Submit manuscript...
MOJ
eISSN: 2572-8520

Civil Engineering

Review Article Volume 2 Issue 5

Monitoring Retardation Influence on Mycoplasma Transport in Silty Formation Udi Niger Delta of Nigeria

Eluozo SN,1 Nwaoburu AO,2 Eleki AG3

1Depatrment of Civil and Environmental Engineering, Port Harcourt polytechnic Rumuola Port Harcourt, Nigeria
2Department of Mathematics/Computer Science, Rivers State University of Science and Technology, Nigeria
3Department of Statistics, Port Harcourt polytechnic Rumuola Port Harcourt, Nigeria

Correspondence: Eluozo SN, Department of Civil and Environmental Engineering, Port Harcourt polytechnic Rumuola Port Harcourt, Nigeria

Received: March 27, 2017 | Published: May 16, 2017

Citation: Eluozo SN, Nwaoburu AO, Eleki AG (2017) Monitoring Retardation Influence on Mycoplasma Transport in Silty Formation Udi Niger Delta of Nigeria. MOJ Civil Eng. 2017;2(5):167-173. DOI: 10.15406/mojce.2017.02.00047

Download PDF

Abstract

Retardation phase in transport process was observed to influences the migration process of Mycoplasma in silty deposited formation, the deposition of this contaminant in silty formation experienced higher concentration due to deposited lower porosity and void ratio in the study area, such condition experienced variations in formation characteristics, the deposition of other minerals that will definitely increase Mycoplasma population was considered in the system, the rate of velocity at various strata were also observed as significant parameters in the system, the derived model base on these factors integrated these conditions on the derived solutions, this implies that the system will be monitored in several condition at different phase of the transport system, condition were the microbes may experienced uncomfortable environment were also considered, these are were Mycoplasma may generates degradation, the study is imperative because the behaviour of Mycoplasma has been thoroughly observed, it is through these process that the rate of Mycoplasma can be predicted, experts will definitely produces results applying these concept.

Keywords: Monitoring; Mycoplasma; Retardation transport; Silty formation

Introduction

Grain size, shape, and packing are characteristics of granular porous media that have a significant effect on groundwater flow, affecting both porosity and permeability. Hubbert 1 determined that if uniform spheres are uniformly packed, porosity is not a function of grain diameter but permeability is a function of the square of the grain diameter. However, natural sediment does not consist of uniform grains and packing; it contains mixtures of finer and coarser grains of irregular shapes and complex packing arrangements. Nevertheless, the effects on porosity and permeability when sediment is not uniform in size and packing have been extensively explored but the effects on porosity and permeability when sediment is not uniform in shape needs to be explored further. Laboratory and field experiments have verified that grain size and packing affect porosity and permeability in unconsolidated clastic sediment 2-4. Research has also been conducted on estimating hydraulic parameters, porosity and permeability, and the sediment parameters, grain size and packing 5 worked to improve the knowledge of these relationships by modifying previous petro physical models to more accurately predict the permeability of sediment mixtures. Kamann 6 expanded on the work of 5 to account for five possible types of packing rather than the two types of packing upon which their fractional packing model was based. He took porosity and permeability.

Measurements on model bimodal sediment mixtures that varied in the volume fraction of finer grains, which he compared with predicted values. In keeping with 7, Kamann 6 also modeled the porosity and permeability of bimodal sediment mixtures to address the effect of the volume fraction of fines. As the volume fraction of fines increases within a sediment mixture, porosity changes as the packing of the mixture changes. A porosity minimum occurs when the volume of the finer component equals the pore volume of the coarser component. Kamann 6 used spherical grains to model poorly-sorted sands and sandy gravels. Spherical glass beads and marbles were used to represent fine sand, medium sand, coarse sand and pebble grain sizes 7 chose to use spherical grains to eliminate variations in shape. He assumed that the bimodal sediment mixtures of spherical glass beads and marbles provided an approximation of natural sediment. Conrad 8 focused specifically on measurements taken at small support scales using the air-based method of determining permeability on mixtures of spherical grains. He revised the permeability procedures, improved the air-based permeameter correction model developed by Kamann 7, replicated and improved upon the permeability measurements taken by Kamann 7, and further confirmed the applicability of the petro physical model for permeability. The research conducted by Koltermann and Gorelick 9,10 explored the effect of grain size and packing on porosity and permeability. The focus of this research will explore the effect of grain size, shape, and packing on porosity and permeability by using bimodal mixtures of natural sediment This study will continue the work of Conrad 8 by replacing spherical glass beads and marbles with natural sand grains and pebbles to reexamine the effect of the volume fraction of fines on porosity and permeability. The goals of this study are to (1) measure porosity and permeability for mixtures of natural sediment that vary by percentages of the volume fraction of finer grains, (2) to evaluate if the model created by Kamann based on spherical grains is accurate for natural sediment grains and (3) to improve the confidence of estimating porosity and permeability 11.

Soil and groundwater contamination remains a threat to public health and the environment despite decades of research. Numerous remediation technologies including bioremediation, thermal treatment, soil vapor extraction (SVE), zero-valent iron (ZVI), and in situ chemical oxidation (ISCO) have been developed over the past 30 years. Bioremediation is a cost-effective and simple remediation process for the degradation of contaminants such as benzene, toluene, ethylbenzene, and xylenes (BTEX) 12,13. However, bioremediation is constrained by the available microbial community and by its degradation capacity in a given environment 14. Due to the complexities of extending laboratory results to the field, the actual rate of degradation as a result of bioremediation is slow relative to other treatments and often relies on natural attenuation, where no treatment is applied and the contaminant degrades naturally 15. Bioremediation, SVE, and ZVI degrade or constrain a narrow range of contaminants and are generally unable to treat sorbed contaminants and dense nonaqueous phase liquids (DNAPLs) due to mass transfer limitations 16,17. Persulfate is typically activated to promote contaminant degradation 18,19. The activating agents include: iron-chelated activation 17, base activation 15, and organic activation 19.

Theoretical Background

Retardation phase take place in different condition on the monitoring of transport process of contaminant , the study express various rate of retardations from initial concentration at various sources of contaminant in transport process on soil at different depositions, these condition has been the sources to determined various rates of contaminant concentration soil and water environment, such condition were monitored in various strata through other sources of determining concentration in soils, but the retardations factor of soil in different environment generated different concentration , these are base on the rates of depositions including stratifications of the lithology structure in different size that may examined homogeneous or heterogeneous formation in soil, therefore it depends on these characteristics which includes variation of porosity permeability and void ratio deposition, these parameters are significant in the system that will always determined the retardation rates of Mycoplasma in soil formations. The effect of retardation factors depend on these parameters as expressed in the system through the governing equation stated below.

Governing Equation

R C t =Dφ 2 C x 2 V C x CμC t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaaGcbaqcLbsacqGHciIT caWG0baaaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caWGebGaeq OXdOwcfa4aaSaaaOqaaKqzGeGaeyOaIy7cdaahaaqabeaajugWaiaa ikdaaaqcLbsacaWGdbaakeaajugibiabgkGi2kaadIhalmaaCaaabe qaaKqzadGaaGOmaaaaaaqcLbsacaaMc8UaaGPaVlabgkHiTiaaykW7 caaMc8UaamOvaKqbaoaalaaakeaajugibiabgkGi2kaadoeaaOqaaK qzGeGaeyOaIyRaamiEaaaacaaMc8UaaGPaVlabgkHiTiaaykW7caaM c8Ecfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaiabeY7aTjaadoeaaO qaaKqzGeGaeyOaIyRaamiDaaaaaaa@7167@                    ………………………………                        (1)

The governing equation generated through developed system monitored the effect of retardations on migration rate of Mycoplasma in silty soil formation, the parameter that developed the governing equation express relationship within the stated parameters , these variables were be subjected to derivation considering different condition that the contaminant may experience on the transport process at different phase.

Nomenclature

R             =              Retardation factor

C              =              Mycoplasma concentration

D             =              Hydrodynamic Dispersion (cm2/m)

V             =              Steady state ground water velocity (cm2/mm)

µ              =              Removal rate of coefficient (c/mm)

T             =              Time [T]

X              =              Distance [M]

f              =              Porosity [-]

R 2 C 1 t =Dφ 2 C 1 x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaeyOaIy7cdaahaaqabeaajugWaiaaikda aaqcLbsacaWGdbWcdaWgaaqaaKqzadGaaGymaaWcbeaaaOqaaKqzGe GaeyOaIyRaamiDaaaacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8Ua amiraiabeA8aQLqbaoaalaaakeaajugibiabgkGi2UWaaWbaaeqaba qcLbmacaaIYaaaaKqzGeGaam4qaSWaaSbaaeaajugWaiaaigdaaSqa baaakeaajugibiabgkGi2kaadIhajuaGdaahaaWcbeqaaKqzGeGaaG Omaaaaaaaaaa@5964@                                                           ………………………………                        (2)

t = 0

x = 0

C(o) = 0                                                               C t | =0 t=0,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaaGcbaqcLbsacqGHciITcaWG0baaaiaa ykW7caaMc8Ecfa4aaqqaaKqzGeabaeqakeaajugibiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaaGPaVlaaicdaaOqaaKqzGeGaaGPaVlaaykW7ca aMc8UaaGPaVlaadshacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8Ua aGPaVlaaykW7caaIWaGaaiilaiaaykW7caWGcbaaaOGaay5bSdqcLb sacaaMc8UaaGPaVdaa@706F@       ………………………………     (3)         

R C 2 t =V C 2 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaKqbaoaaBaaaleaajugW aiaaikdaaSqabaaakeaajugibiabgkGi2kaadshaaaGaaGPaVlaayk W7cqGH9aqpcaaMc8UaaGPaVlaadAfajuaGdaWcaaGcbaqcLbsacqGH ciITcaWGdbWcdaahaaqabeaajugWaiaaikdaaaaakeaajugibiabgk Gi2kaadIhaaaaaaa@50ED@       ………………………………             (4)

t = 0

x = 0

C(o) = 0                                                                 C t | t=0,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaaGcbaqcLbsacqGHciITcaWG0baaaiaa ykW7caaMc8Ecfa4aaqqaaKqzGeabaeqakeaaaeaajugibiaaykW7ca aMc8UaaGPaVlaaykW7caWG0bGaaGPaVlaaykW7cqGH9aqpcaaMc8Ua aGPaVlaaykW7caaMc8UaaGimaiaacYcacaaMc8UaaGPaVlaaykW7ca WGcbaaaOGaay5bSdqcLbsacaaMc8UaaGPaVdaa@5EA8@ ………………………………….     (5)         

         R C 3 t = C 3 μc t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaa iodaaSqabaaakeaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7cq GH9aqpcaaMc8UaaGPaVlabgkHiTiaaykW7caaMc8Ecfa4aaSaaaOqa aKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaiodaaSqabaqcLb sacqaH8oqBcaWGJbaakeaajugibiabgkGi2kaadshaaaaaaa@56BC@                                                  ………………………………….   (6)         

t = 0

C(o) = 0                                                             C 3 t | =0 t=0,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaiodaaSqabaaa keaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7juaGdaabbaqcLb saeaqabOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaIWaaake aajugibiaaykW7caaMc8UaaGPaVlaaykW7caWG0bGaaGPaVlaaykW7 cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaacYcacaaMc8 UaaGPaVlaaykW7caWGcbaaaOGaay5bSdqcLbsacaaMc8UaaGPaVdaa @741C@ ………………………………….    (7)

  V C 4 x C 4 μc t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaKqbaoaaBaaaleaajugW aiaaisdaaSqabaaakeaajugibiabgkGi2kaadIhaaaGaaGPaVlaayk W7caaMc8UaaGPaVlabgkHiTiaaykW7caaMc8Ecfa4aaSaaaOqaaKqz GeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaisdaaSqabaqcLbsacq aH8oqBcaWGJbaakeaajugibiabgkGi2kaadshaaaGaaGPaVdaa@57D9@ ………………………………….   (8) 

x = 0

t = 0

C(o) = 0                                                               C 4 x | =0 x=0,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaisdaaSqabaaa keaajugibiabgkGi2kaadIhaaaGaaGPaVlaaykW7juaGdaabbaqcLb saeaqabOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaIWaaake aajugibiaaykW7caaMc8UaaGPaVlaaykW7caWG4bGaaGPaVlaaykW7 cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaacYcacaaMc8 UaaGPaVlaaykW7caWGcbaaaOGaay5bSdqcLbsacaaMc8UaaGPaVdaa @7425@ …………………………………. (9)

Dφ 2 C 5 x 2 V C 5 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GaeqOXdOwcfa4aaSaaaOqaaKqzGeGaeyOaIy7cdaahaaqabeaajugW aiaaikdaaaqcLbsacaWGdbqcfa4aaSbaaSqaaKqzadGaaGynaaWcbe aaaOqaaKqzGeGaeyOaIyRaamiEaKqbaoaaCaaaleqabaqcLbmacaaI YaaaaaaajugibiaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcaaMc8 UaaGPaVlaadAfajuaGdaWcaaGcbaqcLbsacqGHciITcaWGdbWcdaWg aaqaaKqzadGaaGynaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaaaaca aMc8oaaa@5D12@ ………………………………….                    (10)       

x = 0

C(o) = 0                                                              C 5 x | x=0,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaKqbaoaaBaaaleaajugibiaaiwdaaSqa baaakeaajugibiabgkGi2kaadIhaaaGaaGPaVlaaykW7juaGdaabba qcLbsaeaqabOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7aOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaG PaVlaadIhacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaa ykW7caaIWaGaaiilaiaaykW7caaMc8UaaGPaVlaadkeaaaGccaGLhW oajugibiaaykW7caaMc8oaaa@6DB4@        ………………………………….                    (11)

Applying direct integration on (2)
………………………………….                    (12)       
Again, integrate equation (12) directly yield

RC=DφCt+Kt+ K 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaam4qaiaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPa VlaadseacqaHgpGAcaWGdbGaamiDaiaaykW7caaMc8Uaey4kaSIaaG PaVlaaykW7caWGlbGaamiDaiaaykW7caaMc8Uaey4kaSIaaGPaVlaa dUealmaaBaaabaqcLbmacaaIYaaaleqaaaaa@57FE@ ………………………………….                    (13)

Subject to equation (3), we have
R C o = K 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaam4qaSWaaSbaaeaajugWaiaad+gaaSqabaqcLbsacaaMc8UaaGPa VlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Uaam4saSWaaS baaeaajugWaiaaikdaaSqabaaaaa@49D0@ ………………………………….                    (14)       

And subjecting equation (12) to (3) we have

C 1 t | =0C(o)=Co t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaigdaaSqabaaa keaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7juaGdaabbaqcLb saeaqabOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaaG imaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadoeacaGG OaGaam4BaiaacMcacaaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaG PaVlaaykW7caWGdbGaam4BaiaaykW7caaMc8UaaGPaVdGcbaqcLbsa caaMc8UaaGPaVlaaykW7caaMc8UaamiDaiaaykW7caaMc8Uaeyypa0 JaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaaGccaGLhWoajugibiaa ykW7caaMc8oaaa@8C89@

At Yield

0=Dφ C o + K 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaadseacqaHgpGAcaWG dbWcdaWgaaqaaKqzadGaam4BaaWcbeaajugibiaaykW7caaMc8UaaG PaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaadUealmaaBaaabaqcLbma caaIYaaaleqaaaaa@51BC@

R 1 =Dφ C o = K 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsh I3caaMc8UaamOuaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaaM c8UaaGPaVlabg2da9iaaykW7caaMc8UaamiraiabeA8aQjaadoealm aaBaaabaqcLbmacaWGVbaaleqaaKqzGeGaaGPaVlaaykW7caaMc8Ua aGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaadUealmaaBaaabaqcLb macaaIYaaaleqaaaaa@5A1F@ ………………………………….                    (15)

So that we put (13) and (14) into (13), we have

R C 1 =Dφ C 1t DφCoxRCo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaam4qaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbmacaaMc8EcLbsa caaMc8Uaeyypa0JaaGPaVlaaykW7caWGebGaeqOXdOMaam4qaSWaaS baaeaajugWaiaaigdacaWG0baaleqaaKqzGeGaaGPaVlaaykW7caaM c8UaaGPaVlabgkHiTiaaykW7caaMc8UaaGPaVlaaykW7caWGebGaeq OXdOMaam4qaiaad+gacaWG4bGaaGPaVlaaykW7caWGsbGaam4qaKqz adGaam4Baaaa@6384@ R C 1 =Dφ C 1t DφCoxRCo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaam4qaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbmacaaMc8EcLbsa caaMc8Uaeyypa0JaaGPaVlaaykW7caWGebGaeqOXdOMaam4qaSWaaS baaeaajugWaiaaigdacaWG0baaleqaaKqzGeGaaGPaVlaaykW7caaM c8UaaGPaVlabgkHiTiaaykW7caaMc8UaaGPaVlaaykW7caWGebGaeq OXdOMaam4qaiaad+gacaWG4bGaaGPaVlaaykW7caWGsbGaam4qaKqz adGaam4Baaaa@6384@ ………………………………….                    (16)

R C 1 Dφ C 1x =R C o DφCox MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaam4qaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaaMc8UaaGPa VlabgkHiTiaaykW7caaMc8UaamiraiabeA8aQjaadoealmaaBaaaba qcLbmacaaIXaGaamiEaaWcbeaajugWaiaaykW7jugibiaaykW7caaM c8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaadkfacaWGdbWcda WgaaqaaKqzadGaam4BaaWcbeaajugibiaaykW7caaMc8UaeyOeI0Ia aGPaVlaaykW7caWGebGaeqOXdOMaam4qaiaad+gacaWG4baaaa@66C6@ ………………………………….                    (17)

C 1 = C o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Uaam4qaSWaaS baaeaajugWaiaad+gaaSqabaqcLbsacaaMc8UaaGPaVdaa@4E20@ ………………………………….                    (18)

Hence equation (18) entails that at any given distance x, we have constant concentration of the contaminant in the system.

R C 2 t =V C 2 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaa ikdaaSqabaaakeaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7ca aMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaeyOeI0IaamOvaKqbaoaa laaakeaajugibiabgkGi2kaadoealmaaCaaabeqaaKqzadGaaGOmaa aaaOqaaKqzGeGaeyOaIyRaamiEaaaaaaa@5462@ ……………                               (4)

We approach the system, by using the Bernoulli’s method of separation of variables

C 2 =XT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaaGPaVlaadIfacaWGubaaaa@45FB@ …………………………………                     (19)

i.e.                                                R C 2 t =X T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaa ikdaaSqabaaakeaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7ca aMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaamiwaiaadsfalmaaCaaa beqaaKqzadGaaGymaaaaaaa@4DEE@     ………………………………                        (20)

V C 2 x = X 1 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaa ikdaaSqabaaakeaajugibiabgkGi2kaadIhaaaGaaGPaVlaaykW7ca aMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaamiwaSWaaWbaaeqabaqc LbmacaaIXaaaaKqzGeGaamivaaaa@4E85@ …………………………………                     (21)

Put (20) and (21) into (19), so that we have

RX T 1 =V X 1 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaamiwaiaadsfalmaaCaaabeqaaKqzadGaaGymaaaajugibiaaykW7 caaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlabgkHiTiaadA facaWGybWcdaahaaqabeaajugWaiaaigdaaaqcLbsacaWGubaaaa@4C22@ …………………………………                     (22)

i.e. R T 1 T =V X 1 X = λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaamivaSWaaWbaaeqabaqcLbmacaaIXaaa aaGcbaqcLbsacaWGubaaaiaaykW7caaMc8UaaGPaVlabg2da9iaayk W7caaMc8UaamOvaKqbaoaalaaakeaajugibiaadIfalmaaCaaabeqa aKqzadGaaGymaaaaaOqaaKqzGeGaamiwaaaacaaMc8UaaGPaVlabg2 da9iaaykW7caaMc8UaeyOeI0Iaeq4UdW2cdaahaaqabeaajugWaiaa ikdaaaaaaa@5816@                                        …………………………………                     (23)

Hence R T 1 T + λ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaaGPaVNqbaoaalaaakeaajugibiaadsfalmaaCaaabeqaaKqzadGa aGymaaaaaOqaaKqzGeGaamivaaaacaaMc8UaaGPaVlaaykW7cqGHRa WkcaaMc8Uaeq4UdWwcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsa caaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8 UaaGimaaaa@5702@                                                          …………………………                               (24)

i.e.           X 1 + λ R x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb WcdaahaaqabeaajugWaiaaigdaaaqcLbsacaaMc8UaaGPaVlabgUca RiaaykW7juaGdaWcaaGcbaqcLbsacqaH7oaBaOqaaKqzGeGaamOuaa aacaWG4bGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaM c8UaaGPaVlaaicdaaaa@516F@                                                         …………………………                               (25)

V X 1 + λ 2 X=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb GaamiwaSWaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaaGPaVlaaykW7 cqGHRaWkcqaH7oaBlmaaCaaabeqaaKqzadGaaGOmaaaajugibiaadI facaaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaaicdaaaa@4D88@ …………………………                               (26)

From (25), X=ACos λ R X+BSin λ R X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb GaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPa VlaadgeacaaMc8Uaam4qaiaad+gacaWGZbGaaGPaVNqbaoaalaaake aajugibiabeU7aSbGcbaqcLbsacaWGsbaaaiaadIfacaaMc8UaaGPa VlaaykW7cqGHRaWkcaaMc8UaaGPaVlaaykW7caaMc8UaamOqaiaayk W7caWGtbGaamyAaiaad6gacaaMc8Ecfa4aaSaaaOqaaKqzGeGaeq4U dWgakeaajuaGdaGcaaGcbaqcLbsacaWGsbaaleqaaaaajugibiaadI faaaa@67BC@                     …………………………                               (27)

And (20) gives

T=C λ 2 V t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPa VlaadoeacaaMc8UaeS4eHWMaaGPaVNqbaoaaCaaaleqabaqcfa4aaS aaaSqaaKqzGeGaeyOeI0IaaGPaVlabeU7aSTWaaWbaaWqabeaajugW aiaaikdaaaaaleaajugibiaadAfaaaGaaGPaVlaadshaaaaaaa@547B@ …………………………                               (28)

And (20) gives

  C 2 =( ACos λ R t+BSin λ R t )C λ 2 V x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugWaiaaykW7jugibiaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Ecfa4aaeWaaOqaaKqzGe GaamyqaiaaykW7caWGdbGaam4BaiaadohacaaMc8Ecfa4aaSaaaOqa aKqzGeGaeq4UdWgakeaajuaGdaGcaaGcbaqcLbsacaWGsbaaleqaaa aajugibiaadshacaaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPa VlaaykW7caaMc8UaamOqaiaaykW7caWGtbGaamyAaiaad6gacaaMc8 Ecfa4aaSaaaOqaaKqzGeGaeq4UdWgakeaajuaGdaGcaaGcbaqcLbsa caWGsbaaleqaaaaajugibiaadshaaOGaayjkaiaawMcaaKqzGeGaaG PaVlaadoeacaaMc8UaeS4eHWMaaGPaVNqbaoaaCaaaleqabaqcfa4a aSaaaSqaaKqzGeGaeyOeI0IaaGPaVlabeU7aSLqbaoaaCaaameqaba qcLbmacaaIYaaaaaWcbaqcLbsacaWGwbaaaiaaykW7caWG4baaaaaa @8219@ ……………………….      (29)

The derived model consider retardation factor monitoring it in various rates of concentration at various at different depth in silty formation, the derived model at this stage monitored the system in terms of time through the influences of velocity of flow, this condition establish relationship between both parameter stated in the system, therefore derived model at (29) are developed to monitor the system for such condition.

Subject to equation (29) to conditions in (5), so that we have

                                              C o =AC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaam4BaaWcbeaajugWaiaaykW7jugibiaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Uaamyqaiaadoeaaaa@4739@ ………………………………                        (30)

Equation (30) becomes

C 2 = C o λ 2 V x Cos λ R t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiaaykW7caaMc8Uaeyyp a0JaaGPaVlaaykW7caaMc8Uaam4qaKqbaoaaBaaaleaajugWaiaad+ gaaSqabaqcLbsacaaMc8EcLbmacqWItecBjugibiaaykW7juaGdaah aaWcbeqaaKqbaoaalaaaleaajugibiabgkHiTiaaykW7cqaH7oaBju aGdaahaaadbeqaaKqzadGaaGOmaaaaaSqaaKqzGeGaamOvaaaacaaM c8UaamiEaaaacaaMc8UaaGPaVlaaykW7caWGdbGaam4Baiaadohaca aMc8Ecfa4aaSaaaOqaaKqzGeGaeq4UdWgakeaajuaGdaGcaaGcbaqc LbsacaWGsbaaleqaaaaajugibiaaykW7juaGdaahaaWcbeqaaKqzGe GaamiDaaaaaaa@6C09@ ………………………………                        (31)

Again, at

C 2 t | =0,x=0 t=0,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaKqbaoaaBaaaleaajugWaiaaikdaaSqa baaakeaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7juaGdaabba qcLbsaeaqabOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIWa GaaiilaiaaykW7caaMc8UaaGPaVlaadIhacaaMc8UaaGPaVlaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaOqaaK qzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaadshacaaMc8UaaGPaVlab g2da9iaaykW7caaMc8UaaGPaVlaaykW7caaIWaGaaiilaiaaykW7ca aMc8UaaGPaVlaadkeacaaMc8oaaOGaay5bSdqcLbsacaaMc8UaaGPa Vdaa@8A9A@

Equation (31) becomes

C 2 t = λ R C o λ V x Sin λ R t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaikdaaSqabaqc LbsacaaMc8oakeaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7cq GH9aqpcaaMc8UaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqaH7oaB caaMc8oakeaajuaGdaGcaaGcbaqcLbsacaWGsbaaleqaaaaajugibi aaykW7caWGdbWcdaWgaaqaaKqzadGaam4BaaWcbeaajugWaiaaykW7 cqWItecBjugibiaaykW7juaGdaahaaWcbeqaaKqbaoaalaaaleaaju gibiabgkHiTiabeU7aSbWcbaqcLbsacaWGwbaaaiaaykW7caWG4baa aiaaykW7caaMc8UaaGPaVlaadofacaWGPbGaamOBaiaaykW7juaGda WcaaGcbaqcLbsacqaH7oaBcaaMc8oakeaajuaGdaGcaaGcbaqcLbsa caWGsbaaleqaaaaajugibiaadshaaaa@74BA@ ………………………………                        (32)

i.e. 0= Coλ R Sin λ R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7cqGHsislcaaM c8UaaGPaVNqbaoaalaaakeaajugibiaadoeacaWGVbGaeq4UdWMaaG PaVdGcbaqcfa4aaOaaaOqaaKqzGeGaamOuaaWcbeaaaaqcLbsacaaM c8UaaGPaVlaadofacaWGPbGaamOBaiaaykW7juaGdaWcaaGcbaqcLb sacqaH7oaBcaaMc8oakeaajuaGdaGcaaGcbaqcLbsacaWGsbaaleqa aaaajugibiaaicdaaaa@5C1F@

Co λ R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb qcLbmacaWGVbqcfa4aaSaaaOqaaKqzGeGaeq4UdWMaaGPaVdGcbaqc fa4aaOaaaOqaaKqzGeGaamOuaaWcbeaaaaqcLbsacaaMc8UaaGPaVl aaykW7caaMc8UaeyiyIKRaaGPaVlaaykW7caaMc8UaaGimaaaa@4DE5@ Considering NKP

Which is the substrate utilization for microbial growth (population) so that

0=Co λ R Sin λ R B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Uaam4q aiaad+gacaaMc8Ecfa4aaSaaaOqaaKqzGeGaeq4UdWgakeaajuaGda GcaaGcbaqcLbsacaWGsbaaleqaaaaajugibiaaykW7caaMc8UaaGPa VlaadofacaWGPbGaamOBaiaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGe Gaeq4UdWgakeaajuaGdaGcaaGcbaqcLbsacaWGsbaaleqaaaaajugi biaadkeacaaMc8oaaa@5CCA@ ……………..……………..                                           (30)       

λ R = nπ 2 n,1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsh I3caaMc8UaaGPaVNqbaoaalaaakeaajugibiabeU7aSbGcbaqcLbsa caWGsbaaaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7juaGdaWcaa GcbaqcLbsacaWGUbGaeqiWdahakeaajugibiaaikdaaaGaaGPaVlaa d6gacaGGSaGaaGPaVlaaigdacaGGSaGaaGPaVlaaikdacaGGSaGaaG PaVlaaiodaaaa@5824@ …………………………..                                             (34)

λ= λ R = nπ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsh I3caaMc8UaaGPaVlabeU7aSjaaykW7caaMc8Uaeyypa0JaaGPaVlaa ykW7juaGdaWcaaGcbaqcLbsacqaH7oaBaOqaaKqzGeGaamOuaaaaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGa amOBaiabec8aWLqbaoaakaaakeaajugibiaadkfaaSqabaaakeaaju gibiaaikdaaaaaaa@57C0@ …………………………..                                             (35)

So that equation (31) becomes

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3853@ C 2 =Co n 2 π 2 R 2 tCos nπ R 2 R x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaaGPaVlaadoeacaWGVbGaaGPaVlablo riSjaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGaeyOeI0IaamOBaSWa aWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqiWda3cdaahaaqabeaaju gWaiaaikdaaaqcLbsacaWGsbaakeaajugibiaaikdaaaGaamiDaiaa ykW7caaMc8Uaam4qaiaad+gacaWGZbGaaGPaVNqbaoaalaaakeaaju gibiaad6gacqaHapaCjuaGdaGcaaGcbaqcLbsacaWGsbaaleqaaaGc baqcLbsacaaIYaqcfa4aaOaaaOqaaKqzGeGaamOuaaWcbeaaaaqcLb sacaWG4baaaa@6B67@ …………………………..                                             (36)

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3853@ C 2 =Co n 2 π 2 R 2 tCos nπ 2 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaaGPaVlaadoeacaWGVbGaaGPaVlablo riSjaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGaeyOeI0IaamOBaSWa aWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqiWda3cdaahaaqabeaaju gWaiaaikdaaaqcLbsacaWGsbaakeaajugibiaaikdaaaGaamiDaiaa ykW7caaMc8Uaam4qaiaad+gacaWGZbGaaGPaVNqbaoaalaaakeaaju gibiaad6gacqaHapaCaOqaaKqzGeGaaGOmaaaacaWG4baaaa@66A6@ …………………………..                                             (37)

The derived model expression at this stage monitored the system considering the deposition of micronutrients that may increase Mycoplasma deposition in silty formation, there is the tendency that the formation characteristics may deposit in very lower condition thus developing accumulation of Mycoplasma in silty deposition, this implies that micronutrients considered in the system will definitely take advantage by increasing its population, the system consider these condition at this stage of the derived model at (37).

Now, we consider equation (7), we have the same similar condition with respect to the behaviour

                          R C 3 t = C 3 μC t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqGHciITcaWGdbWcdaWg aaqaaKqzadGaaG4maaWcbeaaaOqaaKqzGeGaeyOaIyRaamiDaaaaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7 juaGdaWcaaGcbaqcLbsacqGHciITcaWGdbWcdaWgaaqaaKqzadGaaG 4maaWcbeaajugibiabeY7aTjaadoeaaOqaaKqzGeGaeyOaIyRaamiD aaaaaaa@59B2@       ……………………                     (6)

C 3 =X T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaaykW7caaMc8UaaGPa VlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Uaamiwaiaads falmaaCaaabeqaaKqzadGaaGymaaaaaaa@4B28@ …………………………..        (38)

C 3 t =X T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaiodaaSqabaaa keaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7cqGH9aqpcaaMc8 UaaGPaVlaaykW7caWGybGaamivaSWaaWbaaeqabaqcLbmacaaIXaaa aaaa@4AFE@ …………………………..                                             (39)

i.e.                                                R C 3 t =X T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqGHciITcaWGdbWcdaWg aaqaaKqzadGaaG4maaWcbeaaaOqaaKqzGeGaeyOaIyRaamiDaaaaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaadIfacaWGubWc daahaaqabeaajugWaiaaigdaaaaaaa@4F7A@     …………………………..                                             (40)

Put (20) and (21) into (19), so that we have

RX T 1 =X T 1 μC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaamiwaiaadsfalmaaCaaabeqaaKqzadGaaGymaaaajugibiaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7cqGHsislcaWGybGaamivaSWaaW baaeqabaqcLbmacaaIXaaaaKqzGeGaeqiVd0Maam4qaaaa@4AAF@ …………………………..                                             (41)

i.e. R T 1 T = T 1 T μC λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaamivaSWaaWbaaeqabaqcLbmacaaIXaaa aaGcbaqcLbsacaWGubaaaiaaykW7caaMc8Uaeyypa0JaaGPaVlaayk W7cqGHsisljuaGdaWcaaGcbaqcLbsacaWGubqcfa4aaWbaaSqabeaa jugWaiaaigdaaaaakeaajugibiaadsfaaaGaeqiVd0Maam4qaiaayk W7cqGHsislcaaMc8Uaeq4UdW2cdaahaaqabeaajugWaiaaikdaaaaa aa@5585@                                        …………………………..                                             (42)

R T 1 T + λ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb qcfa4aaSaaaOqaaKqzGeGaamivaSWaaWbaaeqabaqcLbmacaaIXaaa aaGcbaqcLbsacaWGubaaaiaaykW7caaMc8UaaGPaVlabgUcaRiaayk W7caaMc8Uaeq4UdW2cdaahaaqabeaajugWaiaaikdaaaqcLbsacaaM c8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaaicdaaaa@535E@ …………………………..                                             (43)

X 1 + λ R ϕ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb WcdaahaaqabeaajugWaiaaigdaaaqcLbsacaaMc8UaaGPaVlaaykW7 cqGHRaWkcaaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0scfa4aaSaaaO qaaKqzGeGaeq4UdWgakeaajugibiaadkfaaaGaeqy1dyMaaGPaVlaa ykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaaGimaaaa@57C8@ …………………………..                                             (44)

And                                                    R T 1 + λ 2 t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaamivaSWaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaaGPaVlaaykW7 cqGHRaWkcaaMc8UaaGPaVlabeU7aSTWaaWbaaeqabaqcLbmacaaIYa aaaKqzGeGaamiDaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaM c8UaaGimaaaa@50B2@              …………………………..                                             (45)

From (44), t=ACos λ R t+BSin λ R t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Uaamyq aiaaykW7caWGdbGaam4BaiaadohacaaMc8UaaGPaVNqbaoaalaaake aajugibiabeU7aSbGcbaqcLbsacaWGsbaaaiaadshacaaMc8UaaGPa VlaaykW7cqGHRaWkcaaMc8UaaGPaVlaaykW7caWGcbGaaGPaVlaado facaWGPbGaamOBaiaaykW7juaGdaWcaaGcbaqcLbsacqaH7oaBaOqa aKqbaoaakaaakeaajugibiaadkfaaSqabaaaaKqzGeGaamiDaiaayk W7caaMc8oaaa@699B@                           …………………..                                       (46)

and (39) give

T=C λ 2 μC t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Uaam4q aiaaykW7cqWItecBcaaMc8UaaGPaVNqbaoaalaaakeaajugibiabgk HiTiabeU7aSTWaaWbaaeqabaqcLbmacaaIYaaaaaGcbaqcLbsacqaH 8oqBcaWGdbaaaiaadshacaaMc8oaaa@53CA@                                                                      …………………………..                                             (47)

By substituting (46) and (47) into (38), we get

    C 3 =( ACos λ R t+BSin λ R t )C λ 2 μC t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaaGPaVNqbaoaabmaakeaajugibiaadg eacaaMc8Uaam4qaiaad+gacaWGZbGaaGPaVlaaykW7juaGdaWcaaGc baqcLbsacqaH7oaBaOqaaKqzGeGaamOuaaaacaWG0bGaaGPaVlaayk W7caaMc8Uaey4kaSIaaGPaVlaaykW7caaMc8UaamOqaiaaykW7caWG tbGaamyAaiaad6gacaaMc8Ecfa4aaSaaaOqaaKqzGeGaeq4UdWgake aajuaGdaGcaaGcbaqcLbsacaWGsbaaleqaaaaajugibiaadshaaOGa ayjkaiaawMcaaKqzGeGaaGPaVlaaykW7caWGdbGaaGPaVlabloriSj aaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGaeyOeI0Iaeq4UdWwcfa4a aWbaaSqabeaajugWaiaaikdaaaaakeaajugibiabeY7aTjaadoeaaa GaamiDaiaaykW7aaa@8216@     ………………                                            (48)

Similar condition are observed more in derived solution on (48) were retardation factor with respect to time on migration process, thus removal coefficient are considered in the system to determined the rate influences from flow dynamics through the porous medium, the rate migration under the pressure of time through the porous medium were monitored, this expression considered the removal coefficient through the rate of degradation of the contaminant in silty deposition, though some deposition may be considered to accumulate the contaminant due to low void ratio and porosity, therefore these parameters are reflected on the deposition of Mycoplasma in the derived model at (48).

Subject equation (48) to conditions in (7), so that we have

                                                         Co=AC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb qcLbmacaWGVbqcLbsacaaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8Ua aGPaVlaaykW7caWGbbGaam4qaaaa@45D4@        …………………………..                                             (49)

Equation (49) becomes

C 3 =Co λ 2 μC tCos λ R t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8Uaam4qaiaad+gacaaMc8UaeS4eHWMaaG PaVlaaykW7juaGdaWcaaGcbaqcLbsacqGHsislcqaH7oaBjuaGdaah aaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaeqiVd0Maam4qaaaaca WG0bGaaGPaVlaaykW7caWGdbGaam4BaiaadohacaaMc8UaaGPaVNqb aoaalaaakeaajugibiabeU7aSbGcbaqcLbsacaWGsbaaaiaadshaca aMc8oaaa@6495@ …………………………..                                             (49)

Again, at C 3 t | =0t=0 t=0,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaiodaaSqabaaa keaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7juaGdaabbaqcLb saeaqabOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH 9aqpcaaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaG PaVlaadshacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaa ykW7caaIWaaakeaajugibiaaykW7caWG0bGaaGPaVlaaykW7caaMc8 Uaeyypa0JaaGPaVlaaykW7caaIWaGaaiilaiaaykW7caWGcbaaaOGa ay5bSdaaaa@74BB@

Equation (50) becomes

          C 3 t = λ R Co λ μC tSin λ R t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaiodaaSqabaaa keaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7cqGH9aqpcaaMc8 UaaGPaVNqbaoaalaaakeaajugibiabeU7aSbGcbaqcLbsacaWGsbaa aiaaykW7caaMc8Uaam4qaiaad+gacaaMc8UaeS4eHWMaaGPaVlaayk W7juaGdaWcaaGcbaqcLbsacqGHsislcqaH7oaBaOqaaKqzGeGaeqiV d0Maam4qaaaacaWG0bGaaGPaVlaaykW7caWGtbGaamyAaiaad6gaca aMc8UaaGPaVNqbaoaalaaakeaajugibiabeU7aSbGcbaqcLbsacaWG sbaaaiaadshaaaa@6AC7@         …………………………..                                             (51)

i.e. 0=Co λ R Sin λ R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caWGdbGaam4B aKqbaoaalaaakeaajugibiabeU7aSbGcbaqcLbsacaWGsbaaaiaayk W7caaMc8UaaGPaVlaadofacaWGPbGaamOBaiaaykW7caaMc8Ecfa4a aSaaaOqaaKqzGeGaeq4UdWgakeaajugibiaadkfaaaGaaGimaaaa@5598@           

Co λ R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb qcLbmacaWGVbqcfa4aaSaaaOqaaKqzGeGaeq4UdWgakeaajugibiaa dkfaaaGaaGPaVlaaykW7caaMc8UaeyiyIKRaaGPaVlaaykW7caaMc8 UaaGimaaaa@498D@ Considering NKP again

Due to the rate of growth, which is known to be the substrate utilization of the microbes we have

0=Co λ R Sin λ R B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7cqGHsislcaWG dbGaam4BaKqbaoaalaaakeaajugibiabeU7aSbGcbaqcfa4aaOaaaO qaaKqzGeGaamOuaaWcbeaaaaqcLbsacaaMc8UaaGPaVlaaykW7caWG tbGaamyAaiaad6gacaaMc8UaaGPaVNqbaoaalaaakeaajugibiabeU 7aSbGcbaqcfa4aaOaaaOqaaKqzGeGaamOuaaWcbeaaaaqcLbsacaWG cbaaaa@5916@ …………………………..                                             (52)

λ R = nπ 2 n,1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsh I3caaMc8UaaGPaVNqbaoaalaaakeaajugibiabeU7aSbGcbaqcLbsa caWGsbaaaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7juaGdaWcaa GcbaqcLbsacaWGUbGaeqiWdahakeaajugibiaaikdaaaGaaGPaVlaa d6gacaGGSaGaaGPaVlaaigdacaGGSaGaaGPaVlaaikdacaGGSaGaaG PaVlaaiodaaaa@5824@ …………………………..                                             (53)

λ= nπ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsh I3caaMc8UaaGPaVlabeU7aSjaaykW7caaMc8Uaeyypa0JaaGPaVlaa ykW7caaMc8UaaGPaVNqbaoaalaaakeaajugibiaad6gacqaHapaCju aGdaGcaaGcbaqcLbsacaWGsbaaleqaaaGcbaqcLbsacaaIYaaaaaaa @4F49@ …………………………..                                             (54)

So that equation (50) becomes

C 3 =Co n 2 π 2 R 2μC tCos nπ 2 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaaGPaVlaadoeacaWGVbGaaGPaVlablo riSjaaykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGaeyOeI0IaamOBaSWa aWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeqiWda3cdaahaaqabeaaju gWaiaaikdaaaqcLbsacaWGsbaakeaajugibiaaikdacqaH8oqBcaWG dbaaaiaadshacaaMc8UaaGPaVlaadoeacaWGVbGaam4CaiaaykW7ju aGdaWcaaGcbaqcLbsacaWGUbGaeqiWdahakeaajugibiaaikdaaaGa amiDaaaa@6921@ …………………………..                                             (55)

The derived solution continue to see the increase at a serious threat to phreatic beds, therefore the deposition of micronutrient continue to developed significant pressure in the derive solutions, base on this factors, the developed model continue to check the effect from the deposited microelement in silty deposition as it considered more in (55).

Now, we consider equation (8), we have

                           V C 4 x C 4 μC t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb GaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqGHciITcaWGdbWcdaWg aaqaaKqzadGaaGinaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaaaaca aMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7caaMc8Ec fa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaais daaSqabaqcLbsacqaH8oqBcaWGdbaakeaajugibiabgkGi2kaadsha aaaaaa@5A41@       ……………………                     (8)

Using Bernoulli’s method, we have

C 4 =XT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGinaaWcbeaajugWaiaaykW7jugibiaaykW7 caaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaaykW7caWGyb Gaamivaaaa@4A41@ …………………………..                                             (56)

C 4 x = X 1 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaisdaaSqabaaa keaajugibiabgkGi2kaadIhaaaGaaGPaVlaaykW7cqGH9aqpcaaMc8 UaaGPaVlaaykW7caWGybWcdaahaaqabeaajugWaiaaigdaaaqcLbsa caWGubaaaa@4B92@ …………………………..                                             (57)

C 4 t =X T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaisdaaSqabaaa keaajugibiabgkGi2kaadshaaaGaaGPaVlaaykW7cqGH9aqpcaaMc8 UaaGPaVlaaykW7caWGybGaamivaSWaaWbaaeqabaqcLbmacaaIXaaa aaaa@4AFF@ …………………………..                                             (58)

Put (57) and (58) into (56), so that we have

V X 1 T=X T 1 μC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb GaamiwaSWaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaamivaiaaykW7 caaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlabgkHiTiaadI facaWGubWcdaahaaqabeaajugWaiaaigdaaaqcLbsacqaH8oqBcaWG dbaaaa@4DC9@                                                                 …………………………..                                             (59)

i.e.                                                          V X 1 X = T 1 T μC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSaaaOqaaKqzGeGaamiwaSWaaWbaaeqabaqcLbmacaaIXaaa aaGcbaqcLbsacaWGybaaaiaaykW7caaMc8UaaGPaVlabg2da9iaayk W7caaMc8UaaGPaVlabgkHiTKqbaoaalaaakeaajugibiaadsfalmaa CaaabeqaaKqzadGaaGymaaaaaOqaaKqzGeGaamivaaaacqaH8oqBca WGdbaaaa@504B@     …………………………..                                             (60)

V X 1 X =ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSaaaOqaaKqzGeGaamiwaSWaaWbaaeqabaqcLbmacaaIXaaa aaGcbaqcLbsacaWGybaaaiaaykW7caaMc8UaaGPaVlabg2da9iaayk W7caaMc8UaaGPaVlabew9aMbaa@4910@ …………………………..                                             (61)

T 1 T μC=ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamivaSWaaWbaaeqabaqcLbmacaaIXaaaaaGcbaqcLbsa caWGubaaaiabeY7aTjaadoeacaaMc8UaaGPaVlaaykW7cqGH9aqpca aMc8UaaGPaVlaaykW7cqaHvpGzaaa@4A1C@ …………………………..                                             (62)

X=A ϕ V t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb GaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caWGbbGaaGPa VlaaykW7cqWItecBcaaMc8UaaGPaVNqbaoaalaaakeaajugibiabew 9aMbGcbaqcLbsacaWGwbaaaiaadshaaaa@4DAE@ …………………………..                                             (63)

Put (62) and (63) into (56), gives

C 4 =A ϕ μC B ϕ μC x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGinaaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaamyqaiaaykW7caaMc8UaeS4eHWMaaG PaVlaaykW7juaGdaWcaaGcbaqcLbsacqaHvpGzaOqaaKqzGeGaeqiV d0Maam4qaaaacaaMc8UaaGPaVlaaykW7cqGHIaYTcaaMc8UaaGPaVl aadkeacaaMc8UaeS4eHWMaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsa cqGHsislcqaHvpGzaOqaaKqzGeGaeqiVd0Maam4qaaaacaWG4baaaa@68CA@ …………………………..                                             (64)

C 4 =AB ( tx ) ϕ μC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGinaaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaamyqaiaadkeacaaMc8UaaGPaVlablo riSjaaykW7juaGdaahaaWcbeqaaKqbaoaabmaaleaajugibiaadsha caaMc8UaeyOeI0IaaGPaVlaadIhaaSGaayjkaiaawMcaaaaajugibi aaykW7juaGdaWcaaGcbaqcLbsacqaHvpGzaOqaaKqzGeGaeqiVd0Ma am4qaaaaaaa@5BBB@ …………………………..                                             (65)

Subject equation (66) to (8)

C 4 (o)=Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGinaaWcbeaajugibiaaykW7caaMc8UaaGPa VlaacIcacaWGVbGaaiykaiaaykW7caaMc8Uaeyypa0JaaGPaVlaayk W7caaMc8Uaam4qaiaad+gaaaa@4B66@ …………………………..                                             (66)

So that equation (67) becomes

C 4 =Co ( tx ) ϕ μC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGinaaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8Uaam4qaiaad+gacaaMc8UaeS4eHWMaaG PaVVWaaWbaaeqabaWaaeWaaeaajugWaiaadshacaaMc8UaeyOeI0Ia aGPaVlaadIhaaSGaayjkaiaawMcaaaaajugibiaaykW7juaGdaWcaa GcbaqcLbsacqaHvpGzaOqaaKqzGeGaeqiVd0Maam4qaaaaaaa@59D7@ …………………………..                                             (67)

The deposition of Mycoplasma in silty deposition were observed to be exponential phase, therefore the reflection of micronutrient including the lower void ratio and porosity express the exponential rate through the rate of Mycoplasma in silty thus developing exponential concentration in some strata, the derived solution considered the system base on this condition thus develop the derived model considering this phase of the transport system in silty formation

Considering equation (10), we have

Dφ 2 C 5 x 2 V C 5 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GaeqOXdOMaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqGHciITlmaa CaaabeqaaKqzadGaaGOmaaaajugibiaadoealmaaBaaabaqcLbmaca aI1aaaleqaaaGcbaqcLbsacqGHciITcaWG4bWcdaahaaqabeaajugW aiaaikdaaaaaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTi aaykW7caaMc8UaaGPaVlaadAfajuaGdaWcaaGcbaqcLbsacqGHciIT caWGdbWcdaWgaaqaaKqzadGaaGynaaWcbeaaaOqaaKqzGeGaeyOaIy RaamiEaaaaaaa@5F0C@ …………………         (10)

C 5 =XT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb qcfa4aaSbaaSqaaKqzadGaaGynaaWcbeaajugibiaaykW7caaMc8Ua aGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Uaamiwai aadsfaaaa@49A2@ …………………………..                                             (68)

2 C 5 x 2 + X 11 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIy7cdaahaaqabeaajugWaiaaikdaaaqcLbsacaWG dbWcdaWgaaqaaKqzadGaaGynaaWcbeaaaOqaaKqzGeGaeyOaIyRaam iEaSWaaWbaaeqabaqcLbmacaaIYaaaaaaajugibiaaykW7caaMc8Ua aGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaaykW7caWGybWcdaahaa qabeaajugWaiaaigdacaaIXaaaaKqzGeGaamivaiaaykW7aaa@5617@ …………………………..                                             (69)

C 5 x + X 1 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaam4qaSWaaSbaaeaajugWaiaaiwdaaSqabaaa keaajugibiabgkGi2kaadIhaaaGaaGPaVlaaykW7caaMc8UaaGPaVl abgUcaRiaaykW7caaMc8UaaGPaVlaadIfalmaaCaaabeqaaKqzadGa aGymaaaajugibiaadsfacaaMc8oaaa@5010@ …………………………..                                             (70)

Put (69) and (70), so that we have

Dφ X 11 TV X 1 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GaeqOXdOMaamiwaSWaaWbaaeqabaqcLbmacaaIXaGaaGymaaaajugi biaadsfacaaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaaGPaVlaayk W7caaMc8UaamOvaiaadIfalmaaCaaabeqaaKqzadGaaGymaaaajugi biaadsfaaaa@4F11@ …………………………..                                             (71)

Dφ X 11 X TV X 1 X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GaeqOXdOwcfa4aaSaaaOqaaKqzGeGaamiwaSWaaWbaaeqabaqcLbma caaIXaGaaGymaaaaaOqaaKqzGeGaamiwaaaacaWGubGaaGPaVlaayk W7caaMc8UaaGPaVlabgkHiTiaaykW7caaMc8UaaGPaVlaadAfajuaG daWcaaGcbaqcLbsacaWGybWcdaahaaqabeaajugWaiaaigdaaaaake aajugibiaadIfaaaaaaa@5274@ …………………………..                                             (72)

Dφ X 11 X =ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb GaeqOXdOwcfa4aaSaaaOqaaKqzGeGaamiwaSWaaWbaaeqabaqcLbma caaIXaGaaGymaaaaaOqaaKqzGeGaamiwaaaacaaMc8UaaGPaVlaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaaGPaVlabew9aMbaa @4E8C@ …………………………..                                             (73)

V X 1 X =ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaala aabaGaamiwamaaCaaaleqabaGaaGymaaaaaOqaaiaadIfaaaGaaGPa VlaaykW7caaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaayk W7cqaHvpGzaaa@48B3@ …………………………..                                             (74)

X 1 =A ϕ Dφ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb WcdaahaaqabeaajugWaiaaigdaaaqcLbsacaaMc8UaaGPaVlaaykW7 cqGH9aqpcaaMc8UaaGPaVlaaykW7caWGbbGaaGPaVlabloriSjaayk W7caaMc8Ecfa4aaSaaaOqaaKqzGeGaeqy1dygakeaajugibiaadsea cqaHgpGAaaGaamiEaaaa@5202@ …………………………..                                             (75)

Put (74) and (75) into (68), gives

C 5 =A ϕ V B ϕ V x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGynaaWcbeaajugWaiaaykW7caaMc8UaaGPa VNqzGeGaeyypa0JaaGPaVlaaykW7caaMc8UaamyqaiaaykW7cqWIte cBcaaMc8UaaGPaVNqbaoaalaaakeaajugibiabew9aMbGcbaqcLbsa caWGwbaaaiaaykW7caaMc8UaeyOiGCRaaGPaVlaaykW7caaMc8Uaam OqaiaaykW7cqWItecBcaaMc8UaaGPaVNqbaoaalaaakeaajugibiab gkHiTiabew9aMbGcbaqcLbsacaWGwbaaaiaadIhaaaa@66B3@ …………………………..                                             (76)

C 5 =AB ( xx ) ϕ V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGynaaWcbeaajugibiaaykW7caaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaaGPaVlaadgeacaWGcbGaaGPaVlablo riSjaaykW7lmaaCaaabeqaamaabmaabaqcLbmacaWG4bGaaGPaVlab gkHiTiaaykW7caWG4baaliaawIcacaGLPaaaaaqcfa4aaSaaaOqaaK qzGeGaeqy1dygakeaajugibiaadAfaaaaaaa@577B@ …………………………..                                             (77)

Subject (76) to (10)

C 5 (o)=Co MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGynaaWcbeaajugibiaaykW7caaMc8UaaGPa VlaacIcacaWGVbGaaiykaiaaykW7caaMc8Uaeyypa0JaaGPaVlaayk W7caaMc8Uaam4qaiaad+gaaaa@4B67@ …………………………..                                             (78)

So that equation (78) becomes

C 5 =Co ( xx ) ϕ V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGynaaWcbeaajugWaiaaykW7caaMc8EcLbsa caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Uaam4qaiaad+gacaaMc8 UaeS4eHWMaaGPaVVWaaWbaaeqabaWaaeWaaeaajugWaiaadIhacaaM c8UaeyOeI0IaaGPaVlaadIhaaSGaayjkaiaawMcaaaaajuaGdaWcaa GcbaqcLbsacqaHvpGzaOqaaKqzGeGaamOvaaaaaaa@58D8@ …………………………..                                             (79)

The derived model solution at (79) continue to monitor the deposition of the contaminant in exponential phase, this condition are base on the fact that the microbes are found in porous medium where the velocity increase more than other that developed predominant lower porosity and void ratio, the derived model in (79) maintained this condition base on this factors, such expression streamlined the behaviour Mycoplasma in silty deposition thus reflection on the stratification of the formation

Now, assuming that at the steady flow, there is no NKP for substrate utilization, our concentration here is zero, so that equation (79) becomes

C 5 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGynaaWcbeaajugibiaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaaGPaVlaaic daaaa@49A3@ …………………………..                             (80)

There are some strata that the depositions of substrate are zero, this implies the deposition are Mycoplasma may not increase in population , the microbes may decrease in population through other inhibitions that deposit in the strata, these condition are considered in the study of Mycoplasma in silty deposition as these condition are observed in (80)

Therefore; C 1 + C 2 + C 3 + C 4 + C 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugWaiaaykW7jugibiaaykW7 cqGHRaWkcaaMc8UaaGPaVlaadoealmaaBaaabaqcLbmacaaIYaaale qaaKqzGeGaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaadoealmaa BaaabaqcLbmacaaIZaaaleqaaKqzGeGaaGPaVlaaykW7cqGHRaWkca aMc8UaaGPaVlaadoealmaaBaaabaqcLbmacaaI0aaaleqaaKqzadGa aGPaVlaaykW7jugibiabgUcaRiaaykW7caaMc8Uaam4qaSWaaSbaae aajugWaiaaiwdaaSqabaqcLbsacaaMc8UaaGPaVdaa@698C@                                   …………………..                       (81)

We now substitute (18), (37), (55), (67) into (81) so that we have the model of the form

C=Co+Co n 2 π 2 R 2V xCos nπ 2 tCo n 2 π 2 R 2μC tCos nπ 2 t+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Uaam4q aiaad+gacaaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaado eacaWGVbGaaGPaVlabloriSjaaykW7caaMc8Ecfa4aaSaaaOqaaKqz GeGaeyOeI0IaamOBaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeq iWda3cdaahaaqabeaajugWaiaaikdaaaqcLbsacaWGsbaakeaajugi biaaikdacaWGwbaaaiaadIhacaaMc8UaaGPaVlaadoeacaWGVbGaam 4CaiaaykW7juaGdaWcaaGcbaqcLbsacaWGUbGaeqiWdahakeaajugi biaaikdaaaGaamiDaiaaykW7caaMc8UaeyOiGCRaaGPaVlaaykW7ca WGdbGaam4BaiaaykW7cqWItecBcaaMc8UaaGPaVNqbaoaalaaakeaa jugibiabgkHiTiaad6galmaaCaaabeqaaKqzadGaaGOmaaaajugibi abec8aWTWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaamOuaaGcbaqc LbsacaaIYaGaeqiVd0Maam4qaaaacaWG0bGaaGPaVlaaykW7caWGdb Gaam4BaiaadohacaaMc8Ecfa4aaSaaaOqaaKqzGeGaamOBaiabec8a WbGcbaqcLbsacaaIYaaaaiaadshacaaMc8UaaGPaVlabgUcaRaaa@9FAA@

Co ( tx ) ϕ μC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4BaiaaykW7cqWItecBcaaMc8+cdaahaaqabeaadaqadaqaaKqz adGaamiDaiaaykW7cqGHsislcaaMc8UaamiEaaWccaGLOaGaayzkaa aaaKqbaoaalaaakeaajugibiabew9aMbGcbaqcLbsacqaH8oqBcaWG dbaaaaaa@4B86@ …………………………..                             (82)

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3853@ C=Co+1+ n 2 π 2 R 2V xCos nπ 2 Co n 2 π 2 R 2μC tCos nπ 2 t+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Uaam4q aiaad+gacaaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaaig dacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8UaaGPaVlabloriSjaa ykW7caaMc8Ecfa4aaSaaaOqaaKqzGeGaamOBaSWaaWbaaeqabaqcLb macaaIYaaaaKqzGeGaeqiWda3cdaahaaqabeaajugWaiaaikdaaaqc LbsacaWGsbaakeaajugibiaaikdacaWGwbaaaiaadIhacaaMc8UaaG PaVlaadoeacaWGVbGaam4CaiaaykW7juaGdaWcaaGcbaqcLbsacaWG UbGaeqiWdahakeaajugibiaaikdaaaGaaGPaVlaaykW7cqGHIaYTca aMc8UaaGPaVlaadoeacaWGVbGaaGPaVlabloriSjaaykW7caaMc8Ec fa4aaSaaaOqaaKqzGeGaeyOeI0IaamOBaSWaaWbaaeqabaqcLbmaca aIYaaaaKqzGeGaeqiWda3cdaahaaqabeaajugWaiaaikdaaaqcLbsa caWGsbaakeaajugibiaaikdacqaH8oqBcaWGdbaaaiaadshacaaMc8 UaaGPaVlaadoeacaWGVbGaam4CaiaaykW7juaGdaWcaaGcbaqcLbsa caWGUbGaeqiWdahakeaajugibiaaikdaaaGaamiDaiaaykW7caaMc8 Uaey4kaScaaa@A3D1@

Co ( tx ) ϕ μC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4BaiaaykW7cqWItecBjugWaiaaykW7lmaaCaaabeqaamaabmaa baqcLbmacaWG0bGaaGPaVlabgkHiTiaaykW7caWG4baaliaawIcaca GLPaaaaaqcfa4aaSaaaOqaaKqzGeGaeqy1dygakeaajugibiabeY7a Tjaadoeaaaaaaa@4CB4@ …………………………..                             (83)

The developed governing equation has been derived considering several conditions that were observed to be significant in the system, these condition were expressed on the derived solution in stages, the derived model monitored the deposition of Mycoplasma base on these factors, to ensure that the behaviour of the transport process of the contaminant are thoroughly represented in the derived model solutions, these condition are experiences in all the stages of the derived model in the derived solution. The study has streamlined the transport system through these applications.

Conclusion

The behaviour of Mycoplasma has been monitored through the application of derived model, the study monitor the behaviour of Mycoplasma in silty deposition, retardation factor was significant parameter that were observed to influences the concentration rate of the contaminant in silty deposition, the study monitored the behaviour of Mycoplasma in different strata base on change in depth, but the formation were homogeneous in structure, the system developed to generate the derived solution considered various phase of migration reflection on the formation characteristics such as soil porosity and void ratio, the rate of retardation were monitored base on the influences, micronutrient were considered on the process of the derived expression base on stages where the microbes may experiences increase in population, accumulation of the contaminant were monitored base on lower porosity and void ratio that may be experienced in silty deposition, these implies that the behaviour of Mycoplasma are thoroughly investigated to be monitored in the system, these condition will definitely produced thorough results base on these conceptual application.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Hubbert MK. The theory of groundwater motion. Journal of Geology. 1940;48(8):795–944.
  2. Air–based measurement of permeability in pebbly sands. 2007.
  3. Costa A. Permeability–porosity relationship: A reexamination of the Kozeny–Carman equation based on a fractal pore–space geometry assumption. Geophysical Research Letters. 2006;33:1–5.
  4. Domenico PA, Swartz FW. Physical and Chemical Hydrogeology. USA: John Wiley; 1990. 824 p.
  5. Freeze RA, Cherry JA. Groundwater. USA: Prentice–Hall; 1979. 604 p.
  6. Kamann PJ. Porosity and permeability in sediment mixtures. USA: Masters Thesis, Department of Geological Sciences, Wright State University, Dayton; 2004. 51 p.
  7. Peter MlP. Porosity and permeability of bimodal sediment mixtures using Natural sediment. Thesis submitted in partial fulfillment of the requirements for the degree of master of science. 2005. 10 p.
  8. Conrad CM. Air–based measurement of permeability in pebbly sands. Ground Water. 2008;46(1):103–112.
  9. Koltermann CE, Gorelick SM. Fractional packing model for hydraulic conductivity derived from sediment mixtures. Water Resources Research. 1995;31(12):3283–3297.
  10. Ahmad M, Teel AL, Watts RJ. Persulfate Activation by Subsurface Minerals. J Contam Hydrol. 2010;115(1–4):34–45.
  11. Furman OS, Teel AL, Watts RJ. Mechanism and Contaminant Destruction Pathways in Base–Activated Persulfate Systems. Environ Sci Technol In progress. 2009.
  12. Kao CM, Chien HY, Surampalli RY, et al. Assessing of Natural Attenuation and Intrinsic Bioremediation Rates at a Petroleum–Hydrocarbon Spill Site: Laboratory and Field Sites. J Environ Eng. 2010;136(1):54–67.
  13. Liang C, Bruell CJ, Marley MC, et al. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous iron. Chemosphere. 2004;55(9):1225–1233.
  14. Nebe J, Baldwin BR, Kassab RL, et al. Quantification of Aromatic Oxygenase Genes to Evaluate Enhanced Bioremediation by Oxygen Releasing Materials at a Gasoline–Contaminated Site. Environ Sci Technol. 2009;43(6):2029–2034.
  15. Steliga T, Kapusta P, Jakubowicz P. Effectiveness of Bioremediation Processes of Hydrocarbon Pollutants in Weathered Drill Wastes. Water Air Soil Pollut. 2009;202:211–228.
  16. Stenuit B, Eyers L, Schuler L, et al. Emerging high–throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv. 2008;26(6):561–575.
  17. Watts RJ. Hazardous Wastes: Sources, pathways, receptors. USA: Wiley; 1998. 784 p.
  18. Watts RJ, Teel AL. Treatment of Contaminated Soils and Groundwater Using ISCO. Pract Period Hazard Toxic Radioact Waste Manage. 2006;10(1):2–9.
  19. Marissa CM. Persulfate transport in two low–permeability soil. Thesis submitted in partial fulfillment of the requirements for the degree of master of science in civil engineering Washington state university. USA; 2010. 5 p.
Creative Commons Attribution License

©2017 Eluozo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.