Submit manuscript...
MOJ
eISSN: 2572-8520

Civil Engineering

Research Article Volume 4 Issue 2

A novel method for riprap design of scour protection at bridge piers

I Hafez Youssef

Royal commission Yanbu Colleges and Institutes, Yanbu University College, Saudi Arabia

Correspondence: Youssef I Hafez, Royal Commission Colleges and Institutes,Yanbu El Sinaiyah, Saudi Arabia

Received: February 20, 2018 | Published: April 25, 2018

Citation: Mohammed Y. A novel method for riprap design of scour protection at bridge piers. MOJ Civil Eng. 2018;4(2):109-119. DOI: 10.15406/mojce.2018.04.00106

Download PDF

Abstract

A novel method is developed for riprap design of scour protection at bridge piers. The method is based on the assumption that the minimum stable riprap size exists when the work done due to the attacking vertical flow jet upstream of the bridge pier is no longer capable to lift the protecting riprap particles out of the scour hole. The developed equation expresses the minimum particle size as a function of the longitudinal velocity just upstream of the pier, the flow depth, the bed material/riprap specific gravity, and the pier width. The proposed equation has the advantages that it is theoretically based which allows adding wave and seismic forces in addition to the already considered hydrodynamic forces, it includes effects of pier width, it determines bed armoring, and it gives the equilibrium minimum riprap size while previous methods give the median size D50.

Keywords: riprap design, bridge piers, mathematical modeling, scour holes, energy transfer/balance theory, bed armoring, wave forces, seismic forces

Introduction

Bridges are important means for transporting people and goods across waterways. Such important structures usually cost millions of Dollars. Unfortunately, bridges are subjected to scour especially during floods due to the scouring action of the attacking flow upstream of the bridge. The upstream horizontal flow, after hitting a bridge pier, is converted to a vertical downward jet that attacks the bed material surrounding the bridge pier and starts the scouring mechanism.1,2 The developed horseshoe and wake vortices help in the continual removal of the bed material further downstream. Scour could be so severe to the point of undermining the bridge foundation leading to its collapse. To protect against scour, riprap has been the most commonly used pier scour countermeasure.3,4 Riprap often consists of large stones placed around a pier to armor the bed by preventing the down flow jet from entraining the underlying bed sediments and thus preventing the formation of a scour hole. The size of the stone riprap, which is the focus of this study, is the most critical factor for determining the stability of the riprap layer.

There have been a large number of formulas for determining the size of the riprap stones all of which are in terms of the median particle diameter D50. Table 1 lists most of the existing riprap sizing formulas reduced to a common form for comparison, according to Lagasse et al.,4 Melville et al.5 The range for the exponents of Froude number appearing in these formulas is between 2 to 3 except for Lauchlan6 equation which has a small exponent of 1.2 indicating a nearly linear variation. Comparison of the different equations,3,4 reveals a wide gap in their predictions for a range of Froude numbers between 0.2 to 0.6 with coefficients for round–nose pier and sediment specific gravity of 2.65. The lack of consistency among the methods led Melville et al.5 to recommend the use of Lauchlan,6 Richardson et al.7 methods for sizing riprap for bridge pier protection because they lead to conservatively large riprap relative to the other methods. Karimaee et al.8 attribute the difference between the various equations to different ranges of relative riprap size (pier width/median riprap size). The existing riprap sizing equations are based on either threshold of motion criteria or empirical results of small–scale laboratory studies conducted under clear–water conditions with steady uniform flow.4 They report that past practices have been to size riprap such that no movement of the material would occur at the design velocity, which has led to over–sizing of riprap due to difficulty in adjusting precisely the hydraulic loads. Due to differences and non–clarity of the definition of failure, the experimental studies vary widely which may put some doubt on the accuracy of their equations. For example, Chiew et al.9 increased flow velocity in increments until the ratio of scour depth experienced by riprap layer to maximum scour depth of the unprotected sediment bed is 1.0. Croad10 took critical conditions when riprap layer completely disintegrates. Quazi et al.11 defined failure as occurring when any grain or grains were dislodged from front half of layer close to pier face. Parola12,13 installed three layers thick with middle layer painted fluorescent orange and defined failure as exposure of these orange stones without removal of them over 30 min period. Lauchlan6 defined failure occurring when the local scour depth at a riprap–protected pier exceeds 20% of the scour depth at the unprotected pier. Karimaee et al.8 fixed the tail water depth for 15 min, and if riprap did not move, the depth was increased gradually by approximately 5 mm and the experiment continued for another 15 min. This procedure continued until instability (shear failure) in the riprap was observed. They considered the movement of a few riprap stones in 15 min as the failure criterion because it leads eventually to movement of more and more stones. The above scour types are shear failure where the riprap layers are entrained by the flow. For other types of riprap failure, Chiew14 discussed winnowing and edge failures for clear water conditions while Chiew et al.9 discussed bed–form undermining scour for live bed conditions. Lagasse et al.4 discussed how stone size influences winnowing, edge failure and bed form destabilization. Still, shear failure is the most addressed type of failure due to its high likelihood and will be dealt with in this study.

Froehlich15 presents an expression for sizing loose rock riprap placed around bridge piers which was derived based on an evaluation of moments that resist and promote overturning of a single rock particle, on an elementary potential flow theory which provides models of velocities around piers of various cross–sectional shapes, and on empirical relations and coefficients used to calculate shear stresses acting on rock riprap and the critical values of shear stress at which rock is moved. However, it took about 30 equations/formulas and several graphical relationships to find the minimum diameters of stable rock riprap given by the analytical relation for circular columns. Theoretical shape factors, which are multiplied times the stable rock size needed for a circular column of the same width, were found for piers having square ends and for piers having sharp ends with interior nose angles of 60°, 90°, and 120°. A safety factor that provides a suitable margin of error needed for design is found by comparing calculated and measured rock sizes for both round–nosed and square–nosed pier experimental data. Froehlich15 assumed a value of the Shields parameter of 0.06. Karimaee et al.8 presented equation, based on 140 sets of experiments, in which stability of riprap (stability number) depends on the relative stone size, relative flow depth and the relative pier effective width. However, the stone median size appears on both sides of their equation which requires trial and error approach for calculating the riprap stone size. Karimaee et al.16 used large data set of at 264 experiments available in the literature. Based on at least 190 experiments the effective pier width was found to be the most effective parameter on riprap stability. They presented an empirical relationship (based on multiple regression analysis) between the flow intensity V/ V c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIwbGaaO4laiaakAfalmaaBaaameaacaGIJbaabeaaaaa@3A40@ and the relative stone size and the relative pier effective width where V is the flow velocity and V c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIwbWcdaWgaaadbaGaaO4yaaqabaaaaa@38A3@ is the critical velocity for riprap stone movement. Trial and error approach is required in order to determine the stable riprap stone size. This approach can be considered as a modification of that by Chiew14 who considered V/ V c  < 0.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIwbGaaO4laiaakAfalmaaBaaameaacaGIJbaabeaajugi biaakccacaGI8aGaaOiiaiaakcdacaGIUaGaaO4maaaa@3F24@ as stability condition. They considered V/ V c =035 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIwbGaaO4laiaakAfalmaaBaaameaacaGIJbaabeaajugi biaak2dacaGIWaGaaO4maiaakwdaaaa@3DD4@ divided by two modification factors for the relative pier width and relative stone size. The ratio of the predicted riprap sizes by the developed empirical equation to experimental sizes had an average value of 1.7. Using artificial neural network model provides around 7% improved prediction for riprap size compared to the conventional regression formula. Mashahir et al.17 used similar approach in which they took V/ V c =0.30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIwbGaaO4laiaakAfalmaaBaaameaacaGIJbaabeaajugi biaak2dacaGIWaGaaOOlaiaakodacaGIWaaaaa@3E89@ but with different modification factors.

Other aspects of riprap design such as extent of riprap for piers with or without collars was investigated by Karimaee et al.18 Their experiments showed that in case of aligned rectangular pier without a collar only 8% of the area around the pier is critical and in case of protected pier with collar, the collar prevents the critical region around the pier in aligned and 5o skewed piers. The effect of collar on a pier located in 180–degree river bend was investigated by Nohani et al.19 where the experiments showed that the relative rock size significantly affected the stability number for cylindrical piers. Also, they found that greater collars were more effective than smaller collars on increasing the stability. Lauchlan et al.3 investigated the depth of placement of the riprap layer. The present study aims at examining theoretically the sizing of riprap stones to protect bridge piers from scour due to shear failure using a novel theoretical method. The novel theoretical method is based on the fact that the minimum stable riprap size exists at condition when the work done due to the attacking vertical flow jet upstream of the bridge pier is no longer capable to lift the riprap particles out of the scour hole. By applying the theoretically developed riprap sizing equation and the existing equations to laboratory data, it is hoped that this will shed more light on the performance of the riprap sizing equations. The theoretical foundation of the presented approach offers extra advantages which include clarity of defining riprap failure, and the possibility of inclusion for riprap design of protection against scour due to other forces such as wave forces (due to wind and ship movement) and seismic forces.

The present approach

The work transfer theory which dealt with turbulent wall jets by Hafez2 or its synonym the energy balance theory by Hafez20,21 which dealt with bridge pier scour; treated the whole scour hole as occupied by a one–mega sediment particle having the shape of the scour hole. Due to that, the bed sediment size did not appear explicitly in these approaches and sediment size effects were reflected merely through its connection to the angle of repose. However, the development made here is based on consideration of a single bed particle which results in explicit appearance of bed sediment/riprap particle size.

The basic assumptions needed herein are that:

  1. Steady uniform flow conditions;
  2. The bed particles are spherical in shape and can be natural bed sediments or riprap particles. Almost all studies in sediment transport treat the bed particles as spheres with the median diameter as the characteristic length scale. The spherical assumption made here is just to simplify the calculations but other shapes scan be used if the ratio of the particle volume to its horizontal projected area is known;
  3. The size of bed particles is relatively small compared to the scour depth
  4. The horizontal water–flow upstream of the bridge pier consists of thin water tubes in accordance with Hafez.21 The water surface tube will hit the bridge pier, then bends downward while being attached to the pier surface. It starts to erode the first bed surface particle next to the pier, i.e. assuming the tube diameter is equal to the bed particle diameter. Bed erosion continues with each new bed surface particle being eroded and removed upward by the flow horse–shoe vortices. The other tubes below the surface tube will bend down and distribute themselves all over the length of the scour hole thus attacking the bed particles. By the end of the scour process and with formation of the scour hole its deepest point will be located just next to the pier with scour depth as Ds. The deflected water surface tube has then traveled a distance equal to the upstream water depth, H, plus a distance equals to Ds which is the maximum scour depth, Figure 1A; and
  5. At or after equilibrium conditions, the work done due to the attacking flow jet is less than the work needed to lift upward out of the scour hole the sediment/riprap particles located at the deepest point of the scour hole.

This last statement defines the stable sediment/riprap size as that size for which no movement or entrainment by the flow forces occurs. Past methods connected the no movement criteria to the median size D50 and not to the minimum size as done here. If D50 is determined as connected to the no movement criteria in past methods, particles smaller than D50 will be less stable and will tend to move and this will cause unwanted scour or winnowing effect. Therefore the use of D50 in past methods can have some deficiency. Now the derivation of the novel theoretical equation is given. Basic fluid mechanics teaches, Roberson et al.22 that the flow hydrodynamic momentum force for steady uniform flow conditions, can be expressed as ρ Q V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIbpGccaGGGcqcLbsacaGIrbGccaGGGcqcLbsacaGIwbaa aa@3D23@ or equivalently

ρ V Z 2 A p   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWFbpGCcaGIwbqcfa4aaSbaaeaalmaaBaaameaacaGI AbaabeaaaKqbagqaamaaCaaabeqaaKqzadGaaOOmaaaajugibiaakg eajuaGdaWgaaqaaKqzadGaaOiCaaqcfayabaGccaGGGcaaaa@439B@

Where
ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWFbpGCaaa@385F@ is the fluid density,
Q is the flow discharge,
V is the flow velocity and
A is the normal cross–sectional area to flow.

As in assumption (4), the water surface tube upon hitting the bridge pier and travelling downward with a velocity VZ, will hit a bed material particle with diameter, d, which is located at the deepest point of the scour hole just in front of the pier. This force will act on a projected area, A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIbbWcdaWgaaadbaGaaOiCaaqabaaaaa@389B@  of the bed material particle where A p d 2 /4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIbbWcdaWgaaadbaGaaOiCaaqabaqcLbsacaGI9aGaaOiW diaaksgajuaGdaWgaaqaaKqzadGaaOOmaaqcfayabaqcLbsacaGIVa GaaOinaaaa@4165@ (spherical particles have circular projected areas) and d is the bed particle diameter. The force of this vertical jet on this bed particle is then given as ρ V z 2 A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIbpGaaOOvaKqbaoaaBaaabaqcLbmacaGI6baajuaGbeaa lmaaCaaameqabaGaaOOmaaaajugibiaakgeajuaGdaWgaaqaaKqzad GaaOiCaaqcfayabaaaaa@41F7@ . Not all of the projected area of the particle is exposed to the vertical jet as the particle maybe sheltered by other particles. In addition, not all of the attacking flow–jet energy is transferred to the bed particle. A factor λ( λ1.0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGI7oqcfa4aaeWaaeaajugibiaakU7acqGHKjYOcaGIXaGa aOOlaiaakcdaaKqbakaawIcacaGLPaaaaaa@404A@  is therefore used to denote both of the effective projected area and the efficiency of transfer of energy from the flow jet to bed particles. The force ρ V z 2 A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIbpGaaOOvaKqbaoaaBaaabaqcLbmacaGI6baajuaGbeaa lmaaCaaameqabaGaaOOmaaaajugibiaakgeajuaGdaWgaaqaaKqzad GaaOiCaaqcfayabaaaaa@41F7@  acting on a bed particle travels a maximum vertical downward distance equal to ( H+ Ds )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibabaaaaaaaaapeGaaOisaiaakUcacaGIGaGaaOiraiaakoha aOWdaiaawIcacaGLPaaajugib8qacaGIGcaaaa@3EA5@ The work done by gravity on this falling down vertical jet is therefore ρ ( V Z ) 2 A p ( H+ D s )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWFbpGCjuaGpaWaaeWaaOqaaKqzGeWdbiaakAfajuaG daWgaaqaaKqzadGaaOOwaaqcfayabaaak8aacaGLOaGaayzkaaWcpe WaaWbaaWqabeaacaGIYaaaaKqzGeGaaOyqaSWaaSbaaWqaaiaakcha aeqaaKqba+aadaqadaGcbaqcLbsapeGaaOisaiaakUcacaGIGaGaaO iraSWaaSraaWqaaiaakohaaeqaaaGcpaGaayjkaiaawMcaaKqzGeWd biaakckaaaa@4C03@ . The work transferred to the bed particle located in the deepest point of the scour hole is λρ  ( V Z ) 2   A p  ( H+  D s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWF7oaBcqWFbpGCcaGIGaqcfa4damaabmaakeaajugi b8qacaGIwbqcfa4aaSbaaeaajugWaiaakQfaaKqbagqaaaGcpaGaay jkaiaawMcaaSWdbmaaCaaameqabaGaaOOmaaaajugibiaakccacaGI bbWcdaWgaaadbaGaaOiCaaqabaqcLbsacaGIGaqcfa4damaabmaake aajugib8qacaGIibGaaO4kaiaakccacaGIebWcdaWgaaadbaGaaO4C aaqabaaak8aacaGLOaGaayzkaaaaaa@4E79@ .

The entertainment of sediment particles from a pier scour hole does not travel directly straight upwards during the scour process because the horseshoe vortices sweep them down to the scour hole and then move them upward in the downstream direction. However, as far as the work done against gravity to move these sediment particles only the upward distance is of the concern here. The work needed in moving the bed particle at the deepest point of the scour hole in front of the pier out of the scour hole up to the original bed level is equal to the particle submerged weight times the maximum upward travelled distance which is (Ds + d/2). When the bed particle reaches the original bed level it will be picked up by the horseshoe vortices and will be moved further downstream. The energy of the horse shoe vortices is coming from the mean turbulent flow fluctuations as explained by Hafez.21 Therefore, the work needed to lift a particle out of the scour hole is given as

( γ – γ( Vol ) ( D   s + d/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIOaaccaGae83SdC2cdaWgaaadbaGaaO4Caiaakccaaeqa aKqzGeGaaO4eGiaakccacqWFZoWzpaGaaOyka8qacaGIGaqcfa4dam aabmaakeaajugib8qacaGIwbGaaO4BaiaakYgaaOWdaiaawIcacaGL Paaajugib8qacaGIGaqcfa4damaabmaakeaajugib8qacaGIebWcda WgbaadbaGaaO4CaaqabaqcLbsacaGIGaGaaO4kaiaakccacaGIKbGa aO4laiaakkdaaOWdaiaawIcacaGLPaaaaaa@50F8@

Where,
γ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIZoWcpaWaaSbaaeaajugWa8qacaGIZbaal8aabeaaaaa@3A6E@  and γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIZoaaaa@37DC@   are the unit weights of the bed particle and water respectively, and
Vol is the volume of the sediment/riprap particle

If d ˂˂ Ds, as stated in assumption (3) above, then this work becomes ( γ s  – γ ) ( Vol ) ( D s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aaiiaajugibabaaaaaaaaapeGae83SdC2cdaWgaaadbaGaaO4Caaqa baqcLbsacaGIGaGaaO4eGiaakccacqWFZoWzaOWdaiaawIcacaGLPa aajugib8qacaGIGaqcfa4damaabmaakeaajugib8qacaGIwbGaaO4B aiaakYgaaOWdaiaawIcacaGLPaaajugib8qacaGIGaqcfa4damaabm aakeaajugib8qacaGIebqcfa4aaSbaaeaajugWaiaakohaaKqbagqa aaGcpaGaayjkaiaawMcaaaaa@4F74@ . Assumption (5) above states that at or after equilibrium conditions, the maximum work done due to the attacking flow jet is less than the work needed to lift the sediment/riprap particles upward out of the scour hole. This statement can be expressed mathematically as:

λρ V z 2 ( A p )(H+ D s )( γ s -γ)(Vol) D s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeGae8 3UdWMae8xWdiNaaGPaVlaakAfalmaaBaaabaqcLbmacaGI6baaleqa amaaCaaabeqaaKqzadGaaOOmaaaajugibiaaykW7caGIOaGaaOyqaK qbaoaaBaaaleaajugWaiaakchaaSqabaqcLbsacaGIPaGaaGPaVlaa kIcacaGIibGaaGPaVlaakUcacaaMc8UaaOiraSWaaSbaaeaajugWai aakohaaSqabaqcLbsacaGIPaGaaGPaVlaaykW7cqWFKjYOcaaMc8Ua aGPaVlaakIcacqWFZoWzlmaaBaaabaqcLbmacaGIZbaaleqaaKqzGe GaaGPaVlaak2cacaaMc8Uae83SdCMaaOykaiaaykW7caGIOaGaaOOv aiaak+gacaGISbGaaOykaiaaykW7caGIebWcdaWgaaqaaKqzadGaaO 4CaaWcbeaaaaa@71CB@ (1)

Dividing inequality (1) by H, while assuming that H ≠ 0, yields

λρ V z 2 (A ) p (1+ D s H )( γ s -γ)(Vol)( D s H ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeGae8 3UdWMae8xWdiNaaGPaVlaakAfalmaaBaaabaqcLbmacaGI6baaleqa amaaCaaabeqaaKqzadGaaOOmaaaacaaMc8EcLbsacaGIOaGaaOyqaK qbaoaaBeaaleaajugWaiaakchaaSqabaqcLbsacaGIPaGaaGPaVlaa kIcacaGIXaGaaGPaVlaakUcacaaMc8Ecfa4aaSaaaOqaaKqzGeGaaO iraSWaaSbaaeaajugWaiaakohaaSqabaaakeaajugibiaakIeaaaGa aOykaiaaykW7caaMc8Uae8hzImQaaGPaVlaaykW7caGIOaGae83SdC 2cdaWgaaqaaKqzadGaaO4CaaWcbeaajugibiaaykW7caGITaGaaGPa Vlab=n7aNjaakMcacaaMc8UaaOikaiaakAfacaGIVbGaaOiBaiaakM cacaaMc8UaaOikaKqbaoaalaaakeaajugibiaaksealmaaBaaabaqc LbmacaGIZbaaleqaaaGcbaqcLbsacaGIibaaaiaakMcaaaa@77D7@ (2)

Solving for Ds/H in inequality (2) results in

D s H λρ V z 2 ( γ s -γ)( Vol A p )-λρ V z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaakseajuaGdaWgaaWcbaqcLbmacaGIZbaaleqaaaGcbaqc LbsacaGIibaaaiaaykW7caaMc8UaaGPaVJGaaiab=vMiZMqbaoaala aakeaajugibiaaykW7cqWF7oaBcaaMc8Uae8xWdiNaaGPaVlaakAfa lmaaBaaabaqcLbmacaGI6baaleqaamaaCaaabeqaaKqzadGaaOOmaa aajugibiaaykW7aOqaaKqzGeGaaGPaVlaakIcacqWFZoWzlmaaBaaa baqcLbmacaGIZbaaleqaaKqzGeGaaGPaVlaak2cacaaMc8Uae83SdC MaaOykaiaaykW7caaMc8UaaOikaKqbaoaalaaakeaajugibiaakAfa caGIVbGaaOiBaaGcbaqcLbsacaGIbbqcfa4aaSbaaSqaaKqzadGaaO iCaaWcbeaaaaqcLbsacaGIPaGaaGPaVlaak2cacaaMc8Uae83UdWMa aGPaVlab=f8aYjaaykW7caGIwbWcdaWgaaqaaKqzadGaaOOEaaWcbe aadaahaaqabeaajugWaiaakkdaaaGaaGPaVdaajugibiaaykW7caaM c8UaaGPaVlaaykW7aaa@8664@ (3)

Multiplying inequality (3) by H/b, where b is the pier width and assuming that b ≠ 0, yields

D s b λρ V z 2 ( H b ) ( γ s -γ)( Vol A p )-λρ V z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaaksealmaaBaaabaqcLbmacaGIZbaaleqaaaGcbaqcLbsa caGIIbaaaiaaykW7caaMc8UaaGPaVJGaaiab=vMiZMqbaoaalaaake aajugibiab=T7aSjab=f8aYjaaykW7caGIwbWcdaWgaaqaaKqzadGa aOOEaaWcbeaadaahaaqabeaajugWaiaakkdaaaqcLbsacaaMc8UaaG zaVlaaygW7caGIOaqcfa4aaSaaaOqaaKqzGeGaaOisaaGcbaqcLbsa caGIIbaaaiaakMcacaaMc8oakeaajugibiaaykW7caaMc8UaaOikai ab=n7aNTWaaSbaaeaajugWaiaakohaaSqabaqcLbmacaaMc8EcLbsa caGITaGaaGPaVlab=n7aNjaakMcacaaMc8UaaOikaKqbaoaalaaake aajugibiaakAfacaGIVbGaaOiBaaGcbaqcLbsacaGIbbqcfa4aaSba aSqaaKqzadGaaOiCaaWcbeaaaaqcLbsacaGIPaGaaOylaiaaykW7cq WF7oaBcaaMc8Uae8xWdiNaaOOvaSWaaSbaaeaajugWaiaakQhaaSqa baWaaWbaaeqabaqcLbmacaGIYaaaaKqzGeGaaGPaVdaacaaMc8UaaG PaVlaaykW7caaMc8oaaa@8A8C@ (4)

In line with Raudkivi 23 it is assumed that D s /b   C max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIebWcdaWgaaadbaGaaO4CaaqabaqcLbsacaGIVaGaaOOy aiaakccaiiaacqWFKjYOcaGIGaGaaO4qaKqbaoaaBaaabaqcLbmaca GITbGaaOyyaiaakIhaaKqbagqaaaaa@440D@

Where,
C max  2.3 Kα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIdbqcfa4aaSbaaeaajugWaiaak2gacaGIHbGaaOiEaaqc fayabaqcLbsacaGIGaaccaGae8hsISRaaOOmaiaak6cacaGIZaGaaO iiaiaakUeacqWFXoqyaaa@4501@ and
Kα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIlbaccaGae8xSdegaaa@3915@ is a pier shape coefficient.

This relation defines the upper limit for the dimensionless scour depth. It should be noted that the scour depth, Ds, can be considered to be resulting from the combination of the local pier scour, contraction scour and general scour.

Combining inequality (4) and Raudkivi’s23 condition yield

λρ V z 2 ( H b ) ( γ s -γ)( Vol A p )-λρ V z 2 D s b C max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaaykW7iiaacqWF7oaBcaaMc8Uae8xWdiNaaOOvaSWaaSba aeaajugWaiaakQhaaSqabaWaaWbaaeqabaqcLbmacaGIYaaaaKqzGe GaaGPaVlaaygW7caaMb8UaaOikaKqbaoaalaaakeaajugibiaakIea aOqaaKqzGeGaaOOyaaaacaGIPaGaaGPaVdGcbaqcLbsacaaMc8UaaO ikaiab=n7aNLqbaoaaBaaaleaajugWaiaakohaaSqabaqcLbsacaaM c8UaaOylaiab=n7aNjaakMcacaaMc8UaaOikaKqbaoaalaaakeaaju gibiaakAfacaGIVbGaaOiBaaGcbaqcLbsacaGIbbqcfa4aaSbaaSqa aKqzadGaaOiCaaWcbeaaaaqcLbsacaGIPaGaaOylaiaaykW7cqWF7o aBcaaMc8Uae8xWdiNaaOOvaSWaaSbaaeaajugWaiaakQhaaSqabaWa aWbaaeqabaqcLbmacaGIYaaaaKqzGeGaaGPaVdaacaaMc8Uae8hzIm QaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacaGIebWcdaWgaaqaaKqz adGaaO4CaaWcbeaaaOqaaKqzGeGaaOOyaaaacaaMc8UaaGPaVlab=r MiJkaaykW7caaMc8UaaGPaVlaakoealmaaBaaabaqcLbmacaGITbGa aOyyaiaakIhaaSqabaaaaa@90A7@  (5)

Inequality (5) can be expressed as:

λρ V z 2 ( H b ) ( γ s -γ)( Vol A p )-γρ V z 2 C max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaykW7da WcaaqaaGGaaiab=T7aSjaaykW7cqWFbpGCcaaMc8ocbaGaa4Nvamaa BaaajuaibaGaa4NEaaqcfayabaWaaWbaaeqajuaibaGaa4Nmaaaaju aGcaaMc8UaaGzaVlaaygW7caGFOaWaaSaaaeaacaGFibaabaGaa4Ny aaaacaGFPaGaaGPaVdqaaiaaykW7caGFOaGae83SdC2aaSbaaKqbGe aacaGFZbaajuaGbeaacaaMc8Uaa4xlaiaaykW7cqWFZoWzcaGFPaGa aGPaVlaa+HcadaWcaaqaaiaa+zfacaGFVbGaa4hBaaqaaiaa+feada Wgaaqcfasaaiaa+bhaaKqbagqaaaaacaGFPaGaa4xlaiaaykW7cqWF ZoWzcaaMc8Uaa4xWdiaaykW7caGFwbWaaSbaaKqbGeaacaGF6baaju aGbeaadaahaaqabKqbGeaacaGFYaaaaKqbakaaykW7aaGaaGPaVlab =rMiJkaaykW7caGFdbWaaSbaaKqbGeaacaGFTbGaa4xyaiaa+HhaaK qbagqaaaaa@771D@   (6)

Solving inequality (6) for ( Vol/ A p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibabaaaaaaaaapeGaaOOvaiaak+gacaGISbGaaO4laiaakgea lmaaBaaameaacaGIWbaabeaaaOWdaiaawIcacaGLPaaaaaa@3E65@  results in:

( Vol A p ) λρ V z 2 (1+ H C max b ) ( γ s -γ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbakaa=H cadaWcaaqaaiaa=zfacaWFVbGaa8hBaaqaaiaa=feadaWgaaqcfasa aiaa=bhaaKqbagqaaaaacaWFPaGaaGPaVJGaaiab+vMiZoaalaaaba GaaGPaVlab+T7aSjaaykW7cqGFbpGCcaaMc8Uaa8NvamaaBaaajuai baGaa8NEaaqcfayabaWaaWbaaeqajuaibaGaa8NmaaaajuaGcaaMc8 UaaGzaVlaaygW7caWFOaGaa8xmaiaaykW7caaMc8Uaa83kaiaaykW7 daWcaaqaaiaa=HeaaeaacaWFdbWaaSbaaKqbGeaacaWFTbGaa8xyai aa=HhaaKqbagqaaiaaykW7caWFIbaaaiaa=LcacaaMc8oabaGaaGPa VlaaykW7caWFOaGae43SdC2aaSbaaKqbGeaacaWFZbaajuaGbeaaca aMc8Uaa8xlaiab+n7aNjaa=LcacaaMc8UaaGPaVdaacaaMc8UaaGPa VlaaykW7caaMc8oaaa@76F9@ (7)

For spherical particles, ( Vol/ A p ) = ( π d 3 /6 )/( π d 2 /4 ) = ( 4/6 )d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba acbaaeaaaaaaaaa8qacaWFwbGaa83Baiaa=XgacaWFVaGaa8xqamaa BaaajuaibaGaa8hCaaqcfayabaaapaGaayjkaiaawMcaa8qacaWFGa Gaa8xpaiaa=bcapaWaaeWaaeaaiiaapeGae4hWdaNaa8hiaiaa=rga daWgaaqcfasaaiaa=ndaaKqbagqaaiaa=9cacaWF2aaapaGaayjkai aawMcaa8qacaWFVaWdamaabmaabaWdbiab+b8aWjaa=bcacaWFKbWa aSbaaKqbGeaacaWFYaaajuaGbeaacaWFVaGaa8hnaaWdaiaawIcaca GLPaaapeGaa8hiaiaa=1dacaWFGaWdamaabmaabaWdbiaa=rdacaWF VaGaa8NnaaWdaiaawIcacaGLPaaacaWFKbaaaa@57A5@

Where d is the diameter of a sphere. Inequality (7) can be put in an equation form when d is understood to be the minimum grain size at which the scour hole is stable or at equilibrium under the given flow hydrodynamic conditions.

Taking d = d min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbacbaaa aaaaaapeGaa8hzaiaa=bcacaWF9aGaa8hiaiaa=rgadaWgaaqcfasa aiaa=1gacaWFPbGaa8NBaaqcfayabaaaaa@3E10@

Where dmin is the minimum stable or equilibrium particle/riprap size and substituting (4/6) d for ( Vol/ A p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaGIwbGaaO4BaiaakYgacaGIVaGaaOyqamaaBaaa juaibaGaaOiCaaqcfayabaaapaGaayjkaiaawMcaaaaa@3E67@  in inequality (7) yields:

d min = 1.5λρ V z 2 (1+ H C max b ) ( γ s -γ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbakaa=r gadaWgaaqcfasaaiaa=1gacaWFPbGaa8NBaaqcfayabaGaaGPaVlaa ykW7caWF9aWaaSaaaeaacaWFXaGaa8Nlaiaa=vdacaaMc8UaaGPaVJ Gaaiab+T7aSjaaykW7caWFbpGaaGPaVlaa=zfadaWgaaqcfasaaiaa =PhaaKqbagqaamaaCaaabeqcfasaaiaa=jdaaaqcfaOaaGPaVlaayg W7caaMb8Uaa8hkaiaa=fdacaaMc8UaaGPaVlaa=TcacaaMc8+aaSaa aeaacaWFibaabaGaa83qamaaBaaajuaibaGaa8xBaiaa=fgacaWF4b aajuaGbeaacaaMc8Uaa8NyaaaacaWFPaGaaGPaVdqaaiaaykW7caaM c8Uaa8hkaiab+n7aNnaaBaaajuaibaGaa83CaaqcfayabaGaaGPaVl aa=1cacaaMc8Uae43SdCMaa8xkaiaaykW7caaMc8oaaiaaykW7caaM c8UaaGPaVlaaykW7aaa@7A1E@ (8)

For cube particles or brick particles with length and width twice the height (Vol/Ap) = d. If this were used in Inequality (7), the factor 1.5 appearing in Eq. (8) would be 1.0; thus yielding less riprap size. Therefore, using riprap sizes calculated on the assumption of spherical particles is on the safe size Further, the vertical velocity just upstream of the pier appearing in the above equation can be assumed as first approximation as a related to the average main stream longitudinal velocity, V x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOvamaaBaaajuaibaGaaOiEaaqcfayabaaaaa@395C@ ,via: V z  =  C v   V x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOvamaaBaaajuaibaGaaOOEaaqcfayabaGaaOiiaiaak2da caGIGaGaaO4qamaaBaaajuaibaGaaOODaaqcfayabaGaaOiiaiaakA fadaWgaaqcfasaaiaakIhaaKqbagqaaaaa@419C@ . Substituting this in Eq. (8) yields:

d min = 1.5λρ C v 2 V x 2 (1+ H C max b ) ( γ s -γ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbakaa=r gadaWgaaqcfasaaiaa=1gacaWFPbGaa8NBaaqcfayabaGaaGPaVlaa ykW7caWF9aWaaSaaaeaacaWFXaGaa8Nlaiaa=vdacaaMc8occaGae4 3UdWMae4xWdiNaaGPaVlaa=neadaqhaaqcfasaaiaa=zhaaeaacaWF YaaaaKqbakaaykW7caWFwbWaaSbaaKqbGeaacaWF4baajuaGbeaada ahaaqabKqbGeaacaWFYaaaaKqbakaaykW7caaMb8UaaGzaVlaa=Hca caWFXaGaaGPaVlaaykW7caWFRaGaaGPaVpaalaaabaGaa8hsaaqaai aa=neadaWgaaqcfasaaiaa=1gacaWFHbGaa8hEaaqcfayabaGaaGPa Vlaa=jgaaaGaa8xkaiaaykW7aeaacaaMc8UaaGPaVlaa=HcacqGFZo WzdaWgaaqcfasaaiaa=nhaaKqbagqaaiaaykW7caWFTaGaaGPaVlab +n7aNjaa=LcacaaMc8UaaGPaVdaacaaMc8UaaGPaVlaaykW7caaMc8 oaaa@7C52@   (9)

Equation (9) can be further simplified to:

d min = 1.5λ C v 2 V x 2 (1+ H C max b ) g( S s -1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbakaa=r gadaWgaaqcfasaaiaa=1gacaWFPbGaa8NBaaqcfayabaGaaGPaVlaa ykW7caWF9aWaaSaaaeaacaWFXaGaa8Nlaiaa=vdacaaMc8occaGae4 3UdWMaaGPaVlaaykW7caWFdbWaa0baaKqbGeaacaWF2baabaGaa8Nm aaaajuaGcaaMc8Uaa8NvamaaBaaajuaibaGaa8hEaaqcfayabaWaaW baaeqajuaibaGaa8NmaaaajuaGcaaMc8UaaGzaVlaaygW7caWFOaGa a8xmaiaaykW7caaMc8Uaa83kaiaaykW7daWcaaqaaiaa=Heaaeaaca WFdbWaaSbaaKqbGeaacaWFTbGaa8xyaiaa=HhaaKqbagqaaiaaykW7 caWFIbaaaiaa=LcacaaMc8oabaGaaGPaVlaa=DgacaaMc8UaaGPaVl aa=HcacaWFtbWaaSbaaKqbGeaacaWFZbaajuaGbeaacaaMc8Uaa8xl aiaaykW7caWFXaGaa8xkaiaaykW7caaMc8oaaiaaykW7caaMc8UaaG PaVlaaykW7aaa@7CDA@   (10)

Where g is gravitational acceleration and Ss is the bed particles’ specific gravity.

Eq. (10) indicates that riprap size needed for scour protection increases with increases in approach velocity, approach water depth and decreases with increase in riprap particles specific gravity. In addition, the increase in scour–depth reduces the required riprap size due to the increase in dissipation of the flow energy due to the formation of the scour hole. Equation (10) does not indicate that the riprap size increases indefinitely with the approach flow depth, H, as when H increases the velocity V x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOvamaaBaaajuaibaGaaOiEaaqcfayabaaaaa@395C@  decreases accordingly. Since velocity varies quadratically while H varies linearly in Eq. (10), then V x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOva8aadaWgaaqcfasaa8qacaGI4baajuaGpaqabaWaaWba aeqajuaibaWdbiaakkdaaaaaaa@3AA8@  vanishes faster than the increase in H and therefore

the combination V x 2  H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOvamaaBaaajuaibaGaaOiEaaqcfayabaWaaWbaaeqajuai baGaaOOmaaaajuaGcaGIGaGaaOisaaaa@3C78@  diminishes for very large value of H. Equation (10), when the bed material sediments are considered without being covered by riprap, can provide the minimum bed material size under bed–armoring conditions. If the riprap particles are greater than the minimum bed material size, which is given by Eq. (10), then no scour is expected and the riprap layer is stable under the same flow conditions.

Dividing Eq. (10) by H and using F r  =  V x 2 ( g H  )0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOramaaBaaajuaibaGaaOOCaaqcfayabaGaaOiiaiaak2da caGIGaGaaOOvamaaBaaajuaibaGaaOiEaaqcfayabaWaaWbaaeqaju aibaGaaOOmaaaajuaGcaGIVaGaaOiia8aadaqadaqaa8qacaGINbGa aOiiaiaakIeacaGIGaaapaGaayjkaiaawMcaa8qacaGIWaGaaOOlai aakwdaaaa@484A@  where Fr is the Froude number yields

d min H = 1.5λ C v 2 F r 2 (1+ H C max b ) ( S s -1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8xBaiaa=LgacaWFUbaajuaGbeaa aeaacaWFibaaaiaaykW7caaMc8Uaa8xpamaalaaabaGaa8xmaiaa=5 cacaWF1aGaaGPaVlaaykW7iiaacqGF7oaBcaaMc8UaaGPaVlaa=nea daqhaaqcfasaaiaa=zhaaeaacaWFYaaaaKqbakaaykW7caWFgbWaa0 baaKqbGeaacaWFYbaabaqcfa4aaWbaaKqbGeqabaGaa8Nmaaaaaaqc faOaaGPaVlaaygW7caaMb8Uaa8hkaiaa=fdacaaMc8UaaGPaVlaa=T cacaaMc8+aaSaaaeaacaWFibaabaGaa83qamaaBaaajuaibaGaa8xB aiaa=fgacaWF4baajuaGbeaacaaMc8Uaa8NyaaaacaWFPaGaaGPaVd qaaiaaykW7caaMc8Uaa8hkaiaa=nfadaWgaaqcfasaaiaa=nhaaKqb agqaaiaaykW7caWFTaGaaGPaVlaa=fdacaWFPaGaaGPaVlaaykW7aa GaaGPaVlaaykW7caaMc8UaaGPaVdaa@7CB6@  (11)

Graf et al.24 report V z  = 0.6 V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOvamaaBaaajuaibaGaaOOEaaqcfayabaGaaOiiaiaak2da caGIGaGaaOimaiaak6cacaGI2aGaaOiiaiaakAfaaaa@3F45@ , and Raudkivi23 reports for circular piers that the maximum velocity of the down flow reaches 0.8 times the mean approach velocity. However these values are at higher elevations than at the point of the deepest level of the scour hole. It is assumed here that C v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaO4qamaaBaaajuaibaGaaOODaaqcfayabaaaaa@3947@  at just above the point of the deepest level of the scour hole is about 0.5 which is an average between the maximum velocity (V) at the surface and zero velocity at the bed. Of course, detailed hydrodynamic flow models can provide better estimation of V z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqIwbWcdaWgaaadbaGaaKOEaaqabaaaaa@38B8@  near the bed. Assuming that almost all of the energy in the attacking flow jet is transferred to the bed particle, will lead to be in the safe side. In addition, for more safety it can be assumed that the exposed area of the bed particle is at maximum. The last two assumptions lead to λ ≈ 1.0. With C v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaO4qamaaBaaajuaibaGaaOODaaqcfayabaaaaa@3947@  = 0.5 and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaO4Udaaa@37E3@  = 1.0, Eq. (11) becomes:

d min H = 0.375 F r 2 ( S s -1) (1+ H C max b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaOizamaaBaaajuaibaGaaOyBaiaakMgacaGIUbaajuaGbeaaaeaa caGIibaaaiaaykW7caaMc8UaaOypamaalaaabaGaaOimaiaak6caca GIZaGaaO4naiaakwdacaaMc8UaaGPaVlaakAeadaqhaaqcfasaaiaa kkhaaKqbagaadaahaaqabKqbGeaacaGIYaaaaaaajuaGcaaMc8UaaG zaVlaaygW7aeaacaaMc8UaaGPaVlaakIcacaGItbWaaSbaaKqbGeaa caGIZbaajuaGbeaacaaMc8UaaOylaiaaykW7caGIXaGaaOykaiaayk W7caaMc8oaaiaaykW7caaMc8UaaGPaVlaaykW7caGIOaGaaOymaiaa ykW7caaMc8UaaO4kaiaaykW7daWcaaqaaiaakIeaaeaacaGIdbWaaS baaKqbGeaacaGITbGaaOyyaiaakIhaaKqbagqaaiaaykW7caGIIbaa aiaakMcacaaMc8oaaa@75BD@  (12)

It is interesting to note that Eq. (12) which is derived theoretically has the same form as the existing laboratory based equations in Table 1 but with the addition of pier width and flow depth. The importance of these two factors was addressed by Karimaee et al.8 It should be noted that effects of pier shape, sediment gradation, flow inclination, riprap placement depth, etc. can be accommodated when using Eq. (12) using the traditional adjustment or correction coefficients listed in the literature as multipliers in the right hand side of Eq.(12) . By selecting a suitable value for C max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaO4qamaaBaaajuaibaGaaOyBaiaakggacaGI4baajuaGbeaa aaa@3B2F@  (say C max  b = 0.2 Ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaO4qamaaBaaajuaibaGaaOyBaiaakggacaGI4baajuaGbeaa caGIGaGaaOOyaiaakccacaGI9aGaaOiiaiaakcdacaGIUaGaaOOmai aakccacaGIebGaaO4Caaaa@4399@  of the unprotected pier) it can represent the 20% scour criteria proposed by Lauchlan.6 Eq. (12) indicates that in order to have a very small scour depth (say in the order of few centimeters) the bed material particles are supposed to have a very large size. In the limit if the scour depth is thought to be zero, an infinite bed material size would be needed under the assumption of excess of critical conditions (assuming the velocity (Vx) in Eq. (10) is V–Vc.

The rearranged Isbash25 equation26

D 50. = 0.692 ( V des ) 2 ( S s -1)2g = 0.346 ( V des ) 2 ( S s -1)g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaakseada WgaaqcfasaaiaakwdacaGIWaGaaOOlaaqcfayabaGaaGPaVlaaykW7 caGI9aWaaSaaaeaacaGIWaGaaOOlaiaakAdacaGI5aGaaOOmaiaayk W7caGIOaGaaOOvamaaBaaajuaibaGaaOizaiaakwgacaGIZbaajuaG beaacaGIPaWaaWbaaeqajuaibaGaaOOmaaaajuaGcaaMc8oabaGaaG PaVlaaykW7caGIOaGaaO4uamaaBaaajuaibaGaaO4CaaqcfayabaGa aGPaVlaak2cacaaMc8UaaOymaiaakMcacaaMc8UaaGPaVlaakkdaca aMc8UaaO4zaiaaykW7caaMc8oaaiaaykW7caaMc8UaaGPaVlaaykW7 caGI9aGaaGPaVpaalaaabaGaaOimaiaak6cacaGIZaGaaOinaiaakA dacaaMc8UaaGPaVlaakIcacaGIwbWaaSbaaKqbGeaacaGIKbGaaOyz aiaakohaaKqbagqaaiaakMcadaahaaqabKqbGeaacaGIYaaaaKqbak aaykW7aeaacaaMc8UaaGPaVlaakIcacaGItbWaaSbaaKqbGeaacaGI ZbaajuaGbeaacaaMc8UaaOylaiaaykW7caGIXaGaaOykaiaaykW7ca aMc8UaaGPaVlaakEgacaaMc8UaaGPaVdaaaaa@8EEB@  (13)

Where V des MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOvamaaBaaajuaibaGaaOizaiaakwgacaGIZbaajuaGbeaa aaa@3B38@  is the design velocity for local conditions at the pier. Eq. (13), if V des MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOvamaaBaaajuaibaGaaOizaiaakwgacaGIZbaajuaGbeaa aaa@3B38@  is taken as the upstream velocity, can be written as:

D 50. H = 0.346 F r 2 ( S s -1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaOiramaaBaaajuaibaGaaOynaiaakcdacaGIUaaajuaGbeaaaeaa caGIibaaaiaaykW7caaMc8UaaOypaiaaykW7caaMc8+aaSaaaeaaca GIWaGaaOOlaiaakodacaGI0aGaaOOnaiaaykW7caaMc8UaaOOramaa BaaajuaibaGaaOOCaaqcfayabaWaaWbaaeqajuaibaGaaOOmaaaaju aGcaaMc8oabaGaaGPaVlaaykW7caGIOaGaaO4uamaaBaaajuaibaGa aO4CaaqcfayabaGaaGPaVlaak2cacaaMc8UaaOymaiaakMcacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVdaaaaa@6264@    (14)

Eq. (14) is very similar to the equation of Richardson et al.7 Comparison of equations (12) and (14) reveals remarkable similarity between the first which is based on theoretical consideration and the second which is based on laboratory data.

Experimental data

Experimental data collected in small–scale laboratory channels by Quazi et al.11 and Parola13 which are shown in Table 2, are used to test the developed riprap sizing equation, Eq. (12) and the existing formulas in Table 1. As reported by Froehlich15 the laboratory channels in these experiments all had constant rectangular cross section with solid beds. The riprap was modeled using crushed, angular gravel placed in horizontal layers that surrounded the model piers completely. Froehlich15 states that although differences in thickness and lateral extent of the riprap layers, and the duration of experiments, leads to some inconsistencies between data, the assemblage comprises a valid and useful means of testing the theoretical formulations that are developed and for comparing results of expressions developed by others for sizing loose rock riprap to protect bridge piers. Froehlich15 further states that all of the experiments were carried out by increasing of hydraulic loads by small amounts until failure of riprap occurred; that is riprap displacement. Because of the incremental increases, there were possibilities that the applied load might be larger than the failure load. However, presumably the researchers made sure that their load increments were small to minimize such differences Froehlich.15

Applications to laboratory data

In applying Eq. (12) to the data in Table 2, it will be assumed that the riprap stones are nearly uniform with very little gradation coefficient, i.e., the sediment mixtures which was used in these experiments were nearly uniform. Therefore, the D50 in the laboratory data can be taken to be equal to the d min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOizamaaBaaajuaibaGaaOyBaiaakMgacaGIUbaajuaGbeaa aaa@3B4E@  appearing in Eq. (12). In other words for uniform mixtures there will be no noticeable distinction between the median diameter and the minimum diameter. Table 3 shows the percentage relative errors resulted from applying the existing formulas in Table 1 and Eq. (12) to the experimental data by Quazi et al.11 and Parola13 which are shown in Table 2. Methods based on trial and error approaches will not be used here. The percentage relative error is defined as:

relativeerror= ( d predicted - d measured ) d measured ×100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaakkhaca GILbGaaOiBaiaakggacaGI0bGaaOyAaiaakAhacaGILbGaaGPaVlaa kwgacaGIYbGaaOOCaiaak+gacaGIYbGaaGPaVlaak2dacaaMc8+aaS aaaeaadaqadaqaaiaaksgadaWgaaqcfasaaiaakchacaGIYbGaaOyz aiaaksgacaGIPbGaaO4yaiaakshacaGILbGaaOizaaqcfayabaGaaG PaVlaak2cacaaMc8UaaOizamaaBaaajuaibaGaaOyBaiaakwgacaGI HbGaaO4CaiaakwhacaGIYbGaaOyzaiaaksgaaKqbagqaaaGaayjkai aawMcaaaqaaiaaksgadaWgaaqcfasaaiaak2gacaGILbGaaOyyaiaa kohacaGI1bGaaOOCaiaakwgacaGIKbaajuaGbeaaaaGaaGPaVlaakE nacaaMc8UaaOymaiaakcdacaGIWaaaaa@720E@ (15)

Where
dpredicted is the predicted riprap size while
dmeasured is the measured riprap size.

In Table 3 the present approach full equation as by Eq. (12) is considered as case (b) while case (a) assumes unity for the terms in parenthesis i.e. ( 1+H/ C max  b ) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaGIXaGaaO4kaiaakIeacaGIVaGaaO4qamaaBaaa juaibaGaaOyBaiaakggacaGI4baajuaGbeaacaGIGaGaaOOyaaWdai aawIcacaGLPaaapeGaaOiiaiaak2dacaGIGaGaaOymaaaa@4452@ in the right hand side of Eq. (12). The coefficient C max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGIdbWcdaWgaaadbaGaaOyBaiaakggacaGI4baabeaaaaa@3A8B@  was taken as recommended by Raudkivi23 as 2.3 in Eq. (12), case (b). Figure 1A, Figure 1B shows comparison between the experimental data and the predictions by Eq. (12) where most of the predictions are clustered above the line of best fit. From Table 3, it is clear that Breusers et al.27 highly overestimate the riprap sizes while Breusers et al.23 highly underestimate the riprap sizes in agreement with Melville et al.5 findings. The equations of Lauchlan,6 Chiew,14 Austroads,28 also give high estimations which yield them as design equations. The rest of the equations give reasonable predictions with Parola12 and the present approach, Eq. (12) giving the closest agreement to measured data followed by Richardson et al.3 The present approach case (a) which does not include the pier width effects gives more underestimates compared to case (b). Quazi et al.,11 Farradayet al.29 and the present approach case (a) give more underestimates compared to the rest of the equations. Froehlich15 presented graphically the results of applying his analytical equation of sizing riprap to the data of Table 2.30,31

Reference

Equation

Standard format (for comparison)

Comments

Quazi at al.11

N sc =1.14 { d r50 y } -0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOtaS WaaSbaaeaajugWaiaakohacaGIJbaaleqaaKqzGeGaaGPaVlaak2da caaMc8UaaOymaiaak6cacaGIXaGaaOinaiaaykW7caaMb8Ecfa4aai WaaOqaaKqbaoaalaaakeaajugibiaaksgalmaaBaaabaqcLbmacaGI YbGaaOynaiaakcdaaSqabaaakeaajugibiaakMhaaaaakiaawUhaca GL9baalmaaCaaabeqaaKqzadGaaOylaiaakcdacaGIUaGaaOOmaaaa aaa@53DE@

  d r50 y = 0.85 ( S s -1) 1.25 F r 2.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaaksgajuaGdaWgaaWcbaqcLbmacaGIYbGaaOynaiaakcda aSqabaaakeaajugibiaakMhaaaGaaGPaVlaaykW7caGI9aGaaGPaVN qbaoaalaaakeaajugibiaakcdacaGIUaGaaOioaiaakwdaaOqaaKqz GeGaaOikaiaakofalmaaBaaabaqcLbmacaGIZbaaleqaaKqzGeGaaG PaVlaak2cacaaMc8UaaOymaiaakMcalmaaCaaabeqaaKqzadGaaOym aiaak6cacaGIYaGaaOynaaaaaaqcLbsacaaMc8UaaGPaVlaakAeaca GIYbWcdaahaaqabeaajugWaiaakkdacaGIUaGaaOynaaaaaaa@5F74@

Nsc = critical stability number =V2/[g (Ss–1) dr50]
Fr = Froude number of the approach flow = V/(gy)0.5

V = mean approach velocity
Ss = specific gravity of riprap
Dr50 = median riprap size
y = mean approach flow depth
g = gravitational acceleration

Breusers et al.27

V=0.42 2g( S s -1) d r50 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaOOvai aaykW7caaMc8UaaOypaiaaykW7caaMc8UaaOimaiaak6cacaGI0aGa aOOmaiaaykW7juaGdaGcaaGcbaqcLbsacaGIYaGaaGPaVlaakEgaca aMc8UaaOikaiaakofalmaaBaaabaqcLbmacaGIZbaaleqaaKqzGeGa aGPaVlaak2cacaGIXaGaaOykaiaaykW7caGIKbqcfa4aaSbaaSqaaK qzadGaaOOCaiaakwdacaGIWaaaleqaaaqabaaaaa@57F3@

d r50 y = 2.83 ( S s -1) F r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaaksgajuaGdaWgaaWcbaqcLbmacaGIYbGaaOynaiaakcda aSqabaaakeaajugibiaakMhaaaGaaGPaVlaaykW7caGI9aGaaGPaVN qbaoaalaaakeaajugibiaakkdacaGIUaGaaOioaiaakodaaOqaaKqz GeGaaOikaiaakofalmaaBaaabaqcLbmacaGIZbaaleqaaKqzGeGaaG PaVlaak2cacaaMc8UaaOymaiaakMcaaaGaaGPaVlaaykW7caGIgbGa aOOCaSWaaWbaaeqabaqcLbmacaGIYaaaaaaa@5919@

Farraday at al.29

d r50 y =0.547F r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8NCaiaa=vdacaWFWaaajuaGbeaa aeaacaWF5baaaiaaykW7caaMc8Uaa8xpaiaaykW7caWFWaGaa8Nlai aa=vdacaWF0aGaa83naiaaykW7caaMc8Uaa8Nraiaa=jhadaahaaqa bKqbGeaacaWFZaaaaaaa@4A5E@

d r50 y =0.547F r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8NCaiaa=vdacaWFWaaajuaGbeaa aeaacaWF5baaaiaaykW7caaMc8Uaa8xpaiaaykW7caWFWaGaa8Nlai aa=vdacaWF0aGaa83naiaaykW7caaMc8Uaa8Nraiaa=jhadaahaaqa bKqbGeaacaWFZaaaaaaa@4A5E@

Parola et al.12

d r50 y = C ( S s -1) F r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaabaWaaSbaaKqbGeaacaWFYbGaa8xnaiaa=bda aKqbagqaaaqabaaabaGaa8xEaaaacqGH9aqpdaWcaaqaaiaa=neada ahaaqabKqbGeaaiiaacqGFxiIkaaaajuaGbaGaa8hkaiaa=nfadaWg aaqcfasaaiaa=nhaaKqbagqaaiaaykW7caWFTaGaaGPaVlaa=fdaca WFPaaaaiaaykW7caaMc8Uaa8Nraiaa=jhadaahaaqabKqbGeaacaWF Yaaaaaaa@4DB3@

d r50 y = C ( S s -1) F r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaabaWaaSbaaKqbGeaacaWFYbGaa8xnaiaa=bda aKqbagqaaaqabaaabaGaa8xEaaaacqGH9aqpdaWcaaqaaiaa=neada ahaaqabKqbGeaaiiaacqGFxiIkaaaajuaGbaGaa8hkaiaa=nfadaWg aaqcfasaaiaa=nhaaKqbagqaaiaaykW7caWFTaGaaGPaVlaa=fdaca WFPaaaaiaaykW7caaMc8Uaa8Nraiaa=jhadaahaaqabKqbGeaacaWF Yaaaaaaa@4DB3@

C* = coefficient for pier shape; C* = 1.0 (rectangular), 0.61 (round–nose)

Breusers at al.23

V=4.8 ( S s -1) 0.5 d r50 1/3 y 1/6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbakaa=z facaaMc8UaaGPaVlaa=1dacaaMc8UaaGPaVlaa=rdacaWFUaGaa8ho aiaaykW7caaMc8UaaGPaVlaa=HcacaWFtbWaaSbaaKqbGeaacaWFZb aajuaGbeaacaaMc8Uaa8xlaiaa=fdacaWFPaWaaWbaaeqajuaibaGa a8hmaiaa=5cacaWF1aaaaKqbakaaykW7caaMc8Uaa8hzamaaBaaaju aibaGaa8NCaiaa=vdacaWFWaaajuaGbeaadaahaaqabKqbGeaacaWF XaGaa83laiaa=ndaaaqcfaOaaGPaVlaaykW7caWF5bWaaWbaaeqaju aibaGaa8xmaiaa=9cacaWF2aaaaaaa@5F77@

d r50 y = 0.278 ( S s -1) 1.5 F r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8NCaiaa=vdacaWFWaaajuaGbeaa aeaacaWF5baaaiaaykW7caaMc8Uaa8xpaiaaykW7daWcaaqaaiaa=b dacaWFUaGaa8Nmaiaa=DdacaWF4aaabaGaa8hkaiaa=nfadaWgaaqc fasaaiaa=nhaaKqbagqaaiaaykW7caWFTaGaaGPaVlaa=fdacaWFPa WaaWbaaeqajuaibaGaa8xmaiaa=5cacaWF1aaaaaaajuaGcaaMc8Ua aGPaVlaa=zeacaWFYbWaaWbaaeqajuaibaGaa83maaaaaaa@55D2@

Austroads28

d r50 y = 0.58 K p K v ( S s -1) F r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aaieaajugibiaa=rgajuaGdaWgaaqcbasaaKqzadGaa8NCaiaa=vda caWFWaaaleqaaaGcbaqcLbsacaWF5baaaiaaykW7caaMc8Uaa8xpai aaykW7juaGdaWcaaGcbaqcLbsacaWFWaGaa8Nlaiaa=vdacaWF4aGa aGPaVlaa=TeajuaGdaWgaaqcbasaaKqzadGaa8hCaaWcbeaajugibi aaykW7caWFlbqcfa4aaSbaaKqaGeaajugWaiaa=zhaaSqabaaakeaa jugibiaa=HcacaWFtbqcfa4aaSbaaKqaGeaajugWaiaa=nhaaSqaba qcLbsacaaMc8Uaa8xlaiaaykW7caWFXaGaa8xkaaaacaaMc8UaaGPa Vlaa=zeacaWFYbqcfa4aaWbaaSqabKqaGeaajugWaiaa=jdaaaaaaa@651E@

d r50 y = 0.58 K p K v ( S s -1) F r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aaieaajugibiaa=rgajuaGdaWgaaqcbasaaKqzadGaa8NCaiaa=vda caWFWaaaleqaaaGcbaqcLbsacaWF5baaaiaaykW7caaMc8Uaa8xpai aaykW7juaGdaWcaaGcbaqcLbsacaWFWaGaa8Nlaiaa=vdacaWF4aGa aGPaVlaa=TeajuaGdaWgaaqcbasaaKqzadGaa8hCaaWcbeaajugibi aaykW7caWFlbqcfa4aaSbaaKqaGeaajugWaiaa=zhaaSqabaaakeaa jugibiaa=HcacaWFtbqcfa4aaSbaaKqaGeaajugWaiaa=nhaaSqaba qcLbsacaaMc8Uaa8xlaiaaykW7caWFXaGaa8xkaaaacaaMc8UaaGPa Vlaa=zeacaWFYbqcfa4aaWbaaSqabKqaGeaajugWaiaa=jdaaaaaaa@651E@

Kp = factor for pier shape; Kp = 2.25 (round–nose), 2.89 (rectangular) Kv = velocity factor, varying from 0.81 for a pier near the bank of a straight channel to 2.89 for a pier at the outside of a bend in the main channel

Richardsoet al.7

d r50 = 0.692 ( f 1 f 2 V) 2 ( S s -1)2g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbakaa=r gadaWgaaqcfasaaiaa=jhacaWF1aGaa8hmaaqcfayabaGaaGPaVlaa ykW7caWF9aGaaGPaVpaalaaabaGaa8hmaiaa=5cacaWF2aGaa8xoai aa=jdacaaMc8UaaGPaVlaa=HcacaWFMbWaaSbaaKqbGeaacaWFXaaa juaGbeaacaaMc8Uaa8NzamaaBaaajuaibaGaa8NmaaqcfayabaGaaG PaVlaa=zfacaWFPaWaaWbaaeqajuaibaGaa8NmaaaaaKqbagaacaWF OaGaa83uamaaBaaajuaibaGaa83CaaqcfayabaGaaGPaVlaa=1caca aMc8Uaa8xmaiaa=LcacaaMc8Uaa8NmaiaaykW7caWFNbaaaiaaykW7 caaMc8oaaa@629A@

d r50 y = 0.346 ( f 1 f 2 ) 2 ( S s -1) F r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8NCaiaa=vdacaWFWaaajuaGbeaa aeaacaWF5baaaiaaykW7caaMc8Uaa8xpaiaaykW7daWcaaqaaiaa=b dacaWFUaGaa83maiaa=rdacaWF2aGaaGPaVlaaykW7caWFOaGaa8Nz amaaBaaajuaibaGaa8xmaaqcfayabaGaaGPaVlaa=zgadaWgaaqcfa saaiaa=jdaaKqbagqaaiaa=LcadaahaaqabKqbGeaacaWFYaaaaKqb akaaykW7aeaacaWFOaGaa83uamaaBaaajuaibaGaa83Caaqcfayaba GaaGPaVlaa=1cacaaMc8Uaa8xmaiaa=LcacaaMc8oaaiaaykW7caaM c8UaaGPaVlaa=zeadaWgaaqaaiaa=jhaaeqaamaaCaaabeqcfasaai aa=jdaaaaaaa@640C@

f1 = factor for pier shape; f1 = 1.5 (round–nose), 1.7 (rectangular)
f2 = factor ranging from 0.9 for a pier near the bank in a straight reach to 1.7 for a pier in the main current of a bend

Chiew9

d r50 = 0.168 y ( V U * ( S s -1)g ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbakaa=r gadaWgaaqcfasaaiaa=jhacaWF1aGaa8hmaaqcfayabaGaaGPaVlaa ykW7caWF9aGaaGPaVlaaykW7daWcaaqaaiaa=bdacaWFUaGaa8xmai aa=zdacaWF4aaabaWaaOaaaeaacaWG5baabeaaaaGaaGPaVpaabmaa baWaaSaaaeaacaWFwbaabaGaa8xvamaaBaaajuaibaGaa8Nkaaqcfa yabaGaaGPaVpaakaaabaGaa8hkaiaa=nfadaWgaaqcfasaaiaa=nha aKqbagqaaiaaykW7caWFTaGaaGPaVlaa=fdacaWFPaGaaGPaVlaayk W7caWFNbaabeaaaaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaa83m aaaajuaGcaaMc8oaaa@5DA5@

d r50 y = 0.168 ( S s -1) 1.5 U * 3 F r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8NCaiaa=vdacaWFWaaajuaGbeaa aeaacaWG5baaaiaaykW7caaMc8Uaa8xpaiaaykW7caaMc8+aaSaaae aacaWFWaGaa8Nlaiaa=fdacaWF2aGaa8hoaaqaaiaa=HcacaWFtbWa aSbaaKqbGeaacaWFZbaajuaGbeaacaaMc8Uaa8xlaiaaykW7caWFXa Gaa8xkaiaaykW7daahaaqabKqbGeaacaWFXaGaa8Nlaiaa=vdaaaqc faOaa8xvamaaDaaajuaibaGaa8Nkaaqaaiaa=ndaaaaaaKqbakaa=z eadaqhaaqcfasaaiaa=jhaaeaacaWFZaaaaaaa@58E7@
U = 0.3 K d K y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqbakaa=v fadaWgaaqcfasaaGGaaiab+DHiQaqcfayabaGaaGPaVlaa=1dacaaM c8+aaSaaaeaacaWFWaGaa8Nlaiaa=ndaaeaacaWFlbWaaSbaaKqbGe aacaWFKbaajuaGbeaacaaMc8Uaa83samaaBaaajuaibaGaa8xEaaqc fayabaaaaaaa@45DA@

Ky = flow depth factor
Ky = 1 for (y/b) ≥3
Kd = sediment size factor
Kd = 1 for (b/d50) ≥50

Parola14,31

Rectangular:
Nsc = 0.8 20 ˂ (bp/d50 ) ˂ 33
Nsc = 1.0 7 ˂ (bp/d50 ) ˂ 14
Nsc = 0.8 4 ˂ (bp/d50 ) ˂ 7

Aligned Round–Nose:
Nsc = 1.4

d r50 y = f 1 f 3 ( S s -1) F r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8NCaiaa=vdacaWFWaaajuaGbeaa aeaacaWF5baaaiaaykW7caaMc8Uaa8xpaiaaykW7daWcaaqaaiaayk W7caaMc8Uaa8NzamaaBaaajuaibaGaa8xmaaqcfayabaGaaGPaVlaa =zgadaWgaaqcfasaaiaa=ndaaKqbagqaaiaaykW7aeaacaWFOaGaa8 3uamaaBaaajuaibaGaa83CaaqcfayabaGaaGPaVlaa=1cacaaMc8Ua a8xmaiaa=LcacaaMc8oaaiaaykW7caaMc8UaaGPaVlaa=zeadaWgaa qaaiaa=jhaaeqaamaaCaaabeqcfasaaiaa=jdaaaaaaa@5DA9@

 

bp = projected width of pier
f1 = pier shape factor; f1 = 1.0 (rectangular), 0.71 (round–nose if aligned)
f2 = pier size factor = f(bp/d50 ):

bp = projected width of pier
f1 = pier shape factor; f1 = 1.0 (rectangular), 0.71 (round–nose if aligned)
f2 = pier size factor = f(bp/d50 ):

Aligned Round–Nose: Nsc = 1.4

f3 = 1.25
20 ˂ (bp/d50 ) ˂ 33
f3 = 1.0
7 ˂ (bp/d50 ) ˂ 14
f3 = 0.83
4 ˂ (bp/d50 ) ˂ 7

Lauchlan3

  d r50 y =0.3 S t ( 1- Y t y ) 2.75 F r 1.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8NCaiaa=vdacaWFWaaajuaGbeaa aeaacaWF5baaaiaaykW7caaMc8Uaa8xpaiaaykW7caaMc8Uaa8hmai aa=5cacaWFZaGaaGPaVlaa=nfadaWgaaqcfasaaiaa=rhaaKqbagqa aiaaykW7caaMc8+aaeWaaeaacaWFXaGaaGPaVlaa=1cacaaMc8+aaS aaaeaacaWFzbWaaSbaaKqbGeaacaWF0baajuaGbeaaaeaacaWF5baa aaGaayjkaiaawMcaamaaCaaabeqcfasaaiaa=jdacaWFUaGaa83nai aa=vdaaaqcfaOaaGPaVlaaykW7caWFgbGaa8NCamaaCaaabeqcfasa aiaa=fdacaWFUaGaa8Nmaaaaaaa@6084@

  d r50 y =0.3 S t ( 1- Y t y ) 2.75 F r 1.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba acbaGaa8hzamaaBaaajuaibaGaa8NCaiaa=vdacaWFWaaajuaGbeaa aeaacaWF5baaaiaaykW7caaMc8Uaa8xpaiaaykW7caaMc8Uaa8hmai aa=5cacaWFZaGaaGPaVlaa=nfadaWgaaqcfasaaiaa=rhaaKqbagqa aiaaykW7caaMc8+aaeWaaeaacaWFXaGaaGPaVlaa=1cacaaMc8+aaS aaaeaacaWFzbWaaSbaaKqbGeaacaWF0baajuaGbeaaaeaacaWF5baa aaGaayjkaiaawMcaamaaCaaabeqcfasaaiaa=jdacaWFUaGaa83nai aa=vdaaaqcfaOaaGPaVlaaykW7caWFgbGaa8NCamaaCaaabeqcfasa aiaa=fdacaWFUaGaa8Nmaaaaaaa@6084@

St = safety factor with a minimum recommended value of 1.1 Yt = placement depth below bed level

Table 1 Equations for sizing riprap at bridge piers
Source Melville and Colman5

Data Source

Data point number

Median particle
Diameter, D50 (mm)

Approach flow
depth, (m)

Approach flow
velocity (m/s)

Pier Width (m)

Particle specific
gravity

aQuazi et al.11

1

2.58

0.073

0.271

0.064

2.64

2

2.58

0.097

0.28

0.064

2.64

3

2.58

0.122

0.311

0.064

2.64

4

2.58

0.143

0.274

0.064

2.64

5

2.58

0.183

0.276

0.064

2.64

6

3.85

0.042

0.349

0.064

2.64

7

3.85

0.064

0.411

0.064

2.64

8

3.85

0.079

0.39

0.064

2.64

9

3.85

0.091

0.427

0.064

2.64

10

3.85

0.106

0.418

0.064

2.64

11

3.85

0.103

0.418

0.064

2.64

12

3.85

0.14

0.39

0.064

2.64

13

3.85

0.152

0.451

0.064

2.64

14

3.85

0.161

0.457

0.064

2.64

15

3.85

0.18

0.457

0.064

2.64

16

3.85

0.201

0.427

0.064

2.64

17

6.77

0.064

0.45

0.064

2.64

18

6.77

0.073

0.506

0.064

2.64

19

6.77

0.085

0.457

0.064

2.64

20

6.77

0.109

0.476

0.064

2.64

21

6.77

0.134

0.54

0.064

2.64

22

6.77

0.164

0.528

0.064

2.64

23

6.77

0.158

0.497

0.064

2.64

24

6.77

0.179

0.458

0.064

2.64

25

6.77

0.192

0.576

0.064

2.64

26

10.5

0.097

0.555

0.064

2.64

27

10.5

0.082

0.543

0.064

2.64

28

10.5

0.106

0.57

0.064

2.64

29

10.5

0.122

0.625

0.064

2.64

30

10.5

0.146

0.668

0.064

2.64

31

10.5

0.154

0.545

0.064

2.64

32

10.5

0.189

0.522

0.064

2.64

33

13.6

0.116

0.707

0.064

2.64

34

13.6

0.14

0.714

0.064

2.64

35

13.6

0.173

0.634

0.064

2.64

36

13.6

0.195

0.622

0.064

2.64

37

14.4

0.097

0.57

0.064

2.64

38

14.4

0.125

0.631

0.064

2.64

39

14.4

0.158

0.683

0.064

2.64

40

14.4

0.167

0.695

0.064

2.64

41

14.4

0.192

0.739

0.064

2.64

42

4

0.11

0.45

0.114

2.92

43

4

0.24

0.46

0.114

2.92

44

4

0.34

0.47

0.114

2.92

45

6

0.2

0.56

0.114

2.92

46

6

0.29

0.6

0.114

2.92

47

6

0.1

0.48

0.114

2.92

48

8

0.27

0.58

0.114

2.92

49

8

0.33

0.61

0.114

2.92

50

8

0.17

0.63

0.114

2.92

51

12

0.31

0.78

0.114

2.92

bParola13

52

12

0.27

0.61

0.114

2.92

53

4

0.13

0.36

0.114

2.92

54

4

0.27

0.4

0.114

2.92

55

4

0.42

0.38

0.114

2.92

56

4

0.11

0.42

0.051

2.92

57

4

0.25

0.44

0.051

2.92

58

4

0.35

0.46

0.051

2.92

59

4

0.39

0.36

0.114

2.92

60

4

0.11

0.4

0.114

2.92

61

4

0.26

0.42

0.114

2.92

62

6

0.11

0.46

0.114

2.92

63

6

0.26

0.42

0.114

2.92

64

6

0.39

0.44

0.114

2.92

65

6

0.39

0.41

0.114

2.92

cParola15

66

6

0.1

0.47

0.114

2.92

67

6

0.23

0.47

0.114

2.92

68

6

0.05

0.43

0.114

2.92

69

8

0.22

0.49

0.114

2.92

70

8

0.32

0.51

0.114

2.92

71

8

0.35

0.59

0.114

2.92

72

8

0.17

0.64

0.051

2.92

73

8

0.23

0.73

0.051

2.92

74

8

0.32

0.79

0.051

2.92

75

8

0.2

0.52

0.114

2.92

76

8

0.23

0.51

0.114

2.92

77

8

0.21

0.52

0.114

2.92

78

8

0.09

0.5

0.114

2.92

79

8

0.19

0.5

0.114

2.92

80

8

0.31

0.52

0.114

2.92

81

12

0.26

0.62

0.114

2.92

82

12

0.36

0.68

0.114

2.92

83

12

0.2

0.81

0.051

2.92

84

12

0.28

0.88

0.051

2.92

85

12

0.39

0.74

0.114

2.92

86

12

0.26

0.77

0.114

2.92

87

12

0.4

0.57

0.114

2.92

88

12

0.28

0.58

0.114

2.92

89

12

0.38

0.78

0.114

2.92

90

12

0.27

0.62

0.114

2.92

91

12

0.38

0.64

0.114

2.92

Table 2 Input data for riprap experiments for round–nose model pier aligned with approach flow
around–nosed–pier aligned with flow, pier length=0.519 m, channel width 0.914 m for all measurements
bround–nosed–pier aligned with flow, pier length=0.114 m, channel width 1.829 m for all measurements
csquare–nosed–pier aligned with flow, pier length varies, channel width 1.829 m for all measurements

Data Point
Number

Quazi et al.11

Breusers et al.27

Farraday et al.29

Parola et al.12

Bresusers et al.23

Austroads28

Richards et al.29

Chiew9

Parola14,31

Lauchlan3

Present Approach

Present Approach

1

–25

401

–49

8

–88

131

38

173

57

138

–34

–1

2

–24

435

–51

15

–88

146

47

161

68

177

–29

18

3

–7

559

–41

42

–86

204

81

219

107

245

–13

60

4

–35

412

–62

10

–91

136

41

101

61

216

–32

34

5

–37

419

–66

12

–92

139

43

82

63

252

–31

54

6

9

456

–4

20

–77

157

53

415

40

73

–26

–5

7

48

672

27

66

–69

256

112

581

94

150

2

47

8

23

595

–2

50

–76

220

91

424

74

155

–8

42

9

49

733

19

80

–71

284

129

540

109

201

10

79

10

36

698

4

72

–75

268

120

457

100

212

6

82

11

37

698

5

72

–75

268

120

465

100

208

6

80

12

6

595

–27

50

–82

220

91

293

74

220

–8

80

13

50

829

9

100

–74

329

156

484

133

294

23

150

14

53

854

10

106

–73

340

162

490

139

310

26

165

15

49

854

4

106

–75

340

162

458

139

329

26

181

16

22

733

–20

80

–81

284

129

331

109

313

10

161

17

5

426

–5

13

–77

143

45

408

32

58

–30

0

18

37

565

26

43

–69

207

83

576

67

92

–12

32

19

2

443

–14

17

–79

150

49

362

36

81

–28

13

20

6

489

–14

27

–79

171

62

361

48

109

–22

36

21

38

658

13

63

–73

249

108

507

90

165

0

92

22

24

624

–4

56

–77

234

99

413

82

179

–4

103

23

8

542

–19

38

–80

196

77

336

61

156

–15

76

24

–15

445

–40

17

–86

151

50

220

37

144

–28

60

25

48

762

15

86

–72

298

137

515

116

230

14

163

26

3

416

–7

11

–77

138

42

399

7

55

–32

13

27

2

394

–5

6

–77

128

36

409

3

41

–35

2

28

8

444

–4

17

–77

151

50

417

13

66

–28

24

29

31

554

19

41

–71

202

80

536

36

96

–13

59

30

48

648

32

61

–68

245

106

610

56

128

–1

97

31

–12

398

–30

7

–83

129

37

275

4

82

–34

35

32

–25

356

–45

–2

–87

110

26

198

–5

88

–40

38

33

40

547

36

39

–67

198

78

629

35

72

–14

53

34

37

559

27

42

–69

204

81

583

37

87

–13

70

35

–4

420

–20

12

–81

140

43

330

8

77

–31

50

36

–11

400

–29

8

–83

131

38

283

4

81

–34

54

37

–19

297

–26

–14

–82

83

9

294

–17

17

–47

–13

38

–3

386

–12

5

–79

124

34

371

1

46

–36

19

39

12

470

–1

23

–76

163

57

432

19

76

–24

57

40

15

490

2

27

–75

172

62

445

23

84

–22

67

41

30

567

14

44

–72

208

84

511

39

109

–12

104

42

28

661

22

64

–77

251

109

556

139

233

1

43

43

11

695

–12

71

–83

267

119

374

149

366

5

102

44

7

730

–21

79

–85

283

128

325

160

450

10

153

45

27

685

17

69

–78

262

116

525

97

266

4

83

46

37

802

19

94

–77

316

148

538

126

361

19

152

47

2

477

4

24

–80

166

59

457

45

131

–24

6

48

–4

532

–16

36

–84

191

74

348

59

223

–16

70

49

4

599

–12

51

–83

222

92

372

75

272

–7

109

50

33

645

35

61

–74

244

105

624

87

196

–1

63

51

30

662

26

64

–76

251

110

578

91

225

1

120

52

–27

366

–35

0

–88

115

28

248

17

129

–38

25

53

–30

387

–42

72

–89

188

72

209

115

172

–35

–4

54

–24

501

–45

112

–90

256

112

194

165

313

–20

62

55

–40

442

–62

92

–93

221

92

102

140

364

–28

87

56

8

563

–1

134

–81

292

134

433

134

206

–12

70

57

–2

627

–24

157

–86

331

157

307

157

350

–4

202

58

1

695

–27

181

–86

371

181

293

181

442

5

320

59

–47

387

–67

72

–94

188

72

78

115

322

–35

60

60

–5

501

–14

112

–84

256

112

361

165

189

–20

13

61

–13

563

–35

134

–88

292

134

247

193

332

–12

75

62

–10

430

–13

87

–83

214

87

367

87

128

–30

0

63

–42

342

–57

56

–92

162

56

131

56

188

–41

17

64

–41

385

–60

71

–92

187

71

117

71

258

–36

60

65

–51

321

–67

49

–94

149

49

76

49

229

–44

39

66

–3

453

–3

95

–81

228

95

423

95

125

–27

1

67

–21

453

–36

95

–88

228

95

245

95

214

–27

38

68

–7

363

6

64

–80

174

64

466

64

53

–39

–27

69

–34

351

–44

59

–89

167

59

199

59

143

–40

10

70

–33

389

–48

73

–90

189

73

180

73

196

–35

44

71

–6

554

–23

131

–85

287

131

314

131

266

–13

102

72

38

669

41

172

–73

356

172

659

126

202

2

150

73

78

901

81

254

–66

493

254

868

194

299

33

293

74

100

1072

94

314

–63

594

314

941

244

401

55

479

75

–21

408

–30

79

–87

201

79

275

79

151

–33

19

76

–27

389

–38

73

–88

189

73

230

73

160

–35

22

77

–22

408

–32

79

–87

201

79

266

79

156

–33

21

78

–13

370

–7

66

–82

178

66

397

66

74

–38

–16

79

–27

370

–36

66

–88

178

66

242

66

135

–38

7

80

–29

408

–44

79

–89

201

79

202

79

199

–33

47

81

–23

381

–31

70

–87

185

70

272

70

130

–36

27

82

–11

479

–22

105

–85

243

105

317

105

192

–23

82

83

59

721

76

190

–66

387

190

846

141

185

9

194

84

80

870

91

243

–64

474

243

925

184

260

28

335

85

8

586

–4

142

–82

306

142

416

142

234

–9

126

86

32

642

33

162

–75

340

162

613

162

198

–2

96

87

–44

307

–57

44

–92

141

44

133

44

147

–46

36

88

–36

321

–45

49

–90

149

49

193

49

118

–44

15

89

24

662

14

169

–78

351

169

513

169

252

1

147

90

–24

381

–32

70

–87

185

70

265

70

133

–36

29

91

–25

413

–37

81

–88

204

81

238

81

178

–32

66

Table 3 Output Results of Percentage Relative Error (%) Calculations Using Eq. (15)

Figure 1 Schematic diagrams of scour at a bridge pier in the symmetry plane.
A. Longitudinal–flow–transformation into down flow
B. Particles movement out of the Scour–hole

Form his graph of the measured dimensionless riprap size to the calculated one it is clear that the line of perfect agreement nearly divides the data points indicating almost equal under and over estimation. Visually one can find at least thirty points of under predictions. He used a factor of safety of 1.25 to eliminate the under–predictions. The complexity of his approach and the amount of empiricism in it in addition to the amount of under–predications does not make it favorable. The present approach case (b) gives only 6 underestimates out of 91 predictions of riprap sizes and their relative error values are relatively small amounting to –1%, –5%, – 13%, –4%, –27%, and –16%. Keeping in mind that due to data availability the velocity used in applying Eq. (12) was the average cross–sectional velocity while the velocity just upstream the pier is the one which should be used instead. If amplification of velocity by 20% is applied these underestimates would disappear when applying Eq. (12), case (b). Nonetheless, Eq. (12) case (b) performance is very good where it shows the important effect of the pier width and water depth that is supported by the findings of Karimaee et al.8 and Karimaee et al.16

Waves and seismic effects

The hydrodynamic jet flow force due to stream currents hitting the bridge pier was given before as ρ ( VZ ) 2   A p  ( H+  D s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqbacbaaa aaaaaapeGae8xWdi3damaabmaabaWdbiaakAfacaGIAbaapaGaayjk aiaawMcaa8qadaWgaaqcfasaaiaakkdaaKqbagqaaiaakccacaGIbb WaaSbaaKqbGeaacaGIWbaajuaGbeaacaGIGaWdamaabmaabaWdbiaa kIeacaGIRaGaaOiiaiaakseadaWgaaqcfasaaiaakohaaKqbagqaaa WdaiaawIcacaGLPaaaaaa@4820@ which can be written as ( A p   F H   L H  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaakIcaqa aaaaaaaaWdbiaakgeadaWgaaqcfasaaiaakchaaKqbagqaaiaakcca caGIgbWaaSbaaKqbGeaacaGIibaajuaGbeaacaGIGaGaaOitamaaBa aajuaibaGaaOisaaqcfayabaGaaOiia8aacaGIPaaaaa@41C7@  where F H  =ρ ( VZ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaOOramaaBaaajuaibaGaaOisaaqcfayabaGaaOiiaiaak2da iiaacqWFbpGCpaWaaeWaaeaapeGaaOOvaiaakQfaa8aacaGLOaGaay zkaaWdbmaaBaaajuaibaGaaOOmaaqcfayabaaaaa@4180@  which is the force per unit area and LH = (H+ Ds) is the distance of the force above the deepest point of the scour hole. The wave forces acting on a bridge pier can be written in a similar fashion as Ap Fw Lw where Fw is the wave force per unit area and Lw is the distance of the force above the deepest point of the scour hole. Similarly the seismic forces can be written as

( A p   F SH  L SH  +  A F SV   L SV ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaGIbbWaaSbaaKqbGeaacaGIWbaajuaGbeaacaGI GaGaaOOramaaBaaajuaibaGaaO4uaiaakIeacaGIGaaajuaGbeaaca GImbWaaSbaaKqbGeaacaGItbGaaOisaaqcfayabaGaaOiiaiaakUca caGIGaGaaOyqamaaBaaajuaibaGaaOiCaiaakccaaKqbagqaaiaakA eadaWgaaqcfasaaiaakofacaGIwbaajuaGbeaacaGIGaGaaOitamaa BaaajuaibaGaaO4uaiaakAfaaKqbagqaaaWdaiaawIcacaGLPaaaaa a@4FEC@

Where
is the horizontal seismic force per unit area
L SH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGImbWcdaWgaaadbaGaaO4uaiaakIeaaeqaaaaa@395D@  is the distance of the horizontal force above the deepest point of the scour hole
FSV is the vertical seismic force per unit area and
LSV is the distance of the vertical force above the deepest point of the scour hole

The seismic force can be taken as the resultant of the horizontal and vertical seismic forces acting on the bridge pier. The inclusion of the wave and seismic forces in addition to the hydrodynamic force in inequality (1) yields

λ( A p )( F H L H +F W L W + F S L S )( γ s -γ)(Vol) D s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqbakab=T 7aSjaakIcacaGIbbWaaSbaaKqbGeaacaGIWbaajuaGbeaacaGIPaGa aGPaVlaakIcacaGIgbWaaSbaaKqbGeaacaGIibaajuaGbeaacaaMb8 UaaOitamaaBaqajuaibaGaaOisaaqcfayabaGaaGzaVlaakUcacaGI gbWaaSrabKqbGeaacaGIxbaajuaGbeaacaaMb8UaaOitamaaBaqaju aibaGaaO4vaaqcfayabaGaaGzaVlaakUcacaGIgbWaaSbabKqbGeaa caGItbaajuaGbeaacaaMb8UaaOitamaaBaqajuaibaGaaO4uaaqcfa yabaGaaOykaiaaykW7caaMc8Uae8hzImQaaGPaVlaaykW7caGIOaGa e83SdC2aaSbaaKqbGeaacaGIZbaajuaGbeaacaaMc8UaaOylaiaayk W7cqWFZoWzcaGIPaGaaGPaVlaakIcacaGIwbGaaO4BaiaakYgacaGI PaGaaGPaVlaakseadaWgaaqcfasaaiaakohaaKqbagqaaaaa@73E5@  (16)

Where the transfer coefficient λ is used as before. Following the same treatment as was done before the following equation results in for the minimum stable riprap size as:

d= 1.5λ( F H L H +F W L W + F SH L SH + F SV L SV ) ( γ s -γ)b C max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaksgaca aMc8UaaGPaVlaak2dacaaMc8UaaGPaVpaalaaabaGaaOymaiaak6ca caGI1aGaaGPaVlaaykW7iiaacqWF7oaBcaaMc8UaaGPaVlaakIcaca GIgbWaaSbaaKqbGeaacaGIibaajuaGbeaacaaMb8UaaOitamaaBaqa juaibaGaaOisaaqcfayabaGaaGzaVlaakUcacaGIgbWaaSrabKqbGe aacaGIxbaajuaGbeaacaaMb8UaaOitamaaBaqajuaibaGaaO4vaaqc fayabaGaaGzaVlaakUcacaGIgbWaaSbabKqbGeaacaGItbGaaOisaa qcfayabaGaaGzaVlaakYeadaWgaeqcfasaaiaakofacaGIibaajuaG beaacaaMc8UaaO4kaiaaykW7caGIgbWaaSbabKqbGeaacaGItbGaaO OvaaqcfayabaGaaGzaVlaakYeadaWgaeqcfasaaiaakofacaGIwbaa juaGbeaacaGIPaaabaGaaGPaVlaakIcacqWFZoWzdaWgaaqcfasaai aakohaaKqbagqaaiaaykW7caGITaGaaGPaVlab=n7aNjaakMcacaaM c8UaaOOyaiaaykW7caGIdbWaaSbaaKqbGeaacaGITbGaaOyyaiaakI haaKqbagqaaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdaa@8C8D@ (17)

Equation (17) indicates that the minimum stable riprap size increases in size in direct proportion to increase in the wave and seismic forces. Expressions for the wave and seismic forces and the distances of their point of application can be found in standard text books of coastal and geotechnical engineering.

Conclusion

A novel method is developed herein for riprap design of scour protection at bridge piers. The method is based on the fact that the minimum stable riprap size exists when the work done due to the attacking flow jet upstream of the bridge pier is no longer capable to lift the riprap particles out of the scour hole. The developed equation expresses the minimum particle size as a function of the longitudinal velocity just upstream of the pier, the flow depth, the bed particle specific gravity, and the pier width along with some coefficients. These coefficients reflect the transformation of the longitudinal velocity into vertical velocity upstream of the pier and the fraction of the exposed area of the riprap– particles to the flow. The equation can be made to give the minimum particle size of riprap protection corresponding to a desired flow, pier width and expected/ desired pier scour depth.

The proposed equation has the advantages that it is:

  1. Theoretically based which allows considering effects of wave and seismic forces on pier scour
  2. Dimensionless which allows using any system of units
  3. Giving the equilibrium minimum grain or riprap size for stable conditions while previous methods give the median size D50
  4. Capable of determining the bed material size for scour holes under armoring conditions;
  5. Illustrative of the connection between pier width and riprap size and
  6. Easy to apply and use as no trial and error procedures are required

Acknowledgement

The author would like to thank all past researchers who contributed to the subject of riprap design protection of pier scour.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

  1. Raudkivi AJ. Scour at bridge piers in Scouring. In: Breusers H, Raudkivi AJ, editors. International Association of Hydraulic Research, Balkema, Rotterdam, Netherlands; 1991.
  2. Hafez YI. Scour due to turbulent wall jets downstream of low–/high–head hydraulic structures. Cogent Engineering Journal. 2016b;3(1).
  3. Lauchlan CS, Melville BW. Riprap protection at bridge piers. J Hydraul Eng. 2001;27(5):412–418.
  4. Lagasse PF, Clopper PE, Zevenbergen LW, et al. Riprap design criteria, recommended specifications, and quality control. Washington, DC: Transportation Research Board of the National Academies (NCHRP Report 568), USA; 2006.
  5. Melville BW, Coleman SE. Bridge scour, Water Resources Publications, Highlands ranch, Colorado, USA; 2000. 572 p.
  6. Lauchlan CS. Pier scour countermeasures. PhD. Thesis, Civ. And Resour. Engrg, University of Auckland, New Zealand; 1999.
  7. Richardson EV, Davis SR. Evaluating scour at bridges. Hydraulic Engineering Circular (HEC), No. 18, FHWA–IP–90–017, Fairbank Turner Hwy. Res. Ctr., McLean, Va, USA; 1995.
  8. Karimaee Taberestani M, Zarrati AR. Design of stable riprap around aligned and skewed rectangular bridge piers. J Hydraul Eng. 2013;139(8):911–916.
  9. Chiew YM, Lim FH. Failure Behavior of Riprap Layer at Bridge Piers under Live–Bed Conditions. J Hydr Eng. 2000;126(1):43–55.
  10. Croad RN. Protection from scour of bridge piers using riprap, Transit New Zealand Research Report No. PR3–0071, Works Consultancy Services Ltd., Central Laboratories Lower Hutt, New Zealand; 1997. 53 p.
  11. Quazi ME, Peterson AW. A method for bridge pier rip–rap design. Proceedings of the First Canadian Hydraulics Conference. Edmonton, AB: University of Alberta, Canada, 1973. p. 96–106.
  12. Parola AC, Jones JS. Sizing riprap to protect bridge piers from scour. Transportation Research Record. 1989;(2):276–279.
  13. Parola AC. Stability of Riprap at Bridge Piers. J Hydr Eng ASCE. 1993;119(10):1080–1093.
  14. Chiew YM. Mechanics of riprap failure at bridge piers. J Hydraul Eng. 1995;121(9):635–643.
  15. Froehlich DC. Protecting bridge piers with loose rock riprap. Journal of Applied Water Engineering and Research. 2013;1(1):39–57.
  16. Karimaee Taberestani M, Zarrati AR. Design of riprap stone around bridge piers using empirical and neural network method. Civil Engineering Infrastructure Journal. 2015;48(1):175–188.
  17. Mashahir MB, Zarrati AR, Mokallaf E. Application of riprap and collar to prevent scouring around rectangular bridge piers. J Hydraul. Eng. 2010;136(3):183–187.
  18. Karimaee Taberestani M, Zarrati AR, Mashahir MB, et al. Extent of riprap layer with different stone sizes around rectangular bridge piers with ot without an attached collar. Sharif University Technology. Scientia Iranica. 2015;22(3):709–716.
  19. Nohani I, bejestan MS, Masjedi A, et al. Experimental study on the riprap stability in the vicinity of a bridge pier with a collar in a 180 degree river bends. Contemporary Engineering Sciences. 2012;5(8):381–390.
  20. Hafez YI. A New Analytical Bridge Pier Scour Equation. 8th International Water Technology Conference, Alexandria, Egypt; 2004.
  21. Hafez YI. Mathematical Modeling of Local Scour at Slender and Wide Bridge Piers. Journal of Fluids. 2016a. 19 p.
  22. Roberson JA, Crowe CT. Engineering Fluid Mechanics, 10th edition, Houghton Mifflin Company, Boston, MA 02108, USA. 1985. p. 688.
  23. Breusers HNC, Raudkivi AJ. Scouring. Rotterdam, AA Balkema, Netherlands; 1991. 143 p.
  24. Graf WH, Istiarto I. Flow pattern in the scour hole around a cylinder. J Hydraul Res. 2002;40(1):3–20.
  25. Isbash SV. Construction of dams by depositing rock in running water, transactions, Second Congress on Large Dams, Washington, DC. USA; 1936.
  26. Lagasse PF, Zevenbergen LW, Schall JD, et al. Bridge Scour and Stream Instability Countermeasures. Hydraulic Engineering Circular No. 23 (HEC–23), Second Edition, Report FHWA NHI–01–003, Federal Highway Administration, USA; 2001.
  27. Breusers HNC, Nicollet G, Shen HW. Local scour around cylindrical piers. J Hydraul Res. 1977;15(3):211–252.
  28. Austroads. Waterway design–A guide to the hydraulic design of bridges, culverts and floodways, Austroads, Sydney, Australia; 1994. l39 p.
  29. Farraday RV, Charlton FG. Hydraulic factors in bridge design. Hydraulics Research Station, Wallingford, England; 1983. 102 p.
  30. Melville BW. Coleman SE. Riprap protection at bridge piers. IABSE reports. 1999; 80 p.
  31. Parola AC. Boundary stress and stability of riprap at bridge piers in River, Coastal and Shoreline Protection: Erosion Control Using Riprap and Armourstone. In: Thorne CR, Steven R Abt, Stephen T Maynord, Krystian W Pilarczyk, Frans Barends BJ, editors. John Wiley & Sons Ltd; 1995.
Creative Commons Attribution License

©2018 Mohammed. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.