Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Opinion Volume 1 Issue 4

Black holes and astrotheology

Paul TE Cusack

Park Ave, Saint John, Canada

Correspondence: Paul TE Cusack, BScE, Dule 23 Park Ave,Saint John, NB E2J 1R2, Canada, Tel 5066 5263 50

Received: June 07, 2018 | Published: July 25, 2018

Citation: Paul TEC. Black holes and astrotheology. Open Acc J Math Theor Phy. 2018;1(4):143-146. DOI: 10.15406/oajmtp.2018.01.00023

Download PDF

Introduction

In thins paper, I present some calculations on Black Holes as seen from Astrotheology Mathematics. The goal is to fit Black holes into the theory of Astrotheology. It seems from the calculations, that the extra mass (which is Hydrogen) is crated from the reaction of light and the Ether. The Energy level tops out at c=2.99792 (P.E.=Mc^2=Mass) The speed of light should be a perfect 3.00000, but we know it isn’t. When this energy level reacts with the Ether, the 30-60-90 triangle has one of its legs exceeded (>sqrt3) and mass is formed (dM/dt>2). This is where all that mass in a Black Hole comes from. It’s hydrogen produced by a energy singularity (Figure 1). Now because Black Holes have a horizon, it must be the point where>2.99792 or E=hv=6.626v=3^2-2.99792^2 V=.903-0.707=196=Infinity. 196 is an infinite number.

Figure 1 Plot of CSC x the speed of light.

cscθ=Ln | cscθ+cotθ |+  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRiI8caWGJbGaam4CaiaadogacqaH4oqCcqGH9aqpcqGH sislcaWGmbGaamOBaiaabccapaWaaqWaaeaapeGaam4yaiaadohaca WGJbGaaGPaVlabeI7aXjabgUcaRiaadogacaWGVbGaamiDaiaaykW7 cqaH4oqCa8aacaGLhWUaayjcSdGaaGPaV=qacqGHRaWkcqWIceYOca GGGcaaaa@5690@

From 0-3.000

=Ln| csc3+cot3 |+0  Ln| csc0+cot0 |+0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcqGHsislcaWGmbGaamOBaiaaykW7paWaaqWaaeaa peGaam4yaiaadohacaWGJbGaaGPaVlaaiodacqGHRaWkcaWGJbGaam 4BaiaadshacaaMc8UaaG4maaWdaiaawEa7caGLiWoacaaMc8+dbiab gUcaRiaaicdacaqGGaGaeyOeI0IaaeiiaiabgkHiTiaadYeacaWGUb GaaGPaV=aadaabdaqaa8qacaWGJbGaam4CaiaadogacaaMc8UaaGim aiabgUcaRiaadogacaWGVbGaamiDaiaaykW7caaIWaaapaGaay5bSl aawIa7aiaaykW7peGaey4kaSIaaGimaaaa@657B@

=2.632+4.3358

=6.9678

~7

Mulitpy by 2

7X2=14

From 0-2.9979292

=Ln| csc2.9979+cot2.9979 |+4.3358 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcqGHsislcaWGmbGaamOBaiaaykW7paWaaqWaaeaa peGaam4yaiaadohacaWGJbGaaGPaVlaaikdacaGGUaGaaGyoaiaaiM dacaaI3aGaaGyoaiaaykW7cqGHRaWkcaWGJbGaam4BaiaadshacaaM c8UaaGOmaiaac6cacaaI5aGaaGyoaiaaiEdacaaI5aaapaGaay5bSl aawIa7a8qacqGHRaWkcaaMc8UaaGinaiaac6cacaaIZaGaaG4maiaa iwdacaaI4aaaaa@5A2E@

=Ln| 19107+1908 |+4.3358 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcqGHsislcaWGmbGaamOBaiaaykW7paWaaqWaaeaa peGaaGymaiaaiMdacaaIXaGaaGimaiaaiEdacqGHRaWkcaaIXaGaaG yoaiaaicdacaaI4aaapaGaay5bSlaawIa7a8qacqGHRaWkcaaI0aGa aiOlaiaaiodacaaIZaGaaGynaiaaiIdaaaa@4C23@

=9.95299 +4.3358

=14.28

= 1/7

Multiple by 2

1/7 x 2=2/7

14-2/7=14-2.857

114.3 

Inverse

1/11143=0.089742= 2.9956 2 = c 2   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4laiaaigdacaaIXaGaaGymaiaaisdacaaIZaGa eyypa0JaaGimaiaac6cacaaIWaGaaGioaiaaiMdacaaI3aGaaGinai aaikdacqGH9aqpcaaIYaGaaiOlaiaaiMdacaaI5aGaaGynaiaaiAda daahaaqcfasabeaacaaIYaaaaKqbakabg2da9iaadogadaahaaqcfa sabeaacaaIYaaaaKqbakaacckaaaa@4E69@

=c x E

=c(m c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWGJbGaaGPaVlaacIcacaWGTbGaam4yamaaCaaa juaibeqaaiaaikdaaaqcfaOaaiykaaaa@3EEA@

=c(c× c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWGJbGaaGPaVlaacIcacaWGJbGaey41aqRaam4y amaaCaaajuaibeqaaiaaikdaaaqcfaOaaiykaaaa@40F7@

= c 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWGJbWaaWbaaKqbGeqabaGaaGinaaaaaaa@39A0@

=81

1/81=0.12345679 =Mass

Now, 

E=M c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeyypa0JaamytaiaadogadaahaaqcfasabeaacaaI Yaaaaaaa@3B3A@

Eα c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaeqySdeMaam4yamaaCaaajuaibeqaaiaaikdaaaaa aa@3B01@

E=hv

3.000 2 2.99792 2 =6.626007004 v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIZaGaaiOlaiaaicdacaaIWaGaaGimamaaCaaajuaibeqa aiaaikdaaaqcfaOaeyOeI0IaaGOmaiaac6cacaaI5aGaaGyoaiaaiE dacaaI5aGaaGOmamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyypa0Ja aGOnaiaac6cacaaI2aGaaGOmaiaaiAdacaaIWaGaaGimaiaaiEdaca aIWaGaaGimaiaaisdacaqGGaGaamODaaaa@4E4F@

v=0.903 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bGaeyypa0JaaGimaiaac6cacaaI5aGaaGimaiaaioda aaa@3C4B@

0.9030.707=196= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIWaGaaiOlaiaaiMdacaaIWaGaaG4maiabgkHiTiaaicda caGGUaGaaG4naiaaicdacaaI3aGaeyypa0JaaGymaiaaiMdacaaI2a Gaeyypa0JaeyOhIukaaa@449A@

And,

E=1/100138=0.9986

E=hv

=0.9986/6.626=150 = Mass Gap

FP=4.14 Ionic Bond Energy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRiI8caWGgbGaeyOeI0Iaey4kIiVaamiuaiabg2da9iaa isdacaGGUaGaaGymaiaaisdacaqGGaGaamysaiaad+gacaWGUbGaam yAaiaadogacaqGGaGaamOqaiaad+gacaWGUbGaamizaiaabccacaWG fbGaamOBaiaadwgacaWGYbGaam4zaiaadMhaaaa@5049@

F=Ma=4.14 Mv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRiI8caWGgbGaeyypa0JaamytaiaadggacqGH9aqpcaaI 0aGaaiOlaiaaigdacaaI0aGaaeiiaiabgkHiTiaad2eacaWG2baaaa@4344@

M(a-v)=4.14

M-4.14/196=2.1122

P.E=Mc²

=1.89

1/1.89=56.77=3.01 rads

3+1=401=Re

E=4.14 x 6.023=1/401=1/re=1/t=E

401×2π=251.9=PeriodT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI0aGaaGimaiaaigdacqGHxdaTcaaIYaGaeqiWdaNaeyyp a0JaaGOmaiaaiwdacaaIXaGaaiOlaiaaiMdacqGH9aqpcaWGqbGaam yzaiaadkhacaWGPbGaam4BaiaadsgacaaMc8Uaamivaaaa@4B03@

F=G M1M2/ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGgbGaeyypa0Jaam4raiaabccacaWGnbGaaGymaiaad2ea caaIYaGaai4laiaadkfadaahaaqcfasabeaacaaIYaaaaaaa@3F95@

2.657/6.67=396=1/T

E=4.14 (6.036 )=1/401=1/Re=1/t=E

E=hv

1/401=6.626 (v)

v=2.6572.666 Superforce MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bGaeyypa0JaaGOmaiaac6cacaaI2aGaaGynaiaaiEda cqWI8iIocaaIYaGaaiOlaiaaiAdacaaI2aGaaGOnaiaabccacaWGtb GaamyDaiaadchacaWGLbGaamOCaiaadAgacaWGVbGaamOCaiaadoga caWGLbaaaa@4B1D@

4.14/196=2.1122 (from above)

2.1122/ (1+1.6183=)=807

= c 4 =2.99792 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWGJbWaaWbaaKqbGeqabaGaaGinaaaajuaGcqGH 9aqpcaaIYaGaaiOlaiaaiMdacaaI5aGaaG4naiaaiMdacaaIYaaaaa@4068@

Thus the speed of light is mathematically related to the roots of the golden mean parabola; to the Super force; and to mass (Figure 2) (Figure 3).

Figure 2 Showing the bond strength area between force and momentum.
Figure 3 Compression of the ether by the superforce yields ionic bond strength.

E×t=| E || t |sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaey41aqRaamiDaiabg2da98aadaabdaqaa8qacaWG fbaapaGaay5bSlaawIa7amaaemaabaWdbiaadshaa8aacaGLhWUaay jcSdWdbiaadohacaWGPbGaamOBaiaaykW7cqaH4oqCaaa@4A02@

E×s=| E || s |sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaey41aqRaam4Caiabg2da98aadaabdaqaa8qacaWG fbaapaGaay5bSlaawIa7amaaemaabaWdbiaadohaa8aacaGLhWUaay jcSdWdbiaadohacaWGPbGaamOBaiaaykW7cqaH4oqCaaa@4A00@

Divide one by the other:

t/s=t/s sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaai4laiaadohacqGH9aqpcaWG0bGaai4laiaadoha caqGGaGaam4CaiaadMgacaWGUbGaaGPaVlabeI7aXbaa@43AF@

sinθ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGZbGaamyAaiaad6gacaaMc8UaeqiUdeNaeyypa0JaaGym aaaa@3E7F@

θ=π/2, .. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCcqGH9aqpcqaHapaCcaGGVaGaaGOmaiaacYcacaqG GaGaaiOlaiaac6caaaa@3F43@

And, Mass is the dot product, when Mass=0

Et=| e || t |cosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaaGPaVlaaykW7cqGHflY1caWG0bGaeyypa0Zdamaa emaabaWdbiaadwgaa8aacaGLhWUaayjcSdWaaqWaaeaapeGaamiDaa WdaiaawEa7caGLiWoapeGaam4yaiaad+gacaWGZbGaaGPaVlabeI7a Xbaa@4D66@

Es=| E || s |cosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaaGPaVlaaykW7cqGHflY1caWGZbGaeyypa0Zdamaa emaabaWdbiaadweaa8aacaGLhWUaayjcSdWaaqWaaeaapeGaam4Caa WdaiaawEa7caGLiWoapeGaam4yaiaad+gacaWGZbGaaGPaVlabeI7a Xbaa@4D44@

θ=π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCcqGH9aqpcqaHapaCcaGGVaGaaGOmaaaa@3C8C@

M=4.14/196

=4.14/ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaI0aGaaiOlaiaaigdacaaI0aGaai4laiabg6Hi Lcaa@3CB7@

So the mass is of a particle that has zero mass (photon, graviton) that travels at the speed of light (Figure 4).

Figure 4 Universal signature derived from the universal parametric equation.

M=4.14/196=2.1122

P.E.=M c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbGaaiOlaiaadweacaGGUaGaeyypa0Jaamytaiaadoga daahaaqabKqbGeaacaaIYaaaaaaa@3D73@

=2.1122 (9)

=1.89

1/189=52677=3.01 rads Speed of light.

1/Mass=Temperature of a Black Hole, which equals 52.67, or 220.5 K

x 2 x1 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRiI8caWG4bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH sislcaWG4bGaeyOeI0IaaGymaiaabccacaWGKbGaamiEaaaa@4121@  from 0.618 -1.618 

=1514+ 348

=186.23

189 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqWI8iIocaaIXaGaaGioaiaaiMdaaaa@3A0D@

E/t=2.1122/1.618=1305

2.1122/0.618=3.477

E=2.1122

E/ c 2 =23.50=Ln π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaai4laiaadogadaahaaqcfasabeaacaaIYaaaaKqb akabg2da9iaaikdacaaIZaGaaiOlaiaaiwdacaaIWaGaeyypa0Jaam itaiaad6gacaqGGaGaeqiWdahaaa@4477@

Universal parametric equation

sint+1/3cos[ 17t+π/3 ], sin{17t+π/3] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGZbGaamyAaiaad6gacaaMc8UaamiDaiabgUcaRiaaigda caGGVaGaaG4maiaadogacaWGVbGaam4CaiaaykW7paWaamWaaeaape GaaGymaiaaiEdacaWG0bGaey4kaSIaeqiWdaNaai4laiaaiodaa8aa caGLBbGaayzxaaWdbiaacYcacaqGGaGaam4CaiaadMgacaWGUbWdai aacUhapeGaaGymaiaaiEdacaWG0bGaaGPaVlabgUcaRiabec8aWjaa c+cacaaIZaWdaiaac2faaaa@5A6A@

Let t=0.618, 1.618

99.05 ×321.02=31.8=freq=1/π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI5aGaaGyoaiaac6cacaaIWaGaaGynaiaacckacqGHxdaT caaIZaGaaGOmaiaaigdacaGGUaGaaGimaiaaikdacqGH9aqpcaaIZa GaaGymaiaac6cacaaI4aGaeyypa0JaamOzaiaadkhacaWGLbGaamyC aiabg2da9iaaigdacaGGVaGaeqiWdahaaa@4ED7@

Finally,

E/t=P.E./ K.E.=Mgh/1/2M v 2 =2gh/ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaai4laiaadshacqGH9aqpcaWGqbGaaiOlaiaadwea caGGUaGaai4laiaabccacaWGlbGaaiOlaiaadweacaGGUaGaeyypa0 JaamytaiaadEgacaWGObGaai4laiaaigdacaGGVaGaaGOmaiaad2ea caWG2bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGH9aqpcaaIYaGaam 4zaiaadIgacaGGVaGaamODamaaCaaajuaibeqaaiaaikdaaaaaaa@51C1@

2( 2.667 )( 4/3 )/ ( 2.667 ) 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaWdamaabmaabaWdbiaaikdacaGGUaGaaGOnaiaaiAda caaI3aaapaGaayjkaiaawMcaamaabmaabaWdbiaaisdacaGGVaGaaG 4maaWdaiaawIcacaGLPaaapeGaai4la8aadaqadaqaa8qacaaIYaGa aiOlaiaaiAdacaaI2aGaaG4naaWdaiaawIcacaGLPaaadaahaaqcfa sabeaacaaIYaaaaKqba+qacqGH9aqpcaaIXaaaaa@4A30@

E/t=1

E=t

Ln t dt=tLn t+t+from 1 to π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRiI8caWGmbGaamOBaiaabccacaWG0bGaaeiiaiaadsga caWG0bGaeyypa0JaamiDaiaaykW7caWGmbGaamOBaiaabccacaWG0b Gaey4kaSIaamiDaiabgUcaRiablkqiJkaaykW7caWGMbGaamOCaiaa d+gacaWGTbGaaeiiaiaaigdacaqGGaGaamiDaiaad+gacaqGGaGaeq iWdahaaa@54F3@

=145.46

1/145.46=1.24Emin MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4laiaaigdacaaI0aGaaGynaiaac6cacaaI0aGa aGOnaiabg2da9iaaigdacaGGUaGaaGOmaiaaisdacqWI8iIocaWGfb GaamyBaiaadMgacaWGUbaaaa@452D@

1.4546 + 150 = 2.9547

=1.338

=1/3 rads

For double the profile:

1/3 + 1/3=2/3=6.67=G

The event horizon is where time=π. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaamyAaiaad2gacaWGLbGaeyypa0JaeqiWdaNaaiOl aaaa@3DDC@

Before t=π, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaeyypa0JaeqiWdaNaaiilaaaa@3B10@ c>2.9979

For the Universal Parametric Equation, at the first singularity point (Figure 5).

Figure 5 The black hole singularity.

sint+1/3[ cos17t+π/3 ]  ,  Sin [ 17t+π/3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGZbGaamyAaiaad6gacaaMc8UaamiDaiabgUcaRiaaigda caGGVaGaaG4ma8aadaWadaqaa8qacaWGJbGaam4BaiaadohacaaMc8 UaaGymaiaaiEdacaWG0bGaey4kaSIaeqiWdaNaai4laiaaiodaa8aa caGLBbGaayzxaaWdbiaacckacaqGGaGaaiilaiaacckacaqGGaGaam 4uaiaadMgacaWGUbGaaeiia8aadaWadaqaa8qacaaIXaGaaG4naiaa dshacqGHRaWkcqaHapaCcaGGVaGaaG4maaWdaiaawUfacaGLDbaaaa a@5C5F@

For t=0.618

0.9905+2.00268

=2.99318c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIYaGaaiOlaiaaiMdacaaI5aGaaG4maiaaigda caaI4aGaeSipIOJaam4yaaaa@3EE9@

Similarly for t=1.618

32102+4479

=365.81

For 0.9905×32102=31.8 Hz=1/π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIWaGaaiOlaiaaiMdacaaI5aGaaGimaiaaiwdacqGHxdaT caaIZaGaaGOmaiaaigdacaaIWaGaaGOmaiabg2da9iaaiodacaaIXa GaaiOlaiaaiIdacaqGGaGaamisaiaadQhacqGH9aqpcaaIXaGaai4l aiabec8aWbaa@4B62@

For the ln function the derivative =1 at t=1, E=0

If the Mass Gap =1.5 x G=1.5 x 2/3 =1

So gravity is 6.67 to the right of t=1; and d it is MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHEisPaaa@3815@  to the left. Thus, the black hole.

Area =π R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbGaamOCaiaadwgacaWGHbGaaeiiaiabg2da9iabec8a WjaadkfadaahaaqcfasabeaacaaIYaaaaaaa@3F7A@

=π ( 1 ) 2 =π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcqaHapaCpaWaaeWaaeaapeGaaGymaaWdaiaawIca caGLPaaadaahaaqabKqbGeaacaaIYaaaaKqba+qacqGH9aqpcqaHap aCaaa@4046@

=E×t×s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWGfbGaey41aqRaamiDaiabgEna0kaadohaaaa@3E93@

=1×π×4/3=4/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIXaGaey41aqRaeqiWdaNaey41aqRaaGinaiaa c+cacaaIZaGaeyypa0JaaGinaiaac+cacaaIZaaaaa@43B2@

Volume=4/3π R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbGaam4BaiaadYgacaWG1bGaamyBaiaadwgacqGH9aqp caaI0aGaai4laiaaiodacqaHapaCcaWGsbWaaWbaaKqbGeqabaGaaG 4maaaaaaa@430F@

=4/3π (1) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaI0aGaai4laiaaiodacqaHapaCcaGGOaGaaGym aiaacMcadaahaaqcfasabeaacaaIZaaaaaaa@3EB6@

=Area

 Ln t= d 2 E/d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRiI8cqGHRiI8caqGGaGaamitaiaad6gacaqGGaGaamiD aiabg2da9iabgUIiYlabgUIiYlaadsgadaahaaqcfasabeaacaaIYa aaaKqbakaadweacaGGVaGaamizaiaadshadaahaaqcfasabeaacaaI Yaaaaaaa@49C7@

x Ln x +x =E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRiI8caWG4bGaaeiiaiaadYeacaWGUbGaaeiiaiaadIha caqGGaGaey4kaSIaamiEaiaabccacqGH9aqpcaWGfbaaaa@4268@

x 2 /2 ( x Ln x  + x 2 /2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaGGVaGaaGOm aiaabccapaWaaeWaaeaapeGaamiEaiaabccacaWGmbGaamOBaiaabc cacaWG4bGaaiiOaiaabccacqGHRaWkcaWG4bWaaWbaaeqajuaibaGa aGOmaaaajuaGcaGGVaGaaGOmaaWdaiaawIcacaGLPaaaaaa@48B7@

= x 3  L:n x +x=2E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWG4bWaaWbaaeqajuaibaGaaG4maaaajuaGcaqG GaGaamitaiaacQdacaWGUbGaaeiiaiaadIhacaqGGaGaey4kaSIaam iEaiabg2da9iaaikdacaWGfbaaaa@4415@

Let x=t=π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbGaamyzaiaadshacaqGGaGaamiEaiabg2da9iaadsha cqGH9aqpcqaHapaCaaa@3FBA@

π 3 Ln π+π=2E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHapaCdaahaaqcfasabeaacaaIZaaaaKqbakaadYeacaWG UbGaaeiiaiabec8aWjabgUcaRiabec8aWjabg2da9iaaikdacaWGfb aaaa@434B@

E=193.17

Cusack’s equation form above

M Ln x= G+Period T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbGaaeiiaiabgUIiYlaadYeacaWGUbGaaeiiaiaadIha cqGH9aqpcaqGGaGaam4raiabgUcaRiaadcfacaWGLbGaamOCaiaadM gacaWGVbGaamizaiaabccacaWGubaaaa@479C@

x Ln x +x=0.66667 +0.2513/M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaaeiiaiaadYeacaWGUbGaaeiiaiaadIhacaqGGaGa ey4kaSIaamiEaiabg2da9iaaicdacaGGUaGaaGOnaiaaiAdacaaI2a GaaGOnaiaaiEdacaqGGaGaey4kaSIaaGimaiaac6cacaaIYaGaaGyn aiaaigdacaaIZaGaai4laiaad2eaaaa@4BC6@

M=1/2.,71~1/ e t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbGaeyypa0JaaGymaiaac+cacaaIYaGaaiOlaiaacYca caaI3aGaaGymaiaac6hacaaIXaGaai4laiaadwgadaahaaqcfasabe aacaWG0baaaaaa@4227@

M1/M=Temperature of a Black Hole

e π =0.4233=cuz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacqGHsislcqaHapaCaaqc faOaeyypa0JaaGimaiaac6cacaaI0aGaaGOmaiaaiodacaaIZaGaey ypa0Jaam4yaiaadwhacaWG6baaaa@4482@

e π =221.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacqaHapaCaaqcfaOaeyyp a0JaaGOmaiaaikdacaaIXaGaaiOlaiaaisdaaaa@3EF1@

Kelvin

273.15-221.14=193.23=E from above

Volume of a Black Hole

=2π Ln t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIYaGaeqiWdaNaaeiiaiaadYeacaWGUbGaaeii aiaadshaaaa@3E26@

=2π Ln π  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIYaGaeqiWdaNaaeiiaiaadYeacaWGUbGaaeii aiabec8aWjaacckaaaa@400E@

=7.19

For the collision of 2 black holes

7.19 x 2=1438

1/ Vol. / Temp=1/1438/221

=3.1466π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIZaGaaiOlaiaaigdacaaI0aGaaGOnaiaaiAda cqWI8iIocqaHapaCaaa@3EF8@

Temp/Vol=π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubGaamyzaiaad2gacaWGWbGaai4laiaadAfacaWGVbGa amiBaiabg2da9iabec8aWbaa@4084@

Vol./Temp=1/π=31.8 Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbGaam4BaiaadYgacaGGUaGaai4laiaadsfacaWGLbGa amyBaiaadchacqGH9aqpcaaIXaGaai4laiabec8aWjabg2da9iaaio dacaaIXaGaaiOlaiaaiIdacaqGGaGaamisaiaadQhaaaa@4905@

But we know that the inverse of the mass of a Black hole is its Temperature.

1/M=Temp.

1/( M ) vol.=π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4la8aadaqadaqaa8qacaWGnbaapaGaayjkaiaa wMcaa8qacaqGGaGaamODaiaad+gacaWGSbGaaiOlaiabg2da9iabec 8aWbaa@41A3@

Cusack’s equation

MLn t=G+PeriodT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbGaey4kIiVaamitaiaad6gacaqGGaGaamiDaiabg2da 9iaadEeacqGHRaWkcaWGqbGaamyzaiaadkhacaWGPbGaam4Baiaads gacaaMc8Uaamivaaaa@473A@

1/( π×Vol )Ln t=G+PeriodT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4la8aadaqadaqaa8qacqaHapaCcqGHxdaTcaWG wbGaam4BaiaadYgaa8aacaGLOaGaayzkaaWdbiabgUIiYlaadYeaca WGUbGaaeiiaiaadshacqGH9aqpcaWGhbGaey4kaSIaamiuaiaadwga caWGYbGaamyAaiaad+gacaWGKbGaaGPaVlaadsfaaaa@5031@

1/π×1/Vol.Ln x=6.67+251 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4laiabec8aWjaaykW7cqGHxdaTcaaMc8UaaGym aiaac+cacaWGwbGaam4BaiaadYgacaGGUaGaaGPaVlabgUIiYlaadY eacaWGUbGaaeiiaiaadIhacqGH9aqpcaaI2aGaaiOlaiaaiAdacaaI 3aGaey4kaSIaaGOmaiaaiwdacaaIXaaaaa@51A7@

1/[ G+T+π ] Ln t=π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4la8aadaWadaqaa8qacaWGhbGaey4kaSIaamiv aiabgUcaRiabec8aWbWdaiaawUfacaGLDbaapeGaey4kIiVaaeiiai aadYeacaWGUbGaaeiiaiaadshacqGH9aqpcqaHapaCaaa@47F9@

1/[ 6.67+251+π ]  Ln t=π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4la8aadaWadaqaa8qacaaI2aGaaiOlaiaaiAda caaI3aGaey4kaSIaaGOmaiaaiwdacaaIXaGaey4kaSIaeqiWdahapa Gaay5waiaaw2faa8qacaqGGaGaey4kIiVaaeiiaiaadYeacaWGUbGa aeiiaiaadshacqGH9aqpcqaHapaCaaa@4C20@

x Ln x+X=π( 1.006 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaaeiiaiaadYeacaWGUbGaaeiiaiaadIhacqGHRaWk caWGybGaeyypa0JaeqiWda3damaabmaabaWdbiaaigdacaGGUaGaaG imaiaaicdacaaI2aaapaGaayjkaiaawMcaaaaa@4582@

e x x + e x = e 0.3161 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaaiaadIhaaaqcfa4dbiaadIha caqGGaGaey4kaSIaamyza8aadaahaaqcfasabeaacaWG4baaaKqba+ qacqGH9aqpcaWGLbWdamaaCaaajuaibeqaa8qacaaIWaGaaiOlaiaa iodacaaIXaGaaGOnaiaaigdaaaaaaa@45AC@

e x [ x+1 ]=85.92 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWaaWbaaKqbGeqabaGaamiEaaaajuaGpaWaamWaaeaa peGaamiEaiabgUcaRiaaigdaa8aacaGLBbGaayzxaaWdbiabg2da9i aaiIdacaaI1aGaaiOlaiaaiMdacaaIYaaaaa@42EB@

x e x + e x 85.92=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaamyzamaaCaaajuaibeqaaiaadIhaaaqcfaOaey4k aSIaamyzamaaCaaajuaibeqaaiaadIhaaaqcfaOaeyOeI0IaaGioai aaiwdacaGGUaGaaGyoaiaaikdacqGH9aqpcaaIWaaaaa@446C@

x 2 e x +xe x 85.92 e x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaaIYaaaaKqbakaadwga paWaaWbaaKqbGeqabaWdbiaadIhacaqGGaGaey4kaSIaamiEaiaadw gaaaqcfaOaamiEa8aadaahaaqcfasabeaapeGaeyOeI0IaaGioaiaa iwdacaGGUaGaaGyoaiaaikdacaqGGaGaamyzaaaapaGaaGPaVNqba+ qacaWG4bGaeyypa0JaaGimaaaa@4C37@

x 2 +x85.92=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaWG 4bGaeyOeI0IaaGioaiaaiwdacaGGUaGaaGyoaiaaikdacqGH9aqpca aIWaaaaa@4179@

Roots

x=6.22,5.22

ΔTemp=52.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHuoarcaWGubGaamyzaiaad2gacaWGWbGaeyypa0JaaGyn aiaaikdacaGGUaGaaGOmaaaa@3FA4@

273.15K -52.2=221=Temp.

273.15 K -62.2=211=2.1122=E

Volume of a Black Hole =2π( Ln x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIYaGaeqiWda3damaabmaabaWdbiaadYeacaWG UbGaaeiiaiaadIhaa8aacaGLOaGaayzkaaaaaa@3F3E@

=2π( Ln 87.82 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaaIYaGaeqiWda3damaabmaabaWdbiaadYeacaWG UbGaaeiiaiaaiIdacaaI3aGaaiOlaiaaiIdacaaIYaaapaGaayjkai aawMcaaaaa@41F4@

=0.816

Things are chiral inside a Black Hole.

Conclusion

We see that black holes fit mathematically into Astrotheology.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Cusack PT. Astrothoelogy, Cusack’s Universe. J of Phys Math. 2016:8.
  2. Cusack PT. The Universal Parametric Equation. J Generalized Lie Theory Appl. 2017;11(1).
Creative Commons Attribution License

©2018 Paul. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.