Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Research Article Volume 1 Issue 3

A new proof of fermat’s last theorem

A Mazaris

University of Athens, Greece

Correspondence: A Mazaris, Gnosis Mathematical Research Institute, 25, Agiou Antoniou str., 15235 Vrilissia, Greece, Tel +3069 4002 5916

Received: May 05, 2018 | Published: June 6, 2018

Citation: Mazaris A. A new proof of fermat’s last theorem. Open Acc J Math Theor Phy. 2018;1(3):107-113. DOI: 10.15406/oajmtp.2018.01.00016

Download PDF

Abstract

For centuries, the proof of Fermat's last theorem using mathematical theory and techniques of his time has been a mystery for the entire mathematical community. Over the years, a large number of attempts have been made without so far a widely accepted proof that is based purely on mathematics that Fermat could have used himself. In the present work, we provide a novel approach to prove Fermat’s famous Theorem. We assume that the theorem states a true proposition and we end up in a contradiction, thus concluding that the initial assumption cannot hold, emphasizing the value of a classical method of proof, such as the proof by contradiction. Our method is based on the concept of the limit, a well known topic even at Fermat’s time, upon which the modern mathematical edifice was built.

Keywords: fermat, fermat’s last theorem, diophantine equations

Introduction

Fermat’s Last Theorem (1637) is perhaps the single most famous mathematical problem of all times. Despite the extensive literature devoted to its proof, and its numerous applications in other field of science, it remained unsolved for nearly 4 centuries. Although finally proved in 1995 by A Wiles1 the Theorem never stopped being a challenge for the broader mathematical community, mainly because Wiles’ proof was based on an extensive mathematical background that was not nearly available in Fermat’s era. Over the years, a large number of attempts were unsuccessful, giving reasonable raise to concerns questioning whether Fermat had indeed come up with a general and concise proof, as he has claimed in his writings. Could Fermat have proven his Last Theorem? This is a question of both historical and mathematical value, regardless of the unambiguous significance of Wiles’ modern proof.

In this study, we attempt to prove Fermat’s Last Theorem using a novel approach that is based on the concept of limit, which was known in considerable depth back in the 16th century, suggesting that it could have been close to Fermat’s unrevealed proof. The work employs the well-know technique of the proof by contradiction, and is structured in 2 parts, leading to the final result.

A novel approach using a classic method

The Theorem states that: if a, b, c is positive integers then there is no natural integer n>2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyOpa4JaaGOmaiaac6caaaa@3A0E@ such that:

a n + b n = c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUca RiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaam 4ya8aadaahaaqabKqbGeaapeGaamOBaaaaaaa@4083@ (1)

We will assume that Fermat’s Theorem is valid, that is we accept that there are positive integers a, b, c and a natural integer n>2 for which equation (1) is satisfied. Let us consider the relationship:

  x n + y n = z n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaamiEa8aadaahaaqcfasabeaapeGaamOBaaaajuaG cqGHRaWkcaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg2 da9iaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaa@41EC@ where x is a positive real number, y a positive integer, and z a positive real number. Also, let us assume that x>a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyOpa4Jaamyyaaaa@3990@  and y>b. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bGaeyOpa4JaamOyaiaac6caaaa@3A44@

We will prove that the above relationship is valid: Let y be a positive integer such that y>b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bGaeyOpa4JaamOyaaaa@3992@ and n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbaaaa@3798@ a natural integer such that n>2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyOpa4JaaGOmaiaac6caaaa@3A0E@ Then the number y n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaaaa@3905@  is a positive integer number. Also, let x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEaa aa@3782@ be a positive real number such that x>a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyOpa4Jaamyyaaaa@3990@ andna natural integer such that n>2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyOpa4JaaGOmaiaac6caaaa@3A0E@  Then the number x n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaabeqcfasaa8qacaWGUbaaaaaa@3904@ is positive real number. If x n + y n =λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUca RiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaeq 4UdWgaaa@401C@ Then λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBaaa@3859@  is a positive real number as the sum of a positive integer number and a positive real number. As a positive real number, λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBaaa@3859@  can be written in the form λ= ( λ n ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBcqGH9aqpdaqadaWdaeaapeWaaOqaa8aabaWdbiab eU7aSbWdaeaapeGaamOBaaaaaiaawIcacaGLPaaapaWaaWbaaeqaju aibaWdbiaad6gaaaaaaa@3F5E@ wherenis an integer number and n>2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abg6da+iaaikdaaaa@393C@ Assigning z= λ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG6bGaeyypa0ZaaOqaa8aabaWdbiabeU7aSbWdaeaapeGa amOBaaaaaaa@3B9F@  see Appendix A yields:   x n + y n = z n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaamiEa8aadaahaaqcfasabeaapeGaamOBaaaajuaG cqGHRaWkcaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg2 da9iaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaa@41EC@ where z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaa aa@3784@ is a positive real number For z n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEam aaCaaajuaibeqaaiaad6gaaaaaaa@38C6@ it holds that z n > c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG6bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg6da +iaadogapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaa@3CE5@ because: Since y>b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bGaeyOpa4JaamOyaaaa@3992@ it follows that

y n > b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bWaaWbaaKqbGeqabaGaamOBaaaajuaGcqGH+aGpcaWG IbWaaWbaaKqbGeqabaGaamOBaaaaaaa@3CA5@  (2)

Similarly, x>a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyOpa4Jaamyyaaaa@398F@ x>a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyOpa4Jaamyyaaaa@398F@ implies that

x n > a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWaaWbaaKqbGeqabaGaamOBaaaajuaGcqGH+aGpcaWG HbWaaWbaaKqbGeqabaGaamOBaaaaaaa@3CA3@  (3) Adding relations (2) and (3) yields: x n + y n > a n + b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUca RiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOpa4Jaam yya8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHRaWkcaWGIbWd amaaCaaajuaibeqaa8qacaWGUbaaaaaa@446A@

z n > c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG6bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg6da +iaadogapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaa@3CE5@

In addition to equation (1) that we assume to be true, we have now proved that:

x n + y n = z n where n>2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUca RiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaam OEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGpaGaaGPaVlaadEha caWGObGaamyzaiaadkhacaWGLbGaaGPaVlaaykW7peGaaiiOaiaad6 gacqGH+aGpcaaIYaaaaa@4EA5@  (4)

Subtracting (1) from (4) we obtain a new equation:

x n a n + y n b n = z n c n where n>2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaey4kaSIaam yEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWd amaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg2da9iaadQhapaWaaW baaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqc fasabeaapeGaamOBaaaajuaGpaGaaGPaVlaadEhacaWGObGaamyzai aadkhacaWGLbGaaGPaVlaaykW7peGaaiiOaiaad6gacqGH+aGpcaaI Yaaaaa@59F1@  (5)

As produced by equations (1) and (4), equation (5) applies only if equation (1) holds, given that equation (4) was proved valid.

Notice that we must not accept all the triples of the form:  ( x,y,z )=( ka,kb,kc ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaiaacYca caWG6baacaGLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbiaadUgaca WGHbGaaiilaiaadUgacaWGIbGaaiilaiaadUgacaWGJbaacaGLOaGa ayzkaaaaaa@475D@ where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbaaaa@3794@ is any positive integer and k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbaaaa@3794@ If we accept these triples, from equation (5) we will have:

( ka ) n a n + ( kb ) n b n = ( kc ) n c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaam4AaiaadggaaiaawIcacaGLPaaapaWa aWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaa qcfasabeaapeGaamOBaaaajuaGcqGHRaWkdaqadaWdaeaapeGaam4A aiaadkgaaiaawIcacaGLPaaapaWaaWbaaKqbGeqabaWdbiaad6gaaa qcfaOaeyOeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaaaajuaG cqGH9aqpdaqadaWdaeaapeGaam4AaiaadogaaiaawIcacaGLPaaapa WaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaah aaqcfasabeaapeGaamOBaaaaaaa@5397@

where n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbaaaa@3797@ any positive integer number

k n a n a n + k n b n b n = k n c n c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakaadgga paWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aada ahaaqcfasabeaapeGaamOBaaaajuaGcqGHRaWkcaWGRbWdamaaCaaa juaibeqaa8qacaWGUbaaaKqbakaadkgapaWaaWbaaKqbGeqabaWdbi aad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasabeaapeGaamOB aaaajuaGcqGH9aqpcaWGRbWdamaaCaaajuaibeqaa8qacaWGUbaaaK qbakaadogapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia am4ya8aadaahaaqcfasabeaapeGaamOBaaaaaaa@546F@

( k n 1) a n +( k n 1) b n =( k n 1) c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaGaam4Aa8aadaahaaqcfasabeaapeGaamOBaaaajuaG cqGHsislcaaIXaGaaiykaiaadggapaWaaWbaaKqbGeqabaWdbiaad6 gaaaqcfaOaey4kaSIaaiikaiaadUgapaWaaWbaaKqbGeqabaWdbiaa d6gaaaqcfaOaeyOeI0IaaGymaiaacMcacaWGIbWdamaaCaaajuaibe qaa8qacaWGUbaaaKqbakabg2da9iaacIcacaWGRbWdamaaCaaajuai beqaa8qacaWGUbaaaKqbakabgkHiTiaaigdacaGGPaGaam4ya8aada ahaaqcfasabeaapeGaamOBaaaaaaa@5226@

If k n 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaaigdacqGHGjsUcaaIWaaaaa@3DAD@ where k1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyiyIKRaaGymaiaac6caaaa@3AC8@ any positive integer number, then k n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi Tiaaigdaaaa@3B2C@ Dividing by k n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi Tiaaigdaaaa@3B2C@  yields a n + b n = c n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUca RiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaam 4ya8aadaahaaqcfasabeaapeGaamOBaaaajuaGpaGaaiOlaaaa@41D2@  Therefore, the use of the equation:   x n + y n = z n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaamiEa8aadaahaaqcfasabeaapeGaamOBaaaajuaG cqGHRaWkcaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg2 da9iaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaa@41EC@ becomes unavailing. Note that we must also exclude all the Pythagorean triples, because if ( a,b,c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaamyyaiaacYcacaWGIbGaaiilaiaadoga aiaawIcacaGLPaaaaaa@3C61@ is a Pythagorean triple then all triples ( ka,kb,kc ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaam4AaiaadggacaGGSaGaam4Aaiaadkga caGGSaGaam4AaiaadogaaiaawIcacaGLPaaaaaa@3F31@  where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbaaaa@3794@ any positive integer, are also Pythagorean. We suppose that equation (5) is true because it results from equation (1) (Fermat’s Theorem) which we have assumed it is true. We will show that equation (5) always leads to a mathematical contradiction, thus proving that the equation initially assumed to be true (in our case Fermat’s Theorem) is false.

In the following section, we will show that equation (5) cannot be true, because it leads to a contradiction. This automatically means that equation (1) is a false statement, because equation (4) is true and equation (5) has resulted from (1) and (4). We follow a 2-part proofing process, with the final outcome presented in the results section.

Part 1

In this section we will start from equation (5) (i.e. we assume equation (1) is valid) and we will show that

       e 1 y n b n = lim xa ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWGLbWd amaaCaaabeqcfasaaKqba+qadaWcaaqcfaYdaeaapeGaaGymaaWdae aapeGaamyEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsisl caWGIbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaqcfaOaey ypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiE aiabgkziUkaadggaa8aabeaapeWaaeWaa8aabaWdbmaalaaapaqaa8 qacaWG6bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaa dogapaWaaWbaaeqajuaibaWdbiaad6gaaaaajuaGpaqaa8qacaWG5b WdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadkgapaWa aWbaaKqbGeqabaWdbiaad6gaaaaaaaqcfaOaayjkaiaawMcaa8aada ahaaqabKqbGeaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWd biaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam yyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaaa@6846@

Equation (5) states that

x n a n + y n b n = z n c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaey4kaSIaam yEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWd amaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg2da9iaadQhapaWaaW baaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqc fasabeaapeGaamOBaaaaaaa@4C14@

Since y>b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bGaeyOpa4JaamOyaaaa@3992@ we obtain y n > b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bWaaWbaaKqbGeqabaGaamOBaaaajuaGcqGH+aGpcaWG IbWaaWbaaKqbGeqabaGaamOBaaaaaaa@3CA5@ and y n b n >0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bWaaWbaaKqbGeqabaGaamOBaaaajuaGcqGHsislcaWG IbWaaWbaaKqbGeqabaGaamOBaaaajuaGcqGH+aGpcaaIWaGaaiOlaa aa@3F8C@ Dividing by x n a n y n b n +1= z n c n y n b n   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamiEa8aadaahaaqabKqbGeaapeGaamOB aaaajuaGcqGHsislcaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaa qcfa4daeaapeGaamyEa8aadaahaaqcfasabeaapeGaamOBaaaajuaG cqGHsislcaWGIbWdamaaCaaajuaibeqaa8qacaWGUbaaaaaajuaGcq GHRaWkcaaIXaGaeyypa0ZaaSaaa8aabaWdbiaadQhapaWaaWbaaKqb GeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqabKqbGe aapeGaamOBaaaaaKqba+aabaWdbiaadMhapaWaaWbaaKqbGeqabaWd biaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasabeaapeGaam OBaaaaaaqcfaOaaiiOaaaa@55CF@ yields: x>a, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyOpa4JaamyyaiaacYcaaaa@3A3F@ and as x n > a n x n a n >0 1   x n a n >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg6da +iaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfa4daiaaykW7cq GHshI3caaMc8UaaGPaV=qacaWG4bWdamaaCaaajuaibeqaa8qacaWG UbaaaKqbakabgkHiTiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaa qcfaOaeyOpa4JaaGimaiaaykW7caaMc8UaeyO0H4TaaGPaVlaaykW7 daWcaaWdaeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhapaWaaWbaaK qbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasa beaapeGaamOBaaaaaaqcfaOaeyOpa4JaaGimaaaa@6025@  we can further proceed as: < ( x n a n y n b n +1 ) 1 x n a n = ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadIhapaWaaWbaaKqb GeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabe aapeGaamOBaaaaaKqba+aabaWdbiaadMhapaWaaWbaaeqajuaibaWd biaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqabKqbGeaapeGaam OBaaaaaaqcfaOaey4kaSIaaGymaaGaayjkaiaawMcaa8aadaahaaqc fasabeaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaadI hajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqb a+aadaahaaqcfasabeaapeGaamOBaaaaaaaaaKqbakabg2da9maabm aapaqaa8qadaWcaaWdaeaapeGaamOEa8aadaahaaqabKqbGeaapeGa amOBaaaajuaGcqGHsislcaWGJbWdamaaCaaabeqcfasaa8qacaWGUb aaaaqcfa4daeaapeGaamyEa8aadaahaaqcfasabeaapeGaamOBaaaa juaGcqGHsislcaWGIbWdamaaCaaajuaibeqaa8qacaWGUbaaaaaaaK qbakaawIcacaGLPaaapaWaaWbaaKqbGeqabaqcfa4dbmaalaaajuai paqaa8qacaaIXaaapaqaa8qacaWG4bqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaaaaaaaaaa@6A51@ Therefore ( 1+ x n a n y n b n ) 1 x n a n = ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaaGymaiabgUcaRmaalaaapaqaa8qacaWG 4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadggapa WaaWbaaKqbGeqabaWdbiaad6gaaaaajuaGpaqaa8qacaWG5bWdamaa Caaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadkgapaWaaWbaaK qbGeqabaWdbiaad6gaaaaaaaqcfaOaayjkaiaawMcaa8aadaahaaqc fasabeaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaadI hajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqb a+aadaahaaqcfasabeaapeGaamOBaaaaaaaaaKqbakabg2da9maabm aapaqaa8qadaWcaaWdaeaapeGaamOEa8aadaahaaqcfasabeaapeGa amOBaaaajuaGcqGHsislcaWGJbWdamaaCaaajuaibeqaa8qacaWGUb aaaaqcfa4daeaapeGaamyEa8aadaahaaqcfasabeaapeGaamOBaaaa juaGcqGHsislcaWGIbWdamaaCaaajuaibeqaa8qacaWGUbaaaaaaaK qbakaawIcacaGLPaaapaWaaWbaaKqbGeqabaqcfa4dbmaalaaajuai paqaa8qacaaIXaaapaqaa8qacaWG4bqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaaaaaaaaaa@6A51@ ( 1+ 1 y n b n  .  1 1 x n a n ) 1 x n a n = ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaaGymaiabgUcaRmaalaaapaqaa8qacaaI Xaaapaqaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbak abgkHiTiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaKqbakaa cckacaGGUaGaaiiOamaalaaapaqaa8qacaaIXaaajuaipaqaaKqba+ qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaamiEaKqba+aadaah aaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaaju aibeqaa8qacaWGUbaaaaaaaaaajuaGcaGLOaGaayzkaaWdamaaCaaa beqcfasaaKqba+qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaam iEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqc fa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaqcfaOaeyypa0Zaae Waa8aabaWdbmaalaaapaqaa8qacaWG6bWdamaaCaaajuaibeqaa8qa caWGUbaaaKqbakabgkHiTiaadogapaWaaWbaaKqbGeqabaWdbiaad6 gaaaaajuaGpaqaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaa aKqbakabgkHiTiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaa qcfaOaayjkaiaawMcaa8aadaahaaqabeaapeWaaSaaa8aabaWdbiaa igdaa8aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfa OaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaaa @7018@

The last equation can be written as:

( 1+ 1 y n b n  .  1 1 x n a n ) 1 x n a n = ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaaGymaiabgUcaRmaalaaapaqaa8qacaaI Xaaapaqaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbak abgkHiTiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaKqbakaa cckacaGGUaGaaiiOamaalaaapaqaa8qacaaIXaaajuaipaqaaKqba+ qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaamiEaKqba+aadaah aaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaaju aibeqaa8qacaWGUbaaaaaaaaaajuaGcaGLOaGaayzkaaWdamaaCaaa beqcfasaaKqba+qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaam iEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqc fa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaqcfaOaeyypa0Zaae Waa8aabaWdbmaalaaapaqaa8qacaWG6bWdamaaCaaajuaibeqaa8qa caWGUbaaaKqbakabgkHiTiaadogapaWaaWbaaKqbGeqabaWdbiaad6 gaaaaajuaGpaqaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaa aKqbakabgkHiTiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaa qcfaOaayjkaiaawMcaa8aadaahaaqabeaapeWaaSaaa8aabaWdbiaa igdaa8aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfa OaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaaa @7018@ (6) Both sides of equation (6) can be viewed as functions of variable lim xa ( 1+ 1 y n b n  .  1 1 x n a n ) 1 x n a n =  lim xa ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkda WcaaWdaeaapeGaaGymaaWdaeaapeGaamyEa8aadaahaaqabKqbGeaa peGaamOBaaaajuaGcqGHsislcaWGIbWdamaaCaaabeqcfasaa8qaca WGUbaaaaaajuaGcaGGGcGaaiOlaiaacckadaWcaaWdaeaapeGaaGym aaqcfaYdaeaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbi aadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaamyy aKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaqcfaOaayjkai aawMcaa8aadaahaaqcfasabeaajuaGpeWaaSaaaKqbG8aabaWdbiaa igdaa8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaa GaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaa aKqbakabg2da9iaacckapaWaaCbeaeaapeGaaeiBaiaabMgacaqGTb aapaqaa8qacaWG4bGaeyOKH4QaamyyaaWdaeqaa8qadaqadaWdaeaa peWaaSaaa8aabaWdbiaadQhapaWaaWbaaeqajuaibaWdbiaad6gaaa qcfaOaeyOeI0Iaam4ya8aadaahaaqcfasabeaapeGaamOBaaaaaKqb a+aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaey OeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGL OaGaayzkaaWdamaaCaaabeqcfasaaKqba+qadaWcaaqcfaYdaeaape GaaGymaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOB aaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaa aaaaaaaa@80E1@ (note that: z n c n = x n a n + y n b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG6bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadogapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaam iEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWd amaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUcaRiaadMhapaWaaW baaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqc fasabeaapeGaamOBaaaaaaa@4C14@ ) Since ais accumulation point for both sides of equation (6), it follows that:

lim xa ( 1+ 1 y n b n  .  1 1 x n a n ) 1 x n a n =  lim xa ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkda WcaaWdaeaapeGaaGymaaWdaeaapeGaamyEa8aadaahaaqabKqbGeaa peGaamOBaaaajuaGcqGHsislcaWGIbWdamaaCaaabeqcfasaa8qaca WGUbaaaaaajuaGcaGGGcGaaiOlaiaacckadaWcaaWdaeaapeGaaGym aaqcfaYdaeaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbi aadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaamyy aKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaqcfaOaayjkai aawMcaa8aadaahaaqcfasabeaajuaGpeWaaSaaaKqbG8aabaWdbiaa igdaa8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaa GaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaa aKqbakabg2da9iaacckapaWaaCbeaeaapeGaaeiBaiaabMgacaqGTb aapaqaa8qacaWG4bGaeyOKH4QaamyyaaWdaeqaa8qadaqadaWdaeaa peWaaSaaa8aabaWdbiaadQhapaWaaWbaaeqajuaibaWdbiaad6gaaa qcfaOaeyOeI0Iaam4ya8aadaahaaqcfasabeaapeGaamOBaaaaaKqb a+aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaey OeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGL OaGaayzkaaWdamaaCaaabeqcfasaaKqba+qadaWcaaqcfaYdaeaape GaaGymaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOB aaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaa aaaaaaaa@80E1@

In equation (7), the term 1 y n b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyEa8aadaahaaqc fasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWdamaaCaaajuaibe qaa8qacaWGUbaaaaaaaaa@3DD1@ is a positive rational number. Also, it holds that lim xa 1 x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbi aadIhapaWaaWbaaeqajuaibaWdbiaad6gaaaqcfaOaeyOeI0Iaamyy a8aadaahaaqabKqbGeaapeGaamOBaaaaaaqcfaOaeyypa0Jaey4kaS IaeyOhIukaaa@48BD@  because always x n a n >0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8UaamiEa8aadaahaaqabKqbGeaapeGaamOBaaaajuaG cqGHsislcaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg6 da+iaaicdacaGGUaaaaa@4153@ However, the definition of the exponential function:

e ω = lim ν ( 1+ ω v ) v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacqaHjpWDaaqcfaOaeyyp a0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaaqcfaYdaeaapeGaeq yVd4MaeyOKH4QaeyOhIukajuaGpaqabaWdbmaabmaapaqaa8qacaaI XaGaey4kaSYaaSaaa8aabaWdbiabeM8a3bWdaeaapeGaamODaaaaai aawIcacaGLPaaadaahaaqcfasabeaacaWG2baaaaaa@4C2C@

Implies that e ω = lim xa ( 1+ ω f( x ) ) f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacqaHjpWDaaqcfaOaeyyp a0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEai abgkziUkaadggaa8aabeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWk daWcaaWdaeaapeGaeqyYdChapaqaa8qacaWGMbWaaeWaa8aabaWdbi aadIhaaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWdamaaCaaajuai beqaa8qacaWGMbqcfa4aaeWaaKqbG8aabaWdbiaadIhaaiaawIcaca GLPaaaaaaaaa@502F@ Where f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@3A34@ is a function of variable x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4baaaa@37A1@  and lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamOzamaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaGaeyypa0Jaey4kaSIaeyOhIukaaa@4494@ Let ω= 1 y n b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGa amyEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIb WdamaaCaaajuaibeqaa8qacaWGUbaaaaaaaaa@40A4@ and f( x )= 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiEa8aadaahaaqcfa sabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaajuaibeqa a8qacaWGUbaaaaaaaaa@4265@ so that the above definition can be written as: e ω = lim xa ( 1+ ω f( x ) ) f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacqaHjpWDaaqcfaOaeyyp a0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEai abgkziUkaadggaa8aabeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWk daWcaaWdaeaapeGaeqyYdChapaqaa8qacaWGMbWaaeWaa8aabaWdbi aadIhaaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWdamaaCaaabeqc fasaa8qacaWGMbqcfa4aaeWaaKqbG8aabaWdbiaadIhaaiaawIcaca GLPaaaaaaaaa@502F@ with D( f )=( a, + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebWaaeWaa8aabaWdbiaadAgaaiaawIcacaGLPaaacqGH 9aqpdaqadaWdaeaapeGaamyyaiaacYcacaGGGcGaey4kaSIaeyOhIu kacaGLOaGaayzkaaaaaa@41BB@

Substituting the above into equation (7) yields:

e 1 y n b n = lim xa ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaabeqcfasaaKqba+qadaWcaaqcfaYdaeaa peGaaGymaaWdaeaapeGaamyEaKqba+aadaahaaqcfasabeaapeGaam OBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWGUbaa aaaaaaqcfaOaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaa WdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeWaaeWaa8aabaWd bmaalaaapaqaa8qacaWG6bWdamaaCaaajuaibeqaa8qacaWGUbaaaK qbakabgkHiTiaadogapaWaaWbaaeqajuaibaWdbiaad6gaaaaajuaG paqaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgk HiTiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaqcfaOaayjk aiaawMcaa8aadaahaaqabeaapeWaaSaaa8aabaWdbiaaigdaa8aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaaa@5FF6@ (8)

Part 2

In this section we will start again from equation (5) (i.e. we assume equation (1) is valid) and we will show that e 1 = lim xa ( z n c n y n b n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacaaIXaaaaKqbakabg2da 98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacq GHsgIRcaWGHbaapaqabaWdbmaabmaapaqaa8qadaWcaaWdaeaapeGa amOEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGJb WdamaaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamyEa8aa daahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWdamaaCa aabeqcfasaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWba aKqbGeqabaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qaca qGGcGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsisl caWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@5AD5@ Beginning from equation (5): x n a n + y n b n = z n c n (withn>2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaey4kaSIaam yEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWd amaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg2da9iaadQhapaWaaW baaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqa bKqbGeaapeGaamOBaaaajuaGpaGaaGPaVlaaykW7caaMc8UaaGPaVl aacIcacaWG3bGaamyAaiaadshacaWGObGaaGPaVlaaykW7caaMc8Ua amOBaiabg6da+iaaikdacaGGPaaaaa@5F5E@ Since x n a n >0: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOpa4JaaG imaiaacQdaaaa@3FD4@

1+ y n b n x n a n = z n c n x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSYaaSaaa8aabaWdbiaadMhapaWaaWbaaKqb GeqabaWdbiaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasabe aapeGaamOBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWd biaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGaam OBaaaaaaqcfaOaeyypa0ZaaSaaa8aabaWdbiaadQhapaWaaWbaaKqb GeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqabKqbGe aapeGaamOBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWd biaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqabKqbGeaapeGaam OBaaaaaaaaaa@541B@  (9)

In the last equation, the quantities y n b n x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8+aaSaaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWd biaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasabeaapeGaam OBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6ga aaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGaamOBaaaaaa aaaa@4551@ and z n c n x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamOEa8aadaahaaqcfasabeaapeGaamOB aaaajuaGcqGHsislcaWGJbWdamaaCaaajuaibeqaa8qacaWGUbaaaa qcfa4daeaapeGaamiEa8aadaahaaqcfasabeaapeGaamOBaaaajuaG cqGHsislcaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaaaaaaa@43C8@ are positive real numbers so we can consider their natural logarithm ln y n b n x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaalaaapaqaa8qacaWG5bWdamaaCaaajuai beqaa8qacaWGUbaaaKqbakabgkHiTiaadkgapaWaaWbaaKqbGeqaba Wdbiaad6gaaaaajuaGpaqaa8qacaWG4bWdamaaCaaajuaibeqaa8qa caWGUbaaaKqbakabgkHiTiaadggapaWaaWbaaKqbGeqabaWdbiaad6 gaaaaaaaaa@45AA@ and ln z n c n x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaalaaapaqaa8qacaWG6bWdamaaCaaajuai beqaa8qacaWGUbaaaKqbakabgkHiTiaadogapaWaaWbaaKqbGeqaba Wdbiaad6gaaaaajuaGpaqaa8qacaWG4bWdamaaCaaajuaibeqaa8qa caWGUbaaaKqbakabgkHiTiaadggapaWaaWbaaKqbGeqabaWdbiaad6 gaaaaaaaaa@45AC@   Also, it holds that: lim xa y n b n x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadMhapaWaaWbaae qajuaibaWdbiaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasa beaapeGaamOBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqaba Wdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGa amOBaaaaaaqcfaOaeyypa0Jaey4kaSIaeyOhIukaaa@4EB4@ and lim xa z n c n x n a n =+. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadQhapaWaaWbaae qajuaibaWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqcfasa beaapeGaamOBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqaba Wdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGa amOBaaaaaaqcfaOaeyypa0Jaey4kaSIaeyOhIuQaaiOlaaaa@4F68@ The quantities y n b n x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8+aaSaaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWd biaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasabeaapeGaam OBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6ga aaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGaamOBaaaaaa aaaa@4551@ and z n c n x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamOEa8aadaahaaqcfasabeaapeGaamOB aaaajuaGcqGHsislcaWGJbWdamaaCaaajuaibeqaa8qacaWGUbaaaa qcfa4daeaapeGaamiEa8aadaahaaqcfasabeaapeGaamOBaaaajuaG cqGHsislcaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaaaaaaa@43C8@ are considered as functions of variablex andais accumulation point for both of them. Equation (9) now becomes:

1+ e ln y n b n x n a n = e ln z n c n x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSIaamyza8aadaahaaqcfasabeaapeGaciiB aiaac6gajuaGdaWcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfa sabeaapeGaamOBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqa a8qacaWGUbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaape GaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWG UbaaaaaaaaqcfaOaeyypa0Jaamyza8aadaahaaqcfasabeaapeGaci iBaiaac6gajuaGdaWcaaqcfaYdaeaapeGaamOEaKqba+aadaahaaqc fasabeaapeGaamOBaaaacqGHsislcaWGJbqcfa4damaaCaaajuaibe qaa8qacaWGUbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaa peGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qaca WGUbaaaaaaaaaaaa@5D29@  (10)

Since x n a n >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadggapaWaaWbaaeqajuaibaWdbiaad6gaaaqcfaOaeyOpa4JaaG imaaaa@3F16@ implies that 1   x n a n >0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhapaWa aWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaa qcfasabeaapeGaamOBaaaaaaqcfaOaeyOpa4JaaGimaiaacYcaaaa@41F2@  equation (10), and therefore equation (9), can be written as:>

1+ e ( x n a n )ln ( y n b n x n a n ) 1   x n a n = e ( x n a n )ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSIaamyza8aadaahaaqabKqbGeaajuaGpeWa aeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipaqaaKqba+ qadaWcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfasabeaapeGa amOBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaa cqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaai aawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaalaaajuai paqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aadaahaaqcfa sabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqa a8qacaWGUbaaaaaaaaaaaKqbakabg2da9iaadwgapaWaaWbaaeqaju aibaqcfa4dbmaabmaajuaipaqaa8qacaWG4bqcfa4damaaCaaajuai beqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqaba Wdbiaad6gaaaaacaGLOaGaayzkaaGaciiBaiaac6gajuaGdaqadaqc faYdaeaajuaGpeWaaSaaaKqbG8aabaWdbiaadQhajuaGpaWaaWbaaK qbGeqabaWdbiaad6gaaaGaeyOeI0Iaam4yaKqba+aadaahaaqcfasa beaapeGaamOBaaaaa8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqaba Wdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGa amOBaaaaaaaacaGLOaGaayzkaaqcfa4damaaCaaajuaibeqaaKqba+ qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhajuaG paWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aada ahaaqcfasabeaapeGaamOBaaaaaaaaaaaaaaa@8943@  (11)

while as previously stated: lim xa y n b n x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadMhapaWaaWbaae qajuaibaWdbiaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasa beaapeGaamOBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqaba Wdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGa amOBaaaaaaqcfaOaeyypa0Jaey4kaSIaeyOhIukaaa@4EB4@ and lim xa z n c n x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadQhapaWaaWbaae qajuaibaWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqcfasa beaapeGaamOBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqaba Wdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGa amOBaaaaaaqcfaOaeyypa0Jaey4kaSIaeyOhIukaaa@4EB6@ At the limit of x®a equation (11) becomes:

lim xa e ( x n a n )ln ( y n b n x n a n ) 1   x n a n = lim xa y n b n x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaacaWGLbWaaWbaaeqajuaibaGaaiika8qaca WG4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadgga juaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaWdaiaacMcaciGGSbGaai OBaKqbaoaabmaajuaibaqcfa4dbmaalaaajuaipaqaa8qacaWG5bqc fa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadkgajuaGpa WaaWbaaKqbGeqabaWdbiaad6gaaaaapaqaa8qacaWG4bqcfa4damaa Caaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaK qbGeqabaWdbiaad6gaaaaaaaWdaiaawIcacaGLPaaajuaGdaahaaqc fasabeaajuaGdaahaaqcfasabeaajuaGpeWaaSaaaKqbG8aabaWdbi aaigdaa8aabaWdbiaabckacaWG4bqcfa4damaaCaaajuaibeqaa8qa caWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaaaaaaaaaaaaKqba+aacqGH9aqpdaWfqaqaa8qacaqGSbGaaeyA aiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbmaala aapaqaa8qacaWG5bWdamaaCaaabeqcfasaa8qacaWGUbaaaKqbakab gkHiTiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaaajuaGpaqaa8 qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaa dggapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaKqbakabg2da9iabgU caRiabg6HiLcaa@7ED8@  (12)

and

lim xa e ( x n a n )ln ( z n c n x n a n ) 1   x n a n = lim xa z n c n x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamyza8aadaahaaqabKqbGeaajuaGpe WaaeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaa aaaiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipaqaaKqb a+qadaWcaaqcfaYdaeaapeGaamOEaKqba+aadaahaaqcfasabeaape GaamOBaaaacqGHsislcaWGJbqcfa4damaaCaaajuaibeqaa8qacaWG UbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaa aacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaa aiaawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaalaaaju aipaqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aadaahaaqc fasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibe qaa8qacaWGUbaaaaaaaaaaaKqbakabg2da98aadaWfqaqaa8qacaqG SbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqaba Wdbmaalaaapaqaa8qacaWG6bWdamaaCaaajuaibeqaa8qacaWGUbaa aKqbakabgkHiTiaadogapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaju aGpaqaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakab gkHiTiaadggapaWaaWbaaeqajuaibaWdbiaad6gaaaaaaKqbakabg2 da9iabgUcaRiabg6HiLcaa@7F28@  (13)

According to the well known property of exponential function: lim xa e ( x n a n )ln ( y n b n x n a n ) 1   x n a n = e lim xa [ ( x n a n )ln ( y n b n x n a n ) 1   x n a n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamyza8aadaahaaqabKqbGeaajuaGpe WaaeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaa aaaiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipaqaaKqb a+qadaWcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfasabeaape GaamOBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWG UbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaa aacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaa aiaawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaalaaaju aipaqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aadaahaaqc fasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibe qaa8qacaWGUbaaaaaaaaaaaKqbakabg2da9iaadwgapaWaaWbaaeqa juaibaqcfa4aaCbeaKqbGeaapeGaaeiBaiaabMgacaqGTbaapaqaa8 qacaWG4bGaeyOKH4QaamyyaaWdaeqaaKqba+qadaWadaqcfaYdaeaa juaGpeWaaeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqaba Wdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGa amOBaaaaaiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipa qaaKqba+qadaWcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfasa beaapeGaamOBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGa amOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaaaaaiaawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaa laaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aada ahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaa juaibeqaa8qacaWGUbaaaaaaaaaacaGLBbGaayzxaaaaaaaa@993B@ Using the properties of limits we further get:

e lim xa [ ( x n a n )ln ( y n b n x n a n ) 1   x n a n ] = e lim xa ( x n a n ). lim xa ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aajuaGpeWaamWaaKqbG8aabaqcfa4dbmaabmaajuaipaqaa8qacaWG 4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadggaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaacaGLOaGaayzkaaGaciiB aiaac6gajuaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqbG8aabaWdbi aadMhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamOy aKqba+aadaahaaqcfasabeaapeGaamOBaaaaa8aabaWdbiaadIhaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aa daahaaqcfasabeaapeGaamOBaaaaaaaacaGLOaGaayzkaaqcfa4dam aaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaa peGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaey OeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaGa ay5waiaaw2faaaaajuaGcqGH9aqpcaWGLbWdamaaCaaabeqcfasaaK qbaoaaxabajuaibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiE aiabgkziUkaadggaa8aabeaajuaGpeWaaeWaaKqbG8aabaWdbiaadI hajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqb a+aadaahaaqcfasabeaapeGaamOBaaaaaiaawIcacaGLPaaacaGGUa qcfa4damaaxabajuaibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGa amiEaiabgkziUkaadggaa8aabeaapeGaciiBaiaac6gajuaGdaqada qcfaYdaeaajuaGpeWaaSaaaKqbG8aabaWdbiaadMhajuaGpaWaaWba aKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamOyaKqba+aadaahaaqcfa sabeaapeGaamOBaaaaa8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqa baWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaape GaamOBaaaaaaaacaGLOaGaayzkaaqcfa4damaaCaaajuaibeqaaKqb a+qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aa daahaaqcfasabeaapeGaamOBaaaaaaaaaaaaaaa@A28B@ (14)

The lim xa ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaaaa@58EE@ is defined because a is accumulation point for the function ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamyE a8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWdam aaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaah aaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaaju aibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaKqb Geqabaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGc GaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWG Hbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@51E7@ (considered as function of variable). Similarly we have:

e lim xa [ ( x n a n )ln ( z n c n x n a n ) 1   x n a n ] = e lim xa ( x n a n ). lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aajuaGpeWaamWaaKqbG8aabaqcfa4dbmaabmaajuaipaqaa8qacaWG 4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadggaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaacaGLOaGaayzkaaGaciiB aiaac6gajuaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqbG8aabaWdbi aadQhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam4y aKqba+aadaahaaqcfasabeaapeGaamOBaaaaa8aabaWdbiaadIhaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aa daahaaqcfasabeaapeGaamOBaaaaaaaacaGLOaGaayzkaaqcfa4dam aaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaa peGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaey OeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaGa ay5waiaaw2faaaaajuaGcqGH9aqpcaWGLbWdamaaCaaabeqcfasaaK qbaoaaxabajuaibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiE aiabgkziUkaadggaa8aabeaajuaGpeWaaeWaaKqbG8aabaWdbiaadI hajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqb a+aadaahaaqcfasabeaapeGaamOBaaaaaiaawIcacaGLPaaacaGGUa qcfa4damaaxabajuaibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGa amiEaiabgkziUkaadggaa8aabeaapeGaciiBaiaac6gajuaGdaqada qcfaYdaeaajuaGpeWaaSaaaKqbG8aabaWdbiaadQhajuaGpaWaaWba aKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam4yaKqba+aadaahaaqcfa sabeaapeGaamOBaaaaa8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqa baWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaape GaamOBaaaaaaaacaGLOaGaayzkaaqcfa4damaaCaaajuaibeqaaKqb a+qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aa daahaaqcfasabeaapeGaamOBaaaaaaaaaaaaaaa@A28F@  (15)

Note the lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0Iaam4ya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaaaa@58F0@ is defined because a is an accumulation point for the function ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamOE a8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGJbWdam aaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaah aaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaaju aibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaKqb Geqabaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGc GaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWG Hbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@51EA@  (considered as a function of variable x).

Finally, applying the property of exponentiation: e xy = ( e x ) y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacaWG4bGaamyEaaaajuaG cqGH9aqpdaqadaWdaeaapeGaamyza8aadaahaaqcfasabeaapeGaam iEaaaaaKqbakaawIcacaGLPaaapaWaaWbaaKqbGeqabaWdbiaadMha aaaaaa@4186@ we have:

lim xa e ( x n a n )ln ( y n b n x n a n ) 1   x n a n = e lim xa [ ( x n a n )ln ( y n b n x n a n ) 1   x n a n ] = [ e lim xa ( x n a n ) ] lim xa ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaadYgacaWGPbGaamyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamyza8aadaahaaqabKqbGeaajuaGpe WaaeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaa aaaiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipaqaaKqb a+qadaWcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfasabeaape GaamOBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWG UbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaa aacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaa aiaawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaalaaaju aipaqaa8qacaaIXaaapaqaa8qacaGGGcGaamiEaKqba+aadaahaaqc fasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibe qaa8qacaWGUbaaaaaaaaaaaKqbakabg2da9iaadwgapaWaaWbaaeqa juaibaqcfa4aaCbeaKqbGeaapeGaaeiBaiaabMgacaqGTbaapaqaa8 qacaWG4bGaeyOKH4QaamyyaaWdaeqaaKqba+qadaWadaqcfaYdaeaa juaGpeWaaeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqaba Wdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGa amOBaaaaaiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipa qaaKqba+qadaWcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfasa beaapeGaamOBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGa amOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaaaaaiaawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaa laaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aada ahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaa juaibeqaa8qacaWGUbaaaaaaaaaacaGLBbGaayzxaaaaaKqbakabg2 da9maadmaapaqaa8qacaWGLbWdamaaCaaabeqcfasaaKqbaoaaxaba juaibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUk aadggaa8aabeaajuaGpeWaaeWaaKqbG8aabaWdbiaadIhajuaGpaWa aWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaa qcfasabeaapeGaamOBaaaaaiaawIcacaGLPaaaaaaajuaGcaGLBbGa ayzxaaWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaabYgaca qGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeGa ciiBaiaac6gajuaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqbG8aaba WdbiaadMhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Ia amOyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaa8aabaWdbiaadI hajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqb a+aadaahaaqcfasabeaapeGaamOBaaaaaaaacaGLOaGaayzkaaqcfa 4damaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGymaaWd aeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaa GaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaa aaaaaaa@D520@  (16)

and

lim xa e ( x n a n )ln ( z n c n x n a n ) 1   x n a n = e lim xa [ ( x n a n )ln ( z n c n x n a n ) 1   x n a n ] = [ e lim xa ( x n a n ) ] lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaadYgacaWGPbGaamyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamyza8aadaahaaqabKqbGeaajuaGpe WaaeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaa aaaiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipaqaaKqb a+qadaWcaaqcfaYdaeaapeGaamOEaKqba+aadaahaaqcfasabeaape GaamOBaaaacqGHsislcaWGJbqcfa4damaaCaaajuaibeqaa8qacaWG UbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaa aacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaa aiaawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaalaaaju aipaqaa8qacaaIXaaapaqaa8qacaGGGcGaamiEaKqba+aadaahaaqc fasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibe qaa8qacaWGUbaaaaaaaaaaaKqbakabg2da9iaadwgapaWaaWbaaeqa juaibaqcfa4aaCbeaKqbGeaapeGaaeiBaiaabMgacaqGTbaapaqaa8 qacaWG4bGaeyOKH4QaamyyaaWdaeqaaKqba+qadaWadaqcfaYdaeaa juaGpeWaaeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqaba Wdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGa amOBaaaaaiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipa qaaKqba+qadaWcaaqcfaYdaeaapeGaamOEaKqba+aadaahaaqcfasa beaapeGaamOBaaaacqGHsislcaWGJbqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGa amOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaaaaaiaawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaa laaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aada ahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaa juaibeqaa8qacaWGUbaaaaaaaaaacaGLBbGaayzxaaaaaKqbakabg2 da9maadmaapaqaa8qacaWGLbWdamaaCaaabeqcfasaaKqbaoaaxaba juaibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUk aadggaa8aabeaajuaGpeWaaeWaaKqbG8aabaWdbiaadIhajuaGpaWa aWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaa qcfasabeaapeGaamOBaaaaaiaawIcacaGLPaaaaaaajuaGcaGLBbGa ayzxaaWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaabYgaca qGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeGa ciiBaiaac6gajuaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqbG8aaba WdbiaadQhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Ia am4yaKqba+aadaahaaqcfasabeaapeGaamOBaaaaa8aabaWdbiaadI hajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqb a+aadaahaaqcfasabeaapeGaamOBaaaaaaaacaGLOaGaayzkaaqcfa 4damaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGymaaWd aeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaa GaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaa aaaaaaa@D526@  (17)

Recall that through equations (12) and (13) we showed that the limit of equations  and (17) is +. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHRaWkcqGHEisPcaGGUaaaaa@39A9@ We will proceed by proving that lim xa ln ( y n b n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLcaa@5CD5@ It holds that: < lim xa y n b n x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadMhapaWaaWbaaK qbGeqabaWdbiaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasa beaapeGaamOBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqaba Wdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGa amOBaaaaaaqcfaOaeyypa0Jaey4kaSIaeyOhIukaaa@4EB4@  (18)

Also, it holds that lim xa ( x n a n )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaacaGGOaWdbiaadIhapaWaaWbaaKqbGeqaba Wdbiaad6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGa amOBaaaajuaGpaGaaiykaiabg2da9iaaicdaaaa@4783@ therefore lim xa 1 x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbi aadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Iaamyy a8aadaahaaqcfasabeaapeGaamOBaaaaaaqcfaOaeyypa0Jaey4kaS IaeyOhIukaaa@48BD@ (19) because x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaa@3CC6@  is always positive. Equation (18) implies that: lim xa ln y n b n x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaaciGGSbGaaiOBa8qadaWcaaWdaeaapeGaam yEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWd amaaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aada ahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaa juaibeqaa8qacaWGUbaaaaaajuaGcqGH9aqpcqGHRaWkcqGHEisPaa a@5098@  (20) see Appendix B By multiplying equations (19) and (20) we obtain: ( lim xa 1 x n a n ).( lim xa ln y n b n x n a n )=( + ).( + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8aa baWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbmaalaaapaqaa8qaca aIXaaapaqaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqb akabgkHiTiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaqcfa OaayjkaiaawMcaaiaac6cadaqadaWdaeaadaWfqaqaa8qaciGGSbGa aiyAaiaac2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbi GacYgacaGGUbWaaSaaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWd biaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasabeaapeGaam OBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6ga aaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGaamOBaaaaaa aajuaGcaGLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbiabgUcaRiab g6HiLcGaayjkaiaawMcaaiaac6cadaqadaWdaeaapeGaey4kaSIaey OhIukacaGLOaGaayzkaaaaaa@69B4@ lim xa ( 1 x n a n .ln y n b n x n a n )=+  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaaiikamaalaaapaqaa8qacaaIXaaapa qaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaKqbakaac6caci GGSbGaaiOBamaalaaapaqaa8qacaWG5bWdamaaCaaajuaibeqaa8qa caWGUbaaaKqbakabgkHiTiaadkgapaWaaWbaaKqbGeqabaWdbiaad6 gaaaaajuaGpaqaa8qacaWG4bWdamaaCaaajuaibeqaa8qacaWGUbaa aKqbakabgkHiTiaadggapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaK qbakaacMcacqGH9aqpcqGHRaWkcqGHEisPcaGGGcaaaa@5B80@

lim xa ln ( y n b n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLcaa@5CD5@

Similarly, we get: lim xa ln ( z n c n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0Iaam4ya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLcaa@5CD7@

It holds that: e lim xa ( x n a n ) = e 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzam aaCaaajuaibeqaaKqbaoaaxabajuaibaaeaaaaaaaaa8qacaWGSbGa amyAaiaad2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaGaai ika8qacaWG4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHi TiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaWdaiaacMcaaa qcfaOaeyypa0JaamyzamaaCaaabeqcfasaaiaaicdaaaqcfaOaeyyp a0JaaGymaaaa@4D96@

Thus, equation (16) results 1 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymam aaCaaajuaibeqaaiabgUcaRiabg6HiLcaaaaa@39E2@ (in our case it holds that 1 + =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymam aaCaaajuaibeqaaiabgUcaRiabg6HiLcaajuaGcqGH9aqpcqGHRaWk cqGHEisPaaa@3DC9@ ) and equation (17) then results 1 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymam aaCaaajuaibeqaaiabgUcaRiabg6HiLcaaaaa@39E2@ (in our case it holds that 1 + =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymam aaCaaajuaibeqaaiabgUcaRiabg6HiLcaajuaGcqGH9aqpcqGHRaWk cqGHEisPaaa@3DC9@ ). Generally 1 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymam aaCaaajuaibeqaaiabgUcaRiabg6HiLcaaaaa@39E2@ is an indeterminate form, but here we showed that To facilitate the rest of the work, we write the outcome of equation (16) as: 1 lim xa ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaciiBaiaac6gajuaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqb G8aabaWdbiaadMhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaey OeI0IaamOyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaa8aabaWd biaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam yyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaacaGLOaGaayzk aaqcfa4damaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaG ymaaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaa aaaaaaaaaaaaa@5CDA@  (21) where lim xa ln ( y n b n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLcaa@5CD5@ and the outcome of equation (17) as: 1 lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaciiBaiaac6gajuaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqb G8aabaWdbiaadQhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaey OeI0Iaam4yaKqba+aadaahaaqcfasabeaapeGaamOBaaaaa8aabaWd biaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam yyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaacaGLOaGaayzk aaqcfa4damaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaG ymaaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaa aaaaaaaaaaaaa@5CDC@  (22) Where lim xa ln ( z n c n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0Iaam4ya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLcaa@5CD7@ Therefore, equation (11) now gives: 1+ e ( x n a n )ln ( y n b n x n a n ) 1   x n a n = e ( x n a n )ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSIaamyza8aadaahaaqabKqbGeaajuaGpeWa aeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aiaawIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipaqaaKqba+ qadaWcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfasabeaapeGa amOBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaa cqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaai aawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaalaaajuai paqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aadaahaaqcfa sabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqa a8qacaWGUbaaaaaaaaaaaKqbakabg2da9iaadwgapaWaaWbaaeqaju aibaqcfa4dbmaabmaajuaipaqaa8qacaWG4bqcfa4damaaCaaajuai beqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqaba Wdbiaad6gaaaaacaGLOaGaayzkaaGaciiBaiaac6gajuaGdaqadaqc faYdaeaajuaGpeWaaSaaaKqbG8aabaWdbiaadMhajuaGpaWaaWbaaK qbGeqabaWdbiaad6gaaaGaeyOeI0IaamOyaKqba+aadaahaaqcfasa beaapeGaamOBaaaaa8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqaba Wdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGa amOBaaaaaaaacaGLOaGaayzkaaqcfa4damaaCaaajuaibeqaaKqba+ qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhajuaG paWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aada ahaaqcfasabeaapeGaamOBaaaaaaaaaaaaaaa@8941@ and thus lim xa [ 1+ e ( x n a n )ln ( y n b n x n a n ) 1   x n a n ]= lim xa e ( x n a n )ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaamWaa8aabaWdbiaaigdacqGHRaWkca WGLbWdamaaCaaabeqcfasaaKqba+qadaqadaqcfaYdaeaapeGaamiE aKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa 4damaaCaaajuaibeqaa8qacaWGUbaaaaGaayjkaiaawMcaaiGacYga caGGUbqcfa4aaeWaaKqbG8aabaqcfa4dbmaalaaajuaipaqaa8qaca WG5bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadkga juaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaapaqaa8qacaWG4bqcfa 4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWa aWbaaKqbGeqabaWdbiaad6gaaaaaaaGaayjkaiaawMcaaKqba+aada ahaaqcfasabeaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWd biaabckacaWG4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgk HiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaaaaaa juaGcaGLBbGaayzxaaGaeyypa0ZdamaaxababaWdbiaabYgacaqGPb GaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeGaamyz a8aadaahaaqabKqbGeaajuaGpeWaaeWaaKqbG8aabaWdbiaadIhaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aa daahaaqcfasabeaapeGaamOBaaaaaiaawIcacaGLPaaaciGGSbGaai OBaKqbaoaabmaajuaipaqaaKqba+qadaWcaaqcfaYdaeaapeGaamyE aKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGIbqcfa 4damaaCaaajuaibeqaa8qacaWGUbaaaaWdaeaapeGaamiEaKqba+aa daahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCa aajuaibeqaa8qacaWGUbaaaaaaaiaawIcacaGLPaaajuaGpaWaaWba aKqbGeqabaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qaca qGGcGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsisl caWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaaaa@997F@ The both limits exist because a is an accumulation point of the corresponding functions.
Finally: lim xa 1+ lim xa [ e ( x n a n )ln ( y n b n x n a n ) 1   x n a n ]= lim xa e ( x n a n )ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaaGymaiabgUcaR8aadaWfqaqaa8qaca qGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqa baWdbmaadmaapaqaa8qacaWGLbWdamaaCaaabeqcfasaaKqba+qada qadaqcfaYdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOB aaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaa GaayjkaiaawMcaaiGacYgacaGGUbqcfa4aaeWaaKqbG8aabaqcfa4d bmaalaaajuaipaqaa8qacaWG5bqcfa4damaaCaaajuaibeqaa8qaca WGUbaaaiabgkHiTiaadkgajuaGpaWaaWbaaKqbGeqabaWdbiaad6ga aaaapaqaa8qacaWG4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaai abgkHiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaGa ayjkaiaawMcaaKqba+aadaahaaqcfasabeaajuaGpeWaaSaaaKqbG8 aabaWdbiaaigdaa8aabaWdbiaabckacaWG4bqcfa4damaaCaaajuai beqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqaba Wdbiaad6gaaaaaaaaaaaaajuaGcaGLBbGaayzxaaGaeyypa0Zdamaa xababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUk aadggaa8aabeaapeGaamyza8aadaahaaqabKqbGeaajuaGpeWaaeWa aKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaa GaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaiaa wIcacaGLPaaaciGGSbGaaiOBaKqbaoaabmaajuaipaqaaKqba+qada WcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfasabeaapeGaamOB aaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaa WdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGH sislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaiaawI cacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaalaaajuaipaqa a8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aadaahaaqcfasabe aapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qa caWGUbaaaaaaaaaaaaaa@A0A5@ Using equations 1+ [ e lim xa ( x n a n ) ] lim xa ln ( y n b n x n a n ) 1   x n a n =  [ e lim xa ( x n a n ) ] lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSYaamWaa8aabaWdbiaadwgapaWaaWbaaeqa juaibaqcfa4aaCbeaKqbGeaapeGaciiBaiaacMgacaGGTbaapaqaa8 qacaWG4bGaeyOKH4QaamyyaaWdaeqaaKqba+qadaqadaqcfaYdaeaa peGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislca WGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaGaayjkaiaawMca aaaaaKqbakaawUfacaGLDbaapaWaaWbaaeqajuaibaqcfa4aaCbeaK qbGeaapeGaciiBaiaacMgacaGGTbaapaqaa8qacaWG4bGaeyOKH4Qa amyyaaWdaeqaa8qaciGGSbGaaiOBaKqbaoaabmaajuaipaqaaKqba+ qadaWcaaqcfaYdaeaapeGaamyEaKqba+aadaahaaqcfasabeaapeGa amOBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaaWdaeaapeGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaa cqGHsislcaWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaai aawIcacaGLPaaajuaGpaWaaWbaaKqbGeqabaqcfa4dbmaalaaajuai paqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaKqba+aadaahaaqcfa sabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4damaaCaaajuaibeqa a8qacaWGUbaaaaaaaaaaaKqba+aacqGH9aqppeGaaiiOamaadmaapa qaa8qacaWGLbWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiGa cYgacaGGPbGaaiyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aajuaGpeWaaeWaaKqbG8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqa baWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaape GaamOBaaaaaiaawIcacaGLPaaaaaaajuaGcaGLBbGaayzxaaWdamaa CaaabeqcfasaaKqbaoaaxabajuaibaWdbiGacYgacaGGPbGaaiyBaa WdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeGaciiBaiaac6ga juaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqbG8aabaWdbiaadQhaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam4yaKqba+aa daahaaqcfasabeaapeGaamOBaaaaa8aabaWdbiaadIhajuaGpaWaaW baaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqc fasabeaapeGaamOBaaaaaaaacaGLOaGaayzkaaqcfa4damaaCaaaju aibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaaeiO aiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam yyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaaaaaaaaa@AFC2@  and Using equations (21) and (22): 1+ 1 lim xa ln ( y n b n x n a n ) 1   x n a n = 1 lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSIaaGyma8aadaahaaqabKqbGeaajuaGdaWf qaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsg IRcaWGHbaapaqabaWdbiGacYgacaGGUbqcfa4aaeWaaKqbG8aabaqc fa4dbmaalaaajuaipaqaa8qacaWG5bqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaiabgkHiTiaadkgajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaaapaqaa8qacaWG4bqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaa aaGaayjkaiaawMcaaKqba+aadaahaaqcfasabeaajuaGpeWaaSaaaK qbG8aabaWdbiaaigdaa8aabaWdbiaabckacaWG4bqcfa4damaaCaaa juaibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGe qabaWdbiaad6gaaaaaaaaaaaqcfaOaeyypa0JaaGyma8aadaahaaqa bKqbGeaajuaGdaWfqaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aaba WdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiGacYgacaGGUbqcfa4a aeWaaKqbG8aabaqcfa4dbmaalaaajuaipaqaa8qacaWG6bqcfa4dam aaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadogajuaGpaWaaWba aKqbGeqabaWdbiaad6gaaaaapaqaa8qacaWG4bqcfa4damaaCaaaju aibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqa baWdbiaad6gaaaaaaaGaayjkaiaawMcaaKqba+aadaahaaqcfasabe aajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaabckacaWG 4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadggaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaaaaaaaa@8643@  (23) where lim xa ln ( y n b n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLcaa@5CD5@ and lim xa ln ( z n c n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0Iaam4ya8aadaahaaqcfasabeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLkaaykW7caaMc8UaaGPaVd aa@6178@ Now, we will prove that any quantity of the form  where 1 lim xa f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaaaa@43DD@ and lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamOzamaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaGaeyypa0Jaey4kaSIaeyOhIuQaaGPaVlaaykW7aaa@47AA@ can always get the value e lim xa f( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaKqba+aacaGGUaWdbiaaykW7aaa@46F6@ More specifically, we will show that:
1 lim xa f( x ) = e lim xa f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaKqbakabg2da9iaadwgapaWaaWbaaeqajuaibaqcfa4aaCbeaK qbGeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4Qa amyyaaWdaeqaa8qacaWGMbqcfa4aaeWaaKqbG8aabaWdbiaadIhaai aawIcacaGLPaaaaaaaaa@52D9@ where lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamOzamaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaGaeyypa0Jaey4kaSIaeyOhIuQaaGPaVlaaykW7aaa@47AA@ and 1 lim xa f( x ) =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8UaaGyma8aadaahaaqabKqbGeaajuaGdaWfqaqcfasa a8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHb aapaqabaWdbiaadAgajuaGdaqadaqcfaYdaeaapeGaamiEaaGaayjk aiaawMcaaaaajuaGcqGH9aqpcqGHRaWkcqGHEisPaaa@494F@ We begin from the definition of the exponential function e= lim xa ( 1+ 1 f( x ) ) f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyB aaWdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeWaaeWaa8aaba WdbiaaigdacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOz amaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaaGaayjkaiaawM caa8aadaahaaqcfasabeaapeGaamOzaKqbaoaabmaajuaipaqaa8qa caWG4baacaGLOaGaayzkaaaaaaaa@4C53@ and since lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamOzamaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaGaeyypa0Jaey4kaSIaeyOhIuQaaGPaVlaaykW7aaa@47AA@ we can write: 1 1 lim xa f( x ) =1+ 1 lim xa f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaa peGaaGymaaWdaeaajuaGdaWfqaqcfasaa8qacaqGSbGaaeyAaiaab2 gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiaadAgajuaG daqadaqcfaYdaeaapeGaamiEaaGaayjkaiaawMcaaaaaaaqcfaOaey ypa0JaaGymaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaamaaxaba baWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadg gaa8aabeaapeGaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzk aaaaaaaa@5473@ or 1 1 lim xa f( x ) = lim xa [ 1+ 1 f( x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaa peGaaGymaaWdaeaajuaGdaWfqaqcfasaa8qacaqGSbGaaeyAaiaab2 gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiaadAgajuaG daqadaqcfaYdaeaapeGaamiEaaGaayjkaiaawMcaaaaaaaqcfaOaey ypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiE aiabgkziUkaadggaa8aabeaapeWaamWaa8aabaWdbiaaigdacqGHRa WkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOzamaabmaapaqaa8qa caWG4baacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaaa@56A3@ If we raise both sides of the last equation to the power of [ lim xa f( x ) ] 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaWdaeaadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8aa baWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiaadAgadaqadaWdae aapeGaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaaqc fasabeaapeGaaGOmaaaapaGaaiilaaaa@4536@  we have: [ 1 1 lim xa f( x ) ] [ lim xa f( x ) ] 2 = { lim xa [ 1+ 1 f( x ) ] } [ lim xa f( x ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaWdaeaapeGaaGyma8aadaahaaqabKqbGeaajuaGpeWa aSaaaKqbG8aabaWdbiaaigdaa8aabaqcfa4aaCbeaKqbGeaapeGaae iBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4QaamyyaaWdaeqa a8qacaWGMbqcfa4aaeWaaKqbG8aabaWdbiaadIhaaiaawIcacaGLPa aaaaaaaaqcfaOaay5waiaaw2faa8aadaahaaqcfasabeaajuaGpeWa amWaaKqbG8aabaqcfa4aaCbeaKqbGeaapeGaaeiBaiaabMgacaqGTb aapaqaa8qacaWG4bGaeyOKH4QaamyyaaWdaeqaa8qacaWGMbqcfa4a aeWaaKqbG8aabaWdbiaadIhaaiaawIcacaGLPaaaaiaawUfacaGLDb aajuaGpaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaKqbakabg2da9maa cmaapaqaamaaxababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaam iEaiabgkziUkaadggaa8aabeaapeWaamWaa8aabaWdbiaaigdacqGH RaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOzamaabmaapaqaa8 qacaWG4baacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaGaay5Eaiaa w2haa8aadaahaaqabKqbGeaajuaGpeWaamWaaKqbG8aabaqcfa4aaC beaKqbGeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOK H4QaamyyaaWdaeqaa8qacaWGMbqcfa4aaeWaaKqbG8aabaWdbiaadI haaiaawIcacaGLPaaaaiaawUfacaGLDbaajuaGpaWaaWbaaKqbGeqa baWdbiaaikdaaaaaaaaa@7D7B@ For the left-hand side of the last equation, the operation 1 lim xa f( x ) . [ lim xa f( x ) ] 2 = [ lim xa f( x ) ] 2 lim xa f( x ) = lim xa f ( x ) 2 lim xa f( x ) = lim xa f ( x ) 2 f( x ) = lim xa f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGymaaWdaeaadaWfqaqaa8qacaqGSbGa aeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbi aadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaacaGGUaWa amWaa8aabaWaaCbeaeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qaca WG4bGaeyOKH4QaamyyaaWdaeqaa8qacaWGMbWaaeWaa8aabaWdbiaa dIhaaiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWbaaKqbGeqaba WdbiaaikdaaaqcfaOaeyypa0ZaaSaaa8aabaWdbmaadmaapaqaamaa xababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUk aadggaa8aabeaapeGaamOzamaabmaapaqaa8qacaWG4baacaGLOaGa ayzkaaaacaGLBbGaayzxaaWdamaaCaaajuaibeqaa8qacaaIYaaaaa qcfa4daeaadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaa dIhacqGHsgIRcaWGHbaapaqabaWdbiaadAgadaqadaWdaeaapeGaam iEaaGaayjkaiaawMcaaaaacqGH9aqpdaWcaaWdaeaadaWfqaqaa8qa caqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapa qabaWdbiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaa8aa daahaaqcfasabeaapeGaaGOmaaaaaKqba+aabaWaaCbeaeaapeGaae iBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4QaamyyaaWdaeqa a8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaGaey ypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiE aiabgkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadAgadaqada WdaeaapeGaamiEaaGaayjkaiaawMcaa8aadaahaaqabKqbGeaapeGa aGOmaaaaaKqba+aabaWdbiaadAgadaqadaWdaeaapeGaamiEaaGaay jkaiaawMcaaaaacqGH9aqppaWaaCbeaeaapeGaaeiBaiaabMgacaqG Tbaapaqaa8qacaWG4bGaeyOKH4QaamyyaaWdaeqaa8qacaWGMbWaae Waa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@A0ED@ is permitable  according to the properties of limits. Hence: 1 lim xa f( x ) = lim xa [ 1+ 1 f( x ) ] [ lim xa f( x ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaKqbakabg2da98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8 aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbmaadmaapaqaa8qa caaIXaGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadAgada qadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaa paWaaWbaaeqajuaibaqcfa4dbmaadmaajuaipaqaaKqbaoaaxabaju aibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaa dggaa8aabeaapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baaca GLOaGaayzkaaaacaGLBbGaayzxaaqcfa4damaaCaaajuaibeqaa8qa caaIYaaaaaaaaaa@65E2@      1 lim xa f( x ) =       [ lim xa [ 1+ 1 f( x ) ] lim xa f( x ) ] lim xa f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaGyma8aadaahaaqcfasa beaajuaGdaWfqaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbi aadIhacqGHsgIRcaWGHbaapaqabaWdbiaadAgajuaGdaqadaqcfaYd aeaapeGaamiEaaGaayjkaiaawMcaaaaajuaGcqGH9aqpcaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckadaWadaWdaeaadaWfqaqaa8qa caqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapa qabaWdbmaadmaapaqaa8qacaaIXaGaey4kaSYaaSaaa8aabaWdbiaa igdaa8aabaWdbiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaaaaaiaawUfacaGLDbaapaWaaWbaaeqajuaibaqcfa4aaCbeaKqb GeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4Qaam yyaaWdaeqaa8qacaWGMbqcfa4aaeWaaKqbG8aabaWdbiaadIhaaiaa wIcacaGLPaaaaaaajuaGcaGLBbGaayzxaaWdamaaCaaajuaibeqaaK qbaoaaxabajuaibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiE aiabgkziUkaadggaa8aabeaapeGaamOzaKqbaoaabmaajuaipaqaa8 qacaWG4baacaGLOaGaayzkaaaaaaaa@7BC2@ (24) However, lim xa [ 1+ 1 f( x ) ] f( x ) = lim xa e ln [ 1+ 1 f( x ) ] f( x ) = e lim xa ln [ 1+ 1 f( x ) ] f( x ) = e lim xa [ f( x ).ln[ 1+ 1 f( x ) ] ] = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaamWaa8aabaWdbiaaigdacqGHRaWkda WcaaWdaeaapeGaaGymaaWdaeaapeGaamOzamaabmaapaqaa8qacaWG 4baacaGLOaGaayzkaaaaaaGaay5waiaaw2faa8aadaahaaqcfasabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaKqbakabg2da98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8 aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiaadwgapaWaaWba aeqajuaibaWdbiGacYgacaGGUbqcfa4aamWaaKqbG8aabaWdbiaaig dacqGHRaWkjuaGdaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaamOz aKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzkaaaaaaGaay 5waiaaw2faaKqba+aadaahaaqcfasabeaapeGaamOzaKqbaoaabmaa juaipaqaa8qacaWG4baacaGLOaGaayzkaaaaaaaajuaGcqGH9aqpca WGLbWdamaaCaaabeqaamaaxababaWdbiaabYgacaqGPbGaaeyBaaWd aeaapeGaamiEaiabgkziUkaadggaa8aabeaapeGaciiBaiaac6gada WadaWdaeaapeGaaGymaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqa a8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaaaca GLBbGaayzxaaWdamaaCaaabeqaa8qacaWGMbWaaeWaa8aabaWdbiaa dIhaaiaawIcacaGLPaaaaaaaaiabg2da9iaadwgapaWaaWbaaKqbGe qabaqcfa4aaCbeaKqbGeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qa caWG4bGaeyOKH4QaamyyaaWdaeqaaKqba+qadaWadaqcfaYdaeaape GaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzkaaGa aiOlaiGacYgacaGGUbqcfa4aamWaaKqbG8aabaWdbiaaigdacqGHRa WkjuaGdaWcaaqcfaYdaeaapeGaaGymaaWdaeaapeGaamOzaKqbaoaa bmaajuaipaqaa8qacaWG4baacaGLOaGaayzkaaaaaaGaay5waiaaw2 faaaGaay5waiaaw2faaaaajuaGcqGH9aqpaaa@9E0A@ = e lim xa f( x ). lim xa ln[ 1+ 1 f( x ) ]  = e lim xa f( x ).ln{ lim xa [ 1+ 1 f( x ) ] } = e ln{ lim xa [ 1+ 1 f( x ) ] } lim xa f( x ) = { lim xa [ 1+ 1 f( x ) ] } lim xa f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWGLbWdamaaCaaabeqaamaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaGaaiOlaKqba+aadaWfqaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8 aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiGacYgacaGGUbqc fa4aamWaaKqbG8aabaWdbiaaigdacqGHRaWkjuaGdaWcaaqcfaYdae aapeGaaGymaaWdaeaapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG 4baacaGLOaGaayzkaaaaaaGaay5waiaaw2faaKqbakaacckaaaWdai abg2da98qacaWGLbWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWd biaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8 aabeaapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGa ayzkaaGaaiOlaiGacYgacaGGUbqcfa4aaiWaaKqbG8aabaqcfa4aaC beaKqbGeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOK H4QaamyyaaWdaeqaaKqba+qadaWadaqcfaYdaeaapeGaaGymaiabgU caRKqbaoaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaWGMbqcfa4a aeWaaKqbG8aabaWdbiaadIhaaiaawIcacaGLPaaaaaaacaGLBbGaay zxaaaacaGL7bGaayzFaaaaaKqba+aacqGH9aqppeGaamyza8aadaah aaqcfasabeaapeGaciiBaiaac6gajuaGdaGadaqcfaYdaeaajuaGda Wfqaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGH sgIRcaWGHbaapaqabaqcfa4dbmaadmaajuaipaqaa8qacaaIXaGaey 4kaSscfa4aaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaadAgajuaG daqadaqcfaYdaeaapeGaamiEaaGaayjkaiaawMcaaaaaaiaawUfaca GLDbaaaiaawUhacaGL9baaaaqcfa4damaaCaaajuaibeqaaKqbaoaa xabajuaibaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgk ziUkaadggaa8aabeaapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG 4baacaGLOaGaayzkaaaaaKqba+aacqGH9aqppeWaaiWaa8aabaWaaC beaeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4Qa amyyaaWdaeqaa8qadaWadaWdaeaapeGaaGymaiabgUcaRmaalaaapa qaa8qacaaIXaaapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaaaacaGLBbGaayzxaaaacaGL7bGaayzFaaWdamaaCa aajuaibeqaaKqbaoaaxabajuaibaWdbiaabYgacaqGPbGaaeyBaaWd aeaapeGaamiEaiabgkziUkaadggaa8aabeaapeGaamOzaKqbaoaabm aajuaipaqaa8qacaWG4baacaGLOaGaayzkaaaaaaaa@C87D@ Therefore: lim xa [ 1+ 1 f( x ) ] f( x ) = { lim xa [ 1+ 1 f( x ) ] } lim xa f( x ) =e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaamWaa8aabaWdbiaaigdacqGHRaWkda WcaaWdaeaapeGaaGymaaWdaeaapeGaamOzamaabmaapaqaa8qacaWG 4baacaGLOaGaayzkaaaaaaGaay5waiaaw2faa8aadaahaaqcfasabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaKqbakabg2da9maacmaapaqaamaaxababaWdbiaabYgacaqGPb GaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeWaamWa a8aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaape GaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaaGaay5w aiaaw2faaaGaay5Eaiaaw2haa8aadaahaaqabKqbGeaajuaGdaWfqa qcfasaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIR caWGHbaapaqabaWdbiaadAgajuaGdaqadaqcfaYdaeaapeGaamiEaa GaayjkaiaawMcaaaaajuaGcqGH9aqpcaWGLbaaaa@6CDB@ Substituting into (24) yields: 1 lim xa f( x ) = e lim xa f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaKqbakabg2da9iaadwgapaWaaWbaaeqajuaibaqcfa4aaCbeaK qbGeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4Qa amyyaaWdaeqaa8qacaWGMbqcfa4aaeWaaKqbG8aabaWdbiaadIhaai aawIcacaGLPaaaaaaaaa@52D9@  (25) where lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamOzamaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaGaeyypa0Jaey4kaSIaeyOhIukaaa@4494@ and 1 lim xa f( x ) =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaajuaibeqaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaiabg2da9iabgUcaRiabg6HiLcaa@4736@ which we intended to show. In equations (23) and (25) we consider as ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamyE a8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWdam aaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaah aaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaaju aibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaeqa juaibaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGc GaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWG Hbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@51E7@ the quantities ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamOE a8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGJbWdam aaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaah aaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaaju aibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaeqa juaibaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGc GaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWG Hbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@51E9@ and ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamOE a8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGJbWdam aaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaah aaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaaju aibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaeqa juaibaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGc GaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWG Hbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@51E9@ which are functions of variable only (for ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamOE a8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGJbWdam aaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaah aaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaaju aibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaeqa juaibaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGc GaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWG Hbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@51E9@ recall that: z n c n = x n a n + y n b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG6bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadogapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaam iEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWd amaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUcaRiaadMhapaWaaW baaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqc fasabeaapeGaamOBaaaaaaa@4C14@ ) and lim xa ln ( y n b n x n a n ) 1   x n a n =+, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0IaamOya8aadaahaaqabKqbGeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaeqajuaibaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqabKqbGeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLkaaykW7caaMc8Uaaiilai aaykW7caaMc8oaaa@63B1@   lim xa ln ( z n c n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0Iaam4ya8aadaahaaqabKqbGeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaeqajuaibaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqabKqbGeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLkaaykW7aaa@5E62@ Also, it holds that 1 lim xa ln ( y n b n x n a n ) 1   x n a n =+, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaajuaibeqaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaciiBaiaac6gajuaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqb G8aabaWdbiaadMhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaey OeI0IaamOyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaa8aabaWd biaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam yyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaacaGLOaGaayzk aaqcfa4damaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaG ymaaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaa aaaaaaaaaajuaGpaGaeyypa0Jaey4kaSIaeyOhIuQaaGPaVlaacYca aaa@630B@   1 lim xa ln ( z n c n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWdamaaCaaajuaibeqaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaciiBaiaac6gajuaGdaqadaqcfaYdaeaajuaGpeWaaSaaaKqb G8aabaWdbiaadQhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaey OeI0Iaam4yaKqba+aadaahaaqcfasabeaapeGaamOBaaaaa8aabaWd biaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaGaeyOeI0Iaam yyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaaaacaGLOaGaayzk aaqcfa4damaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaG ymaaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaa aaaaaaaaaajuaGpaGaeyypa0Jaey4kaSIaeyOhIukaaa@60D2@ Hence, equation (23) according to equation (25) gives: 1+ 1 lim xa ln ( y n b n x n a n ) 1   x n a n = 1 lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSIaaGyma8aadaahaaqabKqbGeaajuaGdaWf qaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsg IRcaWGHbaapaqabaWdbiGacYgacaGGUbqcfa4aaeWaaKqbG8aabaqc fa4dbmaalaaajuaipaqaa8qacaWG5bqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaiabgkHiTiaadkgajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaaapaqaa8qacaWG4bqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaa aaGaayjkaiaawMcaaKqba+aadaahaaqcfasabeaajuaGpeWaaSaaaK qbG8aabaWdbiaaigdaa8aabaWdbiaabckacaWG4bqcfa4damaaCaaa juaibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGe qabaWdbiaad6gaaaaaaaaaaaqcfaOaeyypa0JaaGyma8aadaahaaqa bKqbGeaajuaGdaWfqaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aaba WdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiGacYgacaGGUbqcfa4a aeWaaKqbG8aabaqcfa4dbmaalaaajuaipaqaa8qacaWG6bqcfa4dam aaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadogajuaGpaWaaWba aKqbGeqabaWdbiaad6gaaaaapaqaa8qacaWG4bqcfa4damaaCaaaju aibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqa baWdbiaad6gaaaaaaaGaayjkaiaawMcaaKqba+aadaahaaqcfasabe aajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaabckacaWG 4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadggaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaaaaaaaa@8643@ 1+ e lim xa ln ( y n b n x n a n ) 1   x n a n = e lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSIaamyza8aadaahaaqabKqbGeaajuaGdaWf qaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsg IRcaWGHbaapaqabaWdbiGacYgacaGGUbqcfa4aaeWaaKqbG8aabaqc fa4dbmaalaaajuaipaqaa8qacaWG5bqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaiabgkHiTiaadkgajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaaapaqaa8qacaWG4bqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaa aaGaayjkaiaawMcaaKqba+aadaahaaqcfasabeaajuaGpeWaaSaaaK qbG8aabaWdbiaaigdaa8aabaWdbiaabckacaWG4bqcfa4damaaCaaa juaibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGe qabaWdbiaad6gaaaaaaaaaaaqcfaOaeyypa0Jaamyza8aadaahaaqa bKqbGeaajuaGdaWfqaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aaba WdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiGacYgacaGGUbqcfa4a aeWaaKqbG8aabaqcfa4dbmaalaaajuaipaqaa8qacaWG6bqcfa4dam aaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadogajuaGpaWaaWba aKqbGeqabaWdbiaad6gaaaaapaqaa8qacaWG4bqcfa4damaaCaaaju aibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqa baWdbiaad6gaaaaaaaGaayjkaiaawMcaaKqba+aadaahaaqcfasabe aajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaabckacaWG 4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadggaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaaaaaaaa@86A1@ (26) From the definition of the exponential function we have: e y = lim xa [ 1+ y f( x ) ] f( x ) where lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaabeqcfasaa8qacaWG5baaaKqbakabg2da 98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacq GHsgIRcaWGHbaapaqabaWdbmaadmaapaqaa8qacaaIXaGaey4kaSYa aSaaa8aabaWdbiaadMhaa8aabaWdbiaadAgadaqadaWdaeaapeGaam iEaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaapaWaaWbaaKqbGeqa baWdbiaadAgajuaGdaqadaqcfaYdaeaapeGaamiEaaGaayjkaiaawM caaaaajuaGpaGaaGPaVlaadEhacaWGObGaamyzaiaadkhacaWGLbGa aGPaVlaaykW7daWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbi aadIhacqGHsgIRcaWGHbaapaqabaWdbiaadAgadaqadaWdaeaapeGa amiEaaGaayjkaiaawMcaaiabg2da9iabgUcaRiabg6HiLcaa@66EC@ since is for an accumulation point, as a result: lim xa e y f( x ) = lim xa [ 1+ y f( x ) ]where lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamyza8aadaahaaqabKqbGeaajuaGpe WaaSaaaKqbG8aabaWdbiaadMhaa8aabaWdbiaadAgajuaGdaqadaqc faYdaeaapeGaamiEaaGaayjkaiaawMcaaaaaaaqcfaOaeyypa0Zdam aaxababaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkzi Ukaadggaa8aabeaapeWaamWaa8aabaWdbiaaigdacqGHRaWkdaWcaa WdaeaapeGaamyEaaWdaeaapeGaamOzamaabmaapaqaa8qacaWG4baa caGLOaGaayzkaaaaaaGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVl aadEhacaWGObGaamyzaiaadkhacaWGLbGaaGPaVlaaykW7paWaaCbe aeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4Qaam yyaaWdaeqaa8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGL PaaacqGH9aqpcqGHRaWkcqGHEisPaaa@7116@ or e lim xa y f( x ) =1+ lim xa y f( x ) where lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aajuaGpeWaaSaaaKqbG8aabaWdbiaadMhaa8aabaWdbiaadAgajuaG daqadaqcfaYdaeaapeGaamiEaaGaayjkaiaawMcaaaaaaaqcfaOaey ypa0JaaGymaiabgUcaR8aadaWfqaqaa8qacaqGSbGaaeyAaiaab2ga a8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbmaalaaapaqaa8 qacaWG5baapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIca caGLPaaaaaGaaGPaVlaaykW7caaMc8Uaam4DaiaadIgacaWGLbGaam OCaiaadwgacaaMc8UaaGPaV=aadaWfqaqaa8qacaqGSbGaaeyAaiaa b2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiaadAgada qadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9iabgUcaRiab g6HiLcaa@6FC1@ The following equation: e lim xa y f( x ) =1+ lim xa y f( x ) where lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aajuaGpeWaaSaaaKqbG8aabaWdbiaadMhaa8aabaWdbiaadAgajuaG daqadaqcfaYdaeaapeGaamiEaaGaayjkaiaawMcaaaaaaaqcfaOaey ypa0JaaGymaiabgUcaR8aadaWfqaqaa8qacaqGSbGaaeyAaiaab2ga a8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbmaalaaapaqaa8 qacaWG5baapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIca caGLPaaaaaGaaGPaVlaaykW7caaMc8Uaam4DaiaadIgacaWGLbGaam OCaiaadwgacaaMc8UaaGPaV=aadaWfqaqaa8qacaqGSbGaaeyAaiaa b2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiaadAgada qadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9iabgUcaRiab g6HiLcaa@6FC1@  (27)
is true in two cases:

  1. When lim xa y f( x ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadMhaa8aabaWdbi aadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaacqGH9aqp caaIWaaaaa@4447@
  2. When lim xa y f( x ) =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadMhaa8aabaWdbi aadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaacqGH9aqp cqGHRaWkcqGHEisPaaa@45E0@

Hence can take any value, provided that any of the 2 conditions stated above is preserved.
If we assume y= [ f( x ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bGaeyypa0ZaamWaa8aabaWdbiaadAgadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaaqcfa sabeaapeGaaGOmaaaaaaa@3F74@ we have: lim xa y f( x ) = lim xa [ f( x ) ] 2 f( x ) = lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeWaaSaaa8aabaWdbiaadMhaa8aabaWdbi aadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaacqGH9aqp paWaaCbeaeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaey OKH4QaamyyaaWdaeqaa8qadaWcaaWdaeaapeWaamWaa8aabaWdbiaa dAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2 faa8aadaahaaqcfasabeaapeGaaGOmaaaaaKqba+aabaWdbiaadAga daqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaacqGH9aqppaWaaC beaeaapeGaaeiBaiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4Qa amyyaaWdaeqaa8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcaca GLPaaacqGH9aqpcqGHRaWkcqGHEisPaaa@6500@ So the value is acceptable and the equation (27) now becomes: e lim xa f( x ) =1+ lim xa f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaabeqcfasaaKqbaoaaxabajuaibaWdbiaa bYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiabgkziUkaadggaa8aabe aapeGaamOzaKqbaoaabmaajuaipaqaa8qacaWG4baacaGLOaGaayzk aaaaaKqbakabg2da9iaaigdacqGHRaWkpaWaaCbeaeaapeGaaeiBai aabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4QaamyyaaWdaeqaa8qa caWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@51F3@ (28) Where lim xa f( x )=+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaamOzamaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaGaeyypa0Jaey4kaSIaeyOhIukaaa@4494@ This equation results directly from the definition of the exponential function and is applicable to any function that satisfies We will now apply equation (28) to equation (26) Note that we consider ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamyE a8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWdam aaCaaabeqcfasaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaah aaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaaju aibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaeqa juaibaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGc GaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWG Hbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@51E7@ and the ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamOE a8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGJbWdam aaCaaabeqcfasaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaah aaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaaju aibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaeqa juaibaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGc GaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWG Hbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@51E9@ as functions of x and let us also point out that lim xa ln ( y n b n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0IaamOya8aadaahaaqabKqbGeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLcaa@5CD5@ and lim xa ln ( z n c n x n a n ) 1   x n a n =+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamiEaiab gkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaS aaa8aabaWdbiaadQhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOa eyOeI0Iaam4ya8aadaahaaqabKqbGeaapeGaamOBaaaaaKqba+aaba WdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyOeI0Ia amyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaapeGaaGym aaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6 gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaa aaaaaKqbakabg2da9iabgUcaRiabg6HiLcaa@5CD7@ From equation (26) we obtain: 1+ e lim xa ln ( y n b n x n a n ) 1   x n a n = e lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSIaamyza8aadaahaaqabKqbGeaajuaGdaWf qaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsg IRcaWGHbaapaqabaWdbiGacYgacaGGUbqcfa4aaeWaaKqbG8aabaqc fa4dbmaalaaajuaipaqaa8qacaWG5bqcfa4damaaCaaajuaibeqaa8 qacaWGUbaaaiabgkHiTiaadkgajuaGpaWaaWbaaKqbGeqabaWdbiaa d6gaaaaapaqaa8qacaWG4bqcfa4damaaCaaajuaibeqaa8qacaWGUb aaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaa aaGaayjkaiaawMcaaKqba+aadaahaaqcfasabeaajuaGpeWaaSaaaK qbG8aabaWdbiaaigdaa8aabaWdbiaabckacaWG4bqcfa4damaaCaaa juaibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGe qabaWdbiaad6gaaaaaaaaaaaqcfaOaeyypa0Jaamyza8aadaahaaqa bKqbGeaajuaGdaWfqaqcfasaa8qacaqGSbGaaeyAaiaab2gaa8aaba WdbiaadIhacqGHsgIRcaWGHbaapaqabaWdbiGacYgacaGGUbqcfa4a aeWaaKqbG8aabaqcfa4dbmaalaaajuaipaqaa8qacaWG6bqcfa4dam aaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadogajuaGpaWaaWba aKqbGeqabaWdbiaad6gaaaaapaqaa8qacaWG4bqcfa4damaaCaaaju aibeqaa8qacaWGUbaaaiabgkHiTiaadggajuaGpaWaaWbaaKqbGeqa baWdbiaad6gaaaaaaaGaayjkaiaawMcaaKqba+aadaahaaqcfasabe aajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaabckacaWG 4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadggaju aGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaaaaaaaa@86A2@ and in accordance with equation (28) 1+1+ lim xa ln ( y n b n x n a n ) 1   x n a n =1+ lim xa ln ( z n c n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaey4kaSIaaGymaiabgUcaR8aadaWfqaqaa8qacaqG SbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqaba WdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG5bWd amaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadkgapaWaaW baaKqbGeqabaWdbiaad6gaaaaajuaGpaqaa8qacaWG4bWdamaaCaaa juaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadggapaWaaWbaaeqaju aibaWdbiaad6gaaaaaaaqcfaOaayjkaiaawMcaa8aadaahaaqabKqb GeaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaabckaca WG4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadgga juaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaajuaGcqGH9aqpca aIXaGaey4kaSYdamaaxababaWdbiaabYgacaqGPbGaaeyBaaWdaeaa peGaamiEaiabgkziUkaadggaa8aabeaapeGaciiBaiaac6gadaqada WdaeaapeWaaSaaa8aabaWdbiaadQhapaWaaWbaaKqbGeqabaWdbiaa d6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqcfasabeaapeGaamOBaa aaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaad6gaaaqc faOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGaamOBaaaaaaaaju aGcaGLOaGaayzkaaWdamaaCaaabeqcfasaaKqba+qadaWcaaqcfaYd aeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhajuaGpaWaaWbaaKqbGe qabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaa peGaamOBaaaaaaaaaaaa@81E4@ 1= lim xa ln ( z n c n x n a n ) 1   x n a n lim xa ln ( y n b n x n a n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyB aaWdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeGaciiBaiaac6 gadaqadaWdaeaapeWaaSaaa8aabaWdbiaadQhapaWaaWbaaKqbGeqa baWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqabKqbGeaape GaamOBaaaaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaa d6gaaaqcfaOaeyOeI0Iaamyya8aadaahaaqcfasabeaapeGaamOBaa aaaaaajuaGcaGLOaGaayzkaaWdamaaCaaajuaibeqaaKqba+qadaWc aaqcfaYdaeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhajuaGpaWaaW baaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqc fasabeaapeGaamOBaaaaaaaaaKqbakabgkHiT8aadaWfqaqaa8qaca qGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqa baWdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG5b WdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadkgapaWa aWbaaKqbGeqabaWdbiaad6gaaaaajuaGpaqaa8qacaWG4bWdamaaCa aajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadggapaWaaWbaaKqb GeqabaWdbiaad6gaaaaaaaqcfaOaayjkaiaawMcaa8aadaahaaqabK qbGeaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaabcka caWG4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadg gajuaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaaaaa@7EB5@ 1= lim xa [ ln ( z n c n x n a n ) 1   x n a n ln ( y n b n x n a n ) 1   x n a n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyB aaWdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeWaamWaa8aaba WdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG6bWd amaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadogapaWaaW baaKqbGeqabaWdbiaad6gaaaaajuaGpaqaa8qacaWG4bWdamaaCaaa juaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadggapaWaaWbaaKqbGe qabaWdbiaad6gaaaaaaaqcfaOaayjkaiaawMcaa8aadaahaaqcfasa beaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaabckaca WG4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadgga juaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaajuaGcqGHsislci GGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaamyEa8aadaah aaqabKqbGeaapeGaamOBaaaajuaGcqGHsislcaWGIbWdamaaCaaaju aibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamiEa8aadaahaaqcfasa beaapeGaamOBaaaajuaGcqGHsislcaWGHbWdamaaCaaajuaibeqaa8 qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaKqbGeqabaqc fa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qacaqGGcGaamiEaK qba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsislcaWGHbqcfa4d amaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaajuaGcaGLBbGaayzxaa aaaa@7A2E@ 1= lim xa [ ln ( z n c n y n b n ) 1   x n a n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyB aaWdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeWaamWaa8aaba WdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG6bWd amaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadogapaWaaW baaKqbGeqabaWdbiaad6gaaaaajuaGpaqaa8qacaWG5bWdamaaCaaa juaibeqaa8qacaWGUbaaaKqbakabgkHiTiaadkgapaWaaWbaaKqbGe qabaWdbiaad6gaaaaaaaqcfaOaayjkaiaawMcaa8aadaahaaqcfasa beaajuaGpeWaaSaaaKqbG8aabaWdbiaaigdaa8aabaWdbiaabckaca WG4bqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaiabgkHiTiaadgga juaGpaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaaaaKqbakaawUfaca GLDbaaaaa@5D72@ by applying a property of logarithms, 1=ln lim xa ( z n c n y n b n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaeyypa0JaciiBaiaac6gapaWaaCbeaeaapeGaaeiB aiaabMgacaqGTbaapaqaa8qacaWG4bGaeyOKH4QaamyyaaWdaeqaa8 qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadQhapaWaaWbaaKqbGeqa baWdbiaad6gaaaqcfaOaeyOeI0Iaam4ya8aadaahaaqcfasabeaape GaamOBaaaaaKqba+aabaWdbiaadMhapaWaaWbaaKqbGeqabaWdbiaa d6gaaaqcfaOaeyOeI0IaamOya8aadaahaaqcfasabeaapeGaamOBaa aaaaaajuaGcaGLOaGaayzkaaWdamaaCaaajuaibeqaaKqba+qadaWc aaqcfaYdaeaapeGaaGymaaWdaeaapeGaaeiOaiaadIhajuaGpaWaaW baaKqbGeqabaWdbiaad6gaaaGaeyOeI0IaamyyaKqba+aadaahaaqc fasabeaapeGaamOBaaaaaaaaaaaa@5AD3@ and finally e 1 = lim xa ( z n c n y n b n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacaaIXaaaaKqbakabg2da 98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacq GHsgIRcaWGHbaapaqabaWdbmaabmaapaqaa8qadaWcaaWdaeaapeGa amOEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGJb WdamaaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamyEa8aa daahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWdamaaCa aajuaibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWba aKqbGeqabaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qaca qGGcGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsisl caWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@5AD6@ (29)

Results

After a sequence of logical steps, we have now reached a contradiction. More specifically: In Part 1, we have assumed that equation (5) is true and therefore equation (1) is satisfied. Then we showed that: e 1 y n b n = lim xa ( z n c n y n b n ) 1 x n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaaKqba+qadaWcaaqcfaYdaeaa peGaaGymaaWdaeaapeGaamyEaKqba+aadaahaaqcfasabeaapeGaam OBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWGUbaa aaaaaaqcfaOaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaa WdaeaapeGaamiEaiabgkziUkaadggaa8aabeaapeWaaeWaa8aabaWd bmaalaaapaqaa8qacaWG6bWdamaaCaaajuaibeqaa8qacaWGUbaaaK qbakabgkHiTiaadogapaWaaWbaaKqbGeqabaWdbiaad6gaaaaajuaG paqaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgk HiTiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaaaaaqcfaOaayjk aiaawMcaa8aadaahaaqcfasabeaajuaGpeWaaSaaaKqbG8aabaWdbi aaigdaa8aabaWdbiaadIhajuaGpaWaaWbaaKqbGeqabaWdbiaad6ga aaGaeyOeI0IaamyyaKqba+aadaahaaqcfasabeaapeGaamOBaaaaaa aaaaaa@616F@ Similarly, in Part 2 we have assumed that equation (5) is true, and therefore equation (1) is satisfied, and we showed that: e 1 = lim xa ( z n c n y n b n ) 1   x n a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaajuaibeqaa8qacaaIXaaaaKqbakabg2da 98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaa8aabaWdbiaadIhacq GHsgIRcaWGHbaapaqabaWdbmaabmaapaqaa8qadaWcaaWdaeaapeGa amOEa8aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGJb WdamaaCaaajuaibeqaa8qacaWGUbaaaaqcfa4daeaapeGaamyEa8aa daahaaqcfasabeaapeGaamOBaaaajuaGcqGHsislcaWGIbWdamaaCa aajuaibeqaa8qacaWGUbaaaaaaaKqbakaawIcacaGLPaaapaWaaWba aeqajuaibaqcfa4dbmaalaaajuaipaqaa8qacaaIXaaapaqaa8qaca qGGcGaamiEaKqba+aadaahaaqcfasabeaapeGaamOBaaaacqGHsisl caWGHbqcfa4damaaCaaajuaibeqaa8qacaWGUbaaaaaaaaaaaa@5AD6@ Equations (8) and (29) imply that: e 1 y n b n = e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGLbWdamaaCaaabeqcfasaaKqba+qadaWcaaqcfaYdaeaa peGaaGymaaWdaeaapeGaamyEaKqba+aadaahaaqcfasabeaapeGaam OBaaaacqGHsislcaWGIbqcfa4damaaCaaajuaibeqaa8qacaWGUbaa aaaaaaqcfaOaeyypa0Jaamyza8aadaahaaqcfasabeaapeGaaGymaa aaaaa@441D@ because the limit of a function is unique. Thus: y n b n =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgkHi TiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0JaaG ymaaaa@3F18@ Or y n = b n +1forn>2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabg2da 9iaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaey4kaSIaaG ymaiaaykW7caaMc8UaamOzaiaad+gacaWGYbGaaGPaVlaaykW7caWG UbGaeyOpa4JaaGOmaaaa@4AC6@ Since y>b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bGaeyOpa4JaamOyaaaa@3992@  (by choise) there exist a positive integer k such as:which leads to ( b+k ) n = b n +1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaamOyaiabgUcaRiaadUgaaiaawIcacaGL PaaapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0JaamOya8 aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHRaWkcaaIXaaaaa@4270@ or ( b+k )( b+k ) ( b+k ) = b n +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGd0aqaamaabmaapaqaa8qacaWGIbGaey4kaSIaam4AaaGa ayjkaiaawMcaaiabgwSixpaabmaapaqaa8qacaWGIbGaey4kaSIaam 4AaaGaayjkaiaawMcaaiabgwSixlabgAci8kaacckacqGHflY1daqa daWdaeaapeGaamOyaiabgUcaRiaadUgaaiaawIcacaGLPaaaaeqaca GLugcacqGH9aqpcaWGIbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqb akabgUcaRiaaigdaaaa@5466@ n-terms The left-hand side of the above equation produces the termand The equality necessarily holds for so we have: ( b+1 ) n = b n +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaamOyaiabgUcaRiaaigdaaiaawIcacaGL PaaapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0JaamOya8 aadaahaaqcfasabeaapeGaamOBaaaajuaGcqGHRaWkcaaIXaaaaa@423A@ This equation applies only for n=1 which is a contradiction because we started with the supposition that We have thus proved the following: We have accepted that if are positive integers then there is natural integer such that: a n + b n = c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUca RiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaam 4ya8aadaahaaqcfasabeaapeGaamOBaaaaaaa@4083@ and we ended up in a proven relation that contradicts our initial supposition, forcing us to conclude that it is wrong, meaning that if a, b, c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbGaaiilaiaacckacaWGIbGaaiilaiaacckacaWGJbaa aa@3D01@ are positive integers then there is no natural integer n>2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyOpa4JaaGOmaaaa@395B@ such that: a n + b n = c n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbWdamaaCaaajuaibeqaa8qacaWGUbaaaKqbakabgUca RiaadkgapaWaaWbaaKqbGeqabaWdbiaad6gaaaqcfaOaeyypa0Jaam 4ya8aadaahaaqcfasabeaapeGaamOBaaaaaaa@4083@ as the Theorem states.

Discussion and conclusion

Combining the fundamental concept of the limit with a classical proofing method, as proof by contradiction is, we have provided a novel proof of Fermat’s Last Theorem. Assuming that the equation introduced by the Theorem holds, and following a series of logical steps presented in 2 parts, we were able to reach a contradiction and thus prove the Theorem’s proposition. The main novelty of our approach resides in the use of pre-modern mathematical concepts and techniques that have been known since Fermat’s initial conjecture. As also stated in the introduction, there is an historic significance linked to a classic proof of the Theorem that we consider equally important to the well known existing proof.

To further illustrate the broad applicability of the Theorem, we select and present below 3 of its classic, direct applications.

  1. According to Fermat’s Last Theorem, there are no positive integers and a natural number n such that to satisfy the equation
  2. This means that there is no anglesuch thatwithnatural number such thatandcongruent numbers.

    Proof: If withpositive integers anddividing by we have:

    wherecongruent number withand alsocongruent number with  

    By assigningand we have:

    Then, according to Fermat’s Last Theorem, there is no anglesatisfying the above equation for

    Sinusoidal functions are commonly used in Physics (in waves, oscillations and alternating current) as well as in Astrophysics (particle motion in combined magnetic-electric fields).

  3. According to Fermat’s Last Theorem, there are no positive integersand a natural number n such that to satisfy the equation
  4. This means that there is no elliptic curve Frey witch the form is

    Elliptic curves2 are widely applied in elliptic curve cryptography (ECC) and integer factorization.

  5. According to Fermat’s Last Theorem, there are no positive integers and a natural number n such that to satisfy the equation

For it folows that it is impossible to have a cube with a dimention (edge length) that is a natural number split into two cubes, each with natural number edges, and preserve its initial volume. This constraint is taken into account in industrial design, 3D printing and related software and can be viewed as the inability to expand the Pythagorean Theorem that revolutionized planar geometry, in 3D applications.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Mazaris. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.