Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Conceptual Paper Volume 1 Issue 4

A fluid model of matter

William LaMar

University of Chicago, USA

Correspondence: William LaMar, M.S. Physics, University of Chicago, 5132 SW Slavin Road, Portland, Oregon 97239, USA, Tel +9713 5253 75

Received: May 15, 2018 | Published: July 12, 2018

Citation: LaMar W. A fluid model of matter. Open Acc J Math Theor Phy. 2018;3(4):132-134. DOI: 10.15406/oajmtp.2018.01.00020

Download PDF

Abstract

Specific properties of matter are described in terms of fluid dynamics.

Initial conditions

We have a closed, continuous (simple) 4-D space. It is filled with fluid, ether.

At t0, there is an explosion (the Big Bang). A 4-D hypersphere shock wave goes out. Eventually it settles into a layer of motion expanding out at c, the speed of sound.

Particle

Elements of the quiescent fluid ahead of the layer break through. From an energy standpoint, it is cheaper to not get excited than to get excited (Figure 1).

Figure 1 In the blast wave’s frame of reference, these are sinks.

In the blast wave’s frame of reference, these are sinks. The sink spawns a vortex.i So there it is: a particle (Figure 2).

Figure 2 We know from 3-D vortexes that identical vortexes repel.

We know from 3-D vortexes that identical vortexes repel. Since electric repulsion varies as 1/ x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaai4laiaadIhapaWaaWbaaeqajuaibaWdbiaaikda aaaaaa@3A3A@  the velocity field of the vortex is:

( u=Γ/ r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadwhacqGH9aqpcqqHtoWrcaGGVaGaamOCamaa CaaabeqcfasaaiaaikdaaaaajuaGpaGaayjkaiaawMcaaaaa@3EE8@ ii

Where u is fluid velocity and gamma is the vortex constant. Vortices of opposite rotational sense attract. They get fairly close and then they rotate about each other as with 3-D.

Mass

The mass of the sink is the mass of the particle:

m p =(4/3)π r s 3 lρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbWdamaaBaaajuaibaWdbiaadchaaKqba+aabeaapeGa eyypa0JaaiikaiaaisdacaGGVaGaaG4maiaacMcacqaHapaCcaWGYb WdamaaDaaajuaibaWdbiaadohaa8aabaWdbiaaiodaaaqcfaOaamiB aiabeg8aYbaa@4669@

Where m p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbWdamaaBaaajuaibaWdbiaadchaaKqba+aabeaaaaa@3996@  is mass of particle

r s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbWaaSbaaKqbGeaacaWGZbaajuaGbeaaaaa@3970@  is radius of sink
l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGSbaaaa@3795@  is length of sink in active layer
ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCaaa@3864@ is density of fluid

Particle acceleration

The far field flow a vortex feels from another vortex is like a linear velocity. So torque is:

T=( ω s ×v )d ×l  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubGaeyypa0ZaaeWaa8aabaWdbiabeM8a39aadaWgaaqc fasaa8qacaWGZbaapaqabaqcfa4dbiabgEna0kaadAhaaiaawIcaca GLPaaacaWGKbGaaiiOaiabgEna0kaadYgacaGGGcaaaa@4757@

Where ω s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDpaWaaSbaaKqbGeaapeGaam4Caaqcfa4daeqaaaaa @3A74@  is the frequency of the vortex at the sink.
v is the fluid velocity due to the far vortex
d is the depth of penetration of that velocity
l is the length of the vortex

This is the torque on the sink. The reaction to that is

T= I 1 ω 1 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubGaeyypa0Jaamysa8aadaWgaaqcfasaa8qacaaIXaaa juaGpaqabaWdbiabeM8a39aadaWgaaqcfasaa8qacaaIXaaapaqaba qcfa4dbiabeM8a39aadaWgaaqcfasaa8qacaaIYaaajuaGpaqabaaa aa@425F@

the reaction of a vortex to a torque.iii

This implies that only the boundary layer of a vortex flow field penetrates far field.

iiiAlthough this is the formula in the literature, I have issue with it. This says the angular velocity generated is independent of I 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGOmaaqcfayabaGaaiOlaaaa@399D@ I submit ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIYaaajuaGbeaaaaa@39EA@ is created and hence I 2 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGOmaaqcfayabaGaeqyYdC3aaSbaaKqbGeaacaaI YaaajuaGbeaaaaa@3C51@ is also a change in angular momentum. Resulting in:
T= I 1 ω 1 ω 2 + I 2 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivai abg2da9iaadMeadaWgaaqcfasaaiaaigdaaeqaaKqbakabeM8a3naa BaaajuaibaGaaGymaaqabaqcfaOaeqyYdC3aaSbaaKqbGeaacaaIYa aajuaGbeaacqGHRaWkcaWGjbWaaSbaaKqbGeaacaaIYaaabeaajuaG cqaHjpWDdaWgaaqcfasaaiaaikdaaeqaaaaa@47B5@

Velocity

Now let’s look at the vortex-sink in motion. The vortex is at an angle (Figure 3):

Figure 3 The sink enters orthogonally from the forward boundary space.

The sink enters orthogonally from the forward boundary space. The vortex has to bend it to the angle.

Further, the vortex has to constrict the sink to speed it up. The average velocity for the sink is c 2 + v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaae aacaWGJbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaWG2bWa aWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaaaa@3C8D@ relative to the active layer. The sink velocity at exit is:

u AL =2 c 2 + v 2 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaamyqaiaadYeaaKqbagqaaiabg2da9iaaikdadaGc aaqaaiaadogadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaadA hadaahaaqabKqbGeaacaaIYaaaaaqcfayabaGaeyOeI0Iaam4yaaaa @4392@

The actual sink velocity at exit is:

u= u AL ccos(θ)=2 c 2 + v 2 c c 2 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai abg2da9iaadwhadaWgaaqcfasaaiaadgeacaWGmbaajuaGbeaacqGH sislcaWGJbGaci4yaiaac+gacaGGZbGaaiikaiabeI7aXjaacMcacq GH9aqpcaaIYaWaaOaaaeaacaWGJbWaaWbaaKqbGeqabaGaaGOmaaaa juaGcqGHRaWkcaWG2bWaaWbaaeqajuaibaGaaGOmaaaaaKqbagqaai abgkHiTiaadogacqGHsisldaGcaaqaaiaadogadaahaaqcfasabeaa caaIYaaaaKqbakabgkHiTiaadAhadaahaaqcfasabeaacaaIYaaaaa qcfayabaaaaa@544A@

The result is

vcsin(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODai abgkHiTiaadogaciGGZbGaaiyAaiaac6gacaGGOaGaeqiUdeNaaiyk aaaa@3F3B@

where v is particle velocity.

The sink enters the Active Layer orthogonal to the space of the Forward Boundary. Perhaps it is this near perpendicular part of the sink’s vortex layer that generates the far field fluid velocity.

Mass change

The mass is governed by the size of the aperture in the forward boundary, the velocity of the sink, and the geometry of the sink. There is a slight increase in mass as the sink varies from straight. But length (velocity) does not affect the sink volume. The diameter decreases proportionally as the sink grows longer. This means the sink is accelerated by the vortex while in the active layer.

m m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgwKiajaad2gadaWgaaqcfasaaiaaicdaaKqbagqaaaaa@3B32@

Transverse, longitudinal mass

Since vcsin(θ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODai abgkHiTiaadogaciGGZbGaaiyAaiaac6gacaGGOaGaeqiUdeNaaiyk aiaacYcaaaa@3FEB@ cos(θ)= c 2 + v 2 c = 1 γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaci4yai aac+gacaGGZbGaaiikaiabeI7aXjaacMcacqGH9aqpdaWcaaqaamaa kaaabaGaam4yamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSIaam ODamaaCaaajuaibeqaaiaaikdaaaaajuaGbeaaaeaacaWGJbaaaiab g2da9maalaaabaGaaGymaaqaaiabeo7aNbaaaaa@47E5@ where γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC gaaa@382B@ is the relativistic multiplier.

The lab has shown ‘transverse mass’ and ‘longitudinal mass’ are:

Transversemass= m t =γ m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubGaamOCaiaadggacaWGUbGaam4CaiaadAhacaWGLbGa amOCaiaadohacaWGLbGaaGPaVlaaykW7caWGTbGaamyyaiaadohaca WGZbGaeyypa0JaamyBamaaBaaajuaibaGaamiDaaqcfayabaGaeyyp a0Jaeq4SdCMaamyBamaaBaaajuaibaGaaGimaaqcfayabaaaaa@4FE5@

Longitudinalmass= m l = γ 3 m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbGaam4Baiaad6gacaWGNbGaamyAaiaadshacaWG1bGa amizaiaadMgacaWGUbGaamyyaiaadYgacaaMc8UaaGPaVlaad2gaca WGHbGaam4CaiaadohacqGH9aqpcaWGTbWaaSbaaKqbGeaacaWGSbaa beaajuaGcqGH9aqpcqaHZoWzdaahaaqcfasabeaacaaIZaaaaKqbak aad2gadaWgaaqcfasaaiaaicdaaeqaaaaa@52B1@

In this model, it is not force and acceleration; it is a change in angle and so torque. The response of a gyroscope to torque is

T = f× r =  I 1 ω 1 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubGaaeiiaiabg2da9iaabccacaWGMbGaey41aqRaaeii aiaadkhacaqGGaGaeyypa0JaaeiiaiaadMeapaWaaSbaaKqbGeaape GaaGymaaWdaeqaaKqba+qacqaHjpWDpaWaaSbaaKqbGeaapeGaaGym aaWdaeqaaKqba+qacqaHjpWDpaWaaSbaaKqbGeaapeGaaGOmaaqcfa 4daeqaaaaa@4A8C@

Where T is torque, ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDpaWaaSbaaKqbGeaapeGaaGymaaWdaeqaaaaa@39A9@ is the rotational velocity of the vortex, ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDpaWaaSbaaKqbGeaapeGaaGOmaaqcfa4daeqaaaaa @3A38@  is the change in angle of the vortex per second and I 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGjbWdamaaBaaajuaibaWdbiaaigdaa8aabeaaaaa@38AA@  is the moment of inertia about the ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDpaWaaSbaaKqbGeaapeGaaGymaaWdaeqaaaaa@39A9@  axis.

The sink moment of inertial is the moment of inertial of a rod about one end

I=m l 2 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysai abg2da9iaad2gacaWGSbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaGG VaGaaG4maaaa@3D45@

Longitudinally, the moment of inertia transforms as:

I l = γ 2 I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiBaaqabaqcfaOaeyypa0Jaeq4SdC2aaWbaaKqb GeqabaGaaGOmaaaajuaGcaWGjbWaaSbaaKqbGeaacaaIWaaajuaGbe aaaaa@3FCC@

However, transversely, one takes the projection of l in the direction of torque:

I t = I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaamiDaaqabaqcfaOaeyypa0JaamysamaaBaaajuai baGaaGimaaqabaaaaa@3C05@

Torque is f cross r, and in the particle velocity plane ( θ ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai qbeI7aXzaacaGaaiykaaaa@399C@ torque is:

T=frcos( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubGaeyypa0JaamOzaiaadkhacaaMc8UaaGPaVlaadoga caWGVbGaam4Ca8aadaqadaqaa8qacqaH4oqCa8aacaGLOaGaayzkaa aaaa@43BC@

And v=csin( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bGaeyypa0Jaam4yaiaaykW7caaMc8Uaam4CaiaadMga caWGUbWdamaabmaabaWdbiabeI7aXbWdaiaawIcacaGLPaaaaaa@42E9@ so:

v ˙ =ccos( θ ) θ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWG2bWdayaacaWdbiabg2da9iaadogacaaMc8UaaGPaVlaa ykW7ciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXbGaayjkaiaawM caaiaaykW7cuaH4oqCgaGaaiaaykW7aaa@493D@

So what the lab envisions as:

f=ma MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbGaeyypa0JaamyBaiaadggaaaa@3A6D@

Is actually

frcos( θ ) =  I s ω s ω 2 =  I s ω s v ˙ /ccos( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbGaamOCaiaaykW7caWGJbGaam4BaiaadohapaWaaeWa aeaapeGaeqiUdehapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0Jaae iiaiaadMeapaWaaSbaaKqbGeaapeGaam4CaaWdaeqaaKqba+qacqaH jpWDpaWaaSbaaKqbGeaapeGaam4Caaqcfa4daeqaa8qacqaHjpWDpa WaaSbaaKqbGeaapeGaaGOmaaqcfa4daeqaa8qacqGH9aqpcaqGGaGa amysa8aadaWgaaqcfasaa8qacaWGZbaajuaGpaqabaWdbiabeM8a39 aadaWgaaqcfasaa8qacaWGZbaajuaGpaqabaGaaGPaV=qaceWG2bWd ayaacaWdbiaac+cacaWGJbGaaGPaVlaaykW7caWGJbGaam4Baiaado hapaWaaeWaaeaapeGaeqiUdehapaGaayjkaiaawMcaaaaa@631D@

There is a transformation of the force as the vortex tilts, since the accelerating field is at an angle:

f=  f 0 cos( θ ) =  f 0 /γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbGaeyypa0JaaeiiaiaadAgapaWaaSbaaKqbGeaapeGa aGimaaWdaeqaaKqbakaaykW7peGaam4yaiaad+gacaWGZbWdamaabm aabaWdbiabeI7aXbWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iaa bccacaWGMbWdamaaBaaajuaibaWdbiaaicdaa8aabeaajuaGpeGaai 4laiabeo7aNbaa@4B3A@

However, this projects the force as orthogonal to r so the cross product angle goes away.

There is an increase in r: l=γ l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaaiOoaiaacckacaWGSbGaeyypa0Jaeq4SdCMaamiB a8aadaWgaaqcfasaa8qacaaIWaaajuaGpaqabaaaaa@3FD1@  so longitudinally:

f 0 l 0 =  γ 3 I 0   ω s v ˙ /c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabeaapeGa amiBa8aadaWgaaqcfasaa8qacaaIWaaajuaGpaqabaWdbiabg2da9i aabccacqaHZoWzpaWaaWbaaKqbGeqabaWdbiaaiodaaaqcfaOaamys a8aadaWgaaqcfasaa8qacaaIWaaapaqabaqcfa4dbiaacckacqaHjp WDpaWaaSbaaKqbGeaapeGaam4Caaqcfa4daeqaaiaaykW7peGabmOD a8aagaGaa8qacaGGVaGaam4yaaaa@4D24@

In the transverse ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaaiabeA8aQbGaayjkaiaawMcaaaaa@39EA@ torque case the acceleration is in the φ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaHgpGAgaGaaaaa@386A@ plane so

v ˙ = c cos( φ ) φ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWG2bWdayaacaWdbiabg2da9iaabccacaWGJbGaaeiiaiaa dogacaWGVbGaam4Ca8aadaqadaqaa8qacqaHgpGAa8aacaGLOaGaay zkaaGaaGPaV=qacuaHgpGAgaGaaaaa@44A4@

While l= l 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBai abg2da9iaadYgadaWgaaqcfasaaiaaicdaaKqbagqaaiaacYcaaaa@3BB3@ it is still true f= f 0 cos(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiOzai abg2da9iaacAgadaWgaaqcfasaaiaaicdaaKqbagqaaiaaykW7ciGG JbGaai4BaiaacohacaGGOaGaeqiUdeNaaiykaaaa@4262@ giving:

f 0   l 0  =  γ co s 2 φ   I 0   ω s   v ˙ /c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8UaamOza8aadaWgaaqcfasaa8qacaaIWaaajuaGpaqa baWdbiaacckacaWGSbWdamaaBaaajuaibaWdbiaaicdaaKqba+aabe aapeGaaiiOaiabg2da9maalaaapaqaa8qacaGGGcGaeq4SdCgapaqa a8qacaWGJbGaam4BaiaadohadaahaaqcfasabeaacaaIYaaaaKqbak abeA8aQbaacaGGGcGaamysa8aadaWgaaqcfasaa8qacaaIWaaajuaG paqabaWdbiaacckacqaHjpWDpaWaaSbaaeaapeGaam4CaaWdaeqaa8 qacaGGGcGabmODa8aagaGaa8qacaGGVaGaam4yaaaa@5638@

with cos( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaam4BaiaadohapaWaaeWaaeaapeGaeqOXdOgapaGa ayjkaiaawMcaaaaa@3CEC@  close to 1.

Electric, magnetic field

The electric field is vortex rotational velocity orthogonal to R ^ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabiOuay aajaGaaiOlaaaa@381C@ When the sink tilts; there is now some rotation with an R ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabiOuay aajaaaaa@376A@ component. This is the magnetic field.

Gravitational field

From fluid theory: if an object trails a vortex there is drag. The sink acquires rotational velocity in its course through the AL. So the particle experiences drag, which retards the Active Layer (AL) Forward Boundary, causing a dimple.

Electromagnetic radiation

Electromagnetic radiation is a Hill’s Vortex, the width of the AL and traveling perpendicular to R ^ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOuay aajaGaaiOlaaaa@381D@ So photons come in one size. The radiation frequency is the rotational frequency of the vortex.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

Creative Commons Attribution License

©2018 LaMar. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.