the radiation frequency and k is the radiation wavevector (ω=ck); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaGaeqyYdCNaeyypa0Jaam4yaiaadUgacaGGPaGaai4o aaaa@3D67@  the electromagnetic field is transverse, i.e. kA = 0. Since the phase velocity of the non-relativistic charge is much smaller than the speed of light c in vacuum, we may neglect the spatial phase kr in comparison with the temporal phase Kr consequently, the vector potential may be approximated by ωt; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcaWG0bGaai4oaaaa@3A29@  This approximation amounts to neglecting the effects of the magnetic field. It is assumed that this potential is introduced adiabatically. The charge is immersed in the radiation field, such that we may start with the standard non-relativistic hamiltonian

H= 1 2m (p q c A) 2 +V(r), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiaad2ga aaGaaiikaiaadchacqGHsisldaWcaaqaaiaadghaaeaacaWGJbaaai aadgeacaGGPaWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaWG wbGaaiikaiaadkhacaGGPaGaaiilaaaa@4736@ (2)

where the momentum p includes the electromagnetic momentum qA/c beside the mechanical momentum mv, where v is the velocity of the particle. We consider the Schrodinger equation

i ψ t  =Hψ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGPbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFpeY=daWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kaads haaaGaaiiOaiabg2da9iaadIeacqaHipqEcaGG7aaaaa@4DF7@  (3)

since the interaction is time-dependent we need the time evolution of the wavefunction. Consequently, in equation(3) we perform the well-known Kramers-Henneberger transform42‒45 (with a vanishing electromagnetic interaction for t → −∞)

ψ= e iS φ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK Naeyypa0JaaeyzamaaCaaajuaibeqaaiaabMgacaqGtbaaaKqbakab eA8aQjaabYcaaaa@3F4C@

S= q mcω A 0 psinωt q 2 A 0 2 8m c 2 ω (2ωt+sin2ωt); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai abg2da9maalaaabaGaamyCaaqaamrr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae83dH8VaamyBaiaadogacqaHjpWDaaGaam yqamaaBaaajuaibaGaaGimaaqcfayabaGaamiCaiaaykW7ciGGZbGa aiyAaiaac6gacqaHjpWDcaWG0bGaeyOeI0YaaSaaaeaacaWGXbWaaW baaKqbGeqabaGaaGOmaaaajuaGcaWGbbWaa0baaKqbGeaacaaIWaaa baGaaGOmaaaaaKqbagaacaaI4aGae83dH8VaamyBaiaadogadaahaa qcfasabeaacaaIYaaaaKqbakabeM8a3baacaGGOaGaaGOmaiabeM8a 3jaadshacqGHRaWkciGGZbGaaiyAaiaac6gacaaIYaGaeqyYdCNaam iDaiaacMcacaGG7aaaaa@6DFC@ (4)

the Schrodinger equation becomes

i φ t = 1 2m p 2 φ+ V ˜ (r)φ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiyAam rr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83dH8=a aSaaaeaacqGHciITcqaHgpGAaeaacqGHciITcaWG0baaaiabg2da9m aalaaabaGaaGymaaqaaiaaikdacaWGTbaaaiaadchadaahaaqcfasa beaacaaIYaaaaKqbakabeA8aQjabgUcaRiqadAfagaacaiaacIcaca WGYbGaaiykaiabeA8aQjaacYcaaaa@57C9@

V ˜ (r)= e is V(r) e is =V(rq A 0 sinωt/mcω); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOvay aaiaGaaiikaiaadkhacaGGPaGaeyypa0JaamyzamaaCaaajuaibeqa aiabgkHiTiaadMgacaWGZbaaaKqbakaadAfacaGGOaGaamOCaiaacM cacaWGLbWaaWbaaKqbGeqabaGaamyAaiaadohaaaqcfaOaeyypa0Ja amOvaiaacIcacaWGYbGaeyOeI0IaamyCaiaadgeadaWgaaqcfasaai aaicdaaKqbagqaaiGacohacaGGPbGaaiOBaiabeM8a3jaadshacaGG VaGaamyBaiaadogacqaHjpWDcaGGPaGaai4oaaaa@5A94@  (5)

it is convenient to introduce the electric field E= E 0 sinωt, E 0 =ω A 0 /c; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai abg2da9iaadweadaWgaaqcfasaaiaaicdaaKqbagqaaiaaykW7ciGG ZbGaaiyAaiaac6gacqaHjpWDcaWG0bGaaiilaiaaykW7caWGfbWaaS baaKqbGeaacaaIWaaajuaGbeaacqGH9aqpcqaHjpWDcaWGbbWaaSba aKqbGeaacaaIWaaajuaGbeaacaGGVaGaam4yaiaacUdaaaa@4F38@ we get

S= q m ω 2 E 0 psinωt q 2 A 0 2 8m c 2 ω (2ωt+sin2ωt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai abg2da9maalaaabaGaamyCaaqaamrr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae83dH8VaamyBaiabeM8a3naaCaaajuaibe qaaiaaikdaaaaaaKqbakaadweadaWgaaqcfasaaiaaicdaaKqbagqa aiaadchacaaMc8Uaci4CaiaacMgacaGGUbGaeqyYdCNaamiDaiabgk HiTmaalaaabaGaamyCamaaCaaajuaibeqaaiaaikdaaaqcfaOaamyq amaaDaaajuaibaGaaGimaaqaaiaaikdaaaaajuaGbaGaaGioaiab=9 qi=laad2gacaWGJbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqaHjpWD aaGaaiikaiaaikdacqaHjpWDcaWG0bGaey4kaSIaci4CaiaacMgaca GGUbGaaGOmaiabeM8a3jaadshacaGGPaaaaa@6F27@ (6)

and V ˜ (r)=V(rqE/m ω 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOvay aaiaGaaiikaiaadkhacaGGPaGaeyypa0JaamOvaiaacIcacaWGYbGa eyOeI0IaamyCaiaadweacaGGVaGaamyBaiabeM8a3naaCaaajuaibe qaaiaaikdaaaqcfaOaaiykaiaac6caaaa@478E@  (7)

We can see that for high-intensity fields the potential (including the mean- field potential) is rapidly vanishing along the field direction. Here we assume that the field intensity is low; specifically we assume q E 0 /m ω 2 <<a, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiyCai aadweadaWgaaqcfasaaiaaicdaaeqaaKqbakaac+cacaWGTbGaeqyY dC3aaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH8aapcqGH8aapcaWGHb Gaaiilaaaa@43B8@  where a is the dimension of the region the charge moves in (the atomic nucleus); for protons this inequality means E 0 <<3× 10 4 V/cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeyram aaBaaajuaibaGaaeimaaqcfayabaGaeyipaWJaeyipaWJaaG4maiab gEna0kaaigdacaaIWaWaaWbaaKqbGeqabaGaaGinaaaajuaGcaWGwb Gaai4laiaadogacaWGTbaaaa@4565@  (102 electrostatic units), as stated above. The preformed alpha particle (or emitted proton) may tunnel through the potential barrier given by equation (7); the "attempt" frequency to penetrate the barrier and the energy uncertainty are practically not affected by the low-intensity field.

We adopt a model of nuclear decay by assuming a Coulumb potential barrier V( r )Z q 2 /r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWdamaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWd biabloKi7iaadQfacaWGXbWdamaaCaaajuaibeqaa8qacaaIYaaaaK qbakaac+cacaWGYbaaaa@41DA@ (with the center-of-mass of the original nucleus placed at the origin); in the absence of the field the tunneling proceeds from r1 = a to r 2 = Z q 2 / ε r , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbWdamaaBaaajuaibaWdbiaaikdaaKqba+aabeaapeGa eyypa0JaaeiiaiaadQfacaWGXbWdamaaCaaajuaibeqaa8qacaaIYa aaaKqbakaac+cacqaH1oqzpaWaaSbaaKqbGeaapeGaamOCaaqcfa4d aeqaa8qacaGGSaaaaa@44F9@ where ε r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu 2aaSbaaKqbGeaacaWGYbaajuaGbeaaaaa@3B33@ is the radial energy of the charge; it is convenient to introduce the parameter ξ  = qE 0 /m ω 2 a<<1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naaeiiaiaab2dacaqGGaGaaeyCaiaabweadaWgaaqcfasaaiaabcda aeqaaKqbakaab+cacaqGTbGaeqyYdC3aaWbaaKqbGeqabaGaaeOmaa aajuaGcaqGHbGaaeipaiaabYdacaqGXaGaaeilaaaa@4794@  which includes the effect of the field. In the presence of the field these limits become

r ˜ 1 =|aqE/m ω 2 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aaiaWaaSbaaKazfa4=baGaaGymaaqabaqcfaOaeyypa0JaaiiFaiaa dggacqGHsislcaWGXbGaamyraiaac+cacaWGTbGaeqyYdC3aaWbaaK azfa4=beqaaiaaikdaaaqcfaOaaiiFaaaa@4981@  (8)

and r ˜ 2 = r 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aaiaWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaWGYbWaaSba aKqbGeaacaaIYaaajuaGbeaacaGGSaaaaa@3E9D@ where a = ar/r. We expand r ˜ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aaiaWaaSbaaKqbGeaacaaIXaaabeaaaaa@39C8@  in powers of ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG haaa@397B@  and get

r ˜ 1 =a(1ξsinωt.cosθ+ 1 2 ξ 2 sin 2 ωt. sin 2 θ)+..., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aaiaWaaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaWGHbGaaiik aiaaigdacqGHsislcqaH+oaEciGGZbGaaiyAaiaac6gacqaHjpWDca GG0bGaaiOlaiaacogacaGGVbGaai4CaiabeI7aXjabgUcaRmaalaaa baGaaGymaaqaaiaaikdaaaGaeqOVdG3aaWbaaKqbGeqabaGaaGOmaa aajuaGciGGZbGaaiyAaiaac6gadaahaaqcfasabeaacaaIYaaaaKqb akabeM8a3jaadshacaGGUaGaci4CaiaacMgacaGGUbWaaWbaaKqbGe qabaGaaGOmaaaajuaGcqaH4oqCcaGGPaGaey4kaSIaaiOlaiaac6ca caGGUaGaaGPaVlaaykW7caGGSaaaaa@6672@ (9)

where θ is the angle the radius vector r makes with the electric field E0.

To continue, we assume that the free charge attempting to penetrate the potential barrier has momentum pn and kinetic energy ε n = p n 2 /2m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu 2aaSbaaKqbGeaacaWGUbaajuaGbeaacqGH9aqpcaWGWbWaa0baaKqb GeaacaWGUbaabaGaaGOmaaaajuaGcaGGVaGaaGOmaiaad2gacaGGSa aaaa@42C8@ where n is a generic notation for its state; we may leave aside the orbital motion and denote by prn the radial momentum and by ε rn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu 2aaSbaaKqbGeaacaWGYbGaamOBaaqabaaaaa@3B98@  the radial energy. Let pr and ε r = p r 2 /2m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu 2aaSbaaKqbGeaacaWGYbaajuaGbeaacqGH9aqpcaWGWbWaa0baaKqb GeaacaWGYbaabaGaaGOmaaaajuaGcaGGVaGaaGOmaiaad2gaaaa@4220@ be the highest radial momentum and, respectively, the highest radial energy; they correspond to the total momentum p and, respectively, total energy ε= p 2 /2m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu Maeyypa0JaamiCamaaCaaajuaibeqaaiaaikdaaaqcfaOaai4laiaa ikdacaWGTbaaaa@3F55@  (in general, a degeneration may exist). This charge may tunnel through the potential barrier V(r) from r ˜ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aaiaWaaSbaaKqbGeaacaaIXaaajuaGbeaaaaa@3A56@ to r ˜ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aaiaWaaSbaaKqbGeaacaaIYaaajuaGbeaacaGGUaaaaa@3B09@  The relevant factors in the wave function ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK haaa@3986@ given by equation (4) are

e iqE(t) m ω 2 cosθ.( p 2 p 1 )+ i r ˜ 1 r ˜ 2 dr. p r (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaabeqaamaaCaaabeqcfasaaKqbaoaalaaajuaibaGaamyAaiaa dghacaWGfbGaaiikaiaadshacaGGPaaabaWefv3ySLgznfgDOfdary qr1ngBPrginfgDObYtUvgaiuaacqWFpeY=caWGTbGaeqyYdCxcfa4a aWbaaKqbGeqabaGaaGOmaaaaaaGaci4yaiaac+gacaGGZbGaeqiUde NaaiOlaiaacIcacaWGWbqcfa4aaSbaaKqbGeaacaaIYaaabeaacqGH sislcaWGWbqcfa4aaSbaaKqbGeaacaaIXaaabeaacaGGPaGaey4kaS scfa4aaSaaaKqbGeaacaWGPbaabaGae83dH8paaKqbaoaapehajuai baGaamizaiaadkhacaGGUaGaamiCaKqbaoaaBaaajuaibaGaamOCaa qabaGaaiikaiaadkhacaGGPaaabaGabmOCayaaiaqcfa4aaSbaaKqb GeaacaaIXaaabeaaaeaaceWGYbGbaGaajuaGdaWgaaqcfasaaiaaik daaeqaaaGaey4kIipaaaaaaaaa@6F58@  (10)

Where p r (r)= 2m[εV(r)] , p 1,2 = p r ( r ˜ 1 ,2)= 2m[εV( r ˜ 1,2 )] ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamOCaaqabaqcfaOaaiikaiaadkhacaGGPaGaeyyp a0ZaaOaaaeaacaaIYaGaamyBaiaacUfacqaH1oqzcqGHsislcaWGwb GaaiikaiaadkhacaGGPaGaaiyxaaqabaGaaiilaiaaykW7caaMc8Ua amiCamaaBaaajuaibaGaaGymaiaacYcacaaIYaaajuaGbeaacqGH9a qpcaWGWbWaaSbaaKqbGeaacaWGYbaajuaGbeaacaGGOaGabmOCayaa iaWaaSbaaKqbGeaacaaIXaaajuaGbeaacaGGSaGaaGOmaiaacMcacq GH9aqpdaGcaaqaaiaaikdacaWGTbGaai4waiabew7aLjabgkHiTiaa dAfacaGGOaGabmOCayaaiaWaaSbaaKqbGeaacaaIXaGaaiilaiaaik daaeqaaKqbakaacMcacaGGDbaabeaacaGG7aaaaa@661A@  it is easy to see that p2 = 0. It follows that the tunneling probability (transmission coefficient) is given by w= e γ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dai abg2da9iaacwgadaahaaqcfasabeaacqGHsislcqaHZoWzaaqcfaOa aiilaaaa@3EC5@  where

γ=Aξsinωt.cosθ+B, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaeyOeI0Iaamyqaiabe67a4jaaykW7ciGGZbGaaiyAaiaa c6gacaaMc8UaeqyYdCNaamiDaiaac6caciGGJbGaai4Baiaacohacq aH4oqCcqGHRaWkcaWGcbGaaiilaaaa@4E23@  

A= 2a| p 1 | ,ξ= q E 0 m ω 2 a ,B= 2 r ˜ 1 r ˜ 2 dr| p r (r)| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai abg2da9maalaaabaGaaGOmaiaadggacaGG8bGaamiCamaaBaaabaGa aGymaaqabaGaaiiFaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaGae83dH8paaiaaykW7caGGSaGaaGPaVlabe67a4jab g2da9maalaaabaGaamyCaiaadweadaWgaaqcfasaaiaaicdaaeqaaa qcfayaaiaad2gacqaHjpWDdaahaaqcfasabeaacaaIYaaaaKqbakaa dggaaaGaaGPaVlaacYcacaaMc8UaamOqaiabg2da9maalaaabaGaaG Omaaqaaiab=9qi=daacaaMc8+aa8qCaeaacaWGKbGaamOCaiaacYha caWGWbWaaSbaaKqbGeaacaWGYbaajuaGbeaacaGGOaGaamOCaiaacM cacaGG8baabaGabmOCayaaiaWaaSbaaKqbGeaacaaIXaaabeaaaKqb agaaceWGYbGbaGaadaWgaaqcfasaaiaaikdaaKqbagqaaaGaey4kIi paaaa@739F@  (11)

and | p 1 |= 2m[V( r ˜ 1 )ε] ,| p r (r)|= 2m[V(r)ε] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiiFai aadchadaWgaaqcfasaaiaaigdaaeqaaKqbakaacYhacqGH9aqpdaGc aaqaaiaaikdacaWGTbGaai4waiaadAfacaGGOaGabmOCayaaiaWaaS baaKqbGeaacaaIXaaabeaajuaGcaGGPaGaeyOeI0IaeqyTduMaaiyx aaqabaGaaGPaVlaaykW7caGGSaGaaGPaVlaaykW7caGG8bGaamiCam aaBaaajuaibaGaamOCaaqcfayabaGaaiikaiaadkhacaGGPaGaaiiF aiabg2da9maakaaabaGaaGOmaiaad2gacaGGBbGaamOvaiaacIcaca WGYbGaaiykaiabgkHiTiabew7aLjaac2faaeqaaaaa@6067@  (the condition V( r ˜ 1 )>ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aacIcaceWGYbGbaGaadaWgaaqcfasaaiaaigdaaeqaaKqbakaacMca cqGH+aGpcqaH1oqzaaa@3F39@ ensures the existence of the bound state). We expand the coefficient A in powers of ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG haaa@397B@ and take the average with respect to time; we get

γ= Z q 2 2 2m Z q 2 /aε ξ 2 cos 2 θ+B...; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaeyOeI0YaaSaaaeaacaWGAbGaamyCamaaCaaabeqcfasa aiaaikdaaaaajuaGbaGaaGOmamrr1ngBPrwtHrhAXaqeguuDJXwAKb stHrhAG8KBLbacfaGae83dH8paamaakaaabaWaaSaaaeaacaaIYaGa amyBaaqaaiaadQfacaWGXbWaaWbaaeqajuaibaGaaGOmaaaajuaGca GGVaGaamyyaiabgkHiTiabew7aLbaaaeqaaiabe67a4naaCaaajuai beqaaiaaikdaaaqcfaOaci4yaiaac+gacaGGZbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcqaH4oqCcqGHRaWkcaWGcbGaaiOlaiaac6cacaGG UaGaaGPaVlaacUdaaaa@63BE@  (12)

the same procedure applied to the coefficient B leads to

B= γ 0 a ξ 2 2 2m(Z q 2 /aε) + a ξ 2 2 2m Z q 2 /aε (3Z q 2 /2aε) cos 2 θ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqai abg2da9iabeo7aNnaaBaaajuaibaGaaGimaaqcfayabaGaeyOeI0Ya aSaaaeaacaWGHbGaeqOVdG3aaWbaaKqbGeqabaGaaGOmaaaaaKqbag aacaaIYaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFpeY=aaWaaOaaaeaacaaIYaGaamyBaiaacIcacaWGAbGaamyCam aaCaaajuaibeqaaiaaikdaaaqcfaOaai4laiaadggacqGHsislcqaH 1oqzcaGGPaaabeaacqGHRaWkdaWcaaqaaiaadggacqaH+oaEdaahaa qcfasabeaacaaIYaaaaaqcfayaaiaaikdacqWFpeY=aaWaaOaaaeaa daWcaaqaaiaaikdacaWGTbaabaGaamOwaiaadghadaahaaqcfasabe aacaaIYaaaaKqbakaac+cacaWGHbGaeyOeI0IaeqyTdugaaaqabaGa aiikaiaaiodacaWGAbGaamyCamaaCaaajuaibeqaaiaaikdaaaqcfa Oaai4laiaaikdacaWGHbGaeyOeI0IaeqyTduMaaiykaiGacogacaGG VbGaai4CamaaCaaajuaibeqaaiaaikdaaaqcfaOaeqiUdeNaaGPaVl aacYcaaaa@7C8B@  (13)

where γ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaKqbGeaacaaIWaaajuaGbeaaaaa@3AF6@  corresponds to the absence of the radiation; finally, we get

γ= γ 0 a ξ 2 2 2m(Z q 2 /aε) [ 1 Z q 2 /2aε Z q 2 /aε cos 2 θ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0Jaeq4SdC2aaSbaaKqbGeaacaaIWaaajuaGbeaacqGHsisl daWcaaqaaiaadggacqaH+oaEdaahaaqcfasabeaacaaIYaaaaaqcfa yaaiaaikdatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=9qi=daadaGcaaqaaiaaikdacaWGTbGaaiikaiaadQfacaWGXb WaaWbaaKqbGeqabaGaaGOmaaaajuaGcaGGVaGaamyyaiabgkHiTiab ew7aLjaacMcaaeqaamaadmaabaGaaGymaiabgkHiTmaalaaabaGaam OwaiaadghadaahaaqcfasabeaacaaIYaaaaKqbakaac+cacaaIYaGa amyyaiabgkHiTiabew7aLbqaaiaadQfacaWGXbWaaWbaaKqbGeqaba GaaGOmaaaajuaGcaGGVaGaamyyaiabgkHiTiabew7aLbaaciGGJbGa ai4BaiaacohadaahaaqcfasabeaacaaIYaaaaKqbakabeI7aXbGaay 5waiaaw2faaaaa@7351@  (14)

We can see that the effect of the radiation is to increase the rate of charge emission by a factor proportional to the square of the electric field ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai abe67a4naaCaaajuaibeqaaiaaikdaaaqcfaOaaiykaaaa@3C6E@ and to introduce a slight anisotropy. It is worth noting that the radiation field contributes not only to the tunneling factor, as expressed by the coefficient B, but it is present also in the coefficient A, via the time-dependence of the wave function provided by the Kramers-Henneberger transform.

We can define a total disintegration probability

w tot { 1+ a ξ 2 2 2m(Z q 2 /aε) [ 1 Z q 2 /2aε 3(Z q 2 /aε) ] } w tot 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaajuaibaGaamiDaiaad+gacaWG0baabeaajuaGcqWIdjYodaGa daqaaiaaigdacqGHRaWkdaWcaaqaaiaadggacqaH+oaEdaahaaqcfa sabeaacaaIYaaaaaqcfayaaiaaikdatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbaiab=9qi=daadaGcaaqaaiaaikdacaWGTb GaaiikaiaadQfacaWGXbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaGG VaGaamyyaiabgkHiTiabew7aLjaacMcaaeqaamaadmaabaGaaGymai abgkHiTmaalaaabaGaamOwaiaadghadaahaaqcfasabeaacaaIYaaa aKqbakaac+cacaaIYaGaamyyaiabgkHiTiabew7aLbqaaiaaiodaca GGOaGaamOwaiaadghadaahaaqcfasabeaacaaIYaaaaKqbakaac+ca caWGHbGaeyOeI0IaeqyTduMaaiykaaaaaiaawUfacaGLDbaaaiaawU hacaGL9baacaWG3bWaa0baaKqbGeaacaWG0bGaam4Baiaadshaaeaa caaIWaaaaaaa@7716@  (15)

by integrating over angle θ, where w tot 0 = e γ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaDaaajuaibaGaamiDaiaad+gacaWG0baabaGaaGimaaaajuaGcqGH 9aqpcaWGLbWaaWbaaeqabaGaeyOeI0scfaIaeq4SdCwcfa4aaSbaaK qbGeaacaaIWaaabeaaaaaaaa@439D@  The disintegration rate per unit time is (1/τ) w tot , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aaigdacaGGVaGaeqiXdqNaaiykaiaacEhadaWgaaqcfasaaiaadsha caWGVbGaamiDaaqabaqcfaOaaiilaaaa@41B2@ where τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@397D@  is related to the time ta estimated above and the time introduced by the energy uncertainty.41

The exponent γ 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaKqbGeaacaaIWaaajuaGbeaacaGGSaaaaa@3BA6@  corresponding to the absence of the radiation, is

γ 0 = Z q 2 2m/ε ( arccos εa/Z q 2 εa/Z q 2 1εa/Z q 2 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaKqbGeaacaaIWaaabeaajuaGcqGH9aqpdaWcaaqaaiaadQfa caWGXbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=9qi=daadaGcaaqaaiaa ikdacaWGTbGaai4laiabew7aLbqabaWaaeWaaeaaciGGHbGaaiOCai aacogacaGGJbGaai4BaiaacohacaaMc8+aaOaaaeaacqaH1oqzcaWG HbGaai4laiaadQfacaWGXbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbag qaaiabgkHiTmaakaaabaGaeqyTduMaamyyaiaac+cacaWGAbGaamyC amaaCaaajuaibeqaaiaaikdaaaaajuaGbeaadaGcaaqaaiaaigdacq GHsislcqaH1oqzcaWGHbGaai4laiaadQfacaWGXbWaaWbaaKqbGeqa baGaaGOmaaaaaKqbagqaaaGaayjkaiaawMcaaiaacUdaaaa@6F0B@  (16)

since Z q 2 /a>>ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOwai aadghadaahaaqcfasabeaacaaIYaaaaKqbakaac+cacaWGHbGaeyOp a4JaeyOpa4JaeqyTdugaaa@4077@  (for protons q2/a = 2.5M eV ) , we may use the approximate formulae

γ 0 πZ q 2 2 2m/ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaKqbGeaacaaIWaaajuaGbeaacqWIdjYodaWcaaqaaiabec8a WjaadQfacaWGXbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaaIYa Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpeY= aaWaaOaaaeaacaaIYaGaamyBaiaac+cacqaH1oqzaeqaaaaa@5175@  (17)

and w tot ( 1+ 5a ξ 2 12 2mZ q 2 /a ) w tot 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaajuaibaGaamiDaiaad+gacaWG0baabeaajuaGcqWIdjYodaqa daqaaiaaigdacqGHRaWkdaWcaaqaaiaaiwdacaWGHbGaeqOVdG3aaW baaKqbGeqabaGaaGOmaaaaaKqbagaacaaIXaGaaGOmamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83dH8paamaakaaaba GaaGOmaiaad2gacaWGAbGaamyCamaaCaaajuaibeqaaiaaikdaaaqc faOaai4laiaadggaaeqaaaGaayjkaiaawMcaaiaadEhadaqhaaqcfa saaiaadshacaWGVbGaamiDaaqaaiaaicdaaaaaaa@5E47@  (18)

As it is well know the interplay between the very large values of 1/τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aac+cacqaHepaDaaa@3AEB@ and the very small values of e γ 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaajuaibeqaaiabgkHiTiabeo7aNLqbaoaaBaaajuaibaGaaGim aaqabaaaaiaaykW7caGGSaaaaa@3F58@ makes the disintegration rate to be very sensitive to the energy values, and to vary over a wide range.41 The result can be cast in the form of the Geiger-Nuttall law, which, in the absence of the radiation, can be written as ln( w tot 0 /τ)= a 0 Z/ ε + b 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiBai aac6gacaGGOaGaam4DamaaDaaajuaibaGaamiDaiaad+gacaWG0baa baGaaGimaaaajuaGcaGGVaGaeqiXdqNaaiykaiabg2da9iabgkHiTi aadggadaWgaaqcfasaaiaaicdaaKqbagqaaiaadQfacaGGVaWaaOaa aeaacqaH1oqzaeqaaiabgUcaRiaadkgadaWgaaqcfasaaiaaicdaaK qbagqaaiaaykW7caGGSaaaaa@503B@ a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aaBaaajuaibaGaaGimaaqcfayabaaaaa@3A35@ and b 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyam aaBaaajuaibaGaaGimaaqcfayabaaaaa@3A36@ being well-known constants;41 the only effect of the radiation is to modify the constant b 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyam aaBaaajuaibaGaaGimaaqcfayabaaaaa@3A36@ into b= b 0 +(5a ξ 2 /12) 2mZ q 2 /a . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiOyai abg2da9iaadkgadaWgaaqcfasaaiaaicdaaKqbagqaaiabgUcaRiaa cIcacaaI1aGaamyyaiabe67a4naaCaaajuaibeqaaiaaikdaaaqcfa Oaai4laiaaigdacaaIYaWefv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiuaacqWFpeY=caGGPaWaaOaaaeaacaaIYaGaamyBaiaadQ facaWGXbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaGGVaGaamyyaaqa baGaaiOlaaaa@583F@  The correction to b 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyam aaBaaajuaibaGaaGimaaqcfayabaaaaa@3A36@ can (5 ξ 2 /12) [(Z q 2 /a)/( 2 /2m a 2 )] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aaiwdacqaH+oaEdaahaaqcfasabeaacaaIYaaaaKqbakaac+cacaaI XaGaaGOmaiaacMcacaGGBbGaaiikaiaacQfacaGGXbWaaWbaaKqbGe qabaGaaGOmaaaajuaGcaGGVaGaamyyaiaacMcacaGGVaGaaiikamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83dH8=aaW baaKqbGeqabaGaaGOmaaaajuaGcaGGVaGaaGOmaiaad2gacaWGHbWa aWbaaKqbGeqabaGaaGOmaaaajuaGcaGGPaGaaiyxamaaCaaajuaibe qaaiaaigdacaGGVaGaaGOmaaaaaaa@5DB5@ also be written as for ξ<<1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaeyipaWJaeyipaWJaaGymaiaac6caaaa@3CF0@ The maximum value of this correction is of the order of the unity; it follows that the decay rate is enhanced by the radiation by a factor of the order ξ 2 <<1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG 3aaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH8aapcqGH8aapcaaIXaGa aiOlaaaa@3E8A@

After the emission of the charge, the mean-field potential suffers a reconfiguration (re-arrangement) process and the potential V (r) is modified; this is the well-known process of "core shake-up" (or "core excitation"); a new bound state is formed and a new transformation process may begin for the modified potential V(r). The tunneling probability w given above is a transmission coefficient (we can check that w<1); with probability 1-w the charge is reflected from the potential barrier; in these conditions the bound state is "shaken-up" and the charge resumes its motion, or its pre-formation process, until it tunnels, or is rescattered back to the core; the latter is the well-known recollision process.8,46‒50

The case of a static field requires a special discussion. Within the present formalism a static electric field E can be obtained from a vector potential A=-cEt; the position vector in the mean-field potential is shifted to rr+ζ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiOCai abgkziUkaackhacqGHRaWkqaaaaaaaaaWdbiabeA7a6jaacYcaaaa@3F00@ where ζ=qE t 2 /2m; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8UaeqOTdONaeyypa0ZdaiaacghacaWGfbGaamiDamaa CaaajuaibeqaaiaaikdaaaqcfaOaai4la8qacaaIYaGaaiyBaiaacU daaaa@43B6@ the special discussion is necessary because the parameter ζ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH2oGEaaa@3995@ is unbounded in time. The distance a is covered in time t 0 = 2ma/qE ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGG0bWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGH9aqpdaGc aaqaaiaaikdacaWGTbGaamyyaiaac+cacaWGXbGaamyraaqabaGaai 4oaaaa@4143@ for proton, a is of the order a = 10−13cm and the threshold field is E=E0=3×104 V/cm (102 electrostatic units) given above; we get t 0 10 15 s. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGG0bWaaSbaaKqbGeaacaaIWaaajuaGbeaacqWIdjYocaaI XaGaaGimamaaCaaajuaibeqaaiabgkHiTiaaigdacaaI1aaaaKqbak aadohacaGGUaaaaa@41FC@ This is a very long duration, in comparison with the relevant nuclear times, in particular the attempt time τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDaaa@399D@ ( t a 10 21 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGG0bWaaSbaaKqbGeaacaWGHbaajuaGbeaacqWIdjYocaaI XaGaaGimamaaCaaajuaibeqaaiabgkHiTiaaikdacaaIXaaaaKqbak aadohaaaa@4173@ estimated above). In general, the condition of adiabatic interaction reads t 0 <</Δε, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGH8aapcqGH 8aaptuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqba8aacq WFpeY=caGGVaGaeyiLdqKaeqyTduMaaiilaaaa@4C2E@ where Δε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyiLdq KaeqyTdugaaa@3AC6@ is the mean separation of the energy levels; it implies qEa<< (Δε) 2 /( 2 /m a 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aadweacaWGHbGaeyipaWJaeyipaWJaaiikaiabgs5aejabew7aLjaa cMcadaahaaqcfasabeaacaaIYaaaaKqbakaac+cacaGGOaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpeY=daahaaqc fasabeaacaaIYaaaaKqbakaac+cacaWGTbGaamyyamaaCaaajuaibe qaaiaaikdaaaqcfaOaaiykaiaacYcaaaa@5620@ which allows for high static fields. In these conditions the protons accommodate themselves to the electric field, which is absorbed into slightly modified energy levels; this change, which can be estimated by perturbation theory, is irrelevant for our discussion, since the field strength is small. However, it has an important consequence in that the electric field, once taken in the energy levels, is not available anymore for the Kramers-Henneberger transform given by equation (4); therefore, the present time-dependent formalism cannot be applied. Instead of using the hamiltonian given by equation (2), we start with the (equivalent) dipole hamiltonian which includes the interaction term −qEr. Consequently, the potential barrier V( r )Z q 2 /r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWdamaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWd biabloKi7iaadQfacaWGXbWaaWbaaKqbGeqabaGaaGOmaaaajuaGca GGVaGaamOCaaaa@41BB@  is changed into

V( r )= Z q 2 r qEr= Z q 2 r ( 1 E r 2 Zq cosθ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWdamaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaapeGaamOwaiaadghadaahaaqcfasabeaacaaIYa aaaaqcfa4daeaacaWGYbaaaiabgkHiTiaadghacaWGfbGaamOCaiab g2da9maalaaabaWdbiaadQfacaWGXbWaaWbaaeqajuaibaGaaGOmaa aaaKqba+aabaGaamOCaaaadaqadaqaaiaaigdacqGHsisldaWcaaqa aiaadweacaWGYbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaapeGaam OwaiaadghaaaWdaiGacogacaGGVbGaai4CaiabeI7aXbGaayjkaiaa wMcaaiaac6caaaa@5806@  (19)

We compute the tunneling rate by using this potential barrier. In view of the small value of the correction parameter proportional to E in equation (19), we may expand the momentum p r  =  2m[ εV( r ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWaaSbaaKqbGeaacaWGYbaajuaGbeaacaqGGaGaeyyp a0JaaiiOamaakaaabaGaaGOmaiaad2gapaWaamWaaeaapeGaeqyTdu MaeyOeI0IaamOva8aadaqadaqaa8qacaWGYbaapaGaayjkaiaawMca aaGaay5waiaaw2faaaWdbeqaaaaa@476A@ in powers of this parameter and replace the powers of r2 by their mean values over the tunneling range from r1=a to r 2 =Z q 2 /ε; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaWG AbGaamyCamaaCaaajuaibeqaaiaaikdaaaqcfaOaai4laiabew7aLj aacUdaaaa@41F6@ since r2a, we get the small parameter α=E r 2 2 /Zq=Eq r 2 /ε<<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGH9aqppaGaamyraiaadkhadaqhaaqcfasaaiaa ikdaaeaacaaIYaaaaKqbakaac+cacaWGAbGaamyCaiabg2da9iaadw eacaWGXbGaamOCamaaBaaajuaibaGaaGOmaaqcfayabaGaai4laiab ew7aLjabgYda8iabgYda8iaaigdaaaa@4B9E@  in equation (19). For Z=100 and ε=1MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu Maeyypa0JaaGymaiaad2eacaWGLbGaamOvaaaa@3DB7@ this parameter is α= 10 4 E, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde Maeyypa0JaaGymaiaaicdadaahaaqcfasabeaacqGHsislcaaI0aaa aKqbakaadweacaGGSaaaaa@3FD5@ which is much smaller than unity for any usual static field. Integrating over angles and assuming α γ 0 <<1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde Maeq4SdC2aaSbaaKqbGeaacaaIWaaabeaajuaGcqGH8aapcqGH8aap caaIXaGaaiilaaaa@4008@ where γ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC 2aaSbaaKqbGeaacaaIWaaajuaGbeaaaaa@3AF6@  is given by equation (17), we get finally

w tot ( 1+ α 2 γ 0 2 108 ) w tot 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaajuaibaGaamiDaiaad+gacaWG0baabeaajuaGcqWIdjYodaqa daqaaiaaigdacqGHRaWkdaWcaaqaaiabeg7aHnaaCaaajuaibeqaai aaikdaaaqcfaOaeq4SdC2aa0baaKqbGeaacaaIWaaabaGaaGOmaaaa aKqbagaacaaIXaGaaGimaiaaiIdaaaaacaGLOaGaayzkaaGaam4Dam aaDaaajuaibaGaamiDaiaad+gacaWG0baabaGaaGimaaaajuaGcaGG Uaaaaa@5075@  (20)

We can see that the correction brought by a static electric field to the decay rate is extremely small, as expected.

Finally, it is worth discussing the case of intermediate fields, i.e. field strengths which satisfy the inequality q E 0 /m ω 2 >a(ξ>1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVye9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aadweadaWgaaqcfasaaiaaicdaaKqbagqaaiaac+cacaWGTbGaeqyY dC3aaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH+aGpcaWGHbGaaiikai abe67a4jabg6da+iaaigdacaGGPaaaaa@46E8@  (in our case, fields from 3×104 V/cm to 107 V/cm).51 In this case the adiabatic hypothesis cannot be used anymore, and the initial conditions for introducing the interaction are important. The corresponding Kramers-Henneberger transform diminishes appreciably the potential barrier and the charge is set free in a short time, which is the reciprocal of the decay rate; this rate may exhibit oscillations as a function of the field strength.

Conclusion

We may say that in low-intensity electromagnetic radiation the bound-states charges accommodate themselves in the field, which amounts to an adiabatically-introduced interaction, as it is well known. In these conditions, besides oscillating and emitting higher harmonics, the charge may tunnel out from the bound state. This is the standard ionization process, which was widely investigated for atom ionization. In spontaneous alpha decay or proton emission the situation is different, because of the preformation stage and the tunneling through the Coulomb potential barrier. We have analyzed above the disintegration rate for the charge emission from atomic nuclei in the case of the adiabatic introduction of electromagnetic interaction, with application to nuclear alpha-particle decay and proton emission. Under these circumstances, it has been shown in this paper that the tunneling rate (through Coulomb potential) is slightly enhanced by the presence of the radiation, by corrections whose leading contributions are of second-order in the electric field, with a slight anisotropy. Similar results are presented in this paper for static fields.

Acknowledgements

The author is indebted to S. Misicu and the members of the Laboratory of Theoretical Physics at Magurele-Bucharest for many fruitful discussions. This work has been supported by the Scientific Research Agency of the Romanian Government through Grants 04-ELI / 2016 (Pro- gram 5/5.1/ELI-RO), PN 16 42 01 01 / 2016 and PN (ELI) 16 42 01 05 /2016.

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. MF Ciappina, Shaaran R, Guichard JA, et al. High energy photoelectron emission from gases using plasmonic enhanced near fields. Laser Phys Lett. 2013;10:105302.
  2. Grum‒Grzhimailo AN, Popov YV, Gryzlova EV, et al. Many‒particle spectroscopy of atoms, molecules, clusters and surfaces: international conference MPS‒2016. Eur Phys J. 2017;D71:201.
  3. Pullen MG, Wolter B, Wang X, et al. Transition from nonsequential to sequential double ionization in many‒electron systems. Phys Rev. 2017;96:033401.
  4. Milosevic DB. Semiclassical approximation for strong‒laser‒field processes. Phys Rev. 2017;A96:023413.
  5. Chu W, Zeng B, Wang S, et al. Range extension in laser‒induced breakdown spectroscopy using femtosecond‒nanosecond dual‒beam laser system. Appl Phys B: Lasers and Optics. 2017;123:173.
  6. Lynch KM. Laser Assisted Nuclear Decay Spectroscopy: A New Method for Studying Neutron Defficient Francium Isotopes, Springer Berlin. 2015.
  7. Lynch KM, Cocolios TE, Billowes J, et al. Combined high‒resolution laser spectroscopy and nuclear decay spectroscopy for the study of low‒lying states in Fr‒206, At‒202 and Bi‒198. Phys Rev. 2016;C93:014319.
  8. Cortes HMC, Muller C, Keitel CH, et al. Nuclear recollisions in laser‒assisted alpha decay. Phys Lett. 2013;B723(5):401‒405.
  9. Castaneda Cortes HM, Popruzhenko SV, Bauer D, et al. Laser‒assisted decay of quasistationary states. New J Phys. 2011;13:063007.
  10. Zinner NT. Alpha decay rate enhancement in metals: an unlikely scenario. Nucl Phys. 2007;A781(2):81‒87.
  11. Eliezer S, Martinez Val JM, Piera M. Alpha decay perturbations by atomic effects at extreme conditions. Phys Lett. 2009;B672(5):372‒375.
  12. Kalman P, Kis D, Keszthelyi T. Near‒threshold laser‒modified proton emission in the nuclear photoeffect. Phys Rev. 2013;A87:063415.
  13. Dadi A, Muller C. Laser‒assisted nuclear photoeffect. Phys Rev. 2012;C85:064604.
  14. Forre M, Selsto S, Hansen JP, et al. Molecules in intense xuv pulses: beyond the dipole approximation in linearly and circularly polarized fields. Phys Rev. 2007;A76:033415.
  15. Tong XM, Zhao ZX, Lin CD. Theory of molecular tunneling ionization. Phys Rev. 2002;A66:033402.
  16. Murray R, Ivanov MY. Tunnel ionization of molecules and orbital imaging. Phys Rev Lett. 2011;106(17):173001.
  17. Heidenreich A, Last I, Jortner J. Extreme multielectron ionization of elemental clusters in ultraintense laser fields. Israel Journal of Chemistry. 2007;47:243‒252.
  18. Delion DS, Ghinescu SA. Geiger‒Nuttall law for nuclei in strong electromagnetic field. Phys Rev Lett. 2017;119:202501.
  19. Salpeter EE. Electron screening and thermonuclear reactions. Austr J Phys. 1954;7:373‒388.
  20. Strieder F, Rolfs C, Spitaleri C, et al. Electron‒screening effects on fusion reactions. Naturwissenschaften. 2001;88(11):461‒467.
  21. Apostol M. Giant dipole oscillations and ionization of heavy atoms by intense electromagnetic fields. Roum Reps Phys. 2015;67(3):837‒853.
  22. Berger JF, Gogny DM, Weiss MS. Interaction of optical lasers with atomic nuclei. Phys Rev. 1991;A43:455‒466.
  23. Palffy A, Evers J, Keitel CH. Electron‒dipole‒forbidden nuclear transitions driven by super‒intense laser fields. Phys Rev. 2008;C77:044602.
  24. Keldysh LV, Ionization in the field of a strong electromagnetic wave. Sov Phys. 1965;20(5):1307‒1314.
  25. Landau LD, Lifshitz EM. Course of Theoretical Physics, vol. 3, Quantum Mechanics, 3rd ed. Elsevier Butterworth‒Heinemann. Oxford; 2005. p. 297.
  26. Dykhne AM. Quantum transitions in the adiabatic approximation. Sov Phys. 1960;11(2):411‒415.
  27. Perelomov AM, Popov VS, Terentiev MV. Ionization of atoms in an alternating electric field. Sov Phys. 1966;23(5):924‒934.
  28. Nikishov AI, Ritus VI. Ionization of systems bound by short‒range forces by the field of an electromagnetic wave. Sov Phys. 1966;23:168‒177.
  29. Faisal FHM. Multiple absorption of laser photons by atoms. J Phys B: At Mol Opt Phys. 1973;6(4):L89‒L92.
  30. Reiss HR. Effect of an intense electromagnetic field on a weakly bound system. Phys Rev. 1980;A22:1786‒1813.
  31. Reiss HR. Complete Keldysh theory and its limiting cases. Phys Rev. 1990;A42(3):1476‒1486.
  32. Ammosov MV, Delone NB, Krainov VP. JETP 64 Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov Phys. 1986;1191‒1194.
  33. Oppenheimer JR. Three notes on the quantum theory of aperiodic effects. Phys Rev. 1928;31:66‒81.
  34. Lanczos C. Zur Intensitatsschwachung der Spektrallinien in hohen elektrischen Feldern. Z Phys. 1931;68:204‒232.
  35. Bethe HA, Salpeter EE. Quantum Mechanics of One‒and Two‒Electron Atoms, Springer, Berlin 1957.
  36. Gamow G. Zur Quantentheorie des Atomkernes. Z Phys. 1928;51(3‒4):204‒212.
  37. Gamow G. Zur Quantentheorie der Atomzertrummerung. Z Phys. 1929;52(7‒8):510‒515.
  38. Condon EU, Gurney RW. Quantum Mechanics and radioactive disintegration. Phys Rev 1929;33:127‒140.
  39. Thomas RG. A formulation of the theory of alpha‒particle decay from time‒independent equations. Progr Theor Phys. 1954;12(3):253‒264.
  40. Buck B, Merchant AC, Perez SM. New look at decay of heavy nuclei. Phys Rev Lett. 1990;65:2975‒2977.
  41. Blatt JM, Weisskopf VF. Theoretical Nuclear Phyiscs, Dover, NY (1979).
  42. Henneberger WC. Perturbation method for atoms in intense light beams. Phys Rev Lett. 1968;21:838‒841.
  43. Kramers HA. Non‒relativistic quantum‒electrodynamics and the correspondence principle. Solvay Congress 1948, in Collected Scientific Papers, Amsterdam: North‒Holland; 1956. p. 865.
  44. Van Kampen NG. Contribution to the quantum theory of light scattering (Kgl. Danske Videnskab Selskab Mat‒fys Medd). kommission hos Munksgaard. 1951. p. 77.
  45. Pauli W, Fierz M. Zur Theorie der Emission langwelliger Lichtquanten. Nuovo Cimento. 1938;15(3):167‒188.
  46. Corkum PB. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett. 1993;71(13):1994‒1997.
  47. Lewenstein M, Balcou P, Ivanov MY, et al. Corkum Theory of high‒harmonics generation by low‒frequency laser fields. Phys Rev. 1994;A49 2117‒2132.
  48. Zon BA. Many‒electron tunneling in atoms. J Exp Theor Phys. 1999;89(2):219‒222.
  49. Zon BA. Tunneling ionization of atoms with excitation of the core. J Exp Theor Phys. 2000;91(5): 899‒904.
  50. Gavrila M. Atomic stabilization in superintense laser fields. J Phys B: At Mol Opt Phys. 2002;35:R147‒R193.
  51. Apostol M. Fast atom ionization in strong electromagnetic radiation. Z Naturforschung. 2018;A73(5):461‒466.
Creative Commons Attribution License

©2018 M. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.