Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Review Article Volume 8 Issue 2

Comparison of pauling and Ulianov electron distribution models

Policarpo Yoshin Ulianov MSc, PhD

Independent Researcher, USA

Correspondence: Dr. Policarpo Yoshin Ulianov MSc, PhD, Independent Researcher, USA

Received: April 04, 2024 | Published: May 27, 2024

Citation: Ulianov PY. Comparison of pauling and Ulianov electron distribution models. Material Sci & Eng. 2024;8(2):49-54. DOI: 10.15406/mseij.2024.08.00235

Download PDF

Abstract

This study presents a comprehensive comparison between the traditional Pauling electron distribution model and the innovative Ulianov model proposed by Dr. Policarpo Yoshin Ulianov. The Pauling model, which relies on the Aufbau principle, Hund’s rule, and the Pauli Exclusion Principle, has been a cornerstone in understanding electron configurations within atoms, organizing electrons into s, p, d, and f orbitals. In contrast, the Ulianov model introduces a novel linear progression for electron occupancy, proposing additional orbitals (g and h) to account for electron distribution in a manner that deviates from conventional methodologies. Through an analytical comparison, this paper evaluates both models in terms of functionality, energy levels, and methodology, highlighting the advantages and disadvantages inherent to each. The Pauling model is recognized for its empirical support and wide acceptance, offering a well-established framework for electron configuration. Meanwhile, the Ulianov model provides a fresh perspective that could potentially explain anomalies unaddressed by the Pauling model and predict new chemical properties, despite its current lack of empirical validation. Concluding, while the Pauling model remains the standard for electron configuration, the Ulianov model’s innovative approach challenges existing paradigms and invites further investigation into its validity and potential applications in the scientific community.

Introduction

The organization of electrons around an atomic nucleus is fundamental to understanding chemical properties and behaviors. Traditionally, the Pauling electron distribution1 model has been widely accepted and used for this purpose. However, Dr. Policarpo Yoshin Ulianov has proposed an alternative model, known as the Ulianov electron distribution model, which prompts a detailed comparison of both methodologies in terms of their approach to electron configuration.

The pauling model

The Pauling model adheres to the Aufbau principle,2 Hund’s rule,3 and the Pauli exclusion principle1 to define the order in which electrons fill the available atomic orbitals. Electrons are said to occupy the lowest energy orbitals first before moving to higher energy levels. This model systematically organizes the electrons into s, p, d, and f orbitals, following a specific sequence that corresponds to increasing atomic numbers on the periodic table. Pauling model use 7 electrons layer with four orbitals possibilities:

  • Orbital s = contain 1 to 2 electrons
  • Orbital p = contain 1 to 6 electrons
  • Orbital d = contain 1 to 10 electrons
  • Orbital f = contain 1 to 18 electrons

To distribute a certain number of electrons in the orbitals of an atom, it is necessary to use the Pauling diagram, shown in Figure 1, where the lines follow an increasing energy level.

The Ulianov model

The Ulianov Electron Distribution (UED) model has bases in the Ulianov Theory4 and Ulianov String Theory5 and Kepler Ulianov Proton Tree (KUPT) model.6 UED introduces a different perspective in the electrons, assuming that exists a more basic distribution given by the protons distribution in the atomic nucleon defined by the KUPT model and so the electron follows orders from its related protons. UED proposing a linear or alternative progression for electron occupancy, using sevem level related to protons level at KUPT model. This new electron distribution also categorizes electrons into orbitals but follows a unique sequence that deviates from the conventional understanding. The specifics of this model focus on a hypothetical construct where additional orbitals or different filling orders are considered, ostensibly offering a new way to visualize electron distribution.

Ulianov model use seven electrons layer with four orbitals possibilities:

  • Orbital s = contain 1 to 2 electrons
  • Orbital p = contain 1 to 6 electrons
  • Orbital g = contain 1 to 16 electrons (g = p + d)
  • Orbital h = contain 1 to 30 electrons (h = p + d + f)

It is important observe that in the Ulianov model of electronic distribution, it is not necessary to create a diagram like the Pauling diagram shown in Figure 1, as it is just a linear sequence of energy levels. So it is enough to jump from one level to another in the correct order, as indicated below.

Figure 1 Pauling diagram.

Firstly, the 13 sub-levels in the Ulianov distribution, follows an ascending order of numbers (1 to 7) and letters (s , p , g, h):

1s → 2s → 2p → 3s → 3p → 4s → 4g → 5s → 5g → 6s → 6h → 7s → 7h

Then, just count the electrons within each sub-level, going from 1 to the maximum value of electrons per sub-level: s=2 , p=6 , g = 16, h=30.

In this way, the complete sequence of 118 electrons in the Ulianov distribution model is the follow: 1s1 1s2 2s1 2s2 2p1 2p2 2p3 2p4 2p5 2p6 3s1 3s2 3p1 3p2

3p3 3p4 3p5 3p6 4s1 4s2 4g1 4g2 4g3 4g4 → ... → 4g15 4g16 5s1

5s2 5g1 5g2 5g3 5g4 → ... → 5g15 5g16 6s1 6s2 6h1 6h2 6h3 6h4

6h5 → ... → 6h29 6h30 7s1 7s2 7h1 7h2 7h3 7h4 → ... → 7h29 7h30

Note that this sequence is so simple that it is not necessary to draw a diagram to make the right order, which is one of the advantages of the Ulianov electron distribution model. As can be seen in the attached Table 1, the Ulianov distribution, generates a logical sequence and provide one address for each electron that is similar to Pauling’s with small differences, making it very easy to go from one distribution to the other based on Table 1 data that can be used as a dictionary between the two distributions models. It is worth noting that this distribution of Ulianov electrons did not arise from nothing. The Ulianov distribution is based on the distribution of protons within the atomic nucleus, in a model called KUPT -Kepler Ulianov Proton Tree. A detail of the KUPT model goes beyond the scope of the current article and will be done in another article currently being written. For information, Figures 2 & 3 show what the proton distribution is like in the KPU model, for eight noble gases.

Figure 2 Kepler Platonic solid’s nested form grouping, and Kepler Ulianov Proton Tree for Helium, Neon, Argon, Krypton and Xenon. Each colored sphere represents two protons forming a UPB (Ulianov Proton Burger).The colors were used for ease of viewing only and have no real meaning.

Figure 3 Kepler Ulianov Proton Tree for Radon and Oganesson, note that Oganesson KUPT are full load and has 59 spheres, representing 118 protons that are the maximum number of protons that the KUPT tree can contain, which by ”coincidence” is the largest number of protons observed in a chemical element in nature - The own Oganesson.

Num

Element

Pauling distribution

Ulianov distribution

1

Hydrogen

1s1

1s1

2

Helium

1s2

1s2

3

Lithium

1s2, 2s1

1s2, 2s1

4

Beryllium

1s2, 2s2

1s2, 2s2

5

Boron

1s2, 2s2, 2p1

1s2, 2s2, 2p1

6

Carbon

1s2, 2s2, 2p2

1s2, 2s2, 2p2

7

Nitrogen

1s2, 2s2, 2p3

1s2, 2s2, 2p3

8

Oxygen

1s2, 2s2, 2p4

1s2, 2s2, 2p4

9

Fluorine

1s2, 2s2, 2p5

1s2, 2s2, 2p5

10

Neon

1s2, 2s2, 2p6

1s2, 2s2, 2p6

11

Sodium

1s2, 2s2, 2p6, 3s1

1s2, 2s2, 2p6, 3s1

12

Magnesium

1s2, 2s2, 2p6, 3s2

1s2, 2s2, 2p6, 3s2

13

Aluminum

1s2, 2s2, 2p6, 3s2, 3p1

1s2, 2s2, 2p6, 3s2, 3p1

14

Silicon

1s2, 2s2, 2p6, 3s2, 3p2

1s2, 2s2, 2p6, 3s2, 3p2

15

Phosphorus

1s2, 2s2, 2p6, 3s2, 3p3

1s2, 2s2, 2p6, 3s2, 3p3

16

Sulfur

1s2, 2s2, 2p6, 3s2, 3p4

1s2, 2s2, 2p6, 3s2, 3p4

17

Chlorine

1s2, 2s2, 2p6, 3s2, 3p5

1s2, 2s2, 2p6, 3s2, 3p5

18

Argon

1s2, 2s2, 2p6, 3s2, 3p6

1s2, 2s2, 2p6, 3s2, 3p6

19

Potassium

1s2, 2s2, 2p6, 3s2, 3p6, 4s1

1s2, 2s2, 2p6, 3s2, 3p6, 4s1

20

Calcium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2

21

Scandium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g1

22

Titanium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g2

23

Vanadium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g3

24

Chromium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g4

25

Manganese

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d5

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g5

26

Iron

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g6

27

Cobalt

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d7

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g7

28

Nickel

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d8

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g8

29

Copper

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d9

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g9

30

Zinc

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g10

31

Gallium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g11

32

Germanium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g12

33

Arsenic

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g13

34

Selenium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g14

35

Bromine

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p5                                                                     

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g15

36

Krypton

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16

37

Rubidium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s1

38

Strontium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2

39

Yttrium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g1

40

Zirconium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g2

41

Niobium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g3

42

Molybdenum

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g4

43

Technetium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d5

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g5

44

Ruthenium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g6

45

Rhodium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d7

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g7

46

Palladium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d7

1s2, 2s2, 2p6, 3s2, 3p6,4s2, 4g16, 5s2, 5g8

47

Silver

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d9

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g9

48

Cadmium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10s

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g10

49

Indium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g11

50

Tin

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g12

51

Antimony

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g13

52

Tellurium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g14

53

Iodine

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p5

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g15

54

Xenon

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16

55

Cesium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s1

56

Barium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2

57

Lanthanum

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h1

58

Cerium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h2

59

Praseodymium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h3

60

Neodymium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h4

61

Promethium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 5

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h5

62

Samarium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h6

63

Europium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 7

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h7

64

Gadolinium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 8

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h8

65

Terbium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 9

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h9

66

Dysprosium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 10

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h10

67

Holmium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 11

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h11

68

Erbium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 12

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h12

69

Thulium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 13

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h13

70

Ytterbium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h14

71

Lutetium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h15

72

Hafnium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h16

73

Tantalum

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h17

74

Tungsten

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2,4g16, 5s2, 5g16,6s2, 6h18

75

Rhenium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d5

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h19

76

Osmium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h20

77

Iridium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d7

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h21

78

Platinum

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d8

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h22

79

Gold

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d9

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h23

80

Mercury

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h24

81

Thallium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h25

82

Lead

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h26

83

Bismuth

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h27

84

Polonium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h28

85

Astatine

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p5

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h29

86

Radon

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30

87

Francium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s1

88

Radium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2

89

Actinium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h1

90

Thorium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h2

91

Protactinium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h3

92

Uranium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h4

93

Neptunium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 5

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h5

94

Plutonium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h6

95

Americium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 7

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h7

96

Curium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 8

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h8

97

Berkelium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 9

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h9

98

Californium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 10

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h10

99

Einsteinium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 11

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h11

100

Fermium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 12

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h12

101

Mendelevium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 13

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h13

102

Nobelium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h14

103

Lawrencium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h15

104

Rutherfordium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 14, 6d2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h16

105

Dubnium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 14,6d3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h17

106

Seaborgium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 14,6d4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h18

107

Bohrium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d5

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h19

108

Hassium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 14,6d6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h20

109

Meitnerium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 14,6d7

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h21

110

Darmstadtium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d8

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h22

111

Roentgenium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d9

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h23

112

Copernicium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d10

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h24

113

Nihonium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d10, 7p1

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h25

114

Flerovium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d10, 7p2

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h26

115

Moscovium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d10, 7p3

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h27

116

Livermorium

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d10, 7p4

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h28

117

Tennessine

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f 14,6d10, 7p5                                                              

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h29

118

Oganesson

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 14,6d10, 7p6

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 4g16, 5s2, 5g16,6s2, 6h30, 7s2, 7h30

119

To be found

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2,4d10, 5p6, 6s2, 4f 14, 5d10, 6p6, 7s2, 5f 14,6d10, 7p6

Electron cannot be placed Need 8s1 orbital that is not available

Table 1 Electronic distribution of elements

Analysis and comparison

To compare the Ulianov distribution model with Pauling distribution model, we can make an analogy, envisioning a hotel with rooms situated along a spiraling ramp that gently ascends, the room numbers increase steadily both in terms of floor and room number as one ascends the ramp. So we need define a label for each room composed by the floor number and room position in the floor. The Ulianov distribution give a label that reflects a continuous and orderly progression, where both the floor and room numbers increase in a linear and predictable fashion, mirroring the sequential addition of electrons in ascending energy levels in the atom electro sphere. Conversely, in the Pauling distribution model, the rooms are also aligned according to their energy levels on the ramp, but the floor numbering system jumps erratically up and down. This means that while each room has a unique double-digit designation (floor and room number) similar to its position in the Ulianov model, the Pauling model requires a complex diagram or table, as presented in Figure 1, to navigate from one room to the next room to get a sequence, because of the non-linear floor numbering in the rooms in the Palings “hotel”. Thus, although both systems ultimately address the same sequential order of rooms based on their position on the ramp (or energy level), the Ulianov model does so in a straightforward, sequential manner, while the Pauling model employs a more complex, non-sequential approach to room numbering. Note that in this analogy, with respect to the most basic function, which is to give a different number for each room in the hotel, the two numbering systems basically do the same thing and therefore both can be considered valid and capable of implementation. This aspect can be easily observed in table one where the two distributions are presented for each chemical element.

Functionality: Both the Pauling and Ulianov models serve the primary function of addressing electrons in their respective orbitals around the nucleus. They provide a structured method to understand the electron configuration within atoms.

Energy levels: In the Pauling model, energy levels increase predictably as one moves through the periodic table, with electrons filling lower energy orbitals before those of higher energy. The Ulianov model, while differing in its approach, ostensibly adheres to a principle where energy levels also increase, albeit through a different sequence or inclusion of hypothetical orbitals.

Methodology

The principal difference lies in the methodology of determining the electron filling order. The Pauling model is based on empirical observations and quantum mechanics principles, making it widely accepted in the scientific community. The Ulianov model, however, introduces an alternative method that might not align with current empirical data but offers a theoretical perspective on electron distribution because is based on the protons adding to the atomic nucleon as defined in the Kepler Ulianov Proton Tree presented in Figures 2 & 3. This KPUT model proposes that protons are connected one by one in the atomic nucleus and form a rigid structure in the form of a symmetrical tree with four main branches that divide into two (forming eight branches) and then divide into two again (forming 16 branches). As each KUPT branch is composed of a sequence of UPPBs (Ulianov Proton Pogo Ball) and each UPPB has two protons, this model generates seven levels, with a maximum total of: 2, 8, 8, 16, 16, 32 and 32 protons per level.

In turn, each proton is related to an electron that is added to the electrosphere in a more flexible way and, in addition, each electron also follows the configuration of the proton it is a partner with. As the protons grown the KUPT tree adding new levels of new branches, it’s electrons partners, encapsulating all the electrons that were already contained in the previous atoms electrospheres, like a Russian doll scheme. Thus, considering the maximum number of protons per KUPT level, this represents sums of proton (and its partners electrons) in seven levels:

  • Level K: 1s2 = 2 protons (associated with 2 electrons);
  • Level L: 2s2 + 2p6 = 8 protons (associated with 8 electrons);
  • Level M: 3s2 + 3p6 = 8 protons (associated with 8 electrons);
  • Level N: 4g16 = 16 protons (associated with 16 electrons);
  • Level O: 5g16 = 16 protons (associated with 16 electrons);
  • Level P: 6s2 + 6h30 = 32 protons (associated with 32 electrons);
  • Level Q: 7s2 + 7h30 = 32 protons (associated with 32 electrons).

Observation: The protons in levels 4s and 5s are added to the root of the KUPT tree, but its electrons partners go to the outside of the electrosphere forming the 4s2 end 5s2 electrons sub-levels. Note that this association of proton and electrons automatically guarantees an increasing level of energy for the protons and also for the electrons. This can be observed in practice through Table 1, where, as known, the Pauling distribution folows a growing energy level, and in it turn, the Ulianov-associated distribution, as can be easily observed also following an increasing lever of energy.

Advantages and disadvantages

Pauling model

Advantages: Well-established, supported by experimental data, and widely taught, making it universally understood among chemists and physicists.

Disadvantages: While highly accurate for many elements, anomalies in electron configurations can occur (e.g., transition metals) that the model does not intuitively predict. It follows an order that jumps from one orbital to another, requiring a diagram to determine the order of increasing energy. It allows the existence of atoms heavier than Oganesson.

Ulianov model

Advantages: Offers a novel perspective that could potentially explain phenomena not covered by the Pauling model or predict new chemical properties. It’s represent a new way to see metallic connections between iron atoms and others metallic elements. Naturally predict the eighth noble gasses and also predict that Oganesson is the last element. It follows an increasing order of orbital distribution associated with an increasing order of energy, making it easier to fill out the electron diagram and know the right order to follow with no need of diagrams like the Pauling diagram presented in Figure 1. So for educational proposes the Ulianov electron distribution represent a great advantage over the Pauling distribution, as the Ulianov distribution can be taught in a few minutes, while the Pauling distribution takes several hours to be teached and still depends on the students having the diagram Table shown in Figure 1 at hand, and know how to use it correctly.

Disadvantages: Lacks empirical support and may not be easily integrated into the existing framework of chemical research without substantial evidence, for example that that Kepler Ulianov Proton Tree in fact represent the way that protons are disposed in the atom nucleons.

Conclusion

In comparing the Pauling and Ulianov electron distribution models, it’s clear that both aim to fulfill the same fundamental goal of electron configuration description. While the Pauling model remains the standard due to its empirical validation and theoretical foundation, the Ulianov model presents an intriguing alternative that challenges conventional thinking. Further investigation and validation are required to ascertain its practicality and accuracy, underscoring the dynamic nature of scientific inquiry and the ever evolving understanding of atomic structure.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflicts of interest.

References

Creative Commons Attribution License

©2024 Ulianov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.