Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Research Article Volume 6 Issue 1

Nonequilibrium thermodynamic model of diffusion processes in the steel - carbon thin film tribological system 

Bobyr SV,1 Krot PV2

1ZI Nekrasov Iron and Steel Institute of National Academy of Sciences of the Ukraine, Ukraine
2Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Poland

Correspondence: SV Bobyr. Z.I. Nekrasov Iron and Steel Institute of National Academy of Sciences of the Ukraine, Acad. Starodubov sq. 1, 49050, Dnipro, Ukraine

Received: October 14, 2021 | Published: February 15, 2022

Citation: Bobyr SV, Krot PV. Nonequilibrium thermodynamic model of diffusion processes in the steel - carbon thin film tribological system. Material Sci & Eng. 2022;6(1):14-18. DOI: 10.15406/mseij.2022.06.00174

Download PDF

Abstract

A nonequilibrium thermodynamic model of dissipative processes in the tribological system steel – carbon thin film was developed. Cross coefficients and driving forces in the Onsager equation for the diffusion of carbon onto the friction surface of hypereutectoid steel are calculated. The thermodynamic conditions for the implementation of the selective transfer process in the tribological system under consideration are determined. Simple differential equations are obtained for the tribological system of carbon steel - graphite, which describe the effect of stresses on the diffusion of carbon, production based on nonequilibrium thermodynamics. It is shown, that the implementation of selective transfer requires the development of diffusion processes without the formation of excess phases. Therefore, carbon steel should be alloyed mainly with elements of the first group that increase the thermodynamic activity of carbon in steel - silicon, nickel, copper, cobalt and phosphorus. Recommendations are formulated on metallic materials choosing for minimal contact wear in contacted pairs of machines parts.

Keywords: nonequilibrium thermodynamics, hypereutectoid steel, diffusion, carbon, thin film, tribological system, minimal contact wear

Introduction

The structure of the friction surfaces is dissipative, i.e. formed and maintained in a system with a large number of degrees of freedom using an external energy source.1 An important feature characterizing the kinetics of structural changes in the metal surface during friction is the high heating and cooling rate of surfaces upon the transfer of mechanical energy to heat, significantly exceeding the heating and cooling rates under ordinary heat treatment conditions and the presence of significant diffusion fluxes of atoms in the surface layers.2 The authors of3 observed the diffusion of carbon atoms into the contact zone of steels and its precipitation in the form of graphite, which contributed to a decrease in the coefficient of friction and wear. A promising task is the theoretical analysis of carbon diffusion in a tribological system with graphite thin film and the implementation of the process of selective carbon transfer in this system.

The aim of this work is a nonequilibrium thermodynamic analysis of dissipative processes in the steel – carbon thin film (St – Ctf) tribological system with finding the values of thermodynamic forces, kinetic coefficients, and diffusion fluxes.

The basic equations of diffusion

To describe the kinetics of dissipative processes, one can use the equations of nonequilibrium thermodynamics.4,5 Changes in a complex or composite system under constant external conditions can be described as a process of increasing entropy. The rate of increase of entropy σ can be represented by the sum of the products of flows and the corresponding forces for all transfer substrates in the amount of N:4–6

σ=( dS/dt )irrev= k=1 N J k X k ( k=1,..,N ),         MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZjabg2da9Kqba+aadaqadaGcbaqcLbsapeGaamiz aiaadofacaGGVaGaamizaiaadshaaOWdaiaawIcacaGLPaaajugib8 qacaWGPbGaamOCaiaadkhacaWGLbGaamODaiabg2da9Kqba+aadaae WbGcbaqcLbsacaWGkbqcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaaju gibiaadIfajuaGdaWgaaWcbaqcLbmacaWGRbaaleqaaaqaaKqzadGa am4Aaiabg2da9iaaigdaaSqaaKqzadGaamOtaaqcLbsacqGHris5aK qbaoaabmaakeaajugib8qacaWGRbGaeyypa0JaaGymaiaacYcacaGG UaGaaiOlaiaacYcacaWGobaak8aacaGLOaGaayzkaaqcLbsapeGaai ilaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaOGaaiiOaiaa cckaaaa@6C87@             (1)

In the general case, the thermodynamic equations of motion have the form [4, 5]:

J i = k=1 N L ik X k ( i=1,..,N ),  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabg2da9KqbaoaaqahakeaajugibiaadYeajuaGdaWgaaWcba qcLbmacaWGPbGaam4AaaWcbeaajugibiaadIfajuaGdaWgaaWcbaqc LbmacaWGRbaaleqaaaqaaKqzadGaam4Aaiabg2da9iaaigdaaSqaaK qzadGaamOtaaqcLbsacqGHris5aKqba+aadaqadaGcbaqcLbsapeGa amyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGSaGaamOtaa GcpaGaayjkaiaawMcaaKqzGeWdbiaacYcakiaacckaaaa@5A01@            (2)

where Ji – fluxes; Xk – thermodynamic forces; Lik = Lki – kinetics coefficients ofOnsager6; i,k – charge numbers (transfer substrates)

The main driving forces of phase transformations in nonequilibrium thermodynamics are the gradients of the chemical potentials of their components.4-6When considering a model nanoscale system, it is possible to use, as gradients, not gradients, but finite differences in chemical potentials (–∆μi,) and other thermodynamic parameters7,8at known small distances.

If, for example, two charges are used as charges of the diffusion process in a carbon eutectoid steel - the concentration of carbon and iron, then, according to2, the equations of motion take the form:

J 1 = L 11 X 1 + L 12 X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWccaWGkbWaaS baaeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaWGmbWcdaWgaaqa aKqzadGaaGymaiaaigdaaSqabaqcLbsacaWGybWcdaWgaaqaaKqzad GaaGymaaWcbeaajugibiabgUcaRiaadYealmaaBaaabaqcLbmacaaI XaGaaGOmaaWcbeaajugibiaadIfalmaaBaaabaqcLbmacaaIYaaale qaaaaa@4A5D@           (3.1)

J 2 = L 21 X 1 + L 22 X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaadYealmaa BaaabaqcLbmacaaIYaGaaGymaaWcbeaajugibiaadIfalmaaBaaaba qcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaamitaSWaaSbaaeaajugW aiaaikdacaaIYaaaleqaaKqzGeGaamiwaSWaaSbaaeaajugWaiaaik daaSqabaaaaa@4AEF@          (3.2)

where J1– flux of carbon; J2– flux of iron; Х1 = (–∆μFe), Х2 = (–∆μС) – thermodynamic forces of iron and carbon. The potential drop has a “+” sign as it increases, and the flow is directed towards a decreasing potential, therefore the expressions for forces contain a “-” sign.

A very intensive transfer of a solid solution (mainly iron) should accompany the process of carbon diffusion in steel. This condition can be fulfilled because of an increase in the iron flux due to the cross coefficient L12.

In the subsequent theory, the non-equilibrium theory of diffusion processes develops successfully, see e.g. works,9–13but diffusion processes in tribological systems are practically not considered. Consequently, until now, questions remain open about the need to use the Onsager equations (1) for dissipative processes in tribological systems.

Description of contact diffusion process

We consider the dissipative processes that occur during friction in the system into carbon steel - carbon thin film. In our system, there are rubbing pairs — the doped α phase (F) and the carbon thin film (Сtf), in which flows of carbon, iron, an alloying element, and vacancies flow (Figure 1). We will use four quantities as charges — the concentrations of carbon, iron, an alloying element, and vacancies. The direction of the diffusion flux of atoms is determined by the distribution of pressure and temperature along the depth of the active surface layer.

Figure 1 Scheme of the diffusion in the system Fe-C-X (alloying element) - Ctf.

Will consider that the volume of the system can change in general case, which is why condition of complete equality of streams 0 not executed:

J Fe +  J X  + J C + J V  0.  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeal8aadaWgaaqaaiaadAeacaWGLbaabeaajugib8qa cqGHRaWkcaGGGcGaamOsaSWdamaaBaaabaqcLbmapeGaamiwaaWcpa qabaqcLbsapeGaaiiOaiabgUcaRiaadQeal8aadaWgaaqaaKqzadWd biaadoeaaSWdaeqaaKqzGeWdbiabgUcaRiaadQeajuaGpaWaaSbaaS qaaKqzadWdbiaadAfaaSWdaeqaaKqzGeWdbiabgcMi5kaabccacaaI WaGaaiOlaOGaaiiOaaaa@5006@     (4)

According to (1), the thermodynamic equations for the fluxes take the form:

J Fe = L 11 Δ μ Fe L 12 Δ μ c L 13 Δ μ x L 14 Δ μ v ;  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaamOraiaadwgaaSqabaqcLbsacqGH9aqpcqGH sislcaWGmbWcdaWgaaqaaKqzadGaaGymaiaaigdaaSqabaqcLbsacq GHuoarcqaH8oqBlmaaBaaabaqcLbmacaWGgbGaamyzaaWcbeaajugi biabgkHiTiaadYealmaaBaaabaqcLbmacaaIXaGaaGOmaaWcbeaaju gibiabgs5aejabeY7aTTWaaSbaaeaajugWaiaadogaaSqabaqcLbsa cqGHsislcaWGmbWcdaWgaaqaaKqzadGaaGymaiaaiodaaSqabaqcLb sacqGHuoarcqaH8oqBlmaaBaaabaqcLbmacaWG4baaleqaaKqzGeGa eyOeI0IaamitaSWaaSbaaeaajugWaiaaigdacaaI0aaaleqaaKqzGe GaeyiLdqKaeqiVd02cdaWgaaqaaKqzadGaamODaaWcbeaajugibiaa cUdakabaaaaaaaaapeGaaiiOaaaa@6B8F@               (5.1)

J C = L 21 Δ μ Fe L 22 Δ μ C L 23 Δ μ X L 24 Δ μ V ;  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaam4qaaWcbeaajugibiabg2da9iabgkHiTiaa dYealmaaBaaabaqcLbmacaaIYaGaaGymaaWcbeaajugibiabgs5aej abeY7aTTWaaSbaaeaajugWaiaadAeacaWGLbaaleqaaKqzGeGaeyOe I0IaamitaSWaaSbaaeaajugWaiaaikdacaaIYaaaleqaaKqzGeGaey iLdqKaeqiVd02cdaWgaaqcfayaaKqzadGaam4qaaqcfayabaqcLbsa cqGHsislcaWGmbWcdaWgaaqaaKqzadGaaGOmaiaaiodaaSqabaqcLb sacqGHuoarcqaH8oqBlmaaBaaajuaGbaqcLbmacaWGybaajuaGbeaa jugibiabgkHiTiaadYealmaaBaaabaqcLbmacaaIYaGaaGinaaWcbe aajugibiabgs5aejabeY7aTTWaaSbaaKqbagaajugWaiaadAfaaKqb agqaaKqzGeGaai4oaOaeaaaaaaaaa8qacaGGGcaaaa@6D79@             (5.2)

J X = L 31 Δ μ Fe L 32 Δ μ C L 33 Δ μ X L 34 Δ μ V ;  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqcfayaaKqzadGaamiwaaqcfayabaqcLbsacqGH9aqpcqGH sislcaWGmbWcdaWgaaqaaKqzadGaaG4maiaaigdaaSqabaqcLbsacq GHuoarcqaH8oqBlmaaBaaabaqcLbmacaWGgbGaamyzaaWcbeaajugi biabgkHiTiaadYealmaaBaaabaqcLbmacaaIZaGaaGOmaaWcbeaaju gibiabgs5aejabeY7aTTWaaSbaaKqbagaajugWaiaadoeaaKqbagqa aKqzGeGaeyOeI0IaamitaSWaaSbaaeaajugWaiaaiodacaaIZaaale qaaKqzGeGaeyiLdqKaeqiVd02cdaWgaaqcfayaaKqzadGaamiwaaqc fayabaqcLbsacqGHsislcaWGmbWcdaWgaaqaaKqzadGaaG4maiaais daaSqabaqcLbsacqGHuoarcqaH8oqBlmaaBaaajuaGbaqcLbmacaWG wbaajuaGbeaajugibiaacUdakabaaaaaaaaapeGaaiiOaaaa@6EA3@             (5.3)

J V = L 41 Δ μ V L 42 Δ μ C L 43 Δ μ X L 44 Δ μ V ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqcfayaaKqzadGaamOvaaqcfayabaqcLbsacqGH9aqpcqGH sislcaWGmbWcdaWgaaqaaKqzadGaaGinaiaaigdaaSqabaqcLbsacq GHuoarcqaH8oqBlmaaBaaajuaGbaqcLbmacaWGwbaajuaGbeaajugi biabgkHiTiaadYealmaaBaaabaqcLbmacaaI0aGaaGOmaaWcbeaaju gibiabgs5aejabeY7aTTWaaSbaaKqbagaajugWaiaadoeaaKqbagqa aKqzGeGaeyOeI0IaamitaSWaaSbaaeaajugWaiaaisdacaaIZaaale qaaKqzGeGaeyiLdqKaeqiVd02cdaWgaaqcfayaaKqzadGaamiwaaqc fayabaqcLbsacqGHsislcaWGmbWcdaWgaaqaaKqzadGaaGinaiaais daaSqabaqcLbsacqGHuoarcqaH8oqBlmaaBaaajuaGbaqcLbmacaWG wbaajuaGbeaajugibiaacUdaaaa@6D8E@              (5.4)

where JFe , JС , JX , JVfluxes of iron, carbon, alloying element and vacancies accordingly.

Being base on generals of nonequilibrium thermodynamics, it is possible to find the value of kinetic coefficients, so as it was executed in process.15 In the conditions of complete equilibrium:

μFe = 0, ∆μС = 0, μX = 0 та∆μV = 0.            (6)

For the diagonal components of the system of equations (5.2) - (5.4) it is possible to write down:

L ik L ki = L ii L kk  ,i,k= 14.  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacYealmaaBaaabaqcLbmacaWGPbGaam4AaaWcbeaajugi biaacYealmaaBaaabaqcLbmacaWGRbGaamyAaaWcbeaajugibiabg2 da9iaacYealmaaBaaabaqcLbmacaWGPbGaamyAaaWcbeaajugibiaa cYealmaaBaaabaqcLbmacaWGRbGaam4AaaWcbeaajugibiaacckaca GGSaGaamyAaiaacYcacaWGRbGaeyypa0JaaeiiaiaaigdacqGHMacV caaI0aGaaiOlaiaacckaaaa@551B@          (7)         

Taking into account Onsager's ratio, find connection between kinetic coefficients [14]:

L ik = L ki =± L ii × L kk ,             i,k=1...4  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqaaKqzadGaamyAaiaadUgaaSqabaqcLbsacqGH9aqpcaWG mbWcdaWgaaqaaKqzadGaam4AaiaadMgaaSqabaqcLbsacqGH9aqpcq GHXcqSjuaGdaGcaaGcbaqcLbsacaWGmbWcdaWgaaqaaKqzadGaamyA aiaadMgaaSqabaqcLbsacqGHxdaTcaWGmbWcdaWgaaqaaKqzadGaam 4AaiaadUgaaSqabaaabeaajugibiaacYcaqaaaaaaaaaWdbiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaWGPbGaaiilaiaadUgacqGH9aqp caaIXaGaaiOlaiaac6cacaGGUaGaaGinaOGaaiiOaaaa@684E@        (8)

Next, we perform some specific calculations. First, let us consider the calculations of diffusion fluxes for the simplest case of a binary alloy of the Fe – C system.

Calculation of diffusion fluxes for the case of a binary alloy of the Fe – C system

Let us find the values of diffusion fluxes for the case of a binary alloy of the Fe – C system with 1.5% С at 950 ° С.

Taking into account relations (3), we obtain the following equations of motion with three independent coefficients L11, L12, and L228:

J Fe = L 11 Δ μ * Fe L 12 Δ μ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaSqaaKqzadGaamOraiaadwgaaSqabaqcLbsacqGH9aqp cqGHsislcaWGmbqcfa4aaSbaaSqaaKqzadGaaGymaiaaigdaaSqaba qcLbsacqqHuoarcqaH8oqBjuaGdaahaaWcbeqaaKqzadGaaiOkaaaa juaGdaWgaaWcbaqcLbmacaWGgbGaamyzaaWcbeaajugibiabgkHiTi aadYeajuaGdaWgaaWcbaqcLbmacaaIXaGaaGOmaaWcbeaajugibiab fs5aejabeY7aTLqbaoaaBaaaleaajugWaiaadogaaSqabaaaaa@57DF@                        (9.1)

J С = L 21 Δ μ * Fe L 22 Δ μ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaSqaaKqzadGaamyieaWcbeaajugibiabg2da9iabgkHi TiaadYeajuaGdaWgaaWcbaqcLbmacaaIYaGaaGymaaWcbeaajugibi abfs5aejabeY7aTLqbaoaaCaaaleqabaqcLbmacaGGQaaaaKqbaoaa BaaaleaajugWaiaadAeacaWGLbaaleqaaKqzGeGaeyOeI0IaamitaK qbaoaaBaaaleaajugWaiaaikdacaaIYaaaleqaaKqzGeGaeuiLdqKa eqiVd0wcfa4aaSbaaSqaaKqzadGaam4yaaWcbeaaaaa@56D6@ ,  (9.2)

where ∆μ*Fe = ∆μFe–∆μv – redused thermodinamic force.

Δ μ Fe =RTln C Fe C Fe MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcqaH8oqBlmaaBaaabaqcLbmacaWGgbGaamyzaaWcbeaajugibiab g2da9iabgkHiTiaadkfacaWGubGaciiBaiaac6gajuaGdaWcaaGcba qcLbsaceWGdbGbauaajuaGdaWgaaWcbaqcLbmacaWGgbGaamyzaaWc beaaaOqaaKqzGeGaam4qaKqbaoaaBaaaleaajugWaiaadAeacaWGLb aaleqaaaaaaaa@4D8D@ = 10168ln 0,939 0,937 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcaaIXaGaaGimaiaaigdacaaI2aGaaGioaiGacYgacaGGUbqcfa4a aSaaaOqaaKqzGeGaaGimaiaacYcacaaI5aGaaG4maiaaiMdaaOqaaK qzGeGaaGimaiaacYcacaaI5aGaaG4maiaaiEdaaaaaaa@4630@  =21,8 J,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacqGH9aqpcaGGtaIaaGOmaiaaigdacaGGSaGaaGio aiaabccacaWGkbGaaiilaOGaaiiOaaaa@3FBF@      (10)

where СFe – iron concentration in metastable equilibrium (Figure 2); С'Fe – iron concentration at stable equilibrium; R – universal gas constant;

Δ μ C =RTln a C G a C C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcqaH8oqBjuaGdaWgaaWcbaqcLbmacaWGdbaaleqaaKqzGeGaeyyp a0JaeyOeI0IaamOuaiaadsfaciGGSbGaaiOBaKqbaoaalaaakeaaju gibiaadggajuaGdaqhaaWcbaqcLbmacaWGdbaaleaajugWaiaadEea aaaakeaajugibiaadggajuaGdaqhaaWcbaqcLbmacaWGdbaaleaaju gWaiaadoeaaaaaaaaa@4F76@ =10168ln 1,00 1,06 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabg2da98aacqGHsislcaaIXaGaaGimaiaaigdacaaI2aGa aGioaiGacYgacaGGUbqcfa4aaSaaaOqaaKqzGeGaaGymaiaacYcaca aIWaGaaGimaaGcbaqcLbsacaaIXaGaaiilaiaaicdacaaI2aaaaaaa @45D1@ = 592,4 Дж,      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabg2da9iaabccacqGH1aqncqGH5aqocqGHYaGmcqGHSaal cqGH0aancaqGGaGaamifeiaadAdbcaGGSaGaaiiOaiaacckacaGGGc GaaiiOaiaacckaaaa@456D@                                (11)                      

Figure 2 Part of the Fe-C state diagram with plotted carbon isoactivity lines in a metastable system.8

where аCС – the value of the thermodynamic activity of carbon in cementite when choosing graphite as the standard state of carbon, аGС =1,00 (Figure 2).

As is known from,15 the kinetic coefficients Lii are related to the diffusion coefficients Diby the relation:

L ii = C i D i /RT,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeajuaGpaWaaSbaaSqaaKqzadWdbiaadMgacaWGPbaa l8aabeaajugib8qacqGH9aqpcaWGdbWcpaWaaSbaaeaajugWa8qaca WGPbaal8aabeaajugib8qacaWGebWcpaWaaSbaaeaajugWa8qacaWG Pbaal8aabeaajugib8qacaGGVaGaamOuaiaadsfacaGGSaGccaGGGc aaaa@492A@                                                               (12)

where С1 –iron concentrationin alloy (0,934); С2 – carbon concentrationin alloy (0,066).

The temperature dependences of the self-diffusion coefficients of iron and carbon diffusion in austenite are:16

D Fe γ =5,8exp[ 309500 RT ]c m 2 /s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb qcfa4aa0baaSqaaKqzadGaamOraiaadwgaaSqaaKqzadGaeq4SdCga aKqzGeGaeyypa0JaaGynaiaacYcacaaI4aGaciyzaiaacIhacaGGWb qcfa4aamWaaOqaaKqbaoaalaaakeaajugibiabgkHiTiabgodaZiab gcdaWiabgMda5iabgwda1iabgcdaWiabgcdaWaGcbaqcLbsacaWGsb GaamivaaaaaOGaay5waiaaw2faaKqzGeGaam4yaiaad2galmaaCaaa beqaaKqzadGaaGOmaaaajugibiaac+cacaWGZbaaaa@57D2@                 (13.1)

D C γ =(0,07+0,06%C)exp[ 134000 RT ]c m 2 /s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb qcfa4aa0baaSqaaKqzadGaam4qaaWcbaqcLbmacqaHZoWzaaqcLbsa cqGH9aqpcqGHOaakcqGHWaamcqGHSaalcqGHWaamcqGH3aWncqGHRa WkcqGHWaamcqGHSaalcqGHWaamcqGH2aGncaGGLaGaam4qaiaacMca ciGGLbGaaiiEaiaacchajuaGdaWadaGcbaqcfa4aaSaaaOqaaKqzGe GaeyOeI0IaeyymaeJaey4mamJaeyinaqJaeyimaaJaeyimaaJaeyim aadakeaajugibiaadkfacaWGubaaaaGccaGLBbGaayzxaaqcLbsaca WGJbGaamyBaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaai4l aiaadohaaaa@6076@            (13.2)

At a temperature 950°С: D 1 = D γ Fe  3,84· 10 13 c m 2 /s; D 2 = D γ C  3,15· 10 7 c m 2 /s. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaiMdacaaI1aGaaGimaiabgclaWkaadgcbcaGG6aGaamir aKqba+aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaqcLbsapeGaey ypa0JaamiraKqba+aadaahaaWcbeqaaKqzadWdbiabeo7aNbaajuaG paWaaSbaaSqaaKqzadWdbiaadAeacaWGLbaal8aabeaajugib8qacq GHijYUcaqGGaGaaG4maiaacYcacaaI4aGaaGinaiaacElacaaIXaGa aGimaKqba+aadaahaaWcbeqaaKqzadWdbiabgkHiTiaaigdacaaIZa aaaKqzGeGaam4yaiaad2gajuaGpaWaaWbaaSqabeaajugWa8qacaaI YaaaaKqzGeGaai4laiaadohacaGG7aGaamiraKqba+aadaWgaaWcba qcLbmapeGaaGOmaaWcpaqabaqcLbsapeGaeyypa0JaamiraKqba+aa daahaaWcbeqaaKqzadWdbiabeo7aNbaajuaGpaWaaSbaaSqaaKqzad WdbiaadoeaaSWdaeqaaKqzGeWdbiabgIKi7kaabccacaaIZaGaaiil aiaaigdacaaI1aGaai4TaiaaigdacaaIWaqcfa4damaaCaaaleqaba qcLbmapeGaeyOeI0IaaG4naaaajugibiaadogacaWGTbqcfa4damaa CaaaleqabaqcLbmapeGaaGOmaaaajugibiaac+cacaWGZbGaaiOlaa aa@7FF5@

Using relations (9) and (7), we find the values of the kinetic coefficients for our system:

L 11  = 3,53× 10 17 ; L 22 = 2,04× 10 12 ; L 12 =0,85× 10 14 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeal8aadaWgaaqaaKqzadWdbiaaigdacaaIXaaal8aa beaajugib8qacaGGGcGaeyypa0JaaiiOaiaaiodacaGGSaGaaGynai aaiodacqGHxdaTcaaIXaGaaGimaSWdamaaCaaabeqaaKqzadWdbiab gkHiTiaaigdacaaI3aaaaKqzGeGaai4oaiaadYeal8aadaWgaaqaaK qzadWdbiaaikdacaaIYaaal8aabeaajugib8qacqGH9aqpcaqGGaGa aGOmaiaacYcacaaIWaGaaGinaiabgEna0kaaigdacaaIWaWcpaWaaW baaeqabaqcLbmapeGaeyOeI0IaaGymaiaaikdaaaqcLbsacaGG7aGa amitaSWdamaaBaaabaqcLbmapeGaaGymaiaaikdaaSWdaeqaaKqzGe Wdbiabg2da9iaacobicaaIWaGaaiilaiaaiIdacaaI1aGaey41aqRa aGymaiaaicdal8aadaahaaqabeaajugWa8qacqGHsislcaaIXaGaaG inaaaapaGaaiOlaaaa@6D21@

Therefore, the system of equations (5) takes the form:

J C =0,85× 10 14 (Δ μ Fe Δ μ v )+2,04× 10 12 Δ μ C ,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaam4qaaWcbeaajugibiabg2da9iabgkHiTiaa icdacaGGSaGaaGioaiaaiwdacqGHxdaTcaaIXaGaaGimaSWaaWbaae qabaqcLbmacqGHsislcaaIXaGaaGinaaaajugibiaacIcacqqHuoar cqaH8oqBlmaaBaaabaqcLbmacaWGgbGaamyzaaWcbeaajugibiabgk HiTiabfs5aejabeY7aTTWaaSbaaeaajugWaiaadAhaaSqabaqcLbsa caGGPaGaey4kaSIaaGOmaiaacYcacaaIWaGaaGinaiabgEna0kaaig dacaaIWaWcdaahaaqabeaajugWaiabgkHiTiaaigdacaaIYaaaaKqz GeGaeuiLdqKaeqiVd02cdaWgaaqaaKqzadGaam4qaaWcbeaajugWai aacYcakabaaaaaaaaapeGaaiiOaaaa@69F5@      (14)

It follows from equations (11) that the iron flux having the opposite sign significantly increases due to the cross coefficient L12 and the significant value of the thermodynamic force ∆μС. A positive carbon flux is slightly reduced due to the cross coefficient L12.

As direct calculations show, for Δ μ v = 0: J Fe = 5,03× 10 12 , J C =1,21× 10 9 c m 2 /s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgs5aejabeY7aTLqba+aadaWgaaWcbaqcLbmapeGaamOD aaWcpaqabaqcLbsapeGaeyypa0JaaeiiaiaaicdacaGG6aGaamOsaK qba+aadaWgaaWcbaqcLbmapeGaamOraiaadwgaaSWdaeqaaKqzGeWd biabg2da9iaacobicaqGGaGaaGynaiaacYcacaaIWaGaaG4maiabgE na0kaaigdacaaIWaqcfa4damaaCaaaleqabaqcLbmapeGaeyOeI0Ia aGymaiaaikdaaaqcLbsacaGGSaGaamOsaKqba+aadaWgaaWcbaqcLb mapeGaam4qaaWcpaqabaqcLbsapeGaeyypa0JaaGymaiaacYcacaaI YaGaaGymaiabgEna0kaaigdacaaIWaqcfa4damaaCaaaleqabaqcLb mapeGaeyOeI0IaaGyoaaaajugibiaadogacaWGTbqcfa4damaaCaaa leqabaqcLbmapeGaaGOmaaaajugibiaac+cacaWGZbaaaa@6B49@ . In the absence of cross-links, the flux of iron has a much smaller value: J Fe = 0,76× 10 15 c m 2 /s.   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaae GabaaakeaajugibabaaaaaaaaapeGaamOsaKqba+aadaWgaaWcbaqc LbmapeGaamOraiaadwgaaSWdaeqaaKqzGeWdbiabg2da9iaacobica qGGaGaaGimaiaacYcacaaI3aGaaGOnaiabgEna0kaaigdacaaIWaqc fa4damaaCaaaleqabaqcLbmapeGaeyOeI0IaaGymaiaaiwdaaaqcLb sacaWGJbGaamyBaKqba+aadaahaaWcbeqaaKqzadWdbiaaikdaaaqc LbsacaGGVaGaam4Caiaac6caaOWdaeaajugib8qacaGGGcaaaaaa@53C9@

The influence of alloying elements on the carbon diffusion in the tribological system

The change in the thermodynamic activity of carbon in steel upon alloying with component i can be found by the procedure20,21 from the equation:

Δ μ C i =ln( a C a C 0 )=βi N i   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcqaH8oqBlmaaDaaabaqcLbmacaWGdbaaleaajugWaiaadMgaaaqc LbsacqGH9aqpciGGSbGaaiOBaiaacIcajuaGdaWcaaGcbaqcLbsaca WGHbqcfa4aaSbaaSqaaKqzadGaam4qaaWcbeaaaOqaaKqzGeGaamyy aKqbaoaaBaaaleaajugWaiaadoealmaaBaaameaajugWaiaaicdaaW qabaaaleqaaaaajugibiaacMcacqGH9aqpcqaHYoGycaWGPbGaamOt aSWaaSbaaeaajugWaiaadMgaaSqabaGcqaaaaaaaaaWdbiaacckaaa a@5693@                                                                      (15)

where βi – the coefficient of influence of the element on the thermodynamic activity of carbon in steel; Ni – element content in steel in atomic fractions.

The βi value is calculated through the interfacial distribution coefficient of the alloying element Ki = Ni (K) / Ni (α) and the atomic fraction of carbon in steel Nc17:

βi= (Ki1)+(Nc(K)KiNc(α)) (Ki1)Nc+(Nc(K)KiNc(α)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GycaWGPbGaeyypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGaaiikaiaa dUeacaWGPbGaeyOeI0IaaGymaiaacMcacqGHRaWkcaGGOaGaamOtai aadogacaGGOaGaam4saiaacMcacqGHsislcaWGlbGaamyAaiaad6ea caWGJbGaaiikaiabeg7aHjaacMcacaGGPaaakeaajugibiaacIcaca WGlbGaamyAaiabgkHiTiaaigdacaGGPaGaamOtaiaadogacqGHRaWk caGGOaGaamOtaiaadogacaGGOaGaam4saiaacMcacqGHsislcaWGlb GaamyAaiaad6eacaWGJbGaaiikaiabeg7aHjaacMcacaGGPaaaaaaa @630A@                                         (15)

With a small error for low alloy steels, one can take Nc (K) = 0.25, Nc (α) = 0.001, the carbon content in undoped steel phases, taken from the Fe – C state diagram.

Alloying hypereutectoid steel with elements of the first group, which are slightly soluble in cementite (K<1), such as silicon, nickel, copper, and aluminum, increases the thermodynamic activity of carbon in steel. This helps to increase the diffusion flux of carbon from the metal to the graphite thin film and prevents its dissolution. The carbide-forming elements of the second group — chromium, manganese, molybdenum, vanadium, are concentrated in cementite (K> 1) and reduce the thermodynamic activity of carbon in steel.17–20This will reduce thermodynamic forces for carbon diffusion.

Consider, for example, the effect of 1% silicon on the thermodynamic strength of carbon in steel with 1.5% C (NC = 0.066, NSi = 0.018, NFe = 0.916) taking into account the results of.18,19

Using the distribution coefficient of silicon between the α-phase and cementite (0.25), we find equations for calculating the influence coefficients βSi:

β Si 1/( 0,75Nc+0,25 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aILqba+aadaWgaaWcbaqcLbsapeGaam4uaiaadMga aSWdaeqaaKqzGeWdbiabgIKi7kabgkHiTiaaigdacaGGVaqcfa4dam aabmaakeaajugib8qacqGHsislcaaIWaGaaiilaiaaiEdacaaI1aGa amOtaiaadogacqGHRaWkcaaIWaGaaiilaiaaikdacaaI1aaak8aaca GLOaGaayzkaaWdbiaacckaaaa@4DAE@          (16)

where from β α Si  5; β α Si N Si =0,09, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aITWdamaaCaaabeqaaKqzadWdbiabeg7aHbaal8aa daWgaaqaaKqzadWdbiaadofacaWGPbaal8aabeaajugib8qacqGHij YUcaqGGaGaaGynaiaacUdacqaHYoGyl8aadaahaaqabeaajugWa8qa cqaHXoqyaaWcpaWaaSbaaeaajugWa8qacaWGtbGaamyAaaWcpaqaba qcLbsapeGaamOtaSWdamaaBaaabaqcLbmapeGaam4uaiaadMgaaSWd aeqaaKqzGeWdbiabg2da9iaaicdacaGGSaGaaGimaiaaiMdacaGGSa aaaa@5543@ Δ μ C =10168×0,09=875J. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcqaH8oqBlmaaBaaabaqcLbmacaWGdbaaleqaaKqzGeGaeyypa0Ja eyOeI0IaaGymaiaaicdacaaIXaGaaGOnaiaaiIdacqGHxdaTcaaIWa GaaiilaiaaicdacaaI5aGaeyypa0JaaGioaiaaiEdacaaI1aGaamOs aiaac6caaaa@4BC9@

If 1.0% Cr is present in the steel, as an ordinary addition, then its effect on the thermodynamic activity of carbon will be negative. Using the distribution coefficient of chromium between the α phase and KCr carbide equal to 4, we find the equations for calculating the influence coefficients βCr

β Cr =3,246/( 3,0Nc+0,246 )        MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aILqba+aadaWgaaWcbaqcLbmapeGaam4qaiaadkha aSWdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaiodacaGGSaGaaGOmai aaisdacaaI2aGaai4laKqba+aadaqadaGcbaqcLbsapeGaaG4maiaa cYcacaaIWaGaamOtaiaadogacqGHRaWkcaaIWaGaaiilaiaaikdaca aI0aGaaGOnaaGcpaGaayjkaiaawMcaaKqzGeWdbiaacckacaGGGcGa aiiOaiaacckakiaacckacaGGGcGaaiiOaaaa@5707@     (17)

where from β α Сr =  7,3; β α Cr N Cr =0,088 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aITWdamaaCaaabeqaaKqzadWdbiabeg7aHbaal8aa daWgaaqaaKqzadWdbiaadgcbcaWGYbaal8aabeaajugib8qacqGH9a qpcaqGGaGaeyOeI0IaaeiiaiaaiEdacaGGSaGaaG4maiaacUdacqaH YoGyl8aadaahaaqabeaajugWa8qacqaHXoqyaaWcpaWaaSbaaeaaju gWa8qacaWGdbGaamOCaaWcpaqabaqcLbsapeGaamOtaSWdamaaBaaa baqcLbmapeGaam4qaiaadkhaaSWdaeqaaKqzGeWdbiabg2da9iabgk HiTiaaicdacaGGSaGaaGimaiaaiIdacaaI4aaaaa@5862@

In order for our carbon tribological system to selectively transfer carbon from metal to graphite thin film, and not vice versa, it is necessary that the thermodynamic activity of carbon in steel exceed 1.0 when graphite is chosen as the standard state. For this, steel should be alloyed with elements of the first group. In a first approximation, the following thermodynamic condition must be satisfied for alloying elements in steel:

i Δ μ C i = i β i N i 0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabuaO qaaKqzGeGaeuiLdqealeaajugWaiaadMgaaSqabKqzGeGaeyyeIuoa cqaH8oqBlmaaDaaabaqcLbmacaWGdbaaleaajugWaiaadMgaaaqcLb sacqGH9aqpjuaGdaaeqbGcbaqcLbsacqaHYoGyaSqaaKqzadGaamyA aaWcbeqcLbsacqGHris5aiaadMgacaWGobWcdaWgaaqaaKqzadGaam yAaaWcbeaajugibiabgwMiZkaaicdakabaaaaaaaaapeGaaiiOaaaa @54E9@                                                         (18)

If condition (18) is not satisfied, then in the process of friction a decrease in the thickness of the graphite thin film occurs and the selective transfer process is violated.

Assessment of the effect of stresses on carbon diffusion in a tribological system

If, as the charges of the dissipation process in a tribological system, two values are used - the concentration of carbon particles and the micro deformation of steel ε, then, according to (2), the equations of motion take the form:

J 1 = L 11 X 1 + L 12 X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9iaadYealmaa BaaabaqcLbmacaaIXaGaaGymaaWcbeaajugibiaadIfalmaaBaaaba qcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaamitaSWaaSbaaeaajugW aiaaigdacaaIYaaaleqaaKqzGeGaamiwaKqbaoaaBaaaleaajugWai aaikdaaSqabaaaaa@4B7A@           (19.1)

J 2 = L 21 X 1 + L 22 X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaadYealmaa BaaabaqcLbmacaaIYaGaaGymaaWcbeaajugibiaadIfalmaaBaaaba qcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaamitaSWaaSbaaeaajugW aiaaikdacaaIYaaaleqaaKqzGeGaamiwaSWaaSbaaeaajugWaiaaik daaSqabaaaaa@4AEF@                                          (19.2)

where Х1 = ∆φС – the thermodynamic force for carbon is a change in the chemical potential in the friction section, X2 = σ is the local stress (pressure) in the friction section.

The system of equations (19) describes the contribution of tensions and strains to carbon diffusion. However, in it we still do not know the coefficients of the equations associated with tensions. We find their values in the uniaxial tension approximation.

Then the coefficient L22 characterizes the direct relationship:

J 2 =dε/dt= L 22 σ.  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeal8aadaWgaaqaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabg2da9iaadsgacqaH1oqzcaGGVaGaamizaiaadshacqGH9a qpcaWGmbqcfa4damaaBaaaleaajugWa8qacaaIYaGaaGOmaaWcpaqa baqcLbsapeGaeq4WdmNaaiOlaOGaaiiOaaaa@4A3F@                                                         (20)

where ε –steel deformation in the axis direction Х.

Consider that with uniaxial compression20

σ α =Eε,         MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZTWdamaaBaaabaqcLbmapeGaeqySdegal8aabeaa jugib8qacqGH9aqpcaWGfbGaeqyTduMaaiilaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcaaaa@4980@ (21)

where Е – modulus ofsteel resiliency (~2,17·105Мпа),

Then expression (20) can be transformed as follows:

                                                dε/dt = L22σ = L 22 Eε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqaaKqzadGaaGOmaiaaikdaaSqabaqcLbsacaWGfbGaeqyT dugaaa@3D33@   = V L ε, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabg2da9KqbaoaalaaakeaajugibiaadAfaaOqaaKqzGeGa amitaaaacqaH1oqzcaGGSaaaaa@3D7E@ (22)

where the following values are entered: v – is the strain propagation velocity in steel (~1000 m/s)20; L – is the characteristic distance over which micro deformation extends (the size of the protrusions deformed during friction). We assume that the size of the protrusions is of the order of the thickness of the graphite thin film (~ 100 nm).

From equation (22) we find that the coefficient L22 is equal to:

L 22 = V LE .   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeal8aadaWgaaqaaKqzadWdbiaaikdacaaIYaaal8aa beaajugib8qacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGwbaakeaaju gibiaadYeacaWGfbaaaiaac6cakiaacckacaGGGcaaaa@4370@        (23)

The cross coefficients L12 = L21 for a nonequilibrium thermodynamic system are found with sufficient accuracy by the formulas proposed in21:

L 12  = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeajuaGpaWaaSbaaSqaaKqzadWdbiaaigdacaaIYaGa aiiOaaWcpaqabaqcLbsapeGaeyypa0daaa@3DD7@ L 11 L 22 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaamitaKqbaoaaBaaaleaajugWaiaaigdacaaIXaaaleqa aKqzGeGaamitaKqbaoaaBaaaleaajugWaiaaikdacaaIYaaaleqaaa qabaaaaa@4032@ = D C C C RT v LE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqbaoaalaaakeaajugibiaadseajuaGdaWgaaWcbaqcLbmacaWG dbaaleqaaKqzGeGaam4qaKqbaoaaBaaaleaajugWaiaadoeaaSqaba aakeaajugibiaadkfacaWGubaaaKqbaoaalaaakeaajugibiaabAha aOqaaKqzGeGaamitaiaadweaaaaaleqaaaaa@4623@                                                            (24)

Thus, we have obtained simple differential equations for a tribological system that describe the effect of tension on carbon diffusion, derived from nonequilibrium thermodynamics. From the system of equations (19) it follows that the significant temperature and stress gradients arising during friction increase the diffusion rate of alloying elements and carbon. Moreover, as can be seen from Figure 1 and the system of equations (5), the diffusion fluxes of the alloying element can be directed towards the contact of the conjugated pair of carbon steel - carbon thin film.

In,2it was shown that for the implementation of selective transfer, the development of diffusion processes of alloying elements without the formation of excess phases is necessary. In our case, such alloying elements are elements of the first group that do not form compounds with carbon. Therefore, carbon steel should be alloyed mainly with elements of the first group, which increase the thermodynamic activity of carbon in steel and do not form other excess phases - silicon, nickel, copper, cobalt and phosphorus. Although aluminum increases the thermodynamic activity of carbon in steel, it can form solid oxide inclusions that contribute to abrasive wear of steel at the contact point. Therefore, the aluminum content in the steel should be limited.

Conclusion

  1. The expediency of applying the equations of nonequilibrium thermodynamics to the analysis of dissipative processes in the composite tribological system of steel - graphite thin film is shown.
  2. An example is given of calculating the values of thermodynamic forces and kinetic coefficients for diffusion fluxes in a simple tribological system carbon steel (1.5% C) - graphite at 950 ° C.
  3. It is shown how alloying elements affect the magnitude of diffusion fluxes in the tribological system of alloyed carbon steel - graphite. The necessary thermodynamic condition for the existence of selective transfer in this system is found.
  4. Simple differential equations are obtained for the tribological system of carbon steel - graphite, which describe the effect of stresses on the diffusion of carbon, production based on nonequilibrium thermodynamics.
  5. It is shown that the implementation of selective transfer requires the development of diffusion processes without the formation of excess phases; therefore, carbon steel should be alloyed mainly with elements of the first group that increase the thermodynamic activity of carbon in steel - silicon, nickel, copper, cobalt and phosphorus.

Acknowledgments

None.

Conflicts of interest

The author state that there is no conflict of interest.

Funding

None.

References

  1. L S Czesnek. Mechanics and microphysics of abrasion of surfaces. Moscow Mashinostroenie.1979;263.
  2. LM Ry`bakova, LI Kuksenova. Structure and wear resistance of metal. Moscow Mashinostroenie. 1982;212.
  3. Nakajima K, Isogai A. Structure change of a metal surface during the break-in period. Wear. 1968;11(3):223.
  4. I Prigozhin, Vvedenie v termodinamiku neobratimy`kh proczessov, Moskva IL. 1960.
  5. S de Groot, P Mazur. Neravnovesnaya termodinamika. Moskva Mir. 1964.
  6. L Onsager. Reciprocal Relations in Irreversible Processes. I Phys Rev. 1931;37(4):405.
  7. AI Veynik. Termodinamika Minsk. Vyisheyshaya shkola. 1968.
  8. AA Zhukov, RL Snezhnoj, Diffuzionny'e proczessy' v metallakh. Kiev Naukova dumka. 1966.
  9. V Vovk, G Schmitz, R Kirchheim. Nucleation of product phase in reactive diffusion of Al/Co. Phys Rev. 2004;l69(10):104102.
  10. AM Gusak, TV Zaporozhets, Yu O Lyashennko, et al. Diffusion Controlled Solid State Reactions: in Alloys. Thin Films And Nanosys-tems Berlin Willey VC. 2010.
  11. D Bombac, I H. Katzarov, D L Pashov, et al. Theoretical evaluation of the role of crystal defects on local equilibrium and effective diffusivity of hydrogen in iron. Journal Materials Science and Technology. 2017;33(13)1505–1514.
  12. A Van der Ven, JC Thomas, B Puchala, et al. First-Principles Statistical Mechanics of Multicomponent Crystals. Annual Review of Materials Research. 2018;48:27–55.
  13. D D Vvedensky. Transformations of Materials. 2019.
  14. SV Bobyr. Calculation of Diffusion Flows for the Formation of Phases in Alloys Iron-Carbon-Alloying Element. Physics аnd Chemistry of Solid State. 2019;20(2);196–201
  15. BS Bokshtejn, Diffuziya v metallakh. Moskva Metallurgiya. 1978.
  16. LN Larikov, VI Isajchev, Diffusion in metals and alloys. Directory. Kiev Naukova dumka. 1987.
  17. GI Sil`man. Method for calculating state diagrams of ternary systems using coefficients of interfacial distribution of elements. Part 1. Two-Phase Equilibrium. Zhurnal fizicheskoj khimii. 1985;57(2):307–313.
  18. MA Krishtal, AA Zhukov, RL Snezhnoj, et al. Thermodynamics, physical kinetics of structure formation and properties of iron and steel. Moskva Metallurgiya. 1971.
  19. G I Sil'man. Uglerodny'e e'kvivalenty` e'lementov v chugunakh. MiTOM. 2002;44(1–2).
  20. MV Belous, MP Braun. Fizika metallov. Kiev Vishha shkola. 1986.
  21. SV Bobyr. Using the Principles of Nonequilibrium Thermodynamics for the Analysis of Phase Transformations in Iron-Carbon Alloys. Chapter in book Nonequilibrium Particle Dynamics. London Intechopen. 2019.
Creative Commons Attribution License

©2022 Bobyr, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.