Submit manuscript...
MOJ
eISSN: 2572-8520

Civil Engineering

Mini Review Volume 5 Issue 4

Direct bearing angles determination on globe

Sebahattin Bektas

Correspondence: Sebahattin Bektas, Department of geomatics, Faculty of Engineering, 19 Mayis University, Kurupelit, Samsun, Turkey

Received: November 27, 2019 | Published: December 20, 2019

Citation: Bektas S. Direct bearing angles determination on globe. MOJ Civil Eng. 2019;5(4):78-80. DOI: 10.15406/mojce.2019.05.00159

Download PDF

Abstract

In this paper, we will see that the determination of direct bearing angles. As it is known, in bearing angles are often computed used formulas with arctan function. The arctan function gives an angle values between -90o and +90o. However, the bearing angle is by definition 0o to 360o. Consequently, it is inevitable to examine the process of obtaining the azimuth angle. Classic formulas only work correctly if the edge is in the 1st quarter. If the edge is located in the other quarters, the angles of the bearing should be examined. In this work we proposed new formulas for direct bearing angles on globe (sphere). Using the formula that we propose will save execution time in codes with intensive geodesic calculations.

Keywords bearing angles, globe, sphere, geographical coordinates, direct bearing angles, classic formulas, arctan function, geodesic calculations, azimuth angle, ellipsoid surface

Introduction

For example, First Geodetic Basic problem; P 1 ( φ 1 , λ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaceaaikqcLbsaqa aaaaaaaaWdbiaadcfal8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeGaaiika8qacqaHgpGAl8aadaWgaaqaaKqzadWdbiaaigdaaS WdaeqaaKqzGeWdbiaacYcacqaH7oaBl8aadaWgaaqaaKqzadWdbiaa igdaaSWdaeqaaKqzGeGaaiykaaaa@4751@ the geographic coordinates of a point P1 are given in latitude longitude values, S12 the geodetic curve length from point P1 to point P2, A12 the bearing angle (azimuth angle) of the length and desired P 2 ( φ 2 , λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaceaaikqcLbsaqa aaaaaaaaWdbiaadcfal8aadaWgaaadbaGaaGOmaaqabaqcLbsacaGG OaWdbiabeA8aQTWdamaaBaaameaacaaIYaaabeaajugib8qacaGGSa Gaeq4UdW2cpaWaaSbaaWqaaiaaikdaaeqaaKqzGeGaaiykaaaa@4370@ the geographic coordinates of a point P2. The azimuth A21 is desirable which corresponding A12 azimuth angle is because there are approximately 180o difference between A12 and A21. Thus, the region of A21 is easily predicted. If the two points are on the same meridian or on the same parallel circle the difference between A12 and A21 is exactly 180o.1,2

However, in the 2nd Geodetic basic problem; the geographic coordinates latitude and longitude values of the two points are given​​; P 1 ( φ 1 , λ 1 ), P 2 ( φ 2 , λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaceaaikqcLbsaqa aaaaaaaaWdbiaadcfal8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqa aKqzGeGaaiika8qacqaHgpGAl8aadaWgaaqaaKqzadWdbiaaigdaaS WdaeqaaKqzGeWdbiaacYcacqaH7oaBl8aadaWgaaqaaKqzadWdbiaa igdaaSWdaeqaaKqzGeGaaiykaiaacYcapeGaamiuaSWdamaaBaaame aacaaIYaaabeaajugibiaacIcapeGaeqOXdO2cpaWaaSbaaWqaaiaa ikdaaeqaaKqzGeWdbiaacYcacqaH7oaBl8aadaWgaaadbaGaaGOmaa qabaqcLbsacaGGPaaaaa@5336@ and required the geodesic curve length between the two points is S12 and the corresponding azimuths A12 and A21 between the two points. The azimuth calculation is not as easy as in the 1st geodetic basic problem assignment. If the A12 azimuth is calculated incorrectly, the A21 azimuth will also be incorrect by itself. In this proposed method, formulas are given for how to obtain the azimuth angle directly without any examination. The given method can calculate azimuth without reducing the sphere and ellipsoid surface.

Material and methods

Calculation of between the two points S12 and the corresponding azimuths A12 and A21 from known P1, P2 point’s geographical coordinates is also called as geodetic 2nd basic problem solution (Figure 1). Problem is solved classically with below formulas (Equation 1).3–5

σ=arccos(sin ϕ 1  sin ϕ 2 +cos ϕ 1 cos ϕ 2  cosΔλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaiaabo8acqGH9a qpcaqGHbGaaeOCaiaabogacaqGJbGaae4BaiaabohacaqGOaGaae4C aiaabMgacaqGUbGaeqy1dy2aaSbaaSqaaiaabgdaaeqaaOGaaeiiai aabohacaqGPbGaaeOBaiabew9aMnaaBaaaleaacaqGYaaabeaakiab gUcaRiaabogacaqGVbGaae4Caiabew9aMTWaaSbaaeaajugWaiaabg daaSqabaGccaqGJbGaae4BaiaabohacqaHvpGzdaWgaaWcbaGaaeOm aaqabaGccaqGGaGaae4yaiaab+gacaqGZbGaaeiLdiabeU7aSbaa@5EA0@

A 12 =arctan( sinΔ λ tan ϕ 2 cos ϕ 1 sin ϕ 1 cosΔλ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaiaadgeadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaciyyaiaackhacaGGJbGa aiiDaiaacggacaGGUbWaaeWaaeaadaWcaaqaaiGacohacaGGPbGaai OBaiabfs5aejaabccacqaH7oaBaeaaciGG0bGaaiyyaiaac6gacqaH vpGzdaWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4BaiaacohacqaHvp GzdaWgaaWcbaGaaGymaaqabaGccqGHsislciGGZbGaaiyAaiaac6ga cqaHvpGzdaWgaaWcbaGaaGymaaqabaGcciGGJbGaai4Baiaacohacq qHuoarcqaH7oaBaaaacaGLOaGaayzkaaaaaa@5FCC@

A 21 =arctan( sinΔ λ cosΔλ sin ϕ 2 cos ϕ 2  tan ϕ 1 )+π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaiaadgeadaWgaa WcbaGaaGOmaiaaigdaaeqaaOGaeyypa0JaciyyaiaackhacaGGJbGa aiiDaiaacggacaGGUbWaaeWaaeaadaWcaaqaaiGacohacaGGPbGaai OBaiabfs5aejaabccacqaH7oaBaeaaciGGJbGaai4BaiaacohacqqH uoarcqaH7oaBcaqGGaGaci4CaiaacMgacaGGUbGaeqy1dy2aaSbaaS qaaiaaikdaaeqaaOGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqy1dy2a aSbaaSqaaiaaikdaaeqaaOGaaeiiaiGacshacaGGHbGaaiOBaiabew 9aMnaaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaacqGHRaWk cqaHapaCaaa@63B2@

Here σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCaaa@3848@ is the angular equivalent of the edge.

If you want to find the metric of the edge:

S=s/r.R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaceaaikaeaaaaaa aaa8qacaWGtbGaeyypa0Jaam4Caiaac+cacaWGYbGaaiOlaiaadkfa aaa@3DC5@

r= 180 o /π      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9iaaigdacaaI4aGaaGima8aadaahaaWcbeqaa8qa caWGVbaaaOGaai4laiabec8aWjaacckacaGGGcGaaiiOaiaacckaca GGGcaaaa@44D1@

R= radius of the earth

Figure 1 The two points S12 and the corresponding azimuths A12 and A21 from known P1, P2 points geographical coordinates is also called as geodetic 2nd basic problem solution.

It is important to remember that these classic formulas only work correctly if the edge is in the 1st quarter. If the edge is located in the other quarters, the angles of the bearing angle should be examined. For correct angles, the necessary additions should be made according to the Table 1 below.

Quadrant

Fixed value to add for A12

Fixed value to add for A21

1.Quadrant

-

-

2.Quadrant

+180o

+180o

3.Quadrant

+180o

-180o

4.Quadrant

+360o

-

Table 1 Fixed value to add for bearing angles

Direct determination of azimuth by geographic coordinates

For direct calculations we give below formulas. In this proposed method, formulas are given for how to obtain the azimuth angle directly without any examination. The proposed method can calculate direct azimuth angles on the sphere and ellipsoid surface, (Equation 2).6

Proposed method

I=sinΔ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape Gaamysaiabg2da9iGacohacaGGPbGaaiOBaiabfs5aejaacckacqaH 7oaBaaa@4019@

II=tan ϕ 2 cos ϕ 1 sin ϕ 1 cosΔλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape GaamysaiaadMeacqGH9aqpciGG0bGaaiyyaiaac6gacqaHvpGzpaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGaci4yaiaac+gacaGGZbGaeq y1dy2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiGacoha caGGPbGaaiOBaiabew9aM9aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qaciGGJbGaai4BaiaacohacqqHuoarcqaH7oaBaaa@520D@

A 12 =2.arctan( I II I 2 +I I 2 )+ 180 o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyqa8aadaWgaaWcbaWdbiaabgdacaqGYaaapaqabaGcpeGaeyyp a0JaaGOmaiaac6cacaqGHbGaaeOCaiaabogacaqG0bGaaeyyaiaab6 gadaqadaWdaeaapeWaaSaaa8aabaWdbiaadMeaa8aabaWdbiaadMea caWGjbGaeyOeI0YaaOaaa8aabaWdbiaadMeapaWaaWbaaSqabeaape GaaGOmaaaakiabgUcaRiaadMeacaWGjbWdamaaCaaaleqabaWdbiaa ikdaaaaabeaaaaaakiaawIcacaGLPaaacqGHRaWkcaaIXaGaaGioai aaicdapaWaaWbaaSqabeaapeGaam4Baaaaaaa@5114@

III=tan ϕ 1 cos ϕ 2 sin ϕ 2 cosΔλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape GaamysaiaadMeacaWGjbqcLbsacqGH9aqpciGG0bGaaiyyaiaac6ga cqaHvpGzl8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbi GacogacaGGVbGaai4Caiabew9aMPWdamaaBaaajeaybaqcLbmapeGa aGOmaaWcpaqabaGcpeGaeyOeI0scLbsaciGGZbGaaiyAaiaac6gacq aHvpGzl8aadaWgaaqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiGa cogacaGGVbGaai4Caiabfs5aejabeU7aSbaa@5919@

A 21 =2.arctan( I III+ I 2 +II I 2 )+ 180 o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaeyyp a0JaaGOmaiaac6caciGGHbGaaiOCaiaacogacaGG0bGaaiyyaiaac6 gadaqadaWdaeaapeWaaSaaa8aabaWdbiaadMeaa8aabaWdbiabgkHi TiaadMeacaWGjbGaamysaiabgUcaRmaakaaapaqaa8qacaWGjbWcpa WaaWbaaeqabaqcLbmapeGaaGOmaaaakiabgUcaRiaadMeacaWGjbGa amysa8aadaahaaWcbeqaaKqzadWdbiaaikdaaaaaleqaaaaaaOGaay jkaiaawMcaaiabgUcaRiaaigdacaaI4aGaaGima8aadaahaaWcbeqa a8qacaWGVbaaaaaa@5612@

Numerical example

To compare direct formula and classical formula results, From the point P1 to the point P2 which is located in different quarters each time, the second basic problem solutions were made and the bearing angles calculations were made.

P 1 ( φ 1 ,  λ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaakiaacIcapeGaeqOX dO2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaqGGaGaeq 4UdW2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaiykaaaa@419E@ , the geographic coordinates of a point P1 are given in latitude longitude values:

φ 1 =  30 o ,  λ 1 =  30 o       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaa bccacaaIZaGaaGima8aadaahaaWcbeqaa8qacaWGVbaaaOGaaiilai aacckacqaH7oaBpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyyp a0JaaeiiaiaaiodacaaIWaWdamaaCaaaleqabaWdbiaad+gacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckaaaaaaa@4E74@

R=6370000m  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaaiAdacaaIZaGaaG4naiaaicdacaaIWaGaaGim aiaaicdacaWGTbGaaiiOaaaa@4048@

Required: s,  A 12 ,  A 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiaacYcacaGGGcGaamyqa8aadaWgaaWcbaWdbiaaigdacaaI YaaapaqabaGcpeGaaiilaiaabccacaWGbbWdamaaBaaaleaapeGaaG Omaiaaigdaa8aabeaaaaa@4096@

If we use the above equations (Equation 1) and (Equation 2) for the solution, for results please see Table 2

Classic formula (Equation 1)

Direct formula (Equation 2)

Quadrant

φ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaceaaikaeaaaaaa aaa8qacqaHgpGApaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@3A8F@

λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeGabiGaaiaacaqaceaadaqaaqaaaOqaceaaikaeaaaaaa aaa8qacqaH7oaBpaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@3A86@

S

A12

A21

A12

A21

1

32

31

241911.948

22.9432

203.45833

22.9432

203.45833

2

29

32

223183.087

-60.6189

120.36606

119.3811

300.36606

3

28

29

242683.026

23.86428

203.37939

203.86428

23.37939

4

32

29

241911.948

-22.9432

156.54167

337.0568

156.54167

Table 2 Direct formula and classical formula results

Discussion

In this proposed method, formulas are given for how to obtain the azimuth angle directly without any examination. The given method can calculate azimuth without reducing the sphere and ellipsoid surface. The numerical example that we have given shows the accuracy of the method we propose. The advantage of the method is that no examination is required. In computer calculations, if..end blocks are not used when direct formulas are used. The if..end blocks reduce the execution speed in computer calculations.

For future studies, researchers are advised to try to find more simple direct formulas.

Conclusion

In this proposed method, formulas are given for how to obtain the azimuth angle directly without any examination. The given method can calculate azimuth without reducing the sphere and ellipsoid surface. Using the formula that we propose will save execution time in codes with intensive geodesic calculations

Acknowledgments

None.

Conflicts of interest

The author declares that there are no conflicts of interest.

Funding

None.

References

  1. Grossmann W. Geodata calculations and images in the state survey. Stutgart, Germany: Verlag Konrad Wittwer. 1964.
  2. Hristow WK. Die Gauss-Krüger’schen Koordinaten auf dem Ellipsoid. Berlin:Journal Empire Survey Review. 1946;8(61):272–274.
  3. Bektas S. Mathematical Geodesy. Turkey: Kamer Publishing House. 2001.
  4. Bektaş, S. Jeodezik Hesap-Düzlemde ve Küre Yüzeyinde Jeodezik Hesaplamalar. Samsun:OMÜ publications. 2004.
  5. Yaşayan A, Hekimoglu Ş. Spherical trigonometry. Trabzon, Turkey: KTÜ publications. 1982.
  6. Bektaş S. Practical Geodesy. Turkey: OMÜ publications. 2016.
Creative Commons Attribution License

©2019 Bektas. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.