Submit manuscript...
MOJ
eISSN: 2572-8520

Civil Engineering

Review Article Volume 4 Issue 2

Multiplication bending moment factor for AASHTO live Loads adopted in Jordan

Samih Qaqish

Ex-Dean Faculty of Engineering, University of Jordan, Jordan

Correspondence: Samih Qaqish, Ex-Dean Faculty of Engineering, University of Jordan, Amman, Jordan, Tel 962-777-427-511

Received: November 20, 2017 | Published: April 23, 2018

Citation: Qaqish S. Multiplication bending moment factor for AASHTO live Loads adopted in Jordan. MOJ Civil Eng. 2018;4(2):104-107. DOI: 10.15406/mojce.2018.04.00105

Download PDF

Abstract

The live load in the American Association of State Highway and Transportation Officials (AASHTO) is used in the design of bridges in Jordan. AASHTO LFD live loads is multiplied by 1.8 and used in Jordan to encounter the unexpected heavy live loads running on these bridges. The new code AASHTO LRFD for live loads is also used in the design of bridges. A Comparison between the bending moment obtained by 1.8 LFD live loads, and LRFD live loads were carried out to determine the coefficient which should the LRFD live loads be multiplied to give the same moment as 1.8 LFD live loads produced. A Comparison of 1.8 AASHTO LFD and AASHTO LRFD live loads for the bending moment of simply supported 30m bridge span with one lane in each direction showed that the LRFD HL–93 loadings should be multiplied by 1.35 to have the same moment as 1.8 multiplied by HS20–44 in LFD.

This result will be used for the design of highway bridges in Jordan, and it will be a reference number for the Arab Countries also for such subject.

Keywords: AASHTO specification, AASHTO LRFD, AASHTO LFD, loadings, bridges, highway

Introduction

AASHTO LFD1 live loads are used in Jordan, most of the Arab Countries and USA. In Jordan, the AASHTO LFD live load is increased to encounter the unexpected live loads. This increase is a multiplication factor of 1.8 to the live loads of AASHTO LFD. AASHTO LRFD2 is the recent Code in designing bridges. Ministry of Public Works and Housing, and Ministry of Transportation3,4 studied the axle weight in Jordan. Al foqaha'a5 studied the loading adopted for bridge design in Jordan in 1994. Qaqish6 presented load capacity evaluation of T – Beam bridges. Qaqish7 presented stress distribution at the corners of skew bridges. Qaqish8 illustrated a Comparison between one dimensional and three–dimensional models of one span box Girder Bridge. Qaqish9 illustrated a Comparison between one dimensional and three–dimensional models of two continuous spans of box, Girder Bridge. Qaqish10 illustrated the finite element analysis of two continuous skew spans of box Girder Bridge and the reaction distribution at the edges with 49 degrees skew angle. Campisi11 illustrated the review of load rating highway bridges in accordance with load and resistance factor rating method. Deng12 studied the numerical simulations to study the dynamic IFs of both simply supported and continuous bridges due to vehicle loading. Deng13 studied the impact factors for different bridge responses, including deflection, bending moment and shear. The results showed that the impact factors due to vehicle braking could be notably larger than those due to the vehicles moving at constant speeds and could exceed the impact factor specified in the AASHTO bridge design code. Leahy14 examined the HL–93 current bridge traffic load model in the United States. Li15 studied a three–dimensional nonlinear dynamic analysis framework for RC bridges based on the force analogy method (FAM).16

Live loads

The live loads of the AASHTO specifications (LFD) consist of standards trucks or off– lane loads as shown in Figure 1. While the live loads of the AASHTO specifications (2) LRFD is HL–93 which consists of truck loading and distributed load of 9.3 KN/m as shown in Figure 2. The impact factor for LFD is calculated from:

Figure 1 Truck HS20–44 and equivalent.
Figure 2A Truck loading of HL–93.
Figure 2B Distributed HL–93 loading.

While the Dynamic load allowance is considered 33% for LRFD.

Structural idealization

Figure 3 shows the plan of bridge, section A–A, and section B–B. The span of the bridges is 30m with two lanes, one lane in each direction. Box Type Bridge is considered with 7.8 m total width and 2.2 m total depth.

Figure 3 Plan and sections A–A and B–B of the Bridge.

Moment due to HS20–44

Maximum positive moment (Figure 4).

Figure 4 Truck Hs 20–44 location for Max moment.

ΣMB=0.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaO4Odi aak2eacaGIcbGaaOypaiaakcdacaGIUaGaaOimaaaa@3C4E@

R A ×30=35.7×19.978+142.7×142.7×11.445 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOuaK qbaoaaBaaaleaajugWaiaakgeaaSqabaaccaqcLbsacqWFxdaTcaGI ZaGaaOimaiaak2dacaGIZaGaaOynaiaak6cacaGI3aGae831aqRaaO ymaiaakMdacaGIUaGaaOyoaiaakEdacaGI4aGae83kaSIaaOymaiaa ksdacaGIYaGaaOOlaiaakEdacqWFxdaTcaGIXaGaaOinaiaakkdaca GIUaGaaO4naiab=Dna0kaakgdacaGIXaGaaOOlaiaaksdacaGI0aGa aOynaaaa@597A@
R A =(713.22+2241.817+1633.2)/30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOuaS WaaSbaaeaajugWaiaakgeaaSqabaqcLbsacaGI9aGaaOikaiaakEda caGIXaGaaO4maiaak6cacaGIYaGaaOOmaGGaaiab=TcaRiaakkdaca GIYaGaaOinaiaakgdacaGIUaGaaOioaiaakgdacaGI3aGae83kaSIa aOymaiaakAdacaGIZaGaaO4maiaak6cacaGIYaGaaOykaiaak+caca GIZaGaaOimaaaa@4F22@
R A =152.94KN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOuaS WaaSbaaWqaaiaakgeaaeqaaKqzGeGaaOypaiaakgdacaGI1aGaaOOm aiaak6cacaGI5aGaaOinaiaakUeacaGIobaaaa@3FE1@
R B =168.16KN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOuaK qbaoaaBaaaleaajugWaiaakkeaaSqabaqcLbsacaGI9aGaaOymaiaa kAdacaGI4aGaaOOlaiaakgdacaGI2aGaaO4saiaak6eaaaa@419E@

Max. moment at C

M C =152.94×14.2935.7×4.268 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOytaS WaaSbaaeaajugWaiaakoeaaSqabaaccaqcLbsacqWF9aqpcaGIXaGa aOynaiaakkdacaGIUaGaaOyoaiaaksdacqWFxdaTcaGIXaGaaOinai aak6cacaGIYaGaaOyoaiab=jHiTiaakodacaGI1aGaaOOlaiaakEda cqWFxdaTcaGI0aGaaOOlaiaakkdacaGI2aGaaOioaaaa@4F15@
=2185.5152.4=2033.1KN.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGjbVl aaywW7iiaacqWF9aqpcaGIYaGaaOymaiaakIdacaGI1aGaaOOlaiaa kwdacqWFsislcaGIXaGaaOynaiaakkdacaGIUaGaaOinaiab=1da9i aakkdacaGIWaGaaO4maiaakodacaGIUaGaaOymaiaakUeacaGIobGa aOOlaiaak2gaaaa@4C87@

Impact Factor      = 50 L+125 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaakwdacaGIWaaakeaajugibiaakYeaiiaacqWFRaWkcaGI XaGaaOOmaiaakwdaaaaaaa@3D31@ = 50 3.28×30+125 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaakwdacaGIWaaakeaajugibiaakodacaGIUaGaaOOmaiaa kIdaiiaacqWFxdaTcaGIZaGaaOimaiab=TcaRiaakgdacaGIYaGaaO ynaaaaaaa@42DF@ = 22.4%

Total live load bending moment = 2 x 2033.1 x 1.224 =4977.029 kN.m

Equivalent uniform load (HS 20–44)

Figure 5 shows the maximum moment due to equivalent uniform loadings of HS 20–44.

Figure 5 Equivalent uniform load for HS 20–44.

Bending moment at C = W L 2 8 + PL 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaakEfacaGImbqcfa4aaWbaaSqabeaajugWaiaakkdaaaaa keaajugibiaakIdaaaaccaGae83kaSscfa4aaSaaaOqaaKqzGeGaaO iuaiaakYeaaOqaaKqzGeGaaOinaaaaaaa@420A@ = 9.37×3 0 2 8 + 80.345×30 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOypaK qbaoaalaaakeaajugibiaakMdacaGIUaGaaO4maiaakEdaiiaacqWF xdaTcaGIZaGaaOimaKqbaoaaCaaaleqabaqcLbmacaGIYaaaaaGcba qcLbsacaGI4aaaaiab=TcaRKqbaoaalaaakeaajugibiaakIdacaGI WaGaaOOlaiaakodacaGI0aGaaOynaiab=Dna0kaakodacaGIWaaake aajugibiaaksdaaaaaaa@4E84@ =1054.125+602.59 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOypai aakgdacaGIWaGaaOynaiaaksdacaGIUaGaaOymaiaakkdacaGI1aac caGae83kaSIaaOOnaiaakcdacaGIYaGaaOOlaiaakwdacaGI5aaaaa@4294@ =165.7125 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOypai aakgdacaGI2aGaaOynaiaak6cacaGI3aGaaOymaiaakkdacaGI1aaa aa@3D3C@

Total live equivalent bending moment = 2 x 1656.7125 x 1.224 = 4055.63 KN.m

So the bending moment due to the Truck Loading HS 20–44 governs and it's value 4977.029 KN.m.

LRFD

Bending moment due to truck loading

Figure 6 shows the location of HL– 93 Truck loading to give maximum moment at point O.

Figure 6 Truck HL–93 location for max. moment.

R A ×30=35×20.01+145×15.71+145×11.41 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOuaS WaaSbaaeaajugWaiaakgeaaSqabaaccaqcLbsacqWFxdaTcaGIZaGa aOimaiab=1da9iaakodacaGI1aGae831aqRaaOOmaiaakcdacaGIUa GaaOimaiaakgdacqWFRaWkcaGIXaGaaOinaiaakwdacqWFxdaTcaGI XaGaaOynaiaak6cacaGI3aGaaOymaiab=TcaRiaakgdacaGI0aGaaO ynaiab=Dna0kaakgdacaGIXaGaaOOlaiaaksdacaGIXaaaaa@57A5@ =700.35+2277.95+1654.45 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeGae8 xpa0JaaO4naiaakcdacaGIWaGaaOOlaiaakodacaGI1aGae83kaSIa aOOmaiaakkdacaGI3aGaaO4naiaak6cacaGI5aGaaOynaiab=TcaRi aakgdacaGI2aGaaOynaiaaksdacaGIUaGaaOinaiaakwdaaaa@482B@

  R A =154.425K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOuaS WaaSbaaeaajugWaiaakgeaaSqabaaccaqcLbsacqWF9aqpcaGIXaGa aOynaiaaksdacaGIUaGaaOinaiaakkdacaGI1aGaaO4saaaa@4130@

Moment at O = 154.425× 14.29 – 35 × 4.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGInbGaaO4Baiaak2gacaGILbGaaOOBaiaakshacaGIGaGa aOyyaiaakshacaGIGaGaaO4taiaakccaiiaacqWF9aqpcaGIGaGaaO ymaiaakwdacaGI0aGaaOOlaiaaksdacaGIYaGaaOynaiab=Dna0kaa kccacaGIXaGaaOinaiaak6cacaGIYaGaaOyoaiaakccacaGItaIaaO iiaiaakodacaGI1aGaaOiiaiab=Dna0kaakccacaGI0aGaaOOlaiaa kodaaaa@57B8@
=2206.73 150.5 =2056.23 KN.m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeqbaeaabi qaaaGcbaaccaqcLbsaqaaaaaaaaaWdbiab=1da9iaakkdacaGIYaGa aOimaiaakAdacaGIUaGaaO4naiaakodacaGIGaGae8NeI0IaaOymai aakwdacaGIWaGaaOOlaiaakwdaaOWdaeaajugib8qacqWF9aqpcaGI YaGaaOimaiaakwdacaGI2aGaaOOlaiaakkdacaGIZaGaaOiiaiaakU eacaGIobGaaOOlaiaak2gacaGIUaaaaaaa@4E7A@

Bending moment due to distributed load

Figure 7 shows the maximum moment due to uniform loading of HL–93 loading.

Figure 7 Moment due to additional uniform loading of HL–93.

Bending moment at O = 1043.67 KN. m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIcbGaaOyzaiaak6gacaGIKbGaaOyAaiaak6gacaGINbGa aOiiaiaak2gacaGIVbGaaOyBaiaakwgacaGIUbGaaOiDaiaakccaca GIHbGaaOiDaiaakccacaGIpbGaaOiiaGGaaiab=1da9iaakccacaGI XaGaaOimaiaaksdacaGIZaGaaOOlaiaakAdacaGI3aGaaOiiaiaakU eacaGIobGaaOOlaiaakccacaGITbGaaOOlaaaa@54D7@  

Total live bending moment

( 2056.23+ 1043.67 )× 2 ×1.33 = 8245.734 KN. m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibabaaaaaaaaapeGaaOOmaiaakcdacaGI1aGaaOOnaiaak6ca caGIYaGaaO4maGGaaiab=TcaRiaakccacaGIXaGaaOimaiaaksdaca GIZaGaaOOlaiaakAdacaGI3aaak8aacaGLOaGaayzkaaqcLbsapeGa e831aqRaaOiiaiaakkdacaGIGaGae831aqRaaOymaiaak6cacaGIZa GaaO4maiaakccacqWF9aqpcaGIGaGaaOioaiaakkdacaGI0aGaaOyn aiaak6cacaGI3aGaaO4maiaaksdacaGIGaGaaO4saiaak6eacaGIUa GaaOiiaiaak2gacaGIUaaaaa@5C66@  

Where 33% is the impact factor, and it is calculated for two lanes.

Dead load

Bending moment due to own weight of the bridge

Own weight of bridge= 7.8 × 0.2 × 25 + 0.6 × 0.3 ×× 25+2.24 × 0.3 × 25× 2 +3.2 × 0.2 × 25 = 97.6 KN/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIpbGaaO4Daiaak6gacaGIGaGaaO4DaiaakwgacaGIPbGa aO4zaiaakIgacaGI0bGaaOiiaiaak+gacaGIMbGaaOiiaiaakkgaca GIYbGaaOyAaiaaksgacaGINbGaaOyzaGGaaiab=1da9iaakccacaGI 3aGaaOOlaiaakIdacaGIGaGae831aqRaaOiiaiaakcdacaGIUaGaaO OmaiaakccacqWFxdaTcaGIGaGaaOOmaiaakwdacaGIGaGae83kaSIa aOiiaiaakcdacaGIUaGaaOOnaiaakccacqWFxdaTcaGIGaGaaOimai aak6cacaGIZaGaaOiiaiab=Dna0kaakkdacaGIGaGae831aqRaaOii aiaakkdacaGI1aGae83kaSIaaOOmaiaak6cacaGIYaGaaOinaiaakc cacqWFxdaTcaGIGaGaaOimaiaak6cacaGIZaGaaOiiaiab=Dna0kaa kccacaGIYaGaaOynaiab=Dna0kaakccacaGIYaGaaOiiaiab=TcaRi aakodacaGIUaGaaOOmaiaakccacqWFxdaTcaGIGaGaaOimaiaak6ca caGIYaGaaOiiaiab=Dna0kaakccacaGIYaGaaOynaiaakccacaGI9a GaaOiiaiaakMdacaGI3aGaaOOlaiaakAdacaGIGaGaaO4saiaak6ea caGIVaGaaOyBaaaa@9310@  

Own weight of wearing surface= 3.6 × 2 × 0.05 ×21= 7.56 KN. m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIpbGaaO4Daiaak6gacaGIGaGaaO4DaiaakwgacaGIPbGa aO4zaiaakIgacaGI0bGaaOiiaiaak+gacaGIMbGaaOiiaiaakEhaca GILbGaaOyyaiaakkhacaGIPbGaaOOBaiaakEgacaGIGaGaaO4Caiaa kwhacaGIYbGaaOOzaiaakggacaGIJbGaaOyzaGGaaiab=1da9iaakc cacaGIZaGaaOOlaiaakAdacaGIGaGae831aqRaaOiiaiaakkdacaGI GaGae831aqRaaOiiaiaakcdacaGIUaGaaOimaiaakwdacaGIGaGae8 31aqRaaOOmaiaakgdacqWF9aqpcaGIGaGaaO4naiaak6cacaGI1aGa aOOnaiaakccacaGIlbGaaOOtaiaak6cacaGIGaGaaOyBaaaa@6D6C@

Total Bending moment due to Dead load + Live load

LFD

B. M. due to own weight of the bridge

97.6×3 0 2 8 =10980KN.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaakMdacaGI3aGaaOOlaiaakAdaiiaacqWFxdaTcaGIZaGa aOimaSWaaWbaaeqabaqcLbmacaGIYaaaaaGcbaqcLbsacaGI4aaaai aak2dacaGIXaGaaOimaiaakMdacaGI4aGaaOimaiaakUeacaGIobGa aOOlaiaak2gaaaa@491C@

B.M. due to wearing surface

7.56×3 0 2 8 =850.5KN.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaakEdacaGIUaGaaOynaiaakAdaiiaacqWFxdaTcaGIZaGa aOimaSWaaWbaaeqabaqcLbmacaGIYaaaaaGcbaqcLbsacaGI4aaaai aak2dacaGI4aGaaOynaiaakcdacaGIUaGaaOynaiaakUeacaGIobGa aOOlaiaak2gaaaa@4916@

The truck loading is multiplied by 1.8 to encounter the unexpected traffic loading:

Total B.M=1.3 ( Moment D.L+Moment L.L× 1.67 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIubGaaO4BaiaakshacaGIHbGaaOiBaiaakccacaGIcbGa aOOlaiaak2eaiiaacqWF9aqpcaGIXaGaaOOlaiaakodacaGIGaqcfa 4damaabmaakeaajugib8qacaGInbGaaO4Baiaak2gacaGILbGaaOOB aiaakshacaGIGaGaaOiraiaak6cacaGImbGae83kaSIaaOytaiaak+ gacaGITbGaaOyzaiaak6gacaGI0bGaaOiiaiaakYeacaGIUaGaaOit aiaak6cacaGIGaGae831aqRaaOiiaiaakgdacaGIUaGaaOOnaiaakE daaOWdaiaawIcacaGLPaaaaaa@5EC7@
=1.3 ( 11830.5+1.67×1.8×4977.029 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWF9aqpcaGIXaGaaOOlaiaakodacaGIGaqcfa4damaa bmaakeaajugib8qacaGIXaGaaOymaiaakIdacaGIZaGaaOimaiaak6 cacaGI1aGae83kaSIaaOymaiaak6cacaGI2aGaaO4naiab=Dna0kaa kgdacaGIUaGaaOioaiab=Dna0kaaksdacaGI5aGaaO4naiaakEdaca GIUaGaaOimaiaakkdacaGI5aaak8aacaGLOaGaayzkaaaaaa@52D7@
=34828.89 KN. m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWF9aqpcaGIZaGaaOinaiaakIdacaGIYaGaaOioaiaa k6cacaGI4aGaaOyoaiaakccacaGIlbGaaOOtaiaak6cacaGIGaGaaO yBaiaak6caaaa@4321@ Total B.M=1.3

LRFD

Total B. M= 1.25 × M. D. L+ 1.5 x M W.S+ 1.35  × ML.L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIubGaaO4BaiaakshacaGIHbGaaOiBaiaakccacaGIcbGa aOOlaiaakccacaGInbGaaOOlaiaakccaiiaacqWF9aqpcaGIGaGaaO ymaiaak6cacaGIYaGaaOynaiaakccacqWFxdaTcaGIGaGaaOytaiaa k6cacaGIGaGaaOiraiaak6cacaGIGaGaaOitaiaak6cacaGIGaGae8 3kaSIaaOiiaiaakgdacaGIUaGaaOynaiaakccacaGI4bGaaOiiaiaa k2eacaGIGaGaaO4vaiaak6cacaGItbGaaOOlaiaakccacqWFRaWkca GIGaGaaOymaiaak6cacaGIZaGaaOynaiaakccacaGIGaGae831aqRa aOiiaiaak2eacaGImbGaaOOlaiaakYeaaaa@6696@
=1.25  × 10980 + 1.5  × 850.5 + 1.35  × 8245.734 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWF9aqpcaGIXaGaaOOlaiaakkdacaGI1aGaaOiiaiaa kccacqWFxdaTcaGIGaGaaOymaiaakcdacaGI5aGaaOioaiaakcdaca GIGaGaaO4kaiaakccacaGIXaGaaOOlaiaakwdacaGIGaGaaOiiaiab =Dna0kaakccacaGI4aGaaOynaiaakcdacaGIUaGaaOynaiaakccacq WFRaWkcaGIGaGaaOymaiaak6cacaGIZaGaaOynaiaakccacaGIGaGa e831aqRaaOiiaiaakIdacaGIYaGaaOinaiaakwdacaGIUaGaaO4nai aakodacaGI0aaaaa@5DBF@
=13725 + 1275.75 + 11131.74 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWF9aqpcaGIXaGaaO4maiaakEdacaGIYaGaaOynaiaa kccacqWFRaWkcaGIGaGaaOymaiaakkdacaGI3aGaaOynaiaak6caca GI3aGaaOynaiaakccacqWFRaWkcaGIGaGaaOymaiaakgdacaGIXaGa aO4maiaakgdacaGIUaGaaO4naiaaksdaaaa@4AF4@
=26132.49 KN. m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWF9aqpcaGIYaGaaOOnaiaakgdacaGIZaGaaOOmaiaa k6cacaGI0aGaaOyoaiaakccacaGIlbGaaOOtaiaak6cacaGIGaGaaO yBaiaak6caaaa@4312@

So the factor to make the bending moment due to LFD equal to LRFD is:

Factor Equal= 34828.89 26132.49 =1.33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIgbGaaOyyaiaakogacaGI0bGaaO4BaiaakkhacaGIGaGa aOyraiaakghacaGI1bGaaOyyaiaakYgacaGI9aqcfa4damaalaaake aajugibiaakodacaGI0aGaaOioaiaakkdacaGI4aGaaOOlaiaakIda caGI5aaakeaajugibiaakkdacaGI2aGaaOymaiaakodacaGIYaGaaO OlaiaaksdacaGI5aaaaiaak2dacaGIXaGaaOOlaiaakodacaGIZaaa aa@5408@  

So the live loads for LRFD should be multiplied by 1.33 to make the bending moment due to 1.8 HS 20–44 equal to the moment due to LRFD loadings.

Finite element analysis was carried out for the bridge using CSi bridge software (16), and the results are:

Total B. M. (LFD)                36332 KN. m.
Total B. M. (LRFD)             27995 KN. m.

Factor= 36332 27995 =1.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIgbGaaOyyaiaakogacaGI0bGaaO4BaiaakkhapaGaaOyp aKqbaoaalaaakeaajugibiaakodacaGI2aGaaO4maiaakodacaGIYa aakeaajugibiaakkdacaGI3aGaaOyoaiaakMdacaGI1aaaaiaak2da caGIXaGaaOOlaiaakodaaaa@4971@

So it can be noticed that the factor from the structural calculations and the Csibridge is almost identical, and it is recommended to use 1.35 as a factor.

Conclusion

The live loads for LRFD designated as HL–93 which consist of design truck or design tandem and design lane load should be multiplied by 1.35 to encounter the unexpected traffic loading in Jordan and to be equivalent to 1.8 HS 20–44 LFD which is adopted in design bridges in Jordan to get the same bending moment for LFD and LRFD. This result will be used in Jordan for designing bridges after will be adopted in the Ministry of Public works and Housing.

Acknowledgement

None.

Conflicts of interest

The authors declare no conflict of interest.

References

  1. American Association of State Highway and Transpiration Officials, AASHTO. Standard Specification for Highway Bridges. 17th ed. Washington, USA; 2002.
  2. American Association of State Highway and Transportation Officials, AASHTO LRFD, Washington, USA; 2007.
  3. Ministry of Public Works and Housing, Axle–Wight Records. Jordan; 1998.
  4. Ministry of Transportation, A Report on Gross – Vehicle Weights on The Jordanian Road Network for the Year 1993. Jordan; 1993.
  5. Al–Foqaha'a A. Study of Recent Loading Adopted for Bridge Design in Jordan. M. Sc, Thesis, University of Jordan, Amman, Jordan; 1994 .
  6. Qaqish S. Load Capacity Evaluation of T–Beam Bridges. Kerensky conference on Global trends in Structural Engineering 20–22, India; 1994.
  7. Qaqish S. Stress Distribution at the Corners of Skew Bridges. 13th America Society of Civil Engineering, Engineering Mechanics Division, Baltimore, USA, 1999:13–16.
  8. Qaqish S. Comparison between One Dimensional and Three Dimensional Models of Box Girder Bridge. 1st International Structural Specialty Conference, Canadian society for Civil Engineering, Calgary, Alberta, Canada; 2005.
  9. Qaqish S. Comparison between One Dimensional and Three Dimensional Models of Two Continuous Spans of Box Girder Bridges. International conference on construction and building technology, Malaysia; 2008.
  10. Qaqish S. Finite Element Analysis of Two Continuous Skew Spans of Box Girder Bridge and the Reaction Distribution at the Edges with 49 Degrees Skew Angle. Orlando International Engineering Education Conference, USA; 2012.
  11. Campisi P. Review of Load Rating Highway Bridges. In Accordance with Load and Resistance Factor Rating Method by Lubin Gao. J. Bridge Eng. ASCE. 2015;20(2).
  12. Deng L, He W, Shao Y. Dynamic Impact Factors for Shear and Bending Moment of Simply Supported and Continuous Concrete Girder Bridges. J Bridge Eng, ASCE. 2015;20(11).
  13. Deng L, Wang F. Impact Factors of Simply Supported Prestressed Concrete Girder Bridges due to Vehicle Breaking. J. Bridge Eng., ASCE. 2015;20(11).
  14. Leahy C, Brien O, Enright B, et al. Review of HL–93 Bridge Traffic Load Model Using an Extensive WIM Database. J. Bridge Eng ASCE. 2015;20(10).
  15. Li G, Zhang Y, Li H. Nonlinear Seismic Analysis of Reinforced Concrete Bridges Using the Force Analogy Method. J. Bridge Eng ASCE. 2015;20(10).
  16. Computers and Structures. SAP 2000, Version 7.0, Integrated Finite Element Analysis and Design of Structures, Berkeley, California, USA; 1998.
Creative Commons Attribution License

©2018 Qaqish. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.