Submit manuscript...
MOJ
eISSN: 2577-8374

Solar and Photoenergy Systems

Research Article Volume 2 Issue 1

Band Gaps of Diamond Structured Photonic Crystals

Wijewardena Gamalath KAIL, Jayawardana KBSKB

Department of Physics, University of Colombo, Sri Lanka

Correspondence: Wijewardena Gamalath KAIL, Department of Physics, University of Colombo, Sri Lanka

Received: November 24, 2017 | Published: January 12, 2018

Citation: Jayawardana KBSKB, Gamalath WKAIL (2018) Band Gaps of Diamond Structured Photonic Crystals. Open Acc J Photoen 2(1): 00018. DOI: 10.15406/mojsp.2018.02.00018

Download PDF

Abstract

From the plane wave expansion method, the energy bands and density of states for optimum band gaps were obtained for diamond lattice formed from GaP, Si, InP, GaAs, InAs, Ge and BaSrTiO3 dielectrics spheres drilled in air, by changing the radius of the spheres in symmetric directions of the irreducible Brillouin zone for normalized frequency. The lattice constants were determined by using wavelengths from 150 nm-1nm. The variation of the band gap widths with the filling factor and the variation of gap of mid gap ratios with dielectric constant were investigated. The largest band gaps of 0.0438 for normalized frequency was obtained for Ge and a gap to mid gap ratio of 11.43% for BaSrTiO3 for closed packed filling factor. Diamond crystal doesn’t give band gaps for materials with dielectric constant less than 4 such as SiO2. The gap to mid-gap ratio increases with increased dielectric constant in the range 4-16 but there is no correlation between gap size and dielectric constant. The highest mid-gap of 0.47935 ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDaaa@3834@ /2 was obtained for GaP. GaP spheres of radii in the range of 0.161 μm to 0.103mm are practically suitable for the wavelength range 1.55μm-1mm. The mode filed distributions were obtained by guiding a telecommunication wave with 1.55 μm wavelength through a photonic cell formed from GaP spheres in the air with a filling factor of 0.34. There were no complete band gaps for air spheres drilled in these eight dielectric mediums.

Keywords: photonic crystals, diamond photonic crystal, plane wave expansion method, mode filed distributions, band gap, filling factor, gap to mid gap ratio

Introduction

In a three dimensional photonic crystal, an artificially formed dielectric structure, periodic along three different axes, when electromagnetic waves interact they periodically modulate the dielectric constant. A photonic band gap may form in these directions prohibiting the propagation of photons for energies that lie within the gap. Under certain conditions, there will be regions of forbidden frequencies in all the directions of propagation, creating a complete photonic band gap. These three dimensional photonic crystal with complete photonic band gap, which prohibit propagation of light in any three-dimensional directions for any polarization states, are crucial to full control of light-matter interactions and are significant for optical or optoelectronic device operation in radio to optical wavelengths.1 This is an energy band in which optical modes, spontaneous emission, and zero point fluctuations are all absent.2

The possibility of a three dimensional photonic band gaps in periodic structures was suggested by Yablonovitch in 1987,3 one century after Lord Rayleigh (1887) described the one dimensional photonic band gap.4 Once the first three-dimensional photonic crystal with diamond structure was predicted in 1990 by Ho et al.,5 the development of photonic crystals with a complete band gap has advanced from the concept to fabrication from the simple two-dimensional or three dimensional (3D) structures to more complicated 3D structures. Among the various structures, diamond structure is one of the most attractive classes of structures, which consists of two interpenetrating face centered cubic Bravais lattices. Large photonic band gaps have been predicted in all-dielectric crystals with a diamond structure. It is difficult, however, to form three-dimensional diamond structures because the lattice stacking is difficult to achieve compared with simple face-centered cubic or woodpile structure which is a well known simplified diamond structure.5,6 The radius of the spheres can be varied to tune the photonic bands and the spheres do not overlap with each other if the radius is smaller than 0.2165a, where a is the size of the cubic unit cell.7 Edagawa et al.,8 have shown that photonic amorphous diamond also possesses a sizable 3D photonic band gap and that it can confine light at a defect as strongly as conventional photonic crystals can.8

Since for diamond-related structures Korringa-Kohn-Rostoker (KKR) calculations give a lower value for the gap width than the plane-wave calculations,9 the plane wave expansion method applicable to any type of non-dispersive dielectric functions was used as the numerical technique in the present work in modeling and simulating the band structures of three dimensional photonic crystals with diamond lattices formed SiO2, GaP, Si, InAs, GaAs, InP, Ge and BaSrTiO3 spheres drilled in air. For the periodic dielectric function, the magnetic field vector was expanded using Bloch theorem leading to eigenvalue equation in matrix form. A standard eigenvalue equation was solved for the lattice geometries and the energy bands and density of states were calculated in X , U , L , Γ , X , W , K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb GaaiilaiaaysW7caWGvbGaaiilaiaaysW7caWGmbGaaiilaiaaysW7 cqqHtoWrcaGGSaGaaGjbVlaadIfacaGGSaGaaGjbVlaadEfacaGGSa GaaGjbVlaadUeaaaa@4A4D@ direction of the Brillouin zone for the eight materials by defining the number of plane waves as 343 for the reciprocal grid. The radius of the dielectric sphere R was changed until an optimum band gap was obtained was obtained. Only the band gaps and density of states for Ge and GaP having largest band gaps are presented. The effects of the parameters on the band gaps were studied. For the propagation of telecommunication waves in the diamond photonic crystal formed by GaP spheres of radius R=0.22a (Closely packed situation) in the air with a filling factor of 0.34, the variation of the amplitude of the electric and magnetic field components relative to X-Z plane obtained using finite difference time domain method are presented.

Plane wave expansion method

The propagation of light in a photonic crystal is governed by the four Maxwell equations. By combining the source-free Faraday’s and Ampere’s laws at a fixed angular frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDaaa@3834@ that is with harmonic time dependence of the electric field and magnetic field strength leads to the master equation for a periodic dielectric structure.10 Here, photonic crystal is considered to be a macroscopic, homogeneous, isotropic dielectric material (µ(r)≈1) with no placed charges or current densities with real dielectric constant ε(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyTdu MaaiikaiaackhacaGGPaaaaa@3A70@ and no dispersion. In the plane wave expansion method, a set of plane waves is used to expand, periodic functions in a Fourier series. Because of the periodic nature of photonic crystals, the magnetic field is expanded into a sum of plane waves in reciprocal space giving an arbitrary spatial frequency call reciprocal lattice vector G i = h i b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4raK qbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0JaamiA aKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaamOyaKqbao aaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@443E@ in terms of basis vectors b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOyaK qbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3A61@ in the reciprocal space and set of are integers h i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiAaK qbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaaaa@3A67@ . The dielectric function of the structure is similarly expanded in terms of reciprocal lattice vectors and the master equation can be written as:10-12

G | k + G | | k + G | ε 1 ( G G )[ e ^ 2 . e ^ 2 e ^ 2 . e ^ 1 e ^ 1 . e ^ 2 e ^ 1 . e ^ 1 ][ h 1 h 2 ]=[ M 1 M 2 M 3 M 4 ][ h 1 ( G ) h 2 ( G ) ]= ϖ 2 c 2 [ h 1 h 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqafake aajugibiaacYhajuaGdaWhcaGcbaqcLbsacaWGRbaakiaawEniaKqz GeGaey4kaSscfa4aa8HaaOqaaKqzGeGaam4raaGccaGLxdcajugibi aacYhaaKqaGeaajugWaiqadEeagaqbaaWcbeqcLbsacqGHris5aiaa cYhajuaGdaWhcaGcbaqcLbsacaWGRbaakiaawEniaKqzGeGaey4kaS scfa4aa8HaaOqaaKqzGeGabm4rayaafaaakiaawEniaKqzGeGaaiiF aiabew7aLLqbaoaaCaaaleqabaqcLbsacqGHsislcaaIXaaaaiaacI cajuaGdaWhcaGcbaqcLbsacaWGhbaakiaawEniaKqzGeGaeyOeI0sc fa4aa8HaaOqaaKqzGeGabm4rayaafaaakiaawEniaKqzGeGaaiykaK qbaoaadmaakeaajugibuaabeqaciaaaOqaaKqzGeGabmyzayaajaqc fa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacaGGUaGabmyzay aajyaafaqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaakeaajugi biabgkHiTiqadwgagaqcaKqbaoaaBaaajeaibaqcLbmacaaIYaaale qaaKqzGeGaaiOlaiqadwgagaqcgaqbaKqbaoaaBaaajeaibaqcLbma caaIXaaaleqaaaGcbaqcLbsacqGHsislceWGLbGbaKaajuaGdaWgaa qcbasaaKqzadGaaGymaaWcbeaajugibiaac6caceWGLbGbaKGbauaa juaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaaOqaaKqzGeGabmyzay aajaqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacaGGUaGa bmyzayaajyaafaqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa GccaGLBbGaayzxaaqcfa4aamWaaOqaaKqzGeqbaeqabiqaaaGcbaqc LbsaceWGObGbauaajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaO qaaKqzGeGabmiAayaafaqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqa baaaaaGccaGLBbGaayzxaaqcLbsacaaMe8UaaGjbVlabg2da9iaays W7caaMe8Ecfa4aamWaaOqaaKqzGeqbaeqabiGaaaGcbaqcLbsacaWG nbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaakeaajugibiaad2 eajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaaOqaaKqzGeGaamyt aKqbaoaaBaaajeaibaqcLbmacaaIZaaaleqaaaGcbaqcLbsacaWGnb qcfa4aaSbaaKqaGeaajugWaiaaisdaaSqabaaaaaGccaGLBbGaayzx aaqcfa4aamWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGObqcfa 4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacaGGOaGabm4rayaa faGaaiykaaGcbaqcLbsacaWGObqcfa4aaSbaaKqaGeaajugWaiaaik daaSqabaqcLbsacaGGOaGabm4rayaafaGaaiykaaaaaOGaay5waiaa w2faaKqzGeGaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjbVNqbaoaala aakeaajugibiabeA9a2LqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aaGcbaqcLbsacaWGJbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaa aaaKqbaoaadmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamiAaKqb aoaaBaaajeaibaqcLbmacaaIXaaaleqaaaGcbaqcLbsacaWGObqcfa 4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaaGccaGLBbGaayzxaaaa aa@E43E@

(1)

The two unit vectors e ^ 1,k+G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGLb GbaKaakmaaBaaajeaibaqcLbmacaaIXaGaaiilaiaadUgacqGHRaWk caWGhbaaleqaaaaa@3CF7@ and e ^ 2,k+G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGLb GbaKaakmaaBaaajeaibaqcLbmacaaIYaGaaiilaiaadUgacqGHRaWk caWGhbaaleqaaaaa@3CF8@ which are perpendicular to k+G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaca WFRbGaa83kaiaa=Deaaaa@38D2@ vector, had to be calculated. Fourier transformation of the dielectric function can be further simplified to,

ε(G)=f ε a +(1f) ε b     for  G=0 =( ε a ε b )S(G)     for  G0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaajugibi abew7aLjaacIcaieWacaWFhbGaaiykaiaaysW7caaMe8Uaeyypa0Ja aGjbVlaaysW7caWGMbGaeqyTduMcdaWgaaqcbasaaKqzadGaamyyaa WcbeaajugibiaabUcacaGGOaGaaGymaiabgkHiTiaadAgacaGGPaGa eqyTduMcdaWgaaqcbasaaKqzadGaamOyaaWcbeaajugibiaabccaca qGGaGaaeiiaiaabccacaqGMbGaae4BaiaabkhacaqGGaGaaeiiaiaa =DeacqGH9aqpcaaIWaaakeaajugibiaaysW7caaMe8Uaeyypa0JaaG jbVlaaysW7caGGOaGaeqyTduMcdaWgaaqcbasaaKqzadGaamyyaaWc beaajugibiabgkHiTiabew7aLPWaaSbaaKqaGeaajugWaiaadkgaaS qabaqcLbsacaGGPaGaam4uaiaacIcacaWFhbGaaiykaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeOzaiaab+gacaqGYbGaaeiiaiaabc cacaWFhbGaeyiyIKRaaGimaaaaaa@7A77@                   (2)

f is the filling factor, defined as the fraction of area occupied by the localized medium in one unit cell. ε a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzkmaaBaaajeaibaqcLbmacaWGHbaaleqaaaaa@3A81@ and ε b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzlmaaBaaajeaibaqcLbmacaWGIbaajeaibeaaaaa@3AA2@ refer to the dielectric constants of the localized medium and background respectively. The factor S(G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaiikaGqadiaa=DeacaGGPaaaaa@396B@ rely on the geometry of the localized medium and the lattice structure. The structure factor for a diamond lattice formed from spheres of radius R is given by:12

 S(G)=3f[ sin(GR)GRcos(GR) (GR) 3 ]cos(G r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGGc Gaam4uaiaacIcacaWGhbGaaiykaiaaysW7caaMe8Uaeyypa0JaaGjb VlaaysW7caaIZaGaamOzaOWaamWaaeaadaWcaaqaaKqzGeGaci4Cai aacMgacaGGUbGaaiikaiaadEeacaWGsbGaaiykaiabgkHiTiaadEea caWGsbGaci4yaiaac+gacaGGZbGaaiikaiaadEeacaWGsbGaaiykaa GcbaqcLbsacaGGOaGaam4raiaadkfacaGGPaGcdaahaaWcbeqcbasa aKqzadGaaG4maaaaaaaakiaawUfacaGLDbaajugibabaaaaaaaaape Gaci4yaiaac+gacaGGZbGaaiikaGqad8aacaWFhbWdbiabgwSixlaa =jhak8aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbi aacMcaaaa@6642@                (3)

Any two different modes will be orthogonal to each other i.e. < H i | H j δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaadIeak8aadaWgaaqcKfaG=haajugWa8qacaWG Pbaal8aabeaajugib8qacaGG8bGaamisaOWdamaaBaaajqwaa+FaaK qzadWdbiaadQgaaSWdaeqaaKqzGeGaeyyzIm7dbiabes7aKPWaaSba aKazba4=baqcLbmacaWGPbGaamOAaaWcbeaaaaa@4CD6@ and degenerate modes are not necessarily orthogonal. When a wave with constant wavelength propagates through a photonic crystal it will modulate by the periodicity in that crystal, so the wave will have different filed distributions around the localized regions. Fundamentally, there are two polarizations called the transverse D field and the transverse H field.12

Energy bands and density of states

The diamond lattice is constructed with two interpenetrating FCC lattices, displacing along the body diagonal of the cubic cell by one-quarter the length of the diagonal. It can be considered two spherical atoms in the unit cell. The diamond crystal structure and irreducible Brillouin zone are presented in Figure 1a. The primitive lattice vectors given in term of the lattice constant “a” are a 1 =a( 0,1,1 )/2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaca WFHbGcdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaaysW7cqGH 9aqpcaaMe8UaamyyaOWaaeWaaeaajugibiaaicdacaGGSaGaaGjbVl aaysW7caaIXaGaaiilaiaaysW7caaMe8UaaGymaaGccaGLOaGaayzk aaqcLbsacaGGVaGaaGOmaiaacYcaaaa@4D7F@ a 2 =a( 1,0,1 )/2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaca WFHbGcdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaa dggakmaabmaabaqcLbsacaaIXaGaaiilaiaaicdacaGGSaGaaGymaa GccaGLOaGaayzkaaqcLbsacaGGVaGaaGOmaiaacYcaaaa@4483@ a 3 =a( 1,1,0 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaca WFHbGcdaWgaaqcbasaaKqzadGaaG4maaWcbeaajugibiabg2da9iaa dggakmaabmaabaqcLbsacaaIXaGaaiilaiaaigdacaGGSaGaaGimaa GccaGLOaGaayzkaaqcLbsacaGGVaGaaGOmaaaa@43D4@ and the locations of two primitive cells are r 0 =a( 1,1,1 )/4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaqa aaaaaaaaWdbiaa=jhakmaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaeyypa0JaamyyaOWaaeWaa8aabaqcLbsapeGaeyOeI0IaaGymai aacYcacqGHsislcaaIXaGaaiilaiabgkHiTiaaigdaaOGaayjkaiaa wMcaaKqzGeGaai4laiaaisdaaaa@46EC@ and r 1 =a( 1,1,1 )/4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaqa aaaaaaaaWdbiaa=jhakmaaBaaajeaibaqcLbmacaaIXaaaleqaaKqz GeGaeyypa0JaamyyaOWaaeWaa8aabaqcLbsapeGaaGymaiaacYcaca aMe8UaaGjbVlaaigdacaGGSaGaaGjbVlaaysW7caaIXaaakiaawIca caGLPaaajugibiaac+cacaaI0aaaaa@4A5A@ . The symmetric points Γ=(0,0,0),    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHto WrcaaMe8Uaeyypa0JaaGjbVdbaaaaaaaaapeGaaiikaiaaicdacaGG SaGaaGjbVlaaysW7caaIWaGaaiilaiaaysW7caaMe8UaaGimaiaacM cacaGGSaGaaiiOaiaacckacaGGGcaaaa@4B45@ X=( 0,1,1 )/2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIfacqGH9aqpkmaabmaabaqcLbsacaaIWaGaaiilaiaa ysW7caaMe8UaaGymaiaacYcacaaMe8UaaGjbVlaaigdaaOGaayjkai aawMcaaKqzGeGaai4laiaaikdacaGGSaaaaa@4707@ K=( 3,3,6 )/8, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUeacqGH9aqpkmaabmaabaqcLbsacaaIZaGaaiilaiaa ysW7caaMe8UaaG4maiaacYcacaaMe8UaaGjbVlaaiAdaaOGaayjkai aawMcaaKqzGeGaai4laiaaiIdacaGGSaaaaa@470A@ U=( 0,5,4 )/8, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwfacqGH9aqpkmaabmaabaqcLbsacaaIWaGaaiilaiaa ysW7caaMe8UaaGynaiaacYcacaaMe8UaaGjbVlaaisdaaOGaayjkai aawMcaaKqzGeGaai4laiaaiIdacaGGSaaaaa@4711@ W=( 1,2,3 )/4, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEfacqGH9aqpkmaabmaabaqcLbsacaaIXaGaaiilaiaa ysW7caaMe8UaaGOmaiaacYcacaaMe8UaaGjbVlaaiodaaOGaayjkai aawMcaaKqzGeGaai4laiaaisdacaGGSaaaaa@470C@ and L=( 0,0.5,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeacqGH9aqpkmaabmaabaqcLbsacaaIWaGaaiilaiaa ysW7caaIWaGaaiOlaiaaiwdacaGGSaGaaGjbVlaaicdaaOGaayjkai aawMcaaaaa@42A2@ of the irreducible Brillouin zone are shown in Figure 1b. The diamond photonic crystal was formed by replacing the atoms in the primitive cell with dielectric spheres in air as shown in Figure 1c so that the dielectric constants of localized media ( ε a =ε) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqaH1oqzk8aadaWgaaqcbasaaKqzadWdbiaadgga aSWdaeqaaKqzGeGaeyypa0JaeqyTduMaaiykaaaa@3F65@ and background material ( ε b =1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqaH1oqzk8aadaWgaaqcbasaaKqzadGaamOyaaWc beaajugibiabg2da9iaaigdacaGGPaaaaa@3E5B@ or drilling air spheres in dielectric mediums ( ε a =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLPWdamaaBaaajeaibaqcLbmapeGaamyyaaWcpaqa baqcLbsacqGH9aqpcaaIXaaaaa@3D20@ and ε b =ε) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLPWdamaaBaaajeaibaqcLbmacaWGIbaaleqaaKqz GeGaeyypa0JaeqyTduMaaiykaaaa@3E9B@ ) and the number of grid points n in the direction of each basis lattice vector in space were specified in a three dimensional grid. The number of grid points or plane waves used was (2n+1) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaaGOmaiaad6gacqGHRaWkcaaIXaGaaiykaOWaaWbaaSqabKqaGeaa jugWaiaaiodaaaaaaa@3D08@ . Defining the number of plane waves as 343, the reciprocal grid was formed. After specifying the high symmetrical points in the three dimensional geometry, all the coefficients in the matrix was formed by calculating two unit vectors. Lattice constant was taken as one (a=1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaamyyaiabg2da9iaaigdacaGGPaaaaa@3A67@ . The radius of the dielectric sphere R was changed until the closed packed filling factor of 0.34 was obtained. For air holes in all the dielectric materials no complete band gaps were found. SiO2 (ε=3.9) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaeqyTduMaeyypa0JaaG4maiaac6cacaaI5aGaaiykaaaa@3C9F@ dielectric spheres in air do not give any complete but it gives a partial band gap between second and third band. For the diamond lattice formed from dielectrics GaP, Si, InP, GaAs, InAs, Ge and BaSrTiO3 spheres drilled in the air, the energy bands and density of states for optimum band gaps were obtained by changing the radius of the spheres in symmetric directions X,U,L,Γ,X,W,K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb GaaiilaiaaysW7caaMe8UaamyvaiaacYcacaaMe8UaaGjbVlaadYea caGGSaGaaGjbVlaaysW7caaMe8Uaeu4KdCKaaiilaiaaysW7caaMe8 UaamiwaiaacYcacaaMe8UaaGjbVlaadEfacaGGSaGaaGjbVlaaysW7 caWGlbaaaa@5529@ of the irreducible Brillouin zone for normalized frequency ωa/2πc=a/λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDcaWGHbGaai4laiaaikdacqaHapaCcaWGJbGaeyypa0Jaamyyaiaa c+cacqaH7oaBaaa@4130@ for closed packed filling factor. Ge has the highest band gap relative to other materials. The energy band diagram and density of states for the Ge with a band gap of 0.0438ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaI0aGaaG4maiaaiIdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@431C@ between second and third bands and gap to mid-gap ratio (Δω/ ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqGHuoarcqaHjpWDcaGGVaGaeqyYdCNcpaWaaSba aKqaGeaajugWa8qacaWGTbGaamyAaiaadsgaaSWdaeqaaKqzGeGaai ykaaaa@4258@ of 10.13% is shown in Figure 2a. The yellow region indicates a complete gap. There are partial band gaps between seventh and eighth and eighth and ninth bands. Figure 2b shows the energy bands and density of states of GaP (ε=11.1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaeqyTduMaeyypa0JaaGymaiaaigdacaGGUaGaaGymaiaacMcaaaa@3D50@ with a complete band gap

Figure1a Diamond real space lattice.

Figure 1c Diamond lattice formed by dielectric spheres.

Figure1a Diamond real space lattice.

Figure 2a Band diagrams (left) and normalized density of states (DOS) (right) of Ge (ε=16) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaeqyTduMaeyypa0JaaGymaiaaiAdacaGGPaaaaa@3BE8@

Figure 2b Band diagrams (left) and normalized density of states (DOS) (right) of GaP (11.1).

Material

Dielectric constant

Lattice constant µm

Radius of the sphere µm

Band gap

Gap to mid gap frequency ratio

0.0375ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaIZaGaaG4naiaaiwdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@431C@ between second and third bands and the gap to mid gap frequency ratio (Δω/ ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqGHuoarcqaHjpWDcaGGVaGaeqyYdCNcpaWaaSba aKqaGeaajugWa8qacaWGTbGaamyAaiaadsgaaSWdaeqaaKqzGeGaai ykaaaa@42A8@ is Si has a complete band gap of 0.0386ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaIZaGaaGioaiaaiAdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@431E@ between second and third band and the gap to mid-gap ratio (Δω/ ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqGHuoarcqaHjpWDcaGGVaGaeqyYdCNcpaWaaSba aKazba4=baqcLbmapeGaamyBaiaadMgacaWGKbaal8aabeaajugibi aacMcaaaa@446B@ is 8.21% .There are partial band gaps between third and fourth band and fourth and fifth band for both GaP and Si lattices. InP has a band gap of 0.0398ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaIZaGaaGyoaiaaiIdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@42D1@ between second and third band and gap to mid-gap ratio (Δω/ ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqGHuoarcqaHjpWDcaGGVaGaeqyYdCNcpaWaaSba aKqaGeaajugWa8qacaWGTbGaamyAaiaadsgaaSWdaeqaaKqzGeGaai ykaaaa@4258@ of 9.04%. There are partial band gaps between fourth and fifth bands, eighth and ninth bands and ninth and tenth bands. For closed packed filling factor GaAs and InAs only gives a complete band gap 0.0408ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaI0aGaaGimaiaaiIdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@4319@ and 0.161µm between second and third bands respectively. The gap to mid-gap frequency ratios (Δω/ ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqGHuoarcqaHjpWDcaGGVaGaeqyYdCNcpaWaaSba aKqaGeaajugWa8qacaWGTbGaamyAaiaadsgaaSWdaeqaaKqzGeGaai ykaaaa@42A8@ are 9.06% and 9.85% respectively. There are partial band gaps between fourth and fifth bands, eighth and ninth bands and ninth and tenth bands for both GaAs and for InAs the partial band gaps are between fourth and fifth, ninth and tenth and tenth and eleventh bands. BaSrTiO3 shown in Figure 2c has very large dielectric constant of 200 and it has a narrow band gap of 0.0162ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaIXaGaaGOnaiaaikdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@42C6@ between second and third bands with gap to mid-gap ratio (Δω/ ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqGHuoarcqaHjpWDcaGGVaGaeqyYdCNcpaWaaSba aKqaGeaajugWa8qacaWGTbGaamyAaiaadsgaaSWdaeqaaKqzGeGaai ykaaaa@4258@ of 11.43%.

Figure 2c Band diagrams (left) and normalized density of states (DOS) (right) of BaSrTiO3 (200).

From these energy band diagrams, gap width to mid-gap width ratio was obtained for telecommunication λ= 1.55µm wavelength and the lattice constants were calculated from the mid-gap position a/λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb Gaai4laiabeU7aSbaa@39B4@ for closed packed filling factor. The lattice constants, the radii of the sphere and with the width to mid-gap ratio (Δω/ ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqGHuoarcqaHjpWDcaGGVaGaeqyYdC3cpaWaaSba aKqaGeaajugWa8qacaWGTbGaamyAaiaadsgaaKqaG8aabeaajugibi aacMcaaaa@42C8@ for these materials are tabulated in Table 1.

Diamond crystal doesn’t give band gaps for materials with dielectric constant less than about 4 such as SiO2. Figure 3 shows the variation of gap to mid-gap ratio (Δω/ ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqGHuoarcqaHjpWDcaGGVaGaeqyYdCNcpaWaaSba aKqaGeaajugWa8qacaWGTbGaamyAaiaadsgaaSWdaeqaaKqzGeGaai ykaaaa@42A8@ with dielectric constant in the range 2-16. The gap to mid-gap ratio increases with the dielectric constant, the highest ratio given by BaSrTiO3 of 11.43%, but its band gap is less than the band gaps of other dielectrics and is in the lower region of the band diagram. If this BaSrTiO3 crystal is used for telecommunication wavelength, then the dielectric spheres must be of radius 47.6 nm. Therefore, to design such a photonic diamond crystal is very difficult. Out of all the dielectric materials, Ge with the highest band gaps ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDcaWGHbGaai4laiaaikdacqaHapaCcaWGJbaaaa@3D2E@ of 0.0438 it the most suitable for controlling the electromagnetic waves. GaP with radius of spheres of 0.161µm have the highest mid gap frequency of 0.47935ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaabsdacaqG3aGaaeyoaiaabodacaqG1aGaaGPaVlabeM8a 3jaadggacaGGVaGaaGOmaiabec8aWjaadogaaaa@43C0@ . If GaP is used in microwave region then the lattice constant, a must lie in the range 0.47935 nm to 0.47935 m. This range is practically suitable in designing photonic crystals so that Gap with diamond structure can be used in microwave applications. The optimum band gap, for the closed packed filling factor of 0.34 of the diamond structured photonic crystals formed from GaAs, GaP, InP and BaSrTiO3 spheres in the air for the wavelength range 1550nm-1mm is given in Table 2.

Material

Dielectric Constant

Lattice Constant µm

Radius of the Sphere µm

Band Gap

Gap to Mid Gap Frequency Ratio

GaP

11.1

0.743

0.161

0.0375

7.82%

Si

11.68

0.729

0.1578

0.0386

8.21%

InP

12.41

0.7128

0.1543

0.0398

9.04%

GaAs

13.1

0.6983

0.1512

0.0408

9.06%

InAs

14.6

0.67

0.1451

0.0426

9.85%

Ge

16

0.64697

0.14

0.0438

10.13%

BaSrTiO3

200

0.2196

0.0476

0.0162

11.43%

Table 1 Lattice parameters, dielectric constants and band gaps for telecommunication wavelength for closed packed filling factor of 0.34

Dielectric Material

Mid-Gap

Range of the Lattice Constant

Range of Radius of the Sphere

GaP

0.4794

0.7430 µm-0.4794 mm

0.1609 µm-0.1038 mm

Si

0.4703

0.7290 µm-0.4703 mm

0.1578 µm-0.1018 mm

InP

0.4599

0.7128 µm-0.4599 mm

0.1543 µm-0.0996 mm

GaAs

0.4505

0.6983 µm-0.4505 mm

0.1512 µm-0.0975 mm

InAs

0.4323

0.6700 µm-0.4323 mm

0.1451 µm-0.0936 mm

Ge

0.4174

0.6470 µm- 0.4174 mm

0.1400 µm-0.0904 mm

BaSrTiO3

0.1417

0.2196 µm- 0.1417 mm

0.0476 µm-0.0307 mm

Table 2 Optimum band gap the range of radius of the sphere for diamond structure for wavelength range 1550nm-1mm

Figure 3 Gap to mid-gap ratio   ( Δω ω mid ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGWj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacaGGGcqddaqadaGcbaqddaWcaaGcbaqcLbsacqqH uoarcqaHjpWDaOqaaKqzGeGaeqyYdCxddaWgaaqcbauaaKqzadGaam yBaiaadMgacaWGKbaaleqaaaaaaOGaayjkaiaawMcaaaaa@4771@ with dielectric constant.

Wave propagation through gap diamond photonic crystal

When an electromagnetic wave of wave of wavelength 1055µm that is a telecommunication wave was propagated through this GaP photonic crystal lattice, the electric field components and magnetic field components were obtained. The amplitude of these electric and magnetic components is shown in Figures 4 & 5 respectively. The amplitude of the electric field around the dielectric spheres is greater than the electric field inside the dielectric spheres. This means electric field will not propagate through the dielectric spheres. When it comes to magnetic field (H), the amplitude inside the spheres is higher than the outside. Therefore, the magnetic field propagates through the dielectric and will avoid propagation through air.

Figure 4 Propagation of electric field through GaP diamond lattice with filling factor of 0.0736. The amplitude variations of (a) E x (b) E y (c) E z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaamyyaiaacMcacaWGfbGcdaWgaaqcbasaaKqzadGaamiEaaWcbeaa jugibiaacIcacaWGIbGaaiykaiaaykW7caWGfbGcdaWgaaqcbasaaK qzadGaamyEaaWcbeaajugibiaacIcacaWGJbGaaiykaiaadweakmaa BaaajeaibaqcLbmacaWG6baaleqaaaaa@4C14@ .

Figure 5 Propagation of electric field through GaP diamond lattice with filling factor of 0.0736. The amplitude variations of (a) H x (b) H y (c) H z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaamyyaiaacMcacaWGibGcdaWgaaqcbasaaKqzadGaamiEaaWcbeaa jugibiaacIcacaWGIbGaaiykaiaadIeakmaaBaaajeaibaqcLbmaca WG5baaleqaaKqzGeGaaiikaiaadogacaGGPaGaamisaOWaaSbaaKqa GeaajugWaiaadQhaaSqabaaaaa@4A91@ .

Conclusion

Diamond lattice for all the material with a dielectric constant greater than 4 gave band gaps for closely packed filling factor of 0.34 whereas SiO2 spheres with a dielectric constant of 3.9 in the air does not give a band gap for diamond structure. The largest band gap of 0.0438ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaI0aGaaG4maiaaiIdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@431C@ with a gap to mid-gap ratio of 10.13% was obtained for Ge spheres followed closely by InAs spheres with a band gap of 0.0426ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaI0aGaaGOmaiaaiAdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@4319@ and gap to mid-gap ratio of 9.85% for closely packed filling factor. Although the largest gap to mid-gap ratio of 11.43% is given by BaSrTiO3 its band gap is much smaller than the band gaps of other dielectric materials. Though GaP spheres have smaller band gap of 0.0375ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaaicdacaaIZaGaaG4naiaaiwdacaaMc8UaeqyYdCNaamyy aiaac+cacaaIYaGaeqiWdaNaam4yaaaa@431C@ with gap to mid-gap ratio of 7.82% it has the highest mid-gap of 0.47935ωa/2πc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaiOlaiaabsdacaqG3aGaaeyoaiaabodacaqG1aGaaGPaVlabeM8a 3jaadggacaGGVaGaaGOmaiabec8aWjaadogaaaa@43C0@ and at telecommunication wavelength, the radius of the sphere 0.1610µm is almost ten times that of BaSrTiO3 spheres that must be used and larger than all the other dielectric materials, thereby GaP is more convenient to use in fabricating photonic crystals of diamond lattice. Mode field distributions of GaP spheres photonic crystal of diamond lattice showed that for telecommunication wavelength, electric field will not propagate through the dielectric spheres while the magnetic field propagates through the dielectric spheres avoiding the propagation through air.

Acknowledgments

None.

Conflicts of interest

There is no conflicts of interest.

References

  1. Joannopolus JD, Johnson SG, Winn JN, et al. Photonic Crystals: Modeling the flow of light, Princeton University Press, Princeton, New Jersey, USA, Chapter. 2008;6:94‒121.
  2. Yablonovitch E, Gmitter TJ. Photonic band structure: the face-centered-cubic case. J Opt Soc Am A. 1990;7(9):1792‒1800.
  3. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58(20):2059‒2062.
  4. Rayleigh Sec RSL. XXVI. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. Phil Mag. 1988;26(160):256‒265.
  5. Ho KM, Chan CT, Soukoulis CM. Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett. 1990;65(25):3152‒3155.
  6. Maldovan M, Thomas EL. Diamond-structured photonic crystals. Nat Mater. 2004;3(9):593‒600.
  7.  John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987;58(23):2486‒2489.
  8. Edagawa K, Kanoko S, Notomi M. Photonic amorphous diamond structure with a 3D photonic band gap. Phys Rev Lett. 2008;100(1):013901.
  9. Vermolen EC, Thijssen JH, Moroz A, et al. Comparing photonic band structure calculation methods for diamond and pyrochlore crystals. Opt Express. 2009;17(9):6952‒6961.
  10. Dissanayake SE, Wijewardena Gamalath KAIL. Three dimensional photonic crystals. World Sci News. 2015;6:57‒68.
  11. Jayawardana KBSKB, Wijewardena Gamalath KAIL. Study on the Photonic Band Gaps of the Face Centered Cubic Crystals. Int Lett Chem Phys Astron. 2016;70:63‒75.
  12. Jayawardana KBSKB, Wijewardena Gamalath KAIL. Body centered photonic crystal. Int Lett Chem Phys Astron. 2016;66:96‒ 108.
Creative Commons Attribution License

©2018 Jayawardana, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.