Submit manuscript...
MOJ
eISSN: 2577-8374

Solar and Photoenergy Systems

Review Article Volume 2 Issue 1

Effective Interaction of Electrons in the Field of Two Strong Pulsed Laser Waves with Phase Shifts

Starodub SS,1 Roshchupkin SP,2 Dubov VV2

1Institute of Applied Physics, National Academy of Sciences of Ukraine, Ukraine
2Department of Theoretical Physics, Peter the Great St. Petersburg Polytechnic University, Russia

Correspondence: Starodub SS, Institute of Applied Physics, National Academy of Sciences of Ukraine, 58 Petropavlovskaya Str., Sumy 40000, Ukraine

Received: October 28, 2017 | Published: February 5, 2018

Citation: Starodub SS, Roshchupkin SP, Dubov VV (2018) Effective Interaction of Electrons in the Field of Two Strong Pulsed Laser Waves with Phase Shifts. Open Acc J Photoen 2(1): 00020. DOI: 10.15406/mojsp.2018.02.00020

Download PDF

Abstract

The phase shift’s influence of two strong-pulsed laser waves on effective interaction of electrons was studied. Considerable amplification of electrons repulsion in the certain range of phase shifts and waves intensities is shown. That leads to electrons scatter on greater distances than without an external field. The value of the distance can be greater on 2-3 orders of magnitude. Also, considerable influence of the phase shift of pulses of waves on the possibility of effective attraction of electrons is shown.

Keywords: nonrelativistic electrons, strong femtosecond laser pulsed fields, effective interaction, phase shift

Introduction

There are many works devoted to research of interaction of electrons in the presence of an electromagnetic field.1-9 The possibility of electron attraction in the presence of a plane electromagnetic wave was firstly shown by Oleinik.4 However, the theoretical proof of the attraction possibility was given by Kazantsev and Sokolov for interaction of classical relativistic electrons in the field of a plane wave.5 It is worth noting the work.6 It is very important to point out, that attraction of classical electrons in the field of a plane monochromatic electromagnetic wave is possible only for particles with relativistic energies. In the authors works,3 articles7-9 the possibility of attraction of nonrelativistic electrons (identically charged ions) in the pulsed laser field was shown. Thus, in the review3 the following processes were discussed: interaction of electrons (light ions) in the pulsed field of a single laser wave; interaction of nonrelativistic electrons in the pulsed field of two counter-propagating laser waves moving perpendicularly to the initial direction of electrons motion; the interaction of nonrelativistic light ions moving almost parallel to each other in the propagation direction of the pulsed field of two counter-propagating laser waves moving in parallel direction to ions; interaction of two nonrelativistic heavy nuclei (uranium 235), moving towards each other perpendicularly to the propagation direction of two counter-propagating laser waves. The effective force of interaction of two hydrogen atoms (after their ionization) in the pulsed field of two counter-propagating laser waves was considered in.7 Influence of pulsed field of two co-propagating laser waves on the effective force of interaction of two electrons and two identically charged heavy nuclei was studied in.8 The main attention is focused on the study of the influence of phase shifts of the pulse peak of the second wave relatively to the first on the effective force of particles interaction. It was shown that the phase shift allows to increase duration of electron's confinement at a certain averaged effective distance by 1, 5 time in comparison with the case of one and two counter-propagating pulsed laser waves. Interaction of two classical nonrelativistic electrons in the strong pulsed laser field of two light mutually perpendicular waves, when the maxima laser pulses coincide, was studied in.9 It is shown that the effective force of electron interaction becoming the attraction force or anomalous repulsion force after approach of electrons to the minimum distance.

In the present work, in contrast to the mentioned above, interaction of two classical nonrelativistic electrons in the strong pulsed laser field of two light mutually perpendicular waves with the phase shifts of pulse peaks of the first and second waves is studied. It is shown that phase shifts of pulse peaks allow essentially change effective interaction of electrons than without phase shifts when the maxima laser pulses coincide.3,7,9 The obtained results can be used for experiments in the framework of modern research projects, where the sources of pulsed laser radiation are used (SLAC, FAIR).10-12

Equations of electron interaction in pulsed field of two laser waves

Consider the interaction of two nonrelativistic electrons moving towards each other along the axis x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36E4@ in the field of two linearly polarized pulsed electromagnetic waves. Waves propagate perpendicularly to each other. The first wave propagates along the axis z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@36E6@ , the second wave propagates along the axis x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36E4@ (Figure 1).

Figure 1 Interaction kinematics of two classical electrons in the field of two light mutually perpendicular waves.

The strengths of the electric and magnetic fields are given in the following form:

E( t, z j , x j )= E 1 ( t, z j )+ E 2 ( t, x j ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyram aabmaabaGaamiDaiaacYcacaWG6bWaaSbaaKqbGeaacaWGQbaajuaG beaacaGGSaGaamiEamaaBaaajuaibaGaamOAaaqcfayabaaacaGLOa GaayzkaaGaeyypa0JaaCyramaaBaaajuaibaGaaGymaaqcfayabaWa aeWaaeaacaWG0bGaaiilaiaadQhadaWgaaqcfasaaiaadQgaaKqbag qaaaGaayjkaiaawMcaaiabgUcaRiaahweadaWgaaqaaiaaikdaaeqa amaabmaabaGaamiDaiaacYcacaWG4bWaaSbaaKqbGeaacaWGQbaaju aGbeaaaiaawIcacaGLPaaacaGGSaaaaa@5359@        (1)

E 1 ( t, z j )= E 01 exp[ ( φ 1j δ τ 1 ω 1 t 1 ) 2 ]cos φ 1j e x , φ 1j =( ω 1 t k 1 z j ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyram aaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaacaWG0bGaaiilaiaa dQhadaWgaaqcfasaaiaadQgaaKqbagqaaaGaayjkaiaawMcaaiabg2 da9iaadweadaWgaaqcfasaaiaaicdacaaIXaaajuaGbeaacqGHflY1 ciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTmaabmaabaWaaSaaae aacqaHgpGAdaWgaaqcfasaaiaaigdacaWGQbaajuaGbeaacqGHsisl cqaH0oazcqaHepaDdaWgaaqcfasaaiaaigdaaKqbagqaaaqaaiabeM 8a3naaBaaajuaibaGaaGymaaqcfayabaGaamiDamaaDaaajuaibaGa aGymaaqcfayaaaaaaaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaG OmaaaaaKqbakaawUfacaGLDbaaciGGJbGaai4BaiaacohacqaHgpGA daWgaaqcfasaaiaaigdacaWGQbaajuaGbeaacqGHflY1caWHLbWaaS baaKqbGeaacaWG4baajuaGbeaacaGGSaGaaGzbVlabeA8aQnaaBaaa juaibaGaaGymaiaadQgaaKqbagqaaiabg2da9maabmaabaGaeqyYdC 3aaSbaaKqbGeaacaaIXaaajuaGbeaacaWG0bGaeyOeI0Iaam4Aamaa BaaajuaibaGaaGymaaqcfayabaGaamOEamaaBaaajuaibaGaamOAaa qcfayabaaacaGLOaGaayzkaaGaaiilaaaa@7EE2@ (2)

E 2 ( t, x j )= E 02 exp[ ( φ 2j δ τ 2 ω 2 t 2 ) 2 ]cos φ 2j e y , φ 2j =( ω 2 t k 2 x j ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyram aaBaaajuaibaGaaGOmaaqcfayabaWaaeWaaeaacaWG0bGaaiilaiaa dIhadaWgaaqcfasaaiaadQgaaKqbagqaaaGaayjkaiaawMcaaiabg2 da9iaadweadaWgaaqcfasaaiaaicdacaaIYaaajuaGbeaacqGHflY1 ciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTmaabmaabaWaaSaaae aacqaHgpGAdaWgaaqcfasaaiaaikdacaWGQbaajuaGbeaacqGHsisl cqaH0oazcqaHepaDdaWgaaqcfasaaiaaikdaaKqbagqaaaqaaiabeM 8a3naaBaaajuaibaGaaGOmaaqcfayabaGaamiDamaaBaaajuaibaGa aGOmaaqcfayabaaaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaik daaaaajuaGcaGLBbGaayzxaaGaci4yaiaac+gacaGGZbGaeqOXdO2a aSbaaKqbGeaacaaIYaGaamOAaaqcfayabaGaeyyXICTaaCyzamaaBa aajuaibaGaamyEaaqcfayabaGaaiilaiaaywW7cqaHgpGAdaWgaaqc fasaaiaaikdacaWGQbaajuaGbeaacqGH9aqpdaqadaqaaiabeM8a3n aaBaaajuaibaGaaGOmaaqcfayabaGaamiDaiabgkHiTiaadUgadaWg aaqcfasaaiaaikdaaKqbagqaaiaadIhadaWgaaqcfasaaiaadQgaaK qbagqaaaGaayjkaiaawMcaaiaacYcaaaa@7EE8@ (3)

H( t, z j , x j )= H 1 ( t, z j )+ H 2 ( t, x j ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCisam aabmaabaGaamiDaiaacYcacaWG6bWaaSbaaKqbGeaacaWGQbaajuaG beaacaGGSaGaamiEamaaBaaajuaibaGaamOAaaqcfayabaaacaGLOa GaayzkaaGaeyypa0JaaCisamaaBaaajuaibaGaaCymaaqcfayabaWa aeWaaeaacaWG0bGaaiilaiaadQhadaWgaaqcfasaaiaadQgaaKqbag qaaaGaayjkaiaawMcaaiabgUcaRiaahIeadaWgaaqcKvaG=haacaaI YaaajuaGbeaadaqadaqaaiaadshacaGGSaGaamiEamaaBaaajuaiba GaamOAaaqcfayabaaacaGLOaGaayzkaaGaaiilaaaa@55E0@ (4)

H 1 ( t, z j )= H 01 exp[ ( φ 1j δ τ 1 ω 1 t 1 ) 2 ]cos φ 1j e y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCisam aaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaacaWG0bGaaiilaiaa dQhadaWgaaqcfasaaiaadQgaaKqbagqaaaGaayjkaiaawMcaaiabg2 da9iaadIeadaWgaaqcfasaaiaaicdacaaIXaaajuaGbeaacqGHflY1 ciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTmaabmaabaWaaSaaae aacqaHgpGAdaWgaaqcfasaaiaaigdacaWGQbaajuaGbeaacqGHsisl cqaH0oazcqaHepaDdaWgaaqcfasaaiaaigdaaKqbagqaaaqaaiabeM 8a3naaBaaajuaibaGaaGymaaqcfayabaGaamiDamaaBaaajuaibaGa aGymaaqcfayabaaaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaik daaaaajuaGcaGLBbGaayzxaaGaci4yaiaac+gacaGGZbGaeqOXdO2a aSbaaKqbGeaacaaIXaGaamOAaaqcfayabaGaeyyXICTaaCyzamaaBa aajuaibaGaamyEaaqcfayabaGaaiilaaaa@6B39@ (5)

H 2 ( t, x j )= H 02 exp[ ( φ 2j δ τ 2 ω 2 t 2 ) 2 ]cos φ 2j e z , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCisam aaBaaajuaibaGaaGOmaaqcfayabaWaaeWaaeaacaWG0bGaaiilaiaa dIhadaWgaaqcfasaaiaadQgaaKqbagqaaaGaayjkaiaawMcaaiabg2 da9iaadIeadaWgaaqcfasaaiaaicdacaaIYaaajuaGbeaacqGHflY1 ciGGLbGaaiiEaiaacchadaWadaqaaiabgkHiTmaabmaabaWaaSaaae aacqaHgpGAdaWgaaqcfasaaiaaikdacaWGQbaajuaGbeaacqGHsisl cqaH0oazcqaHepaDdaWgaaqcfasaaiaaikdaaKqbagqaaaqaaiabeM 8a3naaBaaajuaibaGaaGOmaaqcfayabaGaamiDamaaBaaajuaibaGa aGOmaaqcfayabaaaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaik daaaaajuaGcaGLBbGaayzxaaGaci4yaiaac+gacaGGZbGaeqOXdO2a aSbaaKqbGeaacaaIYaGaamOAaaqcfayabaGaeyyXICTaaCyzamaaBa aajuaibaGaamOEaaqcfayabaGaaiilaaaa@6B3F@ (6)

where φ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO 2aaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@3AEB@ are phases of the corresponding wave ( i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyAai abg2da9iaaigdacaGGSaGaaGOmaaaa@3A90@ ) and corresponding electron ( j=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOAai abg2da9iaaigdacaGGSaGaaGOmaaaa@3A91@ ); E 0i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaaGimaiaadMgaaKqbagqaaaaa@39C4@ and H 0i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaajuaibaGaaGimaiaadMgaaKqbagqaaaaa@39C7@ are the strength of the electric and magnetic field in the pulse peak, respectively; δ τ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@3BA9@ are phase shifts of pulse peaks of the first and second waves; t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDam aaBaaajuaibaGaamyAaaqcfayabaaaaa@3939@ and ω i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaG=ejuaGcq aHjpWDdaWgaaqcfasaaiaadMgaaKqbagqaaaaa@3B1B@ are the pulse duration and frequency of the first and the second wave; e x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyzam aaBaaajuaibaGaamiEaaqcfayabaaaaa@393D@ , e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyzam aaBaaajuaibaGaamyEaaqcfayabaaaaa@393E@ , e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyzam aaBaaajuaibaGaamOEaaqcfayabaaaaa@393F@ are unit vectors directed along the x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEaa aa@3772@ , y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEaa aa@3773@ and z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOEaa aa@3774@ axes.

Newton equations for motion of two identically charged particles with the mass m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBaa aa@3767@ and charge e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzaa aa@375F@ ( e= e 1 = e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyzai abg2da9iaadwgadaWgaaqcfasaaiaaigdaaKqbagqaaiabg2da9iaa dwgadaWgaaqcfasaaiaaikdaaKqbagqaaaaa@3E70@ ) in the pulsed field of two mutually perpendicular laser waves (1) - (6) are determined by the following expressions:

m r ¨ 1 =| e |[ E( t, z 1 , x 1 )+ 1 c r ˙ 1 ×H( t, z 1 , x 1 ) ] e 2 | r 2 r 1 | 3 ( r 2 r 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai qahkhagaWaamaaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaeyOe I0YaaqWaaeaacaWGLbaacaGLhWUaayjcSdWaamWaaeaacaWHfbWaae WaaeaacaWG0bGaaiilaiaadQhadaWgaaqcfasaaiaaigdaaKqbagqa aiaacYcacaWG4bWaaSbaaKqbGeaacaaIXaaajuaGbeaaaiaawIcaca GLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGJbaaaiqahkhagaGa amaaBaaajqwba+FaaiaaigdaaKqbGfqaaKqbakabgEna0kaahIeada qadaqaaiaadshacaGGSaGaamOEamaaBaaajuaibaGaaGymaaqcfaya baGaaiilaiaadIhadaWgaaqcfasaaiaaigdaaKqbagqaaaGaayjkai aawMcaaaGaay5waiaaw2faaiabgkHiTmaalaaabaGaamyzamaaCaaa beqcfasaaiaaikdaaaaajuaGbaWaaqWaaeaacaWHYbWaaSbaaKqbGe aacaaIYaaajuaGbeaacqGHsislcaWHYbWaaSbaaKqbGeaacaaIXaaa juaGbeaaaiaawEa7caGLiWoadaahaaqabKqbGeaacaaIZaaaaaaaju aGdaqadaqaaiaahkhadaWgaaqcfasaaiaaikdaaKqbagqaaiabgkHi TiaahkhadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiaacYcaaa a@750B@ (7)

m r ¨ 2 =| e |[ E( t, z 2 , x 2 )+ 1 c r ˙ 2 ×H( t, z 2 , x 2 ) ]+ e 2 | r 2 r 1 | 3 ( r 2 r 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai qahkhagaWaamaaBaaajuaqbaGaaGOmaaqcfayabaGaeyypa0JaeyOe I0YaaqWaaeaacaWGLbaacaGLhWUaayjcSdWaamWaaeaacaWHfbWaae WaaeaacaWG0bGaaiilaiaadQhadaWgaaqcfauaaiaaikdaaKqbagqa aiaacYcacaWG4bWaaSbaaKqbafaacaaIYaaajuaGbeaaaiaawIcaca GLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGJbaaaiqahkhagaGa amaaBaaajuaqbaGaaGOmaaqcfayabaGaey41aqRaaCisamaabmaaba GaamiDaiaacYcacaWG6bWaaSbaaKqbafaacaaIYaaajuaGbeaacaGG SaGaamiEamaaBaaajuaqbaGaaGOmaaqcfayabaaacaGLOaGaayzkaa aacaGLBbGaayzxaaGaey4kaSYaaSaaaeaacaWGLbWaaWbaaeqajuaq baGaaGOmaaaaaKqbagaadaabdaqaaiaahkhadaWgaaqcfasaaiaaik daaKqbagqaaiabgkHiTiaahkhadaWgaaqcfasaaiaaigdaaKqbagqa aaGaay5bSlaawIa7amaaCaaabeqaaiaaiodaaaaaamaabmaabaGaaC OCamaaBaaajuaibaGaaGOmaaqcfayabaGaeyOeI0IaaCOCamaaBaaa juaibaGaaGymaaqcfayabaaacaGLOaGaayzkaaGaaiilaaaa@73B5@ (8)

Where r 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCOCam aaBaaajuaibaGaaGymaaqcfayabaaaaa@3908@ and r 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCOCam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@3909@ are electron radius vectors.

Hereafter, the wave frequencies are the same: ω 1 = ω 2 =ω,| k 1 |=| k 2 |=k=ω/c = ƛ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqaHjpWDdaWgaaqc fasaaiaaikdaaKqbagqaaiabg2da9iabeM8a3jaacYcacaaMf8+aaq WaaeaacaWHRbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaiaawEa7caGL iWoacqGH9aqpdaabdaqaaiaahUgadaWgaaqcfasaaiaaikdaaKqbag qaaaGaay5bSlaawIa7aiabg2da9iaadUgacqGH9aqpdaWcgaqaaiab eM8a3bqaaiaadogaaaGaeyypa0JaeS4Mbq0aaWbaaeqajuaibaGaey OeI0IaaGymaaaaaaa@59F0@ .

Subsequent consideration should be carry out in the center-of-mass system:

r= r 2 r 1 ,    R= 1 2 ( r 2 + r 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCOCai abg2da9iaahkhadaWgaaqcfasaaiaaikdaaKqbagqaaiabgkHiTiaa hkhadaWgaaqcfasaaiaaigdaaKqbagqaaiaacYcacaqGGaGaaeiiai aabccacaqGGaGaaCOuaiabg2da9maalaaabaGaaGymaaqaaiaaikda aaWaaeWaaeaacaWHYbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGHRa WkcaWHYbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaiaawIcacaGLPaaa caGGUaaaaa@4D71@ (9)

The equation for relative motion is:

m r ¨ =| e |{ E( t, z 2 , x 2 )E( t, z 1 , x 1 )+ 1 c r ˙ ×[ H 1 ( t )+ H 2 ( t ) ] }+ 2 e 2 | r | 3 ( r ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai qahkhagaWaaiabg2da9iabgkHiTmaaemaabaGaamyzaaGaay5bSlaa wIa7amaacmaabaGaaCyramaabmaabaGaamiDaiaacYcacaWG6bWaaS baaKqbGeaacaaIYaaajuaGbeaacaGGSaGaamiEamaaBaaajuaibaGa aGOmaaqcfayabaaacaGLOaGaayzkaaGaeyOeI0IaaCyramaabmaaba GaamiDaiaacYcacaWG6bWaaSbaaKqbGeaacaaIXaaajuaGbeaacaGG SaGaamiEamaaBaaajuaibaGaaGymaaqcfayabaaacaGLOaGaayzkaa Gaey4kaSYaaSaaaeaacaaIXaaabaGaam4yaaaaceWHYbGbaiaacqGH xdaTdaWadaqaaiaahIeadaWgaaqcfasaaiaaigdaaKqbagqaamaabm aabaGaamiDaaGaayjkaiaawMcaaiabgUcaRiaahIeadaWgaaqcfasa aiaaikdaaKqbagqaamaabmaabaGaamiDaaGaayjkaiaawMcaaaGaay 5waiaaw2faaaGaay5Eaiaaw2haaiabgUcaRmaalaaabaGaaGOmaiaa dwgadaahaaqabKqbGeaacaaIYaaaaaqcfayaamaaemaabaGaaCOCaa Gaay5bSlaawIa7amaaCaaabeqcfasaaiaaiodaaaaaaKqbaoaabmaa baGaaCOCaaGaayjkaiaawMcaaiaacUdaaaa@74CA@ (10)

The equation for motion of the center-of-mass is:

2m R ¨ =| e |{ E( t, z 2 , x 2 )+E( t, z 1 , x 1 )+ 2 c R ˙ ×[ H 1 ( t )+ H 2 ( t ) ] }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmai aad2gaceWHsbGbamaacqGH9aqpcqGHsisldaabdaqaaiaadwgaaiaa wEa7caGLiWoadaGadaqaaiaahweadaqadaqaaiaadshacaGGSaGaam OEamaaBaaajuaibaGaaGOmaaqcfayabaGaaiilaiaadIhadaWgaaqc fasaaiaaikdaaKqbagqaaaGaayjkaiaawMcaaiabgUcaRiaahweada qadaqaaiaadshacaGGSaGaamOEamaaBaaajuaibaGaaGymaaqcfaya baGaaiilaiaadIhadaWgaaqcfasaaiaaigdaaKqbagqaaaGaayjkai aawMcaaiabgUcaRmaalaaabaGaaGOmaaqaaiaadogaaaGabCOuayaa caGaey41aq7aamWaaeaacaWHibWaaSbaaKqbGeaacaaIXaaabeaaju aGdaqadaqaaiaadshaaiaawIcacaGLPaaacqGHRaWkcaWHibWaaSba aKqbGeaacaaIYaaajuaGbeaadaqadaqaaiaadshaaiaawIcacaGLPa aaaiaawUfacaGLDbaaaiaawUhacaGL9baacaGGUaaaaa@68C1@ (11)

The difference and sum of the electric field intensities of the first and second waves on both particles are:

E( t, z 2 , x 2 )E( t, z 1 , x 1 )= 2 f 1 sin( ωtk R z )sin( k r z 2 ) e x +2 f 2 sin( ωtk R x )sin( k r x 2 ) e y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WHfbWaaeWaaeaacaWG0bGaaiilaiaadQhadaWgaaqcfasaaiaaikda aKqbagqaaiaacYcacaWG4bWaaSbaaKqbGeaacaaIYaaajuaGbeaaai aawIcacaGLPaaacqGHsislcaWHfbWaaeWaaeaacaWG0bGaaiilaiaa dQhadaWgaaqcfasaaiaaigdaaKqbagqaaiaacYcacaWG4bWaaSbaaK qbGeaacaaIXaaajuaGbeaaaiaawIcacaGLPaaacqGH9aqpaeaacaaI YaGaamOzamaaBaaabaGaaGymaaqabaGaci4CaiaacMgacaGGUbWaae WaaeaacqaHjpWDcaWG0bGaeyOeI0Iaam4AaiaadkfadaWgaaqcfasa aiaadQhaaKqbagqaaaGaayjkaiaawMcaaiGacohacaGGPbGaaiOBam aabmaabaGaam4AamaalaaabaGaamOCamaaBaaajuaibaGaamOEaaqc fayabaaabaGaaGOmaaaaaiaawIcacaGLPaaacqGHflY1caWHLbWaaS baaKqbGeaacaWG4baajuaGbeaacqGHRaWkcaaIYaGaamOzamaaBaaa juaibaGaaGOmaaqcfayabaGaci4CaiaacMgacaGGUbWaaeWaaeaacq aHjpWDcaWG0bGaeyOeI0Iaam4AaiaadkfadaWgaaqcfasaaiaadIha aKqbagqaaaGaayjkaiaawMcaaiGacohacaGGPbGaaiOBamaabmaaba Gaam4AamaalaaabaGaamOCamaaBaaajuaibaGaamiEaaqcfayabaaa baGaaGOmaaaaaiaawIcacaGLPaaacqGHflY1caWHLbWaaSbaaKqbGe aacaWG5baajuaGbeaaaaaa@863C@ (12)

E( t, z 2 , x 2 )+E( t, z 1 , x 1 )= 2 f 1 cos( ωtk R z )cos( k r z 2 ) e x +2 f 2 cos( ωtk R x )cos( k r x 2 ) e y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WHfbWaaeWaaeaacaWG0bGaaiilaiaadQhadaWgaaqcfasaaiaaikda aKqbagqaaiaacYcacaWG4bWaaSbaaKqbGeaacaaIYaaajuaGbeaaai aawIcacaGLPaaacqGHRaWkcaWHfbWaaeWaaeaacaWG0bGaaiilaiaa dQhadaWgaaqcfasaaiaaigdaaKqbagqaaiaacYcacaWG4bWaaSbaaK qbGeaacaaIXaaajuaGbeaaaiaawIcacaGLPaaacqGH9aqpaOqaaKqb akaaikdacaWGMbWaaSbaaKqbGeaacaaIXaaajuaGbeaaciGGJbGaai 4BaiaacohadaqadaqaaiabeM8a3jaadshacqGHsislcaWGRbGaamOu amaaBaaajuaibaGaamOEaaqcfayabaaacaGLOaGaayzkaaGaci4yai aac+gacaGGZbWaaeWaaeaacaWGRbWaaSaaaeaajuaicaWGYbqcfa4a aSbaaeaacaWG6baabeaaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgw SixlaahwgadaWgaaqcfasaaiaadIhaaKqbagqaaiabgUcaRiaaikda caWGMbWaaSbaaKqbGeaacaaIYaaajuaGbeaaciGGJbGaai4Baiaaco hadaqadaqaaiabeM8a3jaadshacqGHsislcaWGRbGaamOuamaaBaaa juaibaGaamiEaaqcfayabaaacaGLOaGaayzkaaGaci4yaiaac+gaca GGZbWaaeWaaeaacaWGRbWaaSaaaeaacaWGYbWaaSbaaKqbGeaacaWG 4baajuaGbeaaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgwSixlaahw gadaWgaaqcfasaaiaadMhaaKqbagqaaiaacYcaaaaa@8821@ (13)

Where

f 1 = E 01 exp[ ( ωtδ τ 1 ω t 1 ) 2 ], f 2 = E 02 exp[ ( ωtδ τ 2 ω t 2 ) 2 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaamyramaaBaaajuai baGaaGimaiaaigdaaKqbagqaaiGacwgacaGG4bGaaiiCamaadmaaba GaeyOeI0YaaeWaaeaadaWcaaqaaiabeM8a3jaadshacqGHsislcqaH 0oazcqaHepaDdaWgaaqcfasaaiaaigdaaKqbagqaaaqaaiabeM8a3j aadshadaWgaaqcfasaaiaaigdaaKqbagqaaaaaaiaawIcacaGLPaaa daahaaqabKqbGeaacaaIYaaaaaqcfaOaay5waiaaw2faaiaacYcaca aMf8UaamOzamaaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0Jaamyr amaaBaaajuaibaGaaGimaiaaikdaaKqbagqaaiGacwgacaGG4bGaai iCamaadmaabaGaeyOeI0YaaeWaaeaadaWcaaqaaiabeM8a3jaadsha cqGHsislcqaH0oazcqaHepaDdaWgaaqcfasaaiaaikdaaKqbagqaaa qaaiabeM8a3jaadshadaWgaaqcfasaaiaaikdaaeqaaaaaaKqbakaa wIcacaGLPaaadaahaaqabKqbGeaacaaIYaaaaaqcfaOaay5waiaaw2 faaiaac6caaaa@72B2@ (14)

The sum of the magnetic field strengths of the first and second waves on both particles is:

H 1 ( t )+ H 2 ( t )=( f 1 e y + f 2 e z )cos( ωt ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCisam aaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaey4kaSIaaCisamaaBaaajuaibaGaaGOmaaqcfayabaWaae WaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWGMbWa aSbaaKqbGeaacaaIXaaajuaGbeaacqGHflY1caWHLbWaaSbaaKqbGe aacaWG5baajuaGbeaacqGHRaWkcaWGMbWaaSbaaKqbGeaacaaIYaaa juaGbeaacqGHflY1caWHLbWaaSbaaKqbGeaacaWG6baajuaGbeaaai aawIcacaGLPaaacqGHflY1ciGGJbGaai4Baiaacohadaqadaqaaiab eM8a3jaadshaaiaawIcacaGLPaaacaGGUaaaaa@5DEA@ (15)

It follows from the equations (10) - (15) that in the dipole approximation ( k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaicdaaaa@3925@ ) and neglecting small corrections of the order of | r ˙ |/c <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aadaabdaqaaiqahkhagaGaaaGaay5bSlaawIa7aaqaaiaadogaaaGa eyipaWJaeyipaWJaaGymaaaa@3E5C@ and | R ˙ |/c <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aadaabdaqaaiqahkfagaGaaaGaay5bSlaawIa7aaqaaiaadogaaaGa eyipaWJaeyipaWJaaGymaaaa@3E3C@ , equations (10), (11) take the form:

m r ¨ = 2 e 2 | r | 3 r; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai qahkhagaWaaiabg2da9maalaaabaGaaGOmaiaadwgadaahaaqabKqb GeaacaaIYaaaaaqcfayaamaaemaabaGaaCOCaaGaay5bSlaawIa7am aaCaaabeqcfasaaiaaiodaaaaaaKqbakaahkhacaGG7aaaaa@4433@ (16)

m R ¨ =| e |( f 1 e x + f 2 e y )cosωt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai qahkfagaWaaiabg2da9iabgkHiTmaaemaabaGaamyzaaGaay5bSlaa wIa7amaabmaabaGaamOzamaaBaaajuaibaGaaGymaaqcfayabaGaey yXICTaaCyzamaaBaaajuaibaGaamiEaaqcfayabaGaey4kaSIaamOz amaaBaaajuaibaGaaGOmaaqcfayabaGaeyyXICTaaCyzamaaBaaaju aibaGaamyEaaqcfayabaaacaGLOaGaayzkaaGaci4yaiaac+gacaGG ZbGaeqyYdCNaamiDaiaac6caaaa@562C@ (17)

It can be seen from these equations that the external electromagnetic field does not affect the relative motion of the electrons (16). Therefore, in order to take into account the influence of the external electromagnetic field on the relative motion of the electrons, it is necessary to go beyond the dipole approximation ( k0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abgcMi5kaaicdaaaa@39E6@ )and take into account the terms proportional to small corrections of the order | r ˙ |/c <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aadaabdaqaaiqahkhagaGaaaGaay5bSlaawIa7aaqaaiaadogaaaGa eyipaWJaeyipaWJaaGymaaaa@3E5C@ and | R ˙ |/c <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aadaabdaqaaiqahkfagaGaaaGaay5bSlaawIa7aaqaaiaadogaaaGa eyipaWJaeyipaWJaaGymaaaa@3E3C@ . It is these terms that will make the main contribution to the relative motion of electrons in the wave field. In this case, the motion of the center-of-mass will be determined by the terms in the dipole approximation in interaction with the external electromagnetic field and neglecting small corrections of the order of | r ˙ |/c <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aadaabdaqaaiqahkhagaGaaaGaay5bSlaawIa7aaqaaiaadogaaaGa eyipaWJaeyipaWJaaGymaaaa@3E5C@ and | R ˙ |/c <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aadaabdaqaaiqahkfagaGaaaGaay5bSlaawIa7aaqaaiaadogaaaGa eyipaWJaeyipaWJaaGymaaaa@3E3C@ (17).

Thus, in the center-of-mass system, equations for particle's relative motion are the next:

m r ¨ = 2 e 2 | r | 3 r| e |( Μ x e x + Μ y e y + Μ z e z ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai qahkhagaWaaiabg2da9maalaaabaGaaGOmaiaadwgadaahaaqabKqb GeaacaaIYaaaaaqcfayaamaaemaabaGaaCOCaaGaay5bSlaawIa7am aaCaaabeqcfasaaiaaiodaaaaaaKqbakaahkhacqGHsisldaabdaqa aiaadwgaaiaawEa7caGLiWoadaqadaqaaiabfY5annaaBaaajuaiba GaamiEaaqcfayabaGaaCyzamaaBaaajuaibaGaamiEaaqcfayabaGa ey4kaSIaeuiNd00aaSbaaKqbGeaacaWG5baajuaGbeaacaWHLbWaaS baaKqbGeaacaWG5baajuaGbeaacqGHRaWkcqqHCoqtdaWgaaqcfasa aiaadQhaaKqbagqaaiaahwgadaWgaaqcfasaaiaadQhaaKqbagqaaa GaayjkaiaawMcaaiaacUdaaaa@5ECA@ (18)

{ Μ x = f 1 [ 2sin( ωt )sin( k r z 2 ) 1 c r ˙ z cos( ωt ) ]+ 1 c f 2 r ˙ y cos( ωt ) Μ y = f 2 [ 2sin( ωt )sin( k r x 2 ) 1 c r ˙ x cos( ωt ) ]                      Μ z = 1 c f 1 r ˙ x cos( ωt )                                                               . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqabeWabaaabaGaeuiNd00aaSbaaKqbafaacaWG4baajuaGbeaa cqGH9aqpcaWGMbWaaSbaaKqbGeaacaaIXaaajuaGbeaadaWadaqaai aaikdaciGGZbGaaiyAaiaac6gadaqadaqaaiabeM8a3jaadshaaiaa wIcacaGLPaaaciGGZbGaaiyAaiaac6gadaqadaqaaiaadUgadaWcaa qaaiaadkhadaWgaaqcfasaaiaadQhaaKqbagqaaaqaaiaaikdaaaaa caGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaam4yaaaace WGYbGbaiaadaWgaaqcfasaaiaadQhaaKqbagqaaiGacogacaGGVbGa ai4CamaabmaabaGaeqyYdCNaamiDaaGaayjkaiaawMcaaaGaay5wai aaw2faaiabgUcaRmaalaaabaGaaGymaaqaaiaadogaaaGaamOzamaa BaaajuaibaGaaGOmaaqcfayabaGabmOCayaacaWaaSbaaKqbGeaaca WG5baajuaGbeaaciGGJbGaai4BaiaacohadaqadaqaaiabeM8a3jaa dshaaiaawIcacaGLPaaaaeaacqqHCoqtdaWgaaqcfasaaiaadMhaaK qbagqaaiabg2da9iaadAgadaWgaaqcfasaaiaaikdaaKqbagqaamaa dmaabaGaaGOmaiGacohacaGGPbGaaiOBamaabmaabaGaeqyYdCNaam iDaaGaayjkaiaawMcaaiGacohacaGGPbGaaiOBamaabmaabaGaam4A amaalaaabaGaamOCamaaBaaajuaibaGaamiEaaqcfayabaaabaGaaG OmaaaaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacaWG JbaaaiqadkhagaGaamaaBaaajuaibaGaamiEaaqcfayabaGaci4yai aac+gacaGGZbWaaeWaaeaacqaHjpWDcaWG0baacaGLOaGaayzkaaaa caGLBbGaayzxaaGaaGzbVlaabccacaqGGaGaaeiiaiaabccacaqGGa GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaa qaaiabfY5annaaBaaajuaibaGaamOEaaqcfayabaGaeyypa0ZaaSaa aeaacaaIXaaabaGaam4yaaaacaWGMbWaaSbaaKqbGeaacaaIXaaaju aGbeaaceWGYbGbaiaadaWgaaqcfasaaiaadIhaaKqbagqaaiGacoga caGGVbGaai4CamaabmaabaGaeqyYdCNaamiDaaGaayjkaiaawMcaai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGGaGaaeiiaiaabccacaqGGaaaaaGaay5EaaGaaiOlaa aa@DCEF@ (19)

Note that the equations (17-19) are valid under condition | kr |<<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWHRbGaaCOCaaGaay5bSlaawIa7aiabgYda8iabgYda8iaaigda aaa@3E49@ . Therefore, in equations (19) should be write sin( k r z 2 )k r z 2 ,sin( k r x 2 )k r x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaci4Cai aacMgacaGGUbWaaeWaaeaacaWGRbWaaSaaaeaacaWGYbWaaSbaaKqb GeaacaWG6baajuaGbeaaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgI Ki7kaadUgadaWcaaqaaiaadkhadaWgaaqcfasaaiaadQhaaKqbagqa aaqaaiaaikdaaaGaaiilaiaaywW7ciGGZbGaaiyAaiaac6gadaqada qaaiaadUgadaWcaaqaaiaadkhadaWgaaqcfasaaiaadIhaaKqbagqa aaqaaiaaikdaaaaacaGLOaGaayzkaaGaeyisISRaam4Aamaalaaaba GaamOCamaaBaaajuaibaGaamiEaaqcfayabaaabaGaaGOmaaaaaaa@570F@ . However, due to the exponential form of the envelopes of the functions (14), the significant influence of the external laser field on the process of electron interaction takes place for times ( ωtδ τ 1,2 ) 2 << ( ω t 1,2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaHjpWDcaWG0bGaeyOeI0IaeqiTdqMaeqiXdq3aaSbaaKqbGeaa caaIXaGaaiilaiaaikdaaKqbagqaaaGaayjkaiaawMcaamaaCaaabe qcfasaaiaaikdaaaqcfaOaeyipaWJaeyipaWZaaeWaaeaacqaHjpWD caWG0bWaaSbaaKqbGeaacaaIXaGaaiilaiaaikdaaKqbagqaaaGaay jkaiaawMcaamaaCaaabeqcfasaaiaaikdaaaaaaa@4E20@ , for which the inequality | kr |<<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWHRbGaaCOCaaGaay5bSlaawIa7aiabgYda8iabgYda8iaaigda aaa@3E49@ holds. It is for these time intervals and relative distances that an effective interaction of electrons in the Coulomb and laser fields is formed. And for times ( ωtδ τ 1,2 ) 2 ( ω t 1,2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaHjpWDcaWG0bGaeyOeI0IaeqiTdqMaeqiXdq3aaSbaaKqbGeaa caaIXaGaaiilaiaaikdaaKqbagqaaaGaayjkaiaawMcaamaaCaaabe qcfasaaiaaikdaaaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaajuaGcqWFZjsIdaqadaqaaiabeM8a3jaadshadaWgaaqcfa saaiaaigdacaGGSaGaaGOmaaqcfayabaaacaGLOaGaayzkaaWaaWba aeqajuaibaGaaGOmaaaaaaa@575E@ , when | kr |1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWHRbGaaCOCaaGaay5bSlaawIa7amrr1ngBPrwtHrhAYaqeguuD JXwAKbstHrhAGq1DVbacfaGae83CIKOaaGymaaaa@4787@ , the external field does not have a significant effect on the process of electron interaction.

The equations (17-19) can be written in the dimensionless form:

Ξ ¨ =( η 1 f 1 e x + η 2 f 2 e y )cos( τ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabCONdy aadaGaeyypa0JaeyOeI0YaaeWaaeaacqaH3oaAdaWgaaqcfasaaiaa igdaaKqbagqaaiaadAgadaWgaaqcfasaaiaaigdaaKqbagqaamaaCa aabeqaaaaacaWHLbWaaSbaaKqbGeaacaWG4baajuaGbeaacqGHRaWk cqaH3oaAdaWgaaqcfasaaiaaikdaaKqbagqaaiaadAgadaWgaaqcfa saaiaaikdaaKqbagqaamaaCaaabeqaaaaacaWHLbWaaSbaaKqbGeaa caWG5baajuaGbeaaaiaawIcacaGLPaaaciGGJbGaai4Baiaacohada qadaqaaiabes8a0bGaayjkaiaawMcaaiaacYcaaaa@543C@ (20)

ξ ¨ =F,F=β ξ | ξ | 3 ( N x e x + N y e y + N z e z ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWrkjuaGce WH+oGbamaacqGH9aqpcaWHgbGaaiilaiaaywW7caWHgbGaeyypa0Ja eqOSdiMaeyyXIC9aaSaaaeaacaWH+oaabaWaaqWaaeaacaWH+oaaca GLhWUaayjcSdWaaWbaaeqajuaibaGaaG4maaaaaaqcfaOaeyOeI0Ya aeWaaeaacaWGobWaaSbaaKqbGeaacaWG4baajuaGbeaacaWHLbWaaS baaKqbGeaacaWG4baajuaGbeaacqGHRaWkcaWGobWaaSbaaKqbGeaa caWG5baajuaGbeaacaWHLbWaaSbaaKqbGeaacaWG5baajuaGbeaacq GHRaWkcaWGobWaaSbaaKqbGeaacaWG6baajuaGbeaacaWHLbWaaSba aKqbGeaacaWG6baajuaGbeaaaiaawIcacaGLPaaacaGGSaaaaa@5E93@ (21)

{ N x = η 1 f 1 [ sin( τ )sin( ξ z 2 ) ξ ˙ z 2 cos( τ ) ]+ η 2 f 2 ξ ˙ y cos( τ ) N y = η 2 f 2 [ sin( τ )sin( ξ x 2 ) ξ ˙ x 2 cos( τ ) ]                        N z = η 1 f 1 ξ ˙ x 2 cos( τ )                                                      , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqabeWabaaabaGaamOtamaaBaaajuaibaGaamiEaaqcfayabaGa eyypa0Jaeq4TdG2aaSbaaKqbGeaacaaIXaaajuaGbeaacaWGMbWaaS baaKqbGeaacaaIXaaajuaGbeaadaahaaqabeaaaaWaamWaaeaaciGG ZbGaaiyAaiaac6gadaqadaqaaiabes8a0bGaayjkaiaawMcaaiGaco hacaGGPbGaaiOBamaabmaabaWaaSaaaeaacqaH+oaEdaWgaaqcfasa aiaadQhaaKqbagqaaaqaaiaaikdaaaaacaGLOaGaayzkaaGaeyOeI0 YaaSaaaeaacuaH+oaEgaGaamaaBaaajuaibaGaamOEaaqcfayabaaa baGaaGOmaaaaciGGJbGaai4Baiaacohadaqadaqaaiabes8a0bGaay jkaiaawMcaaaGaay5waiaaw2faaiabgUcaRiabeE7aOnaaBaaajuai baGaaGOmaaqcfayabaGaamOzamaaBaaajuaibaGaaGOmaaqcfayaba WaaWbaaeqabaaaaiqbe67a4zaacaWaaSbaaKqbGeaacaWG5baajuaG beaaciGGJbGaai4Baiaacohadaqadaqaaiabes8a0bGaayjkaiaawM caaaqaaiaad6eadaWgaaqcfasaaiaadMhaaKqbagqaaiabg2da9iab eE7aOnaaBaaajuaibaGaaGOmaaqcfayabaGaamOzamaaBaaajuaiba GaaGOmaaqcfayabaWaaWbaaeqabaaaamaadmaabaGaci4CaiaacMga caGGUbWaaeWaaeaacqaHepaDaiaawIcacaGLPaaaciGGZbGaaiyAai aac6gadaqadaqaamaalaaabaGaeqOVdG3aaSbaaKqbGeaacaWG4baa juaGbeaaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgkHiTmaalaaaba GafqOVdGNbaiaadaWgaaqcfasaaiaadIhaaKqbagqaaaqaaiaaikda aaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaHepaDaiaawIcacaGLPa aaaiaawUfacaGLDbaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaaqaaiaad6eadaWgaaqcfasaaiaadQhaaKqbagqaaiabg2 da9iabeE7aOnaaBaaajuaibaGaaGymaaqcfayabaGaamOzamaaBaaa juaibaGaaGymaaqcfayabaWaaWbaaeqabaaaamaalaaabaGafqOVdG NbaiaadaWgaaqcfasaaiaadIhaaKqbagqaaaqaaiaaikdaaaGaci4y aiaac+gacaGGZbWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacaqGGa GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqGGaGaaeiiaaaaaiaawUhaaiaacYcaaaa@D97A@ (22)

where,

ξ=kr=r/ƛ ,Ξ=kR=R/ƛ ,τ=ωt, τ 1,2 =ω t 1,2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCOVdi abg2da9iaadUgacaWHYbGaeyypa0ZaaSGbaeaacaWHYbaabaGaeS4M bqeaaiaacYcacaaMe8UaaGjbVlaah65acqGH9aqpcaWGRbGaaCOuai abg2da9maalyaabaGaaCOuaaqaaiablUzaebaacaGGSaGaaGjbVlaa ysW7cqaHepaDcqGH9aqpcqaHjpWDcaWG0bGaaiilaiaaysW7caaMe8 UaeqiXdq3aaSbaaKqbGeaacaaIXaGaaiilaiaaikdaaKqbagqaaiab g2da9iabeM8a3jaadshadaWgaaqcfasaaiaaigdacaGGSaGaaGOmaa qcfayabaGaai4oaaaa@62E1@ (23)

η i = | e | E 0i μcω ,β= e 2 /ƛ μ c 2 ,μ=m/2 , f i =exp( ( τδ τ i ) 2 τ i 2 ),i=1,2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaWGPbaajuaGbeaacqGH9aqpdaWcaaqaamaaemaa baGaamyzaaGaay5bSlaawIa7aiaadweadaWgaaqcfasaaiaaicdaca WGPbaajuaGbeaaaeaacqaH8oqBcaWGJbGaeqyYdChaaiaacYcacaaM e8UaaGzbVlabek7aIjabg2da9maalaaabaWaaSGbaeaacaWGLbWaaW baaeqajuaibaGaaGOmaaaaaKqbagaacqWIBgaraaaabaGaeqiVd0Ma am4yamaaCaaabeqcfasaaiaaikdaaaaaaKqbakaacYcacaaMf8Uaeq iVd0Maeyypa0ZaaSGbaeaacaWGTbaabaGaaGOmaaaacaGGSaGaaGzb VlaadAgadaWgaaqcfasaaiaadMgaaKqbagqaamaaCaaabeqaaaaacq GH9aqpciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaWa aeWaaeaacqaHepaDcqGHsislcqaH0oazcqaHepaDdaWgaaqcfasaai aadMgaaKqbagqaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaikda aaaajuaGbaGaeqiXdq3aa0baaKqbGeaacaWGPbaabaGaaGOmaaaaaa aajuaGcaGLOaGaayzkaaGaaiilaiaaywW7caWGPbGaeyypa0JaaGym aiaacYcacaaMe8UaaGOmaiaac6caaaa@7FB6@ (24)                                                                                                              

Here ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCOVda aa@37BF@ , is the radius-vector of the relative distance between electrons in unit of the wavelength, the parameters η 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaGaaiilaiaaikdaaKqbagqaaaaa@3B24@ are numerically equal to the ratio of the oscillation velocity of an electron in the peak of a pulse of the first or second wave to the velocity of light c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36CE@ (hereinafter, should consider parameters η 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaGaaiilaiaaikdaaKqbagqaaaaa@3B24@ as oscillation velocities); the parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi gaaa@3816@ is numerically equal to the ratio of the energy of Coulomb interaction of electrons with the reduced mass μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 gaaa@382B@ at the wavelength to the particle rest energy.

The pulse duration exceeds considerably the period of wave rapid oscillation ( ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaeqyYdC3aaWbaaeqajuaibaGaeyOeI0IaaGymaaaaaaa@3B27@ ) for a majority of modern pulsed lasers:

τ1,2>>1     (25)

Consequently, the relative distance between electrons should be averaged over the period of wave rapid oscillation:

ξ ¯ = 1 2π 0 2π ξdτ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiGaaaLfaWRfju aGcuaH+oaEgaqeaiabg2da9maalaaabaGaaGymaaqaaiaaikdacqaH apaCaaWaa8qCaeaacqaH+oaEcqGHflY1caWGKbGaeqiXdqhajuaiba GaaGimaaqaaiaaikdacqaHapaCaKqbakabgUIiYdGaaiOlaaaa@4B82@ (26)

It is worth note that expressions (21), (22) consider interaction with the Coulomb field and the pulsed-wave field strictly, and do not have the analytical solution. For subsequent analysis, all equations will study numerically.

Electrons initial relative coordinates and velocities are the following:

ξ x0 =2, ξ y0 =0, ξ z0 =0, ξ ˙ x0 =1.7 10 3 , ξ ˙ y0 =0, ξ ˙ z0 =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabiaaqzba8A raaKqbakabe67a4naaBaaajuaibaGaamiEaiaaicdaaKqbagqaaiab g2da9iaaikdacaGGSaGaaGzbVlabe67a4naaBaaajuaibaGaamyEai aaicdaaKqbagqaaiabg2da9iaaicdacaGGSaGaaGzbVlaaysW7cqaH +oaEdaWgaaqcfasaaiaadQhacaaIWaaajuaGbeaacqGH9aqpcaaIWa GaaiilaaGcbaqcfaOafqOVdGNbaiaadaWgaaqcfasaaiaadIhacaaI WaaajuaGbeaacqGH9aqpcqGHsislcaaIXaGaaiOlaiaaiEdacqGHfl Y1caaIXaGaaGimamaaCaaabeqcfasaaiabgkHiTiaaiodaaaqcfaOa aeilaiaaywW7cuaH+oaEgaGaamaaBaaajuaibaGaamyEaiaaicdaaK qbagqaaiabg2da9iaaicdacaGGSaGaaGzbVlqbe67a4zaacaWaaSba aKqbGeaacaWG6bGaaGimaaqcfayabaGaeyypa0JaaGimaiaab6caaa aa@7189@ (27)

The interaction time is τ=1200(τ[ 600÷600 ]) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq Naeyypa0JaaGymaiaaikdacaaIWaGaaGimaiaaysW7caGGOaGaeqiX dqNaeyicI48aamWaaeaacqGHsislcaaI2aGaaGimaiaaicdacqGH3d aUcaaI2aGaaGimaiaaicdaaiaawUfacaGLDbaacaGGPaaaaa@4BDC@ , ( t=600fs MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abg2da9iaaiAdacaaIWaGaaGimaiaaysW7caqGMbGaae4Caaaa@3E14@ ) and it was increased, if necessary for more clear results. Frequencies of waves are ω 1 = ω 2 =2 Ps 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaMe8UaeqyYdC3a aSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIYaGaaGjbVlaabc facaqGZbWaaWbaaeqajuaibaGaeyOeI0IaaGymaaaaaaa@46E3@ ( ƛ=0.15μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeS4Mbq Kaeyypa0JaaGimaiaac6cacaaIXaGaaGynaiabeY7aTjaab2gaaaa@3E78@ ), pulse durations are τ 1 = τ 2 =600 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaMe8UaeqiXdq3a aSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaI2aGaaGimaiaaic daaaa@42FD@ ( t 1 = t 2 =300fs MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIXaaakeqaaiabg2da9iaadshadaWgaaWcbaGaaGOmaaGc beaacqGH9aqpcaaIZaGaaGimaiaaicdacaaMe8UaaeOzaGqaaiaa=n haaaa@416C@ ). Field intensities (oscillations velocities η 1 , η 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacaGGSaGaaGjbVlabeE7aOnaa BaaajuaibaGaaGOmaaqcfayabaaaaa@3F3B@ ) are varied. Phase shifts are vary within δ τ 1,2 [ 600÷600 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaGaaiilaiaaikdaaKqbagqaaiab gIGiopaadmaabaGaeyOeI0IaaGOnaiaaicdacaaIWaGaey49aGRaaG OnaiaaicdacaaIWaaacaGLBbGaayzxaaaaaa@47E9@ and step is h=50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAai abg2da9iaaiwdacaaIWaaaaa@39E1@ . Initial conditions are the same as in.9 That allows to estimate influence of phase shifts on relative motion of electrons and compare results. Note, in the work9 the parameter of the phase shift of a pulse of a wave ( δ τ 1,2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaGaaiilaiaaikdaaKqbagqaaiab g2da9iaaicdaaaa@3EA3@ ) was absent, and pulse peaks of both waves were in moment τ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq Naeyypa0JaaGimaaaa@39FA@ . Initial coordinates and velocities of electrons are chosen so that at the point τ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq Naeyypa0JaaGimaaaa@39FA@ electrons were in maximum approach (the Coulomb force was maximum). In this work the pulse peaks of waves can have maximum at any moment of time (unlike the previous publication9) and it’s leads to significant change in the behavior of electron interaction. Numerical solving of equations for relative motion (21) results to several cases.

Anomalous repulsion of electrons

The case when the oscillation velocity of the first wave is greater than the initial velocity of electrons ( η 1 > ξ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH+aGpcuaH+oaEgaGaamaa BaaajuaibaGaaGimaaqcfayabaaaaa@3E23@ ), and oscillation velocity of the second wave considerably exceeds the initial velocity ( η 2 >> ξ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH+aGpcqGH+aGpcuaH+oaE gaGaamaaBaaajuaibaGaaGimaaqcfayabaaaaa@3F2C@ ).

Calculations over all values of phase shifts allowed to find out areas of anomalous repulsion of electrons. In this areas electrons can scatter at very long distances exceeding the distance of electron scattering without an external field in hundreds of times (Figure 2). Let designate the final distance at which electrons scatter in the time moment as τ Cfinal =600 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaacaWGdbGaamOzaiaadMgacaWGUbGaamyyaiaadYga aKqbagqaaiabg2da9iaaiAdacaaIWaGaaGimaaaa@41BC@ : without an external field as ξ ¯ Cfinal =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadoeacaWGMbGaamyAaiaad6gacaWGHbGa amiBaaqcfayabaGaeyypa0JaaGOmaaaa@405A@ ; in the external field, when δ τ 1 =0,δ τ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIWaGa aiilaiaaykW7caaMe8UaeqiTdqMaeqiXdq3aaSbaaKqbGeaacaaIYa aajuaGbeaacqGH9aqpcaaIWaaaaa@47C2@ as ξ ¯ (0) final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaahaaqabeaacaGGOaGaaGimaiaacMcaaaWaaSbaaKqbGeaa caWGMbGaamyAaiaad6gacaWGHbGaamiBaaqcfayabaaaaa@4005@ ; in an external field, when δ τ 1 0,δ τ 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGHGjsUcaaIWaGa aiilaiaaykW7caaMe8UaeqiTdqMaeqiXdq3aaSbaaKqbGeaacaaIYa aajuaGbeaacqGHGjsUcaaIWaaaaa@4944@ as ξ ¯ final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqOVdGNbae badaWgaaWcbaGaamOzaiaadMgacaWGUbGaamyyaiaadYgaaeqaaaaa @3C91@ .

Figure 2 The final averaged relative distance ξ ¯ final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaaaaa@3DD0@ (in the time moment τ Cfinal =600 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaacaWGdbGaamOzaiaadMgacaWGUbGaamyyaiaadYga aKqbagqaaiabg2da9iaaiAdacaaIWaGaaGimaaaa@41BC@ , ξ ¯ Cfinal =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadoeacaWGMbGaamyAaiaad6gacaWGHbGa amiBaaqcfayabaGaeyypa0JaaGOmaaaa@405A@ ) against different phase shifts of pulse peaks δ τ 1 ,δ τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacaGGSaGaaGPaVlaa ysW7cqaH0oazcqaHepaDdaWgaaqcfasaaiaaikdaaKqbagqaaaaa@4442@ . Oscillation velocities: η 1 =3× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaaaaaa@4102@ , (a) - η 2 =6× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaI2aGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIYaaaaaaa@4105@ , (b) - η 2 = 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIXaGaaGimamaa CaaabeqcfasaaiabgkHiTiaaigdaaaaaaa@3E2D@ (field intensities: I 1 =3.4× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaG4maiaac6cacaaI 0aGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4746@ , (a) - I 2 =1.3× 10 15 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaigdacaGG UaGaaG4maiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI1aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48D4@ , (b) - I 2 =3.8× 10 15 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaGG UaGaaGioaiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI1aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48DB@ ) .

(Figure 2) show dependence of the final distance ξ ¯ final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaaaaa@3DD0@ at which the electrons scatter at the time moment τ Cfinal =600 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaacaWGdbGaamOzaiaadMgacaWGUbGaamyyaiaadYga aKqbagqaaiabg2da9iaaiAdacaaIWaGaaGimaaaa@41BC@ for different values of phase shifts δ τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaaaaa@3B77@ , δ τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaaaaa@3B78@ and for two values of the oscillation velocity of the second wave. One can see, that the final distance ξ ¯ final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaaaaa@3DD0@ is considerably depends from the oscillation velocity of the second wave and have maximum values for next ranges of the phase shifts: δ τ 1 [ 600÷50 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGHiiIZdaWadaqa aiabgkHiTiaaiAdacaaIWaGaaGimaiabgEpa4kabgkHiTiaaiwdaca aIWaaacaGLBbGaayzxaaaaaa@46AF@ , δ τ 2 [ 100÷500 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaacqGHiiIZdaWadaqa aiaaigdacaaIWaGaaGimaiabgEpa4kaaiwdacaaIWaGaaGimaaGaay 5waiaaw2faaaaa@458B@ . Thus, for the oscillation velocity η 2 =6× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaI2aGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIYaaaaaaa@4105@ the final distance can reach the value ξ ¯ final 160 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaacqGHijYUcaaIXaGaaGOnaiaaicdaaaa@41B6@ (Figure 2), and for the oscillation velocity η 2 = 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIXaGaaGimamaa CaaabeqcfasaaiabgkHiTiaaigdaaaaaaa@3E2D@ the final distance can reach the value ξ ¯ final 900 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaacqGHijYUcaaI5aGaaGimaiaaicdaaaa@41B8@ (Figure 2). (Figure 3 & 4) show dependence of averaged relative distance ξ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG Nbaebaaaa@3850@ (in logarithmic units) against the interaction time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37AC@ for mainly interesting values of the phase shifts. It’s seen that taking into account of the phase shifts of pulse peaks can considerably increase the repulsion force. Thus, for η 1 =3× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaaaaaa@4102@ , η 2 =6× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaI2aGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIYaaaaaaa@4105@ and δ τ 1 =550,δ τ 2 =250 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI1aGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaikdacaaI1aGa aGimaaaa@4BA8@ ratio ξ ¯ final / ξ ¯ Cfinal 80 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacuaH+oaEgaqeamaaBaaajuaibaGaamOzaiaadMgacaWGUbGaamyy aiaadYgaaKqbagqaaaqaaiqbe67a4zaaraWaaSbaaKqbGeaacaWGdb GaamOzaiaadMgacaWGUbGaamyyaiaadYgaaKqbagqaaaaacqGHijYU caaI4aGaaGimaaaa@4936@ and ratio ξ ¯ final / ξ ¯ (0) final 32 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacuaH+oaEgaqeamaaBaaajuaibaGaamOzaiaadMgacaWGUbGaamyy aiaadYgaaKqbagqaaaqaaiqbe67a4zaaraWaaWbaaeqajuaibaGaai ikaiaaicdacaGGPaaaaKqbaoaaBaaajuaibaGaamOzaiaadMgacaWG UbGaamyyaiaadYgaaKqbagqaaaaacqGHijYUcaaIZaGaaGOmaaaa@4B5C@ (Figure 3), and for oscillation velocities η 1 =3× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaaaaaa@4102@ , η 2 = 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIXaGaaGimamaa CaaabeqcfasaaiabgkHiTiaaigdaaaaaaa@3E2D@ and δ τ 1 =450,δ τ 2 =250 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI0aGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaikdacaaI1aGa aGimaaaa@4BA7@ the ratio ξ ¯ final / ξ ¯ Cfinal 450 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacuaH+oaEgaqeamaaBaaajuaibaGaamOzaiaadMgacaWGUbGaamyy aiaadYgaaKqbagqaaaqaaiqbe67a4zaaraWaaSbaaKqbGeaacaWGdb GaamOzaiaadMgacaWGUbGaamyyaiaadYgaaKqbagqaaaaacqGHijYU caaI0aGaaGynaiaaicdaaaa@49F1@ and the ratio ξ ¯ final / ξ ¯ (0) final 180 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacuaH+oaEgaqeamaaBaaajuaibaGaamOzaiaadMgacaWGUbGaamyy aiaadYgaaKqbagqaaaqaaiqbe67a4zaaraWaaWbaaeqajuaibaGaai ikaiaaicdacaGGPaaaaKqbaoaaBaaajuaibaGaamOzaiaadMgacaWG UbGaamyyaiaadYgaaKqbagqaaaaacqGHijYUcaaIXaGaaGioaiaaic daaaa@4C1A@ (Figure 4).

Figure 3 The averaged relative distance ξ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG Nbaebaaaa@3850@ (in logarithmic units) against the interaction time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@383A@ . The dashed line corresponds to the case of the absence of the external field. The dashed-dot line and solid lines correspond to oscillation velocities: η 1 =3× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaaaaaa@4102@ , η 2 =6× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaI2aGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIYaaaaaaa@4105@ (field intensities: I 1 =3.4× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaG4maiaac6cacaaI 0aGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4746@ , I 2 =1.3× 10 15 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaigdacaGG UaGaaG4maiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI1aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48D4@ ), phase shifts of pulse peaks: 1- δ τ 1 =450,δ τ 2 =450 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI0aGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaisdacaaI1aGa aGimaaaa@4BA9@ ; 2- δ τ 1 =350,δ τ 2 =300 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaIZaGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaaIWaGa aGimaaaa@4BA2@ ; 3- δ τ 1 =550,δ τ 2 =250 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI1aGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaikdacaaI1aGa aGimaaaa@4BA8@ ; the dashed line with a dot - δ τ 1 =0,δ τ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIWaGa aiilaiaaykW7caaMe8UaeqiTdqMaeqiXdq3aaSbaaKqbGeaacaaIYa aajuaGbeaacqGH9aqpcaaIWaaaaa@47C2@ .

Figure 4 The averaged relative distance ξ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG Nbaebaaaa@3850@ (in logarithmic units) against the interaction time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@383A@ . The dashed line corresponds to case without external field. The dashed-dot line and solid lines correspond to oscillation velocities: η 1 =3× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaaaaaa@4102@ , η 2 = 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIXaGaaGimamaa CaaabeqcfasaaiabgkHiTiaaigdaaaaaaa@3E2D@ (the field intensities: I 1 =3.4× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaG4maiaac6cacaaI 0aGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4746@ , I 2 =3.8× 10 15 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaGG UaGaaGioaiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI1aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48DB@ ), the phase shifts of pulse peaks: 1- δ τ 1 =300,δ τ 2 =350 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaIZaGaaGimaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaaI1aGa aGimaaaa@4BA2@ ; 2- δ τ 1 =400,δ τ 2 =300 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI0aGaaGimaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaaIWaGa aGimaaaa@4B9E@ ; 3- δ τ 1 =450,δ τ 2 =250 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI0aGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaikdacaaI1aGa aGimaaaa@4BA7@ ; the dashed-dot line - δ τ 1 =0,δ τ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIWaGa aiilaiaaykW7caaMe8UaeqiTdqMaeqiXdq3aaSbaaKqbGeaacaaIYa aajuaGbeaacqGH9aqpcaaIWaaaaa@47C2@ .

(Figures 5 & 6) show projections and the module of the radius-vector of center of mass for the greatest repulsion of the electrons (Figure 4). It can be seen that the most of the oscillations are experiencing projection of the radius-vector on the y-axis ( Ξ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqqHEoawdaWgaaqcfasaaiaadMhaaKqbagqaaaGaayjkaiaawMca aaaa@3B5D@ . The relative variation of this projection from this averaged value is 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajuaGcqWFYjcIcaaIXaGa aGimamaaCaaabeqcfasaaiabgkHiTiaaigdaaaaaaa@4526@ , and the corresponding value for the module of the radius-vector of the center of mass is in the order of magnitude 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIXa aaaaaa@3ACF@ . Therefore, the position of the center of mass of the electrons have small oscillations nearly the average value even for sufficiently strong fields,9 in which similar studies of the motion of the center-of-mass are done).

Figure 5 The projections of radius-vector of center-of-mass (a) Ξ x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuONdG 1aaSbaaKqbGeaacaWG4baajuaGbeaaaaa@39D3@ , (b) Ξ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuONdG 1aaSbaaKqbGeaacaWG5baajuaGbeaaaaa@39D4@ against the interaction time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@383A@ . The oscillation velocity: η 1 =3× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaaaaaa@4102@ , η 2 = 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIXaGaaGimamaa CaaabeqcfasaaiabgkHiTiaaigdaaaaaaa@3E2D@ (field intensity: I 1 =3.4× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaG4maiaac6cacaaI 0aGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4746@ , I 2 =3.8× 10 15 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaGG UaGaaGioaiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI1aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48DB@ ), the phase shifts of pulse peaks: δ τ 1 =450,δ τ 2 =250 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI0aGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaikdacaaI1aGa aGimaaaa@4BA7@ .

Figure 6 The module of the radius-vector of center of mass system Ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuONdG faaa@37F9@ against the interaction time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@383A@ . The oscillation velocity: η 1 =3× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaaaaaa@4102@ , η 2 = 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIXaGaaGimamaa CaaabeqcfasaaiabgkHiTiaaigdaaaaaaa@3E2D@ (field intensity: I 1 =3.4× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaG4maiaac6cacaaI 0aGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4746@ , I 2 =3.8× 10 15 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaGG UaGaaGioaiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI1aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48DB@ ), the phase shifts of pulse peaks: δ τ 1 =450,δ τ 2 =250 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI0aGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaikdacaaI1aGa aGimaaaa@4BA7@ .

The effective slowing-down of electrons

The case, when the oscillation velocity η 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaaaaa@39B9@ has to be close to the initial relative velocity η 1 ξ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGHijYUcuaH+oaEgaGaamaa BaaajuaibaGaaGimaaqcfayabaaaaa@3ECC@ and the oscillation velocity η 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaaaaa@39BA@ is greater an order of magnitude. Increasing of the interaction time allows us to see oscillations of the effective attraction of electrons. Electrons, after approaching and scattering, get the strong pulse of the attraction and then they re-approach. Let designate the time at which the averaged relative distance between electrons is equal to ξ ¯ Cfinal =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadoeacaWGMbGaamyAaiaad6gacaWGHbGa amiBaaqcfayabaGaeyypa0JaaGOmaaaa@405A@ : in the external field, when δ τ 1 =0,δ τ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIWaGa aiilaiaaykW7caaMe8UaeqiTdqMaeqiXdq3aaSbaaKqbGeaacaaIYa aajuaGbeaacqGH9aqpcaaIWaaaaa@47C2@ - τ final (0) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aa0baaKqbGeaacaWGMbGaamyAaiaad6gacaWGHbGaamiBaaqaaiaa cIcacaaIWaGaaiykaaaaaaa@3F40@ ; in the external field, when δ τ 1 0,δ τ 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGHGjsUcaaIWaGa aiilaiaaykW7caaMe8UaeqiTdqMaeqiXdq3aaSbaaKqbGeaacaaIYa aajuaGbeaacqGHGjsUcaaIWaaaaa@4944@ - τ final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq 3aaSbaaKqbGeaacaWGMbGaamyAaiaad6gacaWGHbGaamiBaaqcfaya baaaaa@3DBA@ . (Figure 7) shows dependence of the final distance ξ ¯ final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaaaaa@3DD0@ at which electrons scatter at the time τ=2000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq Naeyypa0JaaGOmaiaaicdacaaIWaGaaGimaaaa@3C2A@ for different values of phase shifts δ τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaaaaa@3B77@ , δ τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaaaaa@3B78@ and next values of oscillation velocities η 1 =1.7× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIXaGaaiOlaiaa iEdacqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaaiabgkHiTiaaio daaaaaaa@4273@ , η 2 =3× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIYaaaaaaa@4102@ . It's seen that the final distance ξ ¯ final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaaaaa@3DD0@ is smaller ξ ¯ Cfinal =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadoeacaWGMbGaamyAaiaad6gacaWGHbGa amiBaaqcfayabaGaeyypa0JaaGOmaaaa@405A@ and it has the minimum value down to ξ ¯ final = 10 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaacqGH9aqpcaaIXaGaaGimamaaCaaabeqcfasaaiabgkHiTi aaigdaaaaaaa@4243@ for the next ranges of phase shifts δ τ 1 [ 200÷400 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGHiiIZdaWadaqa aiaaikdacaaIWaGaaGimaiabgEpa4kaaisdacaaIWaGaaGimaaGaay 5waiaaw2faaaaa@458A@ , δ τ 2 [ 100÷600 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaacqGHiiIZdaWadaqa aiaaigdacaaIWaGaaGimaiabgEpa4kaaiAdacaaIWaGaaGimaaGaay 5waiaaw2faaaaa@458C@ .

Figure 7 The final averaged relative distance ξ ¯ final MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWGSbaa juaGbeaaaaa@3DD0@ (in the time moment τ=2000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq Naeyypa0JaaGOmaiaaicdacaaIWaGaaGimaaaa@3C2A@ , ξ ¯ Cfinal =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadoeacaWGMbGaamyAaiaad6gacaWGHbGa amiBaaqcfayabaGaeyypa0JaaGOmaaaa@405A@ ) against different phase shifts of the pulse peaks δ τ 1 ,δ τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacaGGSaGaaGPaVlaa ysW7cqaH0oazcqaHepaDdaWgaaqcfasaaiaaikdaaKqbagqaaaaa@4442@ . Oscillation velocities: η 1 = ξ ˙ 0 =1.7× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcuaH+oaEgaGaamaa BaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGymaiaac6cacaaI3a Gaey41aqRaaGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaa aaaa@46DC@ , η 2 =3× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIYaaaaaaa@4102@ (field intensities: I 1 =1.1× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaGymaiaac6cacaaI XaGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4741@ , I 2 =3.4× 10 14 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaGG UaGaaGinaiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI0aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48D6@ ).

(Figure 8) shows dependence of averaged relative distance ξ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG Nbaebaaaa@3850@ on the interaction time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@383A@ for mainly interesting values of the phase shifts. One can see that taking into account of the phase shifts can considerably increase the attraction force. Thus, the time of electron scattering to the initial value of the distance ( ξ ¯ Cfinal =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG NbaebadaWgaaqcfasaaiaadoeacaWGMbGaamyAaiaad6gacaWGHbGa amiBaaqcfayabaGaeyypa0JaaGOmaaaa@405A@ ) is increased in comparison with the case without an external field to τ final / τ Cfinal 13.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacqaHepaDdaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWG SbaajuaGbeaaaeaacqaHepaDdaWgaaqcfasaaiaadoeacaWGMbGaam yAaiaad6gacaWGHbGaamiBaaqcfayabaaaaiabgIKi7kaaigdacaaI ZaGaaiOlaiaaiwdaaaa@4A77@ (Figure 8); in the external field when δ τ 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIWaaa aa@3D37@ , δ τ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIWaaa aa@3D38@ the time is increased to τ final / τ final (0) 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacqaHepaDdaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWG SbaajuaGbeaaaeaacqaHepaDdaqhaaqcfasaaiaadAgacaWGPbGaam OBaiaadggacaWGSbaabaGaaiikaiaaicdacaGGPaaaaaaajuaGcqGH ijYUcaaI0aaaaa@4998@ (Figure 8) for oscillation velocities η 1 =1.7× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIXaGaaiOlaiaa iEdacqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaaiabgkHiTiaaio daaaaaaa@4273@ , η 2 =3× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIYaaaaaaa@4102@ and phase shifts δ τ 1 =350 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGa aGynaiaaicdaaaa@3EB3@ , δ τ 2 =400 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaI0aGa aGimaiaaicdaaaa@3EB0@ . The effect is a bit weaker for phase shifts δ τ 1 =300 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGa aGimaiaaicdaaaa@3EAE@ , δ τ 2 =300 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIZaGa aGimaiaaicdaaaa@3EAF@ (Figure 8).

Figure 8 The averaged relative distance ξ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOVdG Nbaebaaaa@3850@ against the interaction time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@383A@ . The dashed line corresponds to case without external field. The dashed-dot line and solid lines correspond to the oscillation velocity: η 1 = ξ ˙ 0 =1.7× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcuaH+oaEgaGaamaa BaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGymaiaac6cacaaI3a Gaey41aqRaaGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIZaaa aaaa@46DC@ , η 2 =3× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaIZaGaey41aqRa aGymaiaaicdadaahaaqabKqbGeaacqGHsislcaaIYaaaaaaa@4102@ (the field intensity: I 1 =1.1× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaGymaiaac6cacaaI XaGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4741@ , I 2 =3.4× 10 14 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaGG UaGaaGinaiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI0aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48D6@ ), phase shifts of pulse peaks: 1- δ τ 1 =350,δ τ 2 =400 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGa aGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHepaDdaWgaa qcfasaaiaaikdaaKqbagqaaiabg2da9iaaisdacaaIWaGaaGimaaaa @4AB6@ , 2- δ τ 1 =300,δ τ 2 =300 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI 9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIZaGa aGimaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHepaDdaWgaa qcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaaIWaGaaGimaaaa @4AB0@ ; the dashed-dot line - δ τ 1 =0,δ τ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaIWaGa aiilaiaaykW7caaMe8UaeqiTdqMaeqiXdq3aaSbaaKqbGeaacaaIYa aajuaGbeaacqGH9aqpcaaIWaaaaa@47C2@ .

Conclusion

Performed study shows that taking into account of phase shifts of pulse peaks can essentially change the behavior of the effective interaction of electrons:

  1. The anomalous repulsion of electrons is observed when the oscillation velocity of the first wave is greater than the initial velocity of electrons ( η 1 > ξ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH+aGpcuaH+oaEgaGaamaa BaaajuaibaGaaGimaaqcfayabaaaaa@3E23@ ), and the oscillation velocity of the second wave is considerably greater ( η 2 >> ξ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH+aGpcqGH+aGpcuaH+oaE gaGaamaaBaaajuaibaGaaGimaaqcfayabaaaaa@3F2C@ ). Thus, the maximum effect of anomalous repulsion of electrons corresponds to the following ranges of phase shifts of pulse peaks: δ τ 1 [ 300÷550 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGHiiIZdaWadaqa aiabgkHiTiaaiodacaaIWaGaaGimaiabgEpa4kabgkHiTiaaiwdaca aI1aGaaGimaaGaay5waiaaw2faaaaa@476B@ δ τ 2 [ 250÷450 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaacqGHiiIZdaWadaqa aiaaikdacaaI1aGaaGimaiabgEpa4kaaisdacaaI1aGaaGimaaGaay 5waiaaw2faaaaa@4595@ . So, for intensities of the waves I 1 =3.4× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaG4maiaac6cacaaI 0aGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4746@ , I 2 =3.8× 10 15 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaGG UaGaaGioaiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI1aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48DB@ and phase shifts δ τ 1 =450,δ τ 2 =250 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcqGHsisl caaI0aGaaGynaiaaicdacaGGSaGaaGPaVlaaysW7cqaH0oazcqaHep aDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaikdacaaI1aGa aGimaaaa@4BA7@ the ratio ξ ¯ final / ξ ¯ Cfinal 450 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacuaH+oaEgaqeamaaBaaajuaibaGaamOzaiaadMgacaWGUbGaamyy aiaadYgaaKqbagqaaaqaaiqbe67a4zaaraWaaSbaaKqbGeaacaWGdb GaamOzaiaadMgacaWGUbGaamyyaiaadYgaaKqbagqaaaaacqGHijYU caaI0aGaaGynaiaaicdaaaa@49F1@ , and the ratio ξ ¯ final / ξ ¯ (0) final 180 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacuaH+oaEgaqeamaaBaaajuaibaGaamOzaiaadMgacaWGUbGaamyy aiaadYgaaKqbagqaaaqaaiqbe67a4zaaraWaaWbaaeqajuaibaGaai ikaiaaicdacaGGPaaaaKqbaoaaBaaajuaibaGaamOzaiaadMgacaWG UbGaamyyaiaadYgaaKqbagqaaaaacqGHijYUcaaIXaGaaGioaiaaic daaaa@4C1A@ .
  2. The effective attraction of electrons takes place, when the oscillation velocity η 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaaaaa@39B9@ has to be close to the initial relative velocity ( η 1 ξ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaKqbGeaacaaIXaaajuaGbeaacqGHijYUcuaH+oaEgaGaamaa BaaajuaibaGaaGimaaqcfayabaaaaa@3ECC@ ), and the oscillation velocity of the second wave is greater in an order of the magnitude. Thus, the maximum effect of slowing-down of electrons corresponds to the following ranges of phase shifts of pulse peaks: δ τ 1 [ 350÷400 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGHiiIZdaWadaqa aiaaiodacaaI1aGaaGimaiabgEpa4kaaisdacaaIWaGaaGimaaGaay 5waiaaw2faaaaa@4590@ , δ τ 2 [ 400÷550 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaacqGHiiIZdaWadaqa aiaaisdacaaIWaGaaGimaiabgEpa4kaaiwdacaaI1aGaaGimaaGaay 5waiaaw2faaaaa@4593@ . So, for intensities of waves I 1 =1.1× 10 12 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaGymaiaac6cacaaI XaGaaGjbVlabgEna0kaaigdacaaIWaWaaWbaaeqajuaibaGaaGymai aaikdaaaqcfa4aaSGbaeaacaqGxbaabaGaae4yaiaab2gadaahaaqa bKqbGeaacaqGYaaaaaaaaaa@4741@ , I 2 =3.4× 10 14 W/ cm 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl aadMeadaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaaiodacaGG UaGaaGinaiaaysW7cqGHxdaTcaaIXaGaaGimamaaCaaabeqcfasaai aaigdacaaI0aaaaKqbaoaalyaabaGaae4vaaqaaiaabogacaqGTbWa aWbaaeqajuaibaGaaeOmaaaaaaaaaa@48D6@ and phase shifts δ τ 1 =400 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIXaaajuaGbeaacqGH9aqpcaaI0aGa aGimaiaaicdaaaa@3EAF@ , δ τ 2 =550 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaeqiXdq3aaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaaI1aGa aGynaiaaicdaaaa@3EB6@ the values of slowing-down of electrons may be equal τ final / τ Cfinal 16.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacqaHepaDdaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWG SbaajuaGbeaaaeaacqaHepaDdaWgaaqcfasaaiaadoeacaWGMbGaam yAaiaad6gacaWGHbGaamiBaaqcfayabaaaaiabgIKi7kaaigdacaaI 2aGaaiOlaiaaiwdaaaa@4A7A@ and τ final / τ final (0) 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacqaHepaDdaWgaaqcfasaaiaadAgacaWGPbGaamOBaiaadggacaWG SbaajuaGbeaaaeaacqaHepaDdaqhaaqcfasaaiaadAgacaWGPbGaam OBaiaadggacaWGSbaabaGaaiikaiaaicdacaGGPaaaaaaajuaGcqGH ijYUcaaI1aaaaa@4998@ .

Acknowledgments

None.

Conflicts of interest

There is no conflicts of interest.

References

  1. Ehlotzky F, Krajewska K, Kaminski JZ. Fundamental processes of quantum electrodynamics in laser fields of relativistic power. Rep Prog Phys. 2009;72(4):046401.
  2. Roshchupkin SP, Lebed’ AA, Padusenko EA, et al. Quantum electrodynamics resonances in a pulsed laser field. Laser Phys. 2012;22(6):1113‒1144.
  3. Starodub SS, Roshchupkin SP. Interaction of classical nonrelativistic identically charged particles in a pulsed light field. Laser Phys. 2012;22(7):1202‒1219.
  4. Oleinik VP. Resonance effects in the field of an intense laser ray II. Zh Eksp Teor Fiz. 1967;26(6):1‒7.
  5. Kazantsev AP, Sokolov VP. Zh Eks Teor Fiz. 1984;86:896.
  6. Zavtrak ST. Letter in Zh Eks Teor Fiz. 1989;15:439.
  7. Starodub SS, Roshchupkin SP. Non-linear effects at ionization of hydrogen atoms in the strong pulsed light field. Problems Atom Sci Technol. 2012;N1:153 ‒156.
  8. Starodub SS, Roshchupkin SP. Interaction of identically charged particles in a pulsed field of two laser waves propagating in the one direction. Laser Phys. 2015;25(7):076001.
  9. Starodub SS, Roshchupkin SP, Dubov VV. Laser Phys Lett. 2016;13(11):116001.
  10. Bula C, McDonald KT, Prebys EJ, et al. Observation of Nonlinear Effects in Compton Scattering. Phys Rev Lett. 1996;76:3116.
  11. Burke DL, Field RC, Horton-Smith G, et al. Positron Production in Multiphoton Light-by-Light Scattering. Phys Rev Lett. 1997;79:1626.
  12. Di Piazza A, Muller C, Hatsagortsyan KZ, et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev Mod Phys. 2012;84: 1177.
Creative Commons Attribution License

©2018 Starodub, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.