Submit manuscript...
MOJ
eISSN: 2572-8520

Civil Engineering

Review Article Volume 2 Issue 4

Velocity dynamics effect on partial deposition of lead of heterogeneous coarse formation applying predictive model

Eluozo SN,1 Nwaoburu AO,2 Eleki AG3

1Department of Statistics, Polytechnic in Port Harcourt, Nigeria
2Department of Mathematics/Computer Science, Rivers State University, Nigeria
3Department of Mathematics/Computer Science, Polytechnic in Port Harcourt, Nigeria

Correspondence: Eluozo SN, Department of Statistics, Polytechnic in Port Harcourt, Nigeria

Received: March 27, 2017 | Published: April 28, 2017

Citation: Eluozo SN, Nwaoburu AO, Eleki A. Velocity dynamics effect on partial deposition of lead of heterogeneous coarse formation applying predictive model. MOJ Civil Eng. 2017;2(4):145-149. DOI: 10.15406/mojce.2017.02.00043

Download PDF

Abstract

This paper monitors partial deposition of lead through the influences from velocity dynamics in heterogeneous coarse depositions. The study examine rate of deposition at different strata under the influences of heterogeneous coarse in the study location, the transport of lead in coarse formation developed variation of concentration through heterogeneity of velocity of fluid dynamics in the study area, the system were develop by considering the migration rate of the contaminant at various depth, the developed system generated the governing equation to produced the derived model at different phase, the derived solution generated model at different phase base on the behaviour of velocity dynamics in the study area, the study is imperative because the derived model will definitely monitor the rate of partial deposition of lead in the study location.

Keywords: velocity dynamics, partial deposition, lead, heterogeneous, coarse formation

Introduction

A large design of deep geological repository for high level radioactive wastes (HLW) are based application of multi-barrier approach with segregation of the waste from the environment. The multi-barrier notion includes the natural geological barrier such as (host rock), engineered barriers includes compacted sand-Bentonite mixtures (placed around waste containers or apply as buffer and sealing elements) and metal canister.  It has observed that Compacted Bentonite-based materials are important materials for this purpose where develop low permeability, generating high swelling and high radionuclide retardation capacities.1-4 Engineered barriers are frequently consisting of compacted bricks. These are where bricks are placed around waste container are used to form sealing buffers, it has been observed that the so-called technological voids found to be between the bricks themselves or between bricks, canisters and the host rock are unavoidable. As an example, 10 mm thick gaps between Bentonite blocks and canister and 25 thick mm gaps between the Bentonite blocks and the host rock have been considered in the basic design of Finland.5 These technological voids appeared to be equal to 6.6 % of the volume of the gallery in the FEBEX mock-up test.6 Once placed in the galleries, engineered barriers are progressively hydrated by pore water infiltrating from the host-rock. This water infiltration is strongly dependent on the initial state of the compacted material water content, suction and density, e.g.7,8 Indeed, it has been shown that water transfer in unsaturated swelling compacted Bentonite or sand Bentonite mixtures is strongly dependent on the imposed boundary conditions in terms of volume change. As shown in Yahia-9 Cui et al.10 and Ye et al.11 the degree of swelling allowed significantly affects the amount of infiltrated water, with much water absorbed when swelling is allowed and a minimum amount of water absorbed when swelling is prevented. Volume change conditions also appeared to have, through microstructure changes, significant influence on the hydraulic conductivity.  In this regard, the degree of swelling allowed by the technological voids described above has a significant influence on the hydro-mechanical behaviour of the compacted Bentonite and their effects need to be better understood. Swelling results in a decrease in dry density that may lead to a degradation of the hydro-mechanical performance of engineered barriers.12,13 As a result, the safety function expected in the design may no longer be properly ensured.  Therefore, a better understanding of the effects of the technological voids is essential in assessing the overall performance of the repository.

Theoretical background

The deposition of velocity on fluid flow was express on the effect reflected on partial deposition of lead in heterogeneous coarse formation, these parameter determine lead deposition in every structure stratum, the study monitored the   behaviour base on the velocity of flow dynamics in heterogeneous coarse deposition, such condition were found to influences the deposition rate of lead in the study area, heterogeneity of coarse deposition express the structure intercedes of  coarse deposition thus the dynamics of flow in the deposited strata, in such geological setting the formation predominate the flows thus  the depositions of substances such as lead, this  condition implies that lead partial deposition were observed to express it rate of migration base on the influences from the dynamics from velocity of flow and heterogeneity  from coarse soil,. Predicting  partial deposition of such substances in soils, the migration rate of the substance  were observed base on the rate of concentration  from the lithology of the formation, these relationship express the variable significant influences in the dynamics of velocity on  partial deposition of lead. The system were developed considering these variables that should play significant role in the deposition of lead,  formation characteristic under the influences structural stratification of the formation were thoroughly integrated in the system,  the significant role of the degree of porosity and permeability  express the imperative role in the system, the developed system generated the governing equation that determine the velocity dynamics on partial deposition of lead in heterogeneous coarse deposition. The governing equation are derived  to generate the reflection of velocity dynamics in partial deposition of the substances in heterogeneous coarse formation, the derived solution are express below  considering various condition that may pressure the substance to generate slight variation of lead concentration in heterogeneous coarse formation.

Developed governing equation

V ¯ q t = φ ne q z Kx q z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGwb GbaebajuaGdaWcaaGcbaqcLbsacqGHciITcaWGXbaakeaajugibiab gkGi2kaadshaaaGaaGPaVlabg2da9iaaykW7caaMc8Ecfa4aaSaaaO qaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaaykW7juaG daWcaaGcbaqcLbsacqGHciITcaWGXbaakeaajugibiabgkGi2kaadQ haaaGaaGPaVlaaykW7cqGHsislcaaMc8UaaGPaVlaadUeacaWG4bqc fa4aaSaaaOqaaKqzGeGaeyOaIyRaamyCaaGcbaqcLbsacqGHciITca WG6baaaaaa@60A7@                                           ……………………….                 (1)

The expression here is the is the governing equation that will evaluate the velocity dynamics on partial deposition of lead, the developed equation are generated base on the significant parameters in the system that monitor the deposition of lead in heterogeneous formation, lots of variation on the concentration of lead with respect to change in depth has been observed in the study area. The rate of lead concentration has develop lots of variations influenced by heterogeneity from coarse uniformity coefficient, therefore the developed governing equation considered this condition to developed the expression in 1.

Nomenclature

q = Aquifer height [L]

V ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaara aaaa@36E9@           =              Homogeneous velocity [LT-1 ]

Kx            =              Permeability coefficient [LT-1]

f              =              Flow rate [LT-1]

ne            =              Porosity  [ - ]

T             =              Time [T]

Z              =              Depth [L]

q t = S 1 C(t)C(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaamyCaaGcbaqcLbsacqGHciITcaWG0baaaiaa ykW7cqGH9aqpcaaMc8UaaGPaVlaadofalmaaCaaabeqaaKqzadGaaG ymaaaajugibiaadoeacaGGOaGaamiDaiaacMcacaaMc8UaaGPaVlab gkHiTiaaykW7caaMc8Uaam4qaiaacIcacaWGVbGaaiykaaaa@52ED@                                                               ……………………….                 (2)

q z = S 1 C(z)C(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaamyCaaGcbaqcLbsacqGHciITcaWG6baaaiaa ykW7cqGH9aqpcaaMc8UaaGPaVlaadofalmaaCaaabeqaaKqzadGaaG ymaaaajugibiaadoeacaGGOaGaamOEaiaacMcacaaMc8UaaGPaVlab gkHiTiaaykW7caaMc8Uaam4qaiaacIcacaWGVbGaaiykaaaa@52F9@                                                               ……………………….                 (3)

q z = S 1 C(z)C(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaamyCaaGcbaqcLbsacqGHciITcaWG6baaaiaa ykW7cqGH9aqpcaaMc8UaaGPaVlaadofalmaaCaaabeqaaKqzadGaaG ymaaaajugibiaadoeacaGGOaGaamOEaiaacMcacaaMc8UaaGPaVlab gkHiTiaaykW7caaMc8Uaam4qaiaacIcacaWGVbGaaiykaaaa@52F9@                                                               ……………………….                 (4)

Substituting equation (2), (3) and (4) into equation (1) yields:

S 1 C(t) V ¯ [ V ¯ S 1 C(t)C(o) ]+ φ ne +Kx[ S 1 C(x)C(o) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb WcdaahaaqabeaajugWaiaaigdaaaqcLbsacaWGdbGaaiikaiaadsha caGGPaGaaGPaVlaaykW7cqGHsislcaaMc8UaaGPaVlqadAfagaqeaK qbaoaadmaakeaajugibiqadAfagaqeaiaadofalmaaCaaabeqaaKqz adGaaGymaaaajugibiaadoeacaGGOaGaamiDaiaacMcacaaMc8UaaG PaVlabgkHiTiaaykW7caaMc8Uaam4qaiaacIcacaWGVbGaaiykaaGc caGLBbGaayzxaaqcLbsacaaMc8Uaey4kaSIaaGPaVlaaykW7juaGda WcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaaGPa VlabgUcaRiaaykW7caWGlbGaamiEaKqbaoaadmaakeaajugibiaado falmaaCaaabeqaaKqzadGaaGymaaaajugibiaadoeacaGGOaGaamiE aiaacMcacaaMc8UaaGPaVlabgkHiTiaaykW7caaMc8Uaam4qaiaacI cacaWGVbGaaiykaaGccaGLBbGaayzxaaaaaa@7F30@                 ……….                     (5)

S 1 C(t) V ¯ [ V ¯ S 1 C(t) φ ne SC(x)+Kx S 1 C(x) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb WcdaahaaqabeaajugWaiaaigdaaaqcLbsacaWGdbGaaiikaiaadsha caGGPaGaaGPaVlaaykW7cqGHsislcaaMc8UaaGPaVlqadAfagaqeaK qbaoaadmaakeaajugibiqadAfagaqeaiaaykW7caWGtbWcdaahaaqa beaajugWaiaaigdaaaqcLbsacaWGdbGaaiikaiaadshacaGGPaGaaG PaVlaaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7caaMc8Ecfa4aaSaa aOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadofaca WGdbGaaiikaiaadIhacaGGPaGaaGPaVlabgUcaRiaaykW7caaMc8Ua am4saiaadIhacaWGtbWcdaahaaqabeaajugWaiaaigdaaaqcLbsaca WGdbGaaiikaiaadIhacaGGPaaakiaawUfacaGLDbaajugibiaaykW7 aaa@74F4@                ……………….                           (6)

C(t)= 1 S [ V ¯ S 1 C(t) φ ne S 1 C(x)+Kx S 1 C(x) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPa VNqbaoaaliaakeaajugibiaaigdaaOqaaKqzGeGaam4uaaaacaaMc8 Ecfa4aamWaaOqaaKqzGeGabmOvayaaraGaam4uaSWaaWbaaeqabaqc LbmacaaIXaaaaKqzGeGaaGPaVlaadoeacaGGOaGaamiDaiaacMcaca aMc8UaaGPaVlaaykW7cqGHsislcaaMc8UaaGPaVNqbaoaalaaakeaa jugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaWGtbWcdaahaa qabeaajugWaiaaigdaaaqcLbsacaaMc8Uaam4qaiaacIcacaWG4bGa aiykaiaaykW7cqGHRaWkcaaMc8UaaGPaVlaadUeacaWG4bGaam4uaS WaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaam4qaiaacIcacaWG4bGa aiykaaGccaGLBbGaayzxaaqcLbsacaaMc8oaaa@7832@               ……………….                           (7)

C(t)= 1 S 1 [ V ¯ S 1 C(t) φ ne S 1 C(x)+KxC(x) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPa VNqbaoaaliaakeaajugibiaaigdaaOqaaKqzGeGaam4uaSWaaWbaae qabaqcLbmacaaIXaaaaaaajugibiaaykW7caaMc8Ecfa4aamWaaOqa aKqzGeGabmOvayaaraGaaGPaVlaadofalmaaCaaabeqaaKqzadGaaG ymaaaajugibiaadoeacaGGOaGaamiDaiaacMcacaaMc8UaaGPaVlaa ykW7cqGHsislcaaMc8UaaGPaVNqbaoaalaaakeaajugibiabeA8aQb GcbaqcLbsacaWGUbGaamyzaaaacaWGtbWcdaahaaqabeaajugWaiaa igdaaaGaaGPaVNqzGeGaam4qaiaacIcacaWG4bGaaiykaiaaykW7cq GHRaWkcaaMc8UaaGPaVlaadUeacaWG4bGaam4qaiaacIcacaWG4bGa aiykaaGccaGLBbGaayzxaaqcLbsacaaMc8oaaa@78E5@                ……………….                           (8)

C(t)= V ¯ φ ne +Kx S 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGabmOvayaaraGaaGPaVl abgkHiTiaaykW7juaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGa amOBaiaadwgaaaGaaGPaVlabgUcaRiaaykW7caaMc8Uaam4saiaadI haaOqaaKqzGeGaam4uaSWaaWbaaeqabaqcLbmacaaIXaaaaaaaaaa@5A55@                                                                              ……………….                           (9)

C(t)=C(t) V ¯ + φ ne V+Kx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caWGdbGaaiikaiaadshacaGGPaGaaGPaVlaaykW7cqGHsi slcaaMc8UaaGPaVlqadAfagaqeaiaaykW7cqGHRaWkcaaMc8Ecfa4a aSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadA facaaMc8Uaey4kaSIaaGPaVlaaykW7caWGlbGaamiEaaaa@5F0F@  .……………….                          (10)

C(t)= S 1 C(t)= V ¯ C(t)+ φ ne +Kx C 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caWGtbWcdaahaaqabeaajugWaiaaigdaaaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPa VlqadAfagaqeaiaaykW7caaMc8Uaam4qaiaacIcacaWG0bGaaiykai abgUcaRiaaykW7juaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGa amOBaiaadwgaaaGaaGPaVlabgUcaRiaaykW7caaMc8Uaam4saiaadI hacaWGdbWcdaahaaqabeaajugWaiaaigdaaaaaaa@694D@    ……………….                           (11)

C(o)=[ V ¯ C(t)+ φ ne +Kx ]C(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaaiikaiaad+gacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7juaGdaWadaGcbaqcLbsaceWGwbGbaebacaaMc8Uaam4qai aacIcacaWG0bGaaiykaiaaykW7cqGHRaWkcaaMc8UaaGPaVNqbaoaa laaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaaMc8 Uaey4kaSIaaGPaVlaaykW7caWGlbGaamiEaaGccaGLBbGaayzxaaqc LbsacaaMc8Uaam4qaiaacIcacaWG0bGaaiykaiaaykW7aaa@640E@                                          ……………….                           (12

S 1 C(t)=[ V ¯ φ ne +Kx ]C(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb WcdaahaaqabeaajugWaiaaigdaaaqcLbsacaWGdbGaaiikaiaadsha caGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8 Ecfa4aamWaaOqaaKqzGeGabmOvayaaraGaaGPaVlabgkHiTiaaykW7 caaMc8Ecfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gaca WGLbaaaiaaykW7cqGHRaWkcaaMc8UaaGPaVlaadUeacaWG4baakiaa wUfacaGLDbaajugibiaaykW7caWGdbGaaiikaiaadshacaGGPaGaaG PaVdaa@6481@                                              ……………….                           (13)

C(t)= S 1 C(t) V ¯ + φ ne +Kx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7juaGdaWcaaGcbaqcLbsacaaMc8Uaam4uaSWaaWbaaeqaba qcLbmacaaIXaaaaKqzGeGaam4qaiaacIcacaWG0bGaaiykaiaaykW7 caaMc8oakeaajugibiqadAfagaqeaiaaykW7cqGHRaWkcaaMc8Ecfa 4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaa ykW7cqGHRaWkcaaMc8UaaGPaVlaadUeacaWG4baaaaaa@6109@                                                                               ……………….                           (14)

C(t)= S 1 (t) V ¯ + φ ne +Kx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7juaGdaWcaaGcbaqcLbsacaaMc8Uaam4uaSWaaWbaaeqaba qcLbmacaaIXaaaaKqzGeGaaiikaiaadshacaGGPaGaaGPaVlaaykW7 aOqaaKqzGeGabmOvayaaraGaaGPaVlabgUcaRiaaykW7juaGdaWcaa GcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaaGPaVlab gUcaRiaaykW7caaMc8Uaam4saiaadIhaaaaaaa@6041@                                                                               ……………….                           (15)

Looking at directions of fluid flow in soil, there should be the tendency where the deposition should be thorough evaluated; this implies that   in 15, the stages of the derived solution should monitor the condition of fluid dynamics under the influences of deposited hydraulic conductivity pressured by heterogeneous coarse depositions. It  develop velocity dynamics to generates  some of the major factors that should  determined the  rate of partial depositions of lead   in any formation, therefore the expressed solution monitor the ability of  the developed model to monitor the behaviour of lead concentration partially through the  determined parameters , the deposition of the expressed model at these phase of the derived solution assess the parameters and express its relationships with the time of velocity flow dynamics  in such conditions. 

Furthermore, considering the boundary condition, we have at

t=0 C 1 (o)=C(o)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaaGim aiaaykW7caaMc8UaaGPaVlaadoealmaaCaaabeqaaKqzadGaaGymaa aajugibiaacIcacaWGVbGaaiykaiaaykW7caaMc8UaaGPaVlabg2da 9iaaykW7caaMc8UaaGPaVlaadoeacaGGOaGaam4BaiaacMcacaaMc8 UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaIWaaaaa@653A@

C(t)=[ V ¯ S 1 C(t) φ ne C(x)+KxC(x) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7juaGdaWadaGcbaqcLbsaceWGwbGbaebacaaMc8Uaam4uaS WaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaaGPaVlaaykW7caWGdbGa aiikaiaadshacaGGPaGaaGPaVlaaykW7cqGHsislcaaMc8UaaGPaVN qbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaa caWGdbGaaiikaiaadIhacaGGPaGaey4kaSIaaGPaVlaadUeacaWG4b GaaGPaVlaaykW7caWGdbGaaiikaiaadIhacaGGPaaakiaawUfacaGL DbaajugibiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaIWaaaaa@7434@     ……………….                           (16)

0 V ¯ φ ne Kx =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGPaVlaaicdacaaMc8UaaGPaVdGcbaqcLbsaceWGwbGb aebacaaMc8UaeyOeI0IaaGPaVNqbaoaalaaakeaajugibiabeA8aQb GcbaqcLbsacaWGUbGaamyzaaaacaaMc8UaeyOeI0IaaGPaVlaaykW7 caWGlbGaamiEaaaacaaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaG PaVlaaykW7caaIWaaaaa@59DE@                    ……………….                           (17)

Considering the following boundary condition in the equation

C(t)Co V ¯ S 1 C(t) V ¯ Co S 1 (t)+ φ ne C(x)+ φ ne Co S 1 C(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8UaeyOeI0IaaGPa VlaaykW7caWGdbGaam4BaiaaykW7caaMc8UaeyOeI0IaaGPaVlaayk W7ceWGwbGbaebacaWGtbWcdaahaaqabeaajugWaiaaigdaaaGaaGPa VNqzGeGaaGPaVlaadoeacaGGOaGaamiDaiaacMcacaaMc8UaaGPaVl abgkHiTiaaykW7caaMc8UabmOvayaaraGaam4qaiaad+gacaaMc8Ua aGPaVlaaykW7cqGHsislcaaMc8UaaGPaVlaadofalmaaCaaabeqaaK qzadGaaGymaaaajugibiaacIcacaWG0bGaaiykaiaaykW7caaMc8Ua ey4kaSIaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaK qzGeGaamOBaiaadwgaaaGaam4qaiaacIcacaWG4bGaaiykaiaaykW7 caaMc8Uaey4kaSIaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqaHgp GAaOqaaKqzGeGaamOBaiaadwgaaaGaam4qaiaad+gacaaMc8UaaGPa VlaadofalmaaCaaabeqaaKqzadGaaGymaaaajugibiaadoeacaGGOa GaamiEaiaacMcacaaMc8oaaa@96F9@

+Kx S 1 (x)+KxCo+ S 1 (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHRa WkcaaMc8UaaGPaVlaadUeacaWG4bGaaGPaVlaadofalmaaCaaabeqa aKqzadGaaGymaaaajugibiaacIcacaWG4bGaaiykaiaaykW7caaMc8 UaaGPaVlabgUcaRiaaykW7caaMc8Uaam4saiaadIhacaaMc8Uaam4q aiaad+gacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8Uaam4uaSWaaW baaeqabaqcLbmacaaIXaaaaKqzGeGaaiikaiaadIhacaGGPaaaaa@5E36@                 ………………………….                                     (18)

C(t)= V ¯ C(t)=SC(t)Co V ¯ + φ ne +KxCo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UabmOvayaaraGaaGPaVlaadoeacaGGOaGaamiDai aacMcacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaadofa caWGdbGaaiikaiaadshacaGGPaGaaGPaVlaaykW7caWGdbGaam4Bai aaykW7caaMc8UaaGPaVlabgkHiTiaaykW7caaMc8UabmOvayaaraGa aGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVNqbaoaalaaakeaajugibi abeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaaMc8Uaey4kaSIaaGPa VlaaykW7caWGlbGaamiEaiaaykW7caWGdbGaam4Baaaa@7BA6@     ……………….                           (19)

Considering the denominator in the equation, we have

C(t)=[ V ¯ + φ ne +Kx ]Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7juaGdaWadaGcbaqcLbsaceWGwbGbaebacaaMc8UaaGPaVl abgUcaRiaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaa jugibiaad6gacaWGLbaaaiaaykW7cqGHRaWkcaaMc8UaaGPaVlaadU eacaWG4baakiaawUfacaGLDbaajugibiaaykW7caWGdbGaam4Baaaa @5E10@                                                     ……………….                           (20)

Considering φ ne = 1 V ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaaykW7caaM c8UaaGPaVlabg2da9iaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGaaG ymaaGcbaqcLbsaceWGwbGbaebaaaaaaa@479B@

C(t)=| 1 V ¯ + V ¯ +Kx |Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8Ecfa4aaqWaaOqaaKqbaoaalaaakeaajugibiaaig daaOqaaKqzGeGabmOvayaaraaaaiaaykW7caaMc8UaaGPaVlabgUca RiaaykW7caaMc8UabmOvayaaraGaaGPaVlaaykW7cqGHRaWkcaaMc8 UaaGPaVlaadUeacaWG4baakiaawEa7caGLiWoajugibiaaykW7caWG dbGaam4Baaaa@6166@                                                       ……………….                           (21)

C(t)=| 1+ V 2 +VKx V ¯ |Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8Ecfa4aaqWaaOqaaKqbaoaalaaakeaajugibiaaig dacaaMc8Uaey4kaSIaamOvaSWaaWbaaeqabaqcLbmacaaIYaaaaKqz GeGaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaadAfacaWGlbGaam iEaiaaykW7caaMc8oakeaajugibiqadAfagaqeaaaaaOGaay5bSlaa wIa7aKqzGeGaam4qaiaad+gaaaa@602E@                                                     ……………….                           (22)

C(t)=| ( 1+ V 2 +VKx ) 1 V |Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8Ecfa4aaqWaaOqaaKqbaoaabmaakeaajugibiaaig dacaaMc8Uaey4kaSIaamOvaSWaaWbaaeqabaqcLbmacaaIYaaaaiaa ykW7jugibiaaykW7cqGHRaWkcaaMc8UaaGPaVlaadAfacaWGlbGaam iEaaGccaGLOaGaayzkaaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaWGwbaaaaGccaGLhWUaayjcSdqcLbsacaaMc8Uaam4qaiaad+ gaaaa@6200@                                                               ……………….                           (23)

C(t)=| ( 1+ V 2 +VK ) φ ne |Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8Ecfa4aaqWaaOqaaKqbaoaabmaakeaajugibiaaig dacaaMc8Uaey4kaSIaamOvaSWaaWbaaeqabaqcLbmacaaIYaaaaiaa ykW7jugibiaaykW7cqGHRaWkcaaMc8UaaGPaVlaadAfacaWGlbaaki aawIcacaGLPaaajugibiaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGa eqOXdOgakeaajugibiaad6gacaWGLbaaaaGccaGLhWUaayjcSdqcLb sacaaMc8Uaam4qaiaad+gaaaa@66AC@                                                               ……………….                           (24)

C(t)=λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbmacaWGdb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8Uaeq4UdWgaaa@463A@                                                                                    ……………….                           (25)

λ=| ( 1+ V 2 +VK ) φ ne |Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcaaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVNqbaoaaemaa keaajugibiaaykW7juaGdaqadaGcbaqcLbsacaaIXaGaaGPaVlabgU caRiaadAfalmaaCaaabeqaaKqzadGaaGOmaaaajugibiaaykW7caaM c8Uaey4kaSIaaGPaVlaaykW7caWGwbGaam4saaGccaGLOaGaayzkaa qcLbsacaaMc8UaaGPaVNqbaoaalaaakeaajugibiabeA8aQbGcbaqc LbsacaWGUbGaamyzaaaaaOGaay5bSlaawIa7aKqzGeGaaGPaVlaado eacaWGVbaaaa@65D5@                                                    ……………….                           (26)

λ=| φ ne + φ ne V 2 + φ ne VKx |Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBcaaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7juaG daabdaGcbaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6 gacaWGLbaaaiaaykW7caaMc8Uaey4kaSscfa4aaSaaaOqaaKqzGeGa eqOXdOgakeaajugibiaad6gacaWGLbaaaiaaykW7caWGwbWcdaahaa qabeaajugWaiaaikdaaaqcLbsacaaMc8UaaGPaVlabgUcaRiaaykW7 caaMc8Ecfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gaca WGLbaaaiaaykW7caWGwbGaam4saiaadIhacaaMc8oakiaawEa7caGL iWoajugibiaaykW7caWGdbGaam4Baaaa@7029@                                             ……………….                           (27)

φ ne V 2 + φ ne Kx V Co +[ φ ne Coλ ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadAfajuaG daahaaWcbeqaaKqzadGaaGOmaaaajugibiaaykW7caaMc8Uaey4kaS IaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGa amOBaiaadwgaaaGaaGPaVlaadUeacaWG4bGaaGPaVlaadAfajuaGda WgaaWcbaqcLbmacaWGdbGaam4BaaWcbeaajugibiaaykW7cqGHRaWk caaMc8Ecfa4aamWaaOqaaKqbaoaalaaakeaajugibiabeA8aQbGcba qcLbsacaWGUbGaamyzaaaacaWGdbGaam4BaiabgkHiTiabeU7aSbGc caGLBbGaayzxaaqcLbsacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8 UaaGimaaaa@6EB1@                                  ……………….                           (28)

Applying quadratic expression to equation (28), we have

V 2 + φ ne Kx+[ φ ne λ ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb WcdaahaaqabeaajugWaiaaikdaaaGaaGPaVNqzGeGaaGPaVlabgUca RiaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibi aad6gacaWGLbaaaiaadUeacaWG4bGaaGPaVlabgUcaRiaaykW7juaG daWadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6 gacaWGLbaaaiabgkHiTiabeU7aSbGccaGLBbGaayzxaaqcLbsacaaM c8UaaGPaVlabg2da9iaaykW7caaMc8UaaGimaaaa@5F5D@
Where a =   φ ne V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadAfalmaa CaaabeqaaKqzadGaaGOmaaaaaaa@3E52@ , b = φ ne KxVCo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadUeacaWG 4bGaaGPaVlaadAfacaWGdbGaam4Baaaa@414F@  and c =  φ ne λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiabeU7aSbaa @3D14@

V= b± b 2 4ac 2a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb GaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVNqbaoaalaaakeaajugi biabgkHiTiaadkgacqGHXcqSjuaGdaGcaaGcbaqcLbsacaWGIbqcfa 4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacaaMc8UaeyOeI0IaaGPa VlaaisdacaWGHbGaam4yaaWcbeaaaOqaaKqzGeGaaGOmaiaadggaaa aaaa@51B2@                                                                               ……………….                           (29)

V= φ ne KxVCo φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb GaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVNqbaoaalaaakeaajugi biabgkHiTKqbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUb GaamyzaaaacaaMc8Uaam4saiaadIhacaWGwbGaam4qaiaad+gacaaM c8Ecfa4aaOaaaOqaaKqbaoaalaaakeaajugibiabeA8aQbGcbaqcLb sacaWGUbGaamyzaaaacaWGlbGaamiEaiaadAfacaWGdbGaam4BaSWa aWbaaeqabaqcLbmacaaIYaaaaKqzGeGaaGPaVlaaykW7cqGHsislca aMc8UaaGPaVlaaisdaaSqabaqcfa4aaSaaaOqaaKqzGeGaeqOXdOga keaajugibiaad6gacaWGLbaaaiaadAfajuaGdaWcaaGcbaqcLbsacq aHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaeq4UdWgakeaajugibiaa ikdajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadw gaaaGaamOvaaaaaaa@7795@     ……………….                           (30)

V 1 = φ ne KxVCo+ φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugWaiaaykW7jugibiaaykW7 cqGH9aqpcaaMc8UaaGPaVNqbaoaalaaakeaajugibiabgkHiTKqbao aalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaWG lbGaamiEaiaadAfacaWGdbGaam4BaiaaykW7cqGHRaWkjuaGdaGcaa Gcbaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWG LbaaaiaadUeacaWG4bGaamOvaiaadoeacaWGVbWcdaahaaqabeaaju gWaiaaikdaaaGaaGPaVNqzGeGaaGPaVlabgkHiTiaaykW7caaMc8Ua aGinaaWcbeaajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaam OBaiaadwgaaaGaamOvaKqbaoaalaaakeaajugibiabeA8aQbGcbaqc LbsacaWGUbGaamyzaaaacqaH7oaBaOqaaKqzGeGaaGOmaKqbaoaala aakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaWGwbaa aaaa@7AC9@                 ……………….                              (31)

φ Λ 2 = φ ne KxVCo φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHgp GAcqqHBoatlmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaaGPaVlaa ykW7cqGH9aqpcaaMc8UaaGPaVNqbaoaalaaakeaajugibiabgkHiTK qbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaa caWGlbGaamiEaiaadAfacaWGdbGaam4BaiaaykW7cqGHsisljuaGda GcaaGcbaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6ga caWGLbaaaiaadUeacaWG4bGaamOvaiaaykW7caWGdbGaam4BaSWaaW baaeqabaqcLbmacaaIYaaaaKqzGeGaaGPaVlaaykW7cqGHsislcaaM c8UaaGPaVlaaisdajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGe GaamOBaiaadwgaaaaaleqaaKqzGeGaamOvaKqbaoaalaaakeaajugi biabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacqaH7oaBaOqaaKqzGe GaaGOmaKqbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGa amyzaaaacaWGwbaaaaaa@7E18@             ……………….                               (32)

Since we have A st +B st MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb GaeS4eHWwcfa4aaWbaaSqabeaajugWaiaadohacaWG0baaaKqzGeGa aGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaadkeacqWItecBlmaaCa aabeqaaKqzadGaam4Caiaadshaaaaaaa@4937@ , it implies that

qt=Aexp φ ne KxVCo+ φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb GaamiDaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caWGbbGaciyz aiaacIhacaGGWbqcfa4aaSaaaOqaaKqbaoaalaaakeaajugibiabeA 8aQbGcbaqcLbsacaWGUbGaamyzaaaacaWGlbGaamiEaiaadAfacaWG dbGaam4BaiaaykW7cqGHRaWkjuaGdaGcaaGcbaqcfa4aaSaaaOqaaK qzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadUeacaWG4bGa amOvaiaadoeacaWGVbWcdaahaaqabeaajugWaiaaikdaaaGaaGPaVN qzGeGaeyOeI0IaaGPaVlaaisdaaSqabaqcfa4aaSaaaOqaaKqzGeGa eqOXdOgakeaajugibiaad6gacaWGLbaaaiaadAfajuaGdaWcaaGcba qcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaeq4UdWgakeaa jugibiaaikdajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaam OBaiaadwgaaaGaamOvaaaaaaa@770F@           ……………….                                 (33)

If A = B = 1

q(t)=exp[ φ ne KxVCo+ φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V t ]+ [ φ ne KxVCo+ φ ne KxVC o 2 +4 φ ne V φ ne λ 2 φ ne V ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPa VlGacwgacaGG4bGaaiiCaiaaykW7juaGdaWadaGcbaqcLbsacqGHsi sljuaGdaWcaaGcbaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugi biaad6gacaWGLbaaaiaadUeacaWG4bGaamOvaiaadoeacaWGVbGaaG PaVlabgUcaRKqbaoaakaaakeaajuaGdaWcaaGcbaqcLbsacqaHgpGA aOqaaKqzGeGaamOBaiaadwgaaaGaam4saiaadIhacaWGwbGaam4qai aad+galmaaCaaabeqaaKqzadGaaGOmaaaacaaMc8EcLbsacqGHsisl caaMc8UaaGinaaWcbeaajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaK qzGeGaamOBaiaadwgaaaGaamOvaKqbaoaalaaakeaajugibiabeA8a QbGcbaqcLbsacaWGUbGaamyzaaaacqaH7oaBaOqaaKqzGeGaaGOmaK qbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaa caWGwbaaaiaadshaaOGaay5waiaaw2faaKqzGeGaaGPaVlaaykW7cq GHRaWkcaaMc8UaaGPaVlaaykW7cqWItecBjuaGdaahaaWcbeqaaKqb aoaadmaaleaajugibiabgkHiTKqbaoaalaaaleaajuaGdaWcaaWcba qcLbsacqaHgpGAaSqaaKqzGeGaamOBaiaadwgaaaGaam4saiaadIha caWGwbGaaGPaVlaadoeacaWGVbGaaGPaVlabgUcaRKqbaoaakaaale aajuaGdaWcaaWcbaqcLbsacqaHgpGAaSqaaKqzGeGaamOBaiaadwga aaGaam4saiaadIhacaWGwbGaaGPaVlaadoeacaWGVbqcfa4aaWbaaW qabeaajugWaiaaikdaaaqcLbsacaaMc8Uaey4kaSIaaGPaVlaaisda aWqabaqcfa4aaSaaaSqaaKqzGeGaeqOXdOgaleaajugibiaad6gaca WGLbaaaiaadAfajuaGdaWcaaWcbaqcLbsacqaHgpGAaSqaaKqzGeGa amOBaiaadwgaaaGaeq4UdWgaleaajugibiaaikdajuaGdaWcaaWcba qcLbsacqaHgpGAaSqaaKqzGeGaamOBaiaadwgaaaGaamOvaaaaaSGa ay5waiaaw2faaKqzGeGaamiDaaaaaaa@C654@    (34)

The behaviour of these system are to express  various parameters that transmits fluid in different formations, looking at this condition  it has to  evaluated from the derived solution, the variations  on hydraulic conduction  determine the rate velocity of flow dynamics, these condition influences the heterogeneity in partial depositions of lead,  the derived expression monitor the velocity dynamics pressured by formation characteristics, these affect the rates of lead concentration as the contaminant migrates to different soil formations. These developments were considered in the derived solution base on the heterogeneity of the structured strata under the influences of geological settings.  The derived model at these phase monitored the behaviour of the substances through the effect from these parameters between 16-34. Application of the derived expression are base on the relationship establish in their various functions, these condition provided a platform for parameters to institute their various functions in the storage of  fluid dynamics base on heterogeneous setting, the application of quadratic method were to integrate various parameters base on their relationship to evaluate their functions, because theses will always pressure the deposition of fluid variation influencing partial depositions of lead substances in coarse  formation.  The expressed solution at this stage implies that the relation between those parameters shows the rate of integrated influences despite their variations in depositions.  
Applying inverse Laplace of the equation yield

q(t)=[ t+ φ ne KxVCo ]Co[ φ ne KxVCo+ φ ne KxVC o 2 +4 φ ne V φ ne λ 2 φ ne V ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb GaaiikaiaadshacaGGPaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPa VNqbaoaadmaakeaajugibiaadshacaaMc8Uaey4kaSIaaGPaVNqbao aalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaWG lbGaamiEaiaadAfacaWGdbGaam4BaaGccaGLBbGaayzxaaqcLbsaca aMc8Uaam4qaiaad+gacaaMc8Ecfa4aamWaaOqaaKqzGeGaeyOeI0sc fa4aaSaaaOqaaKqbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsaca WGUbGaamyzaaaacaWGlbGaamiEaiaadAfacaWGdbGaam4BaiaaykW7 cqGHRaWkjuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgake aajugibiaad6gacaWGLbaaaiaadUeacaWG4bGaamOvaiaadoeacaWG Vbqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacaaMc8Uaey4kaS IaaGPaVlaaisdaaSqabaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaa jugibiaad6gacaWGLbaaaiaadAfajuaGdaWcaaGcbaqcLbsacqaHgp GAaOqaaKqzGeGaamOBaiaadwgaaaGaeq4UdWgakeaajugibiaaikda juaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaa GaamOvaaaaaOGaay5waiaaw2faaKqzGeGaaGPaVlaadshacaaMc8oa aa@953B@        

[ [ φ ne KxVCo φ ne KxVC o 2 +4 φ ne V φ ne λ 2 φ ne V ] ]t[ φ ne KxVCo φ ne KxVC o 2 +4 φ ne V φ ne λ 2 φ ne V ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqbaoaadmaakeaajugibiabgkHiTKqbaoaalaaakeaajuaGdaWc aaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaam4sai aadIhacaWGwbGaam4qaiaad+gacaaMc8Ecfa4aaOaaaOqaaKqbaoaa laaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaWGlb GaamiEaiaadAfacaWGdbGaam4BaSWaaWbaaeqabaqcLbmacaaIYaaa aiaaykW7jugibiabgUcaRiaaykW7caaI0aaaleqaaKqbaoaalaaake aajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaWGwbqcfa4a aSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiabeU 7aSbGcbaqcLbsacaaIYaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaa jugibiaad6gacaWGLbaaaiaadAfaaaaakiaawUfacaGLDbaaaiaawU facaGLDbaajugibiaaykW7caWG0bGaaGPaVlabgkHiTKqbaoaadmaa keaajuaGdaWcaaGcbaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaaju gibiaad6gacaWGLbaaaiaadUeacaWG4bGaamOvaiaadoeacaWGVbGa eyOeI0IaaGPaVNqbaoaakaaakeaajuaGdaWcaaGcbaqcLbsacqaHgp GAaOqaaKqzGeGaamOBaiaadwgaaaGaam4saiaadIhacaWGwbGaam4q aiaad+galmaaCaaabeqaaKqzadGaaGOmaaaacaaMc8EcLbsacqGHRa WkcaaMc8UaaGinaaWcbeaajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqa aKqzGeGaamOBaiaadwgaaaGaamOvaKqbaoaalaaakeaajugibiabeA 8aQbGcbaqcLbsacaWGUbGaamyzaaaacqaH7oaBaOqaaKqzGeGaaGOm aKqbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaa aacaWGwbaaaaGccaGLBbGaayzxaaqcLbsacaWG0baaaa@ACDA@  (35)

qt=[ φ ne KxVCo t 2 Co ][ φ ne KxVCo+ φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb GaamiDaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7juaGdaWadaGc baqcfa4aaSGaaOqaaKqbaoaalaaakeaajugibiabeA8aQbGcbaqcLb sacaWGUbGaamyzaaaacaWGlbGaamiEaiaadAfacaWGdbGaam4BaaGc baqcLbsacaWG0bqcfa4aaWbaaSqabeaajugWaiaaikdaaaaaaKqzGe Gaam4qaiaad+gaaOGaay5waiaaw2faaKqzGeGaaGPaVlaaykW7juaG daWadaGcbaqcLbsacqGHsisljuaGdaWcaaGcbaqcfa4aaSaaaOqaaK qzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadUeacaWG4bGa amOvaiaadoeacaWGVbGaaGPaVlabgUcaRKqbaoaakaaakeaajuaGda WcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaam4s aiaadIhacaWGwbGaam4qaiaad+galmaaCaaabeqaaKqzadGaaGOmaa aacaaMc8EcLbsacqGHsislcaaMc8UaaGinaaWcbeaajuaGdaWcaaGc baqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaamOvaKqbao aalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacqaH 7oaBaOqaaKqzGeGaaGOmaKqbaoaalaaakeaajugibiabeA8aQbGcba qcLbsacaWGUbGaamyzaaaacaWGwbaaaaGccaGLBbGaayzxaaqcLbsa caaMc8oaaa@90CB@       

[ [ φ ne VKxCo φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V ] ] [ φ ne KxVCo φ ne KxVC o 2 4 φ ne V φ ne λφΛVβ 2 φ ne V ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqbaoaadmaakeaajugibiabgkHiTKqbaoaalaaakeaajuaGdaWc aaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaamOvai aadUeacaWG4bGaaGPaVlaadoeacaWGVbGaaGPaVNqbaoaakaaakeaa juaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaa Gaam4saiaadIhacaWGwbGaam4qaiaad+galmaaCaaabeqaaKqzadGa aGOmaaaacaaMc8EcLbsacqGHsislcaaMc8UaaGinaKqbaoaalaaake aajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaaaSqabaqcLbsa caWGwbqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gaca WGLbaaaiabeU7aSbGcbaqcLbsacaaIYaqcfa4aaSaaaOqaaKqzGeGa eqOXdOgakeaajugibiaad6gacaWGLbaaaiaadAfaaaaakiaawUfaca GLDbaaaiaawUfacaGLDbaajugibiaaykW7caaMc8UaeS4eHWwcfa4a aWbaaSqabeaajuaGdaWadaWcbaqcLbsacqGHsisljuaGdaWcaaWcba qcfa4aaSaaaSqaaKqzGeGaeqOXdOgaleaajugibiaad6gacaWGLbaa aiaadUeacaWG4bGaamOvaiaadoeacaWGVbGaaGPaVNqbaoaakaaale aajuaGdaWcaaWcbaqcLbsacqaHgpGAaSqaaKqzGeGaamOBaiaadwga aaGaam4saiaadIhacaWGwbGaam4qaiaad+gajuaGdaahaaadbeqaaK qzadGaaGOmaaaajugibiaaykW7cqGHsislcaaMc8UaaGinaaadbeaa juaGdaWcaaWcbaqcLbsacqaHgpGAaSqaaKqzGeGaamOBaiaadwgaaa GaamOvaKqbaoaalaaaleaajugibiabeA8aQbWcbaqcLbsacaWGUbGa amyzaaaacqaH7oaBcqaHgpGAcqqHBoatcaaMc8UaamOvaiabek7aIb WcbaqcLbsacaaIYaqcfa4aaSaaaSqaaKqzGeGaeqOXdOgaleaajugi biaad6gacaWGLbaaaiaadAfaaaaaliaawUfacaGLDbaajugibiaayk W7caWG0baaaiaaykW7aaa@BA8D@

[ φ ne KxVCo φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi sljuaGdaWadaGcbaqcLbsacqGHsisljuaGdaWcaaGcbaqcfa4aaSaa aOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadUeaca WG4bGaamOvaiaadoeacaWGVbGaaGPaVNqbaoaakaaakeaajuaGdaWc aaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaam4sai aadIhacaWGwbGaam4qaiaad+galmaaCaaabeqaaKqzadGaaGOmaaaa jugibiaaykW7cqGHsislcaaMc8UaaGinaaWcbeaajuaGdaWcaaGcba qcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaamOvaKqbaoaa laaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacqaH7o aBaOqaaKqzGeGaaGOmaKqbaoaalaaakeaajugibiabeA8aQbGcbaqc LbsacaWGUbGaamyzaaaacaWGwbaaaaGccaGLBbGaayzxaaqcLbsaca aMc8UaamiDaaaa@717B@                                                                    (36)

At this point Co=φt0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4BaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaeqOX dOMaaGPaVlaadshacaaMc8UaaGPaVlaaykW7caaMc8UaeyiyIKRaaG PaVlaaykW7caaIWaaaaa@5102@

for equation (34) at t=0C(o)=Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaicdacaaMc8UaaGPa VlaaykW7caWGdbGaaiikaiaad+gacaGGPaGaaGPaVlaaykW7cqGH9a qpcaaMc8UaaGPaVlaadoeacaWGVbaaaa@500E@ , we have

Co=[ φ ne KxVCo+ φ ne V+ φ ne x ]Co[ 1+1+1 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4BaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7juaGdaWadaGc baqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLb aaaiaadUeacaWG4bGaamOvaiaadoeacaWGVbGaaGPaVlaaykW7cqGH RaWkcaaMc8UaaGPaVNqbaoaalaaakeaajugibiabeA8aQbGcbaqcLb sacaWGUbGaamyzaaaacaWGwbGaaGPaVlaaykW7cqGHRaWkcaaMc8Ua aGPaVNqbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaam yzaaaacaWG4baakiaawUfacaGLDbaajugibiaaykW7caaMc8Uaam4q aiaad+gacaaMc8UaaGPaVlaaykW7juaGdaWadaGcbaqcLbsacaaIXa Gaey4kaSIaaGymaiabgUcaRiaaigdaaOGaay5waiaaw2faaKqzGeGa aGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaIWaaaaa@81BD@

=[ φ ne KxVCo+ φ ne V+ φ ne λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH9a qpcaaMc8UaaGPaVNqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacqaH gpGAaOqaaKqzGeGaamOBaiaadwgaaaGaam4saiaadIhacaWGwbGaam 4qaiaad+gacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8Ecfa4aaSaa aOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadAfaca aMc8Uaey4kaSIaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqaHgpGA aOqaaKqzGeGaamOBaiaadwgaaaGaeq4UdWgakiaawUfacaGLDbaaaa a@60F7@

Hence φ ne KxV+ φ ne V+ φ ne λ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadUeacaWG 4bGaamOvaiaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7juaGdaWcaa GcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaamOvaiaa ykW7caaMc8Uaey4kaSIaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacq aHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGaeq4UdWMaaGPaVlaaykW7 cqGH9aqpcaaMc8UaaGPaVlaaykW7caaIWaaaaa@62FE@

Equation (37) can be written as:

qx=Co[ t+2 ][ φ ne KxVCo+ φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb GaamiEaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caWGdbGaam4B aiaaykW7caaMc8UaaGPaVNqbaoaadmaakeaajugibiaadshacqGHRa WkcaaIYaaakiaawUfacaGLDbaajuaGdaWadaGcbaqcLbsacqGHsisl juaGdaWcaaGcbaqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibi aad6gacaWGLbaaaiaadUeacaWG4bGaamOvaiaadoeacaWGVbGaaGPa VlabgUcaRKqbaoaakaaakeaajuaGdaWcaaGcbaqcLbsacqaHgpGAaO qaaKqzGeGaamOBaiaadwgaaaGaam4saiaadIhacaWGwbGaam4qaiaa d+galmaaCaaabeqaaKqzadGaaGOmaaaajugibiaaykW7cqGHsislca aMc8UaaGinaaWcbeaajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqz GeGaamOBaiaadwgaaaGaamOvaKqbaoaalaaakeaajugibiabeA8aQb GcbaqcLbsacaWGUbGaamyzaaaacqaH7oaBaOqaaKqzGeGaaGOmaKqb aoaalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaaca WGwbaaaaGccaGLBbGaayzxaaqcLbsacaaMc8UaamiDaaaa@86AC@  

[ φ ne KxVCo φ ne KxVC o 2 4 φ ne V φ ne λ 2 φ ne V ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqbaoaalaaakeaajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqz GeGaamOBaiaadwgaaaGaam4saiaadIhacaWGwbGaam4qaiaad+gaca aMc8Ecfa4aaOaaaOqaaKqbaoaalaaakeaajugibiabeA8aQbGcbaqc LbsacaWGUbGaamyzaaaacaWGlbGaamiEaiaadAfacaWGdbGaam4BaS WaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaaGPaVlabgkHiTiaaykW7 caaI0aaaleqaaKqbaoaalaaakeaajugibiabeA8aQbGcbaqcLbsaca WGUbGaamyzaaaacaWGwbqcfa4aaSaaaOqaaKqzGeGaeqOXdOgakeaa jugibiaad6gacaWGLbaaaiabeU7aSbGcbaqcLbsacaaIYaqcfa4aaS aaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadAfa aaaakiaawUfacaGLDbaajugibiaaykW7caWG0baaaa@6E83@         
(37)

If  t= d v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7juaGdaWcaaGc baqcLbsacaWGKbaakeaajugibiaadAhaaaaaaa@43EF@                

C(z)=Co[ d v +2 ][ φ ne KxVCo φ ne KxVC o 2 4 φ ne V φ ne λ 2VφΛ ] d v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadQhacaGGPaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPa VlaadoeacaWGVbGaaGPaVlaaykW7caaMc8Ecfa4aamWaaOqaaKqbao aalaaakeaajugibiaadsgaaOqaaKqzGeGaamODaaaacqGHRaWkcaaI YaaakiaawUfacaGLDbaajuaGdaWadaGcbaqcfa4aaSaaaOqaaKqbao aalaaakeaajugibiabeA8aQbGcbaqcLbsacaWGUbGaamyzaaaacaWG lbGaamiEaiaadAfacaWGdbGaam4BaiaaykW7juaGdaGcaaGcbaqcfa 4aaSaaaOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaa dUeacaWG4bGaamOvaiaadoeacaWGVbWcdaahaaqabeaajugWaiaaik daaaqcLbsacaaMc8UaeyOeI0IaaGPaVlaaisdaaSqabaqcfa4aaSaa aOqaaKqzGeGaeqOXdOgakeaajugibiaad6gacaWGLbaaaiaadAfaju aGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqzGeGaamOBaiaadwgaaaGa eq4UdWgakeaajugibiaaikdacaWGwbGaeqOXdOMaeu4MdWeaaaGcca GLBbGaayzxaaqcLbsacaaMc8Ecfa4aaSaaaOqaaKqzGeGaamizaaGc baqcLbsacaWG2baaaaaa@882A@   

[ φ ne KxVCo φ ne KxVC o 2 4 φ ne V φ ne λ 2VφΛ ] d v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqbaoaalaaakeaajuaGdaWcaaGcbaqcLbsacqaHgpGAaOqaaKqz GeGaamOBaiaadwgaaaGaam4saiaadIhacaWGwbGaam4qaiaad+gaca aMc8Ecfa4aaOaaaOqaaKqbaoaalaaakeaajugibiabeA8aQbGcbaqc LbsacaWGUbGaamyzaaaacaWGlbGaamiEaiaadAfacaWGdbGaam4BaK qbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaaGPaVlabgkHiTiaa ykW7caaI0aaaleqaaKqbaoaalaaakeaajugibiabeA8aQbGcbaqcLb sacaWGUbGaamyzaaaacaWGwbqcfa4aaSaaaOqaaKqzGeGaeqOXdOga keaajugibiaad6gacaWGLbaaaiabeU7aSbGcbaqcLbsacaaIYaGaam OvaiabeA8aQjabfU5ambaaaOGaay5waiaaw2faaKqzGeGaaGPaVNqb aoaalaaakeaajugibiaadsgaaOqaaKqzGeGaamODaaaaaaa@6F94@                                                                                        (38)

Partial deposition of lead through velocity dynamics has been expressed though these derived solutions, the study monitored the system were the formation deposit lead substances in partial conditions, such condition were observed in the study location to determined their influences in n variation of lead concentration, permeability and soil porosity were significant parameters that varies, these variables  were integrated to monitor the  substances in the study location, these expression monitored the variation of effect from these influential parameters, the establishment of these parameters  through their relationship  has  shows there different significant in the derived model expression.

Conclusion

The study of  velocity of flow dynamics  on partial deposition of lead has been expressed, the study were carried out to monitor it in heterogeneous in coarse deposition,  significant parameters  determined that deposition the rate of the substances were considered in the derived solution, the deposition of lead in coarse formation  were monitored considering the geological setting reflecting on the  velocity dynamics that migrate it at different formation,  porosity and permeability in the in coarse formation were observed in different dimension through the derived solution, the system monitor the substances at different phase base on the heterogeneity of the formation. The study is imperative because the cause of partial deposition of the contaminant has been determined in the study location.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Pusch R. Highly compacted sodium bentonite for isolating rock–deposited 645 radioactive 646 waste products. Nucl Technol (United States). 1979;45(2):1–5.
  2. Villar MV, Lloret A. Influence of dry density and water content on the swelling of a 672 compacted bentonite. Applied Clay Science. 2008;39(1–2):38–49.
  3. Komine H, Watanabe Y. The past, present and future of the geo–environment in Japan. Soils and Foundations. 2010;50(6):977–982.
  4. Cui YJ, Tang AM, Qian LX, et al. Thermal–mechanical behavior of compacted GMZ Bentonite. Soils and Foundations. 2011;51(6):1065–1074.
  5. Juvankoski M. Description of basic design for buffer (working report 2009–131). 612 Technical report Eurajoki, Finland; 2010.
  6. Martin PL, Barcala JM, Huertas F. Large–scale and long–term coupled 641 thermo–hydro–mechanic experiments with bentonite: the febex mock–up test. Journal of 642 Iberian Geology. 2006;32(2):259–282.
  7. Cui YJ, Tang AM, Loiseau C, et al. Determining the unsaturated hydraulic conductivity of a compacted sand–bentonite mixture under constant–volume and free–swell conditions. Physics and Chemistry of the Earth. 2008;3(574):S462 – S471.
  8. Cui YJ, Loiseau C, Delage P. Microstructure changes of a confined swelling soil due to suction controlled hydration. Unsaturated soils: proceedings of the Third International Conference on Unsaturated Soils, 10–13, March 2002, Recife, Brazil, 2002. p. 593–598.
  9. Yahia–Aissa M, Delage P, Cui YJ. Suction–water relationship in swelling clays. 676 Clay science for engineering, IS–Shizuoka International Symposium on Suction. Swelling 677 Permeability and Structure of Clays. 2001. p. 65–68.
  10. Komine H, Yasuhara K, Murakami S. Swelling characteristics of bentonites in artificial seawater. Canadian Geotechnical Journal. 2009;46(2):177–189.
  11. Komine H. Predicting hydraulic conductivity of sand bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes. Engineering Geology. 2010;114:123–134.
  12. Ye WM, Cui YJ, Qian LX, et al. An experimental study of the water 679 transfer confined compacted gmz bentonite. Engineering Geology. 2009;108(3–4):169–176.
  13. Yong RN, Boonsinsuk P, Wong G. Formulation of backfill material for a 682 nuclear fuel waste disposal vault. Canadian Geotechnical Journal. 1986;23(2):216–228.
Creative Commons Attribution License

©2017 Eluozo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.