Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Technical Paper Volume 2 Issue 1

Local iRBF-DQ method for MHD duct flows at high hartmann numbers

Wang TC,1 Shen LH,1 Young DL,1 Che CS2

1Department of Civil Engineering & Hydrotech Research Institute, National Taiwan University, Taiwan
2Department of Mathematics, University of Southern Mississippi, USA

Correspondence: Young DL , Department of Civil Engineering, National Taiwan University

Received: August 12, 2017 | Published: February 26, 2018

Citation: Wanga TC, Shena LH, Younga DL, et al. Local iRBF-DQ method for MHD duct flows at high hartmann numbers. MOJ App Bio Biomech. (2018);2(1):00047. DOI: 10.15406/mojabb.2018.02.00047

Download PDF

Abstract

In this paper, a localized integrated radial basis function-based differential quadrature (iRBF-DQ) method to solve steady, magnetohydrodynamic (MHD) duct flows is presented. Local iRBF-DQ method is a truly meshless and efficient method, which discretizes any derivative at a knot by weighted linear sum of functional values at its nearby nodes. The integrated RBF based approaches are more stable than conventional meshless procedure ones. The high Hartmann numbers (high magnetic field) MHD problems apply to the design of cooling systems with liquid metals for a thermal nuclear fusion blanket. We present results for Hartmann number up to 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdalmaaCaaajuaGbeqaaKqzadGaaGynaaaaaaa@3AA1@ with fully insulating, partially insulating, and partially conducting walls, with the shapes of rectangular, circular or arbitrary cross sections. The results show that by using local iRBF-DQ method we can obtain accurate and stable approximations for the velocity and induced magnetic field at the range of Hartmann numbers of 10 2 M 10 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdadaahaaqabeaajugWaiaaikdaaaqcfaOaeyizImQaaeytaiab gsMiJkaaigdacaaIWaWcdaahaaqcfayabeaajugWaiaaiwdaaaGaaG Olaaaa@43A2@ aa

Keywords: meshless, iRBF collocation method, local iRBF-DQ method, MHD, Hartmann number

Abbreviations

MHD, magnetohydrodynamic; FDM, finite difference method; AFEM, analytical finite element method; RBFs, radial basis functions; PDEs, partial differential equations

Nomenclature

H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@39E8@ imposed magnetic field; α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde gaaa@3823@ the angle between H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@39E8@  and < v z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeODam aaBaaabaqcLbmacaqG6baajuaGbeaaaaa@3A57@ -axis; v z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeODam aaBaaabaqcLbmacaqG6baajuaGbeaaaaa@3A57@ , V z * z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOvaS Waa0baaKqbagaajugWaiaabQhaaKqbagaajugWaiaaiQcaaaGaaeOE aaaa@3DB0@ -component of fluid velocity and dimensional form u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDaa aa@377E@  dimensionless z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOEaa aa@3781@ -component of fluid velocity; B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaa aa@374B@ cdimensionless z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOEaa aa@3781@ -component of magnetic induction; a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyaa aa@376A@ half channel width; σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm haaa@3847@ conductivity; η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG gaaa@3830@ fluid dynamic viscosity; μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 gaaa@383A@ permeability; p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCaa aa@3779@ fluid density; p,p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aaiYcacqGHhis0caWGWbaaaa@3AAA@ fluid pressure and pressure gradient; k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aaa aa@3774@ coefficient of p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe TaamiCaaaa@38FF@ ; B Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaS WaaSbaaKqbagaajugWaiaadQfaaKqbagqaaaaa@3AA0@ , B z * z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaS Waa0baaKqbagaajugWaiaabQhaaKqbagaajugWaiaaiQcaaaGaaeOE aaaa@3D9E@ -component of induced magnetic field and dimensional form; H x , H y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaabaGaaeiEaaqabaGaaGilaiaadIeadaWgaaqaaiaadMhaaeqa aiaabIhaaaa@3C0A@ -component and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeyEaa aa@3780@ -component of imposed magnetic field; M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaa aa@3756@ Hartmann number, M=μ H 0 a σ /η M x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacqaH8oqBcaWGibWaaSbaaeaajugWaiaaicdaaKqbagqaaiaa dggadaGcaaqaaiabeo8aZbqabaGaaG4laiabeE7aOjaad2eadaWgaa qaaKqzadGaaeiEaaqcfayabaaaaa@45FF@ Hartmann number Multiplied sinα M y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4Cai aacMgacaGGUbGaeqySdeMaamytamaaBaaabaqcLbmacaqG5baajuaG beaaaaa@3EA4@  Hartmann number Multiplied cosαE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4yai aac+gacaGGZbGaeqySdeMaaeyraaaa@3BBC@  electric field; j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOAaa aa@3771@ current density vector; V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOvaa aa@375D@ fluid velocity vector; H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeisaa aa@374F@ imposed magnetic field; B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOqaa aa@3749@ magnetic induction

Introduction

Magnetohydrodynamics (MHD) is the study of the interaction between moving, conducting fluids and magnetic fields. In this paper, the discussion is restricted to incompressible, viscous and electrically conducting fluids through pipes and ducts under an imposed uniform, oblique magnetic field. The MHD issues have become increasingly important because of the practical engineering applications such as the design of cooling systems with liquid metals for a thermal nuclear fusion blanket. Blankets which rely only on the heat transverse ability of liquid metal are known as self-cooled liquid metal blankets. There are numbers of amount of data and papers concerning with the physical phenomena of liquid metal flows in the absence of a magnetic field. However, in a fusion reactor environment such as the first wall and the blankets, a strong magnetic field (high Hartmann numbers M<1000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaaiY dacaaIXaGaaGimaiaaicdacaaIWaaaaa@3A76@ Molokov S & Buhler L1,2 is necessary and confines the liquid-metal (electrically conducting) flows. The hydraulic and thermal behaviors of liquid metal flows in the existence of a magnetic field are quite diff erent fr om the behaviors of liquid metal flows without a magnetic field.3,4 Furthermore, the exact solutions of the MHD problems can only be obtained for some special cases.5,6 Therefore, it is important to explore a stable, accurate, and eff ective numerical method to obtain the approximate solutions of MHD problems.

Currently, researchers have investigated the two-dimensional MHD problem using several numerical methods. Singh & Lal7,8 solved MHD flows through pipes of triangular cross-section for small values of Hartmann number using finite difference method (FDM). Since it is hard to fit the arbitrary cross-section ofthe channel, the finite element method (FEM) for Hartmann number less than 10 was presented in.9-11 Tezer-Sezgin & Koksal12 used standard FEM with linear and quadratic elements for Hartmann numbers up to 100. Aft er that, Demendy and Nagy obtained the numerical solutions for Hartmann number M<1000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaaiY dacaaIXaGaaGimaiaaicdacaaIWaaaaa@3A76@ using analytical finite element method (AFEM).13 Furthermore, the boundary element method (BEM),14 and the fundamental solution method15 also have been used to obtain approximate solutions for MHD flow problems. To our best knowledge, the numerical results for MHD flow problems are mostly restricted to the moderate Hartmann numbers M<1000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaaiY dacaaIXaGaaGimaiaaicdacaaIWaaaaa@3A76@ .

However, Nesliturk & Tezer-Sezgin16 have obtained the results for Hartmann numbers up to 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdalmaaCaaajuaGbeqaaKqzadGaaGynaaaaaaa@3AA1@ is only for one case, a rectangular duct with partly conducting wall, which is computationally very expensive, due to the need of large memory and time consuming in building finer meshes. The difficulty for high Hartmann numbers is analogous to the advectiondiff usion equation. When advection process dominates diffusion, the physical values near the boundary would suddenly decrease to zero to satisfy boundary conditions and form very thin boundary layers. Radial basis functions (RBFs) have been originally developed for scattered data approximation, especially for higher dimensional problems. In recent years, RBFs have been further applied to solve numerical partial diff erential equations (PDEs). This new development is very useful due to the fact that this method is a truly mesh or grid free technique. Kansa17 initially published a series of papers in this area, and then Franke & Schaback18,19 were able to give a convergence proof and error bounds of numerical approach. In a comparative study, Franke20 surveyed an extensive number of techniques for interpolation/approximation. He concluded that overall the Multiquadrics (MQ) and Thin Plate Splines (TPS) are the most favorable techniques for scattered data approximation. Nevertheless, the accuracy of MQ depends on a shape parameter which is still an open research topic. Hence most applications of MQ used experimental tuning parameters or expensive optimization techniques to evaluate the optimum shape parameter.21 In this work, the integrated TPS is used as it combines good accuracy without the additional burden of computing a shape parameter.

Furthermore, integrated TPS is based on sound mathematical theory Duchon J22 whereas for MQ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaabg faaaa@379B@ , although it works well, its construction theory is yet to be established.23 Furthermore, the numerical schemes based on RBFs to solve PDEs proposed up to date have one more feature concerned, which are based on function approximation. That is to say, these methods directly substitute the expression of function approximation by RBFs to a PDE, and aft er that we replace the dependent variables into the coefficients of function approximation. The process is very complex, especially for nonlinear problems. Later, Wu & Shu24 proposed a new approach using the so called RBF-DQ method, which focuses on the derivative approximation through the diff erential quadrature (DQ) methodology. The basic idea of the DQ method is that the derivatives of unknown function can be approximated as the function values at a group of nodes. Unfortunately, full exploitation of the feature of RBFs-based methods causes the ill-conditioned coefficient matrix as the rank increases. The RBF collocation method and RBF-DQ method also suff ered this kind of problem. To circumvent this difficulty, Kansa25 suggested substituting the global solvers into block partitioning and LU decomposition schemes for huge simulation problems. Shu & Yeo26 further proposed the local RBF-DQ method using local supporting nodes. Recently, Tran-Cong and his collaborators,27-31 further proposed the indirect radial basis function networks (IRBFN). They found that the IRBFN are more stable than the conventional RBF method. In the IRBFN approach, the RBF approximation is applied to a specific derivative of the solution function, and thus the solution function can be derived by integrating the derivative with the RBF expression. Consequently, the expressions of IRBFN are derived from integration of conventional RBFs. Mai-Duy & Tran-Cong27,28 proved that this procedure can have better approximation for the targeted derivative. Later, based on the idea of IRBFN, Shu & Wu32 proposed the local iRBF-DQ method to improve its performance.

The present paper is an application of techniques mentioned above, namely the iRBF collocation method and the local iRBF-DQ method, to the MHD duct flows. And its aim is to establish an accurate numerical approximation to the solutions of benchmark problems of MHD duct flows for the range of Hartmann number 10 2 M 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdalmaaCaaajuaGbeqaaKqzadGaaGOmaaaajuaGcqGHKjYOcaqG nbGaeyizImQaaGymaiaaicdalmaaCaaajuaGbeqaaKqzadGaaGynaa aaaaa@4383@ . In general, the important range of Hartmann number in engineering practice is 10 2 M 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdalmaaCaaajuaGbeqaaKqzadGaaGOmaaaajuaGcqGHKjYOcaqG nbGaeyizImQaaGymaiaaicdalmaaCaaajuaGbeqaaKqzadGaaGynaa aaaaa@4383@ . Since these two meshless methods are based on RBFs, they diff er fr om traditionally mesh-dependent numerical methods such as FEM with the need of meshing.

Problem physics

MHD equations derivation
The discussed geometry of cross section of blankets is restricted to the directions of imposed magnetic field lines which are orthogonal to the direction of flow velocity. We now consider a steady, laminar, fully developed flow with incompressible, viscous and finite conducting fluid in a duct which is infinitely long in z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOEaaaa@36F4@ -direction. Hence, we can assume this is a two-dimensional duct flow along x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiEaaaa@36F2@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@  directions.6

There is an imposed uniform, magnetic field H 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIWaaabeaaaaa@37AA@  outside the field forming an angle α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3796@  with the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@ -axis. The fluid velocity u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhaaaa@36E5@  is parallel to z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOEaaaa@36F4@ -axis, the half channel width is a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DD@ , and the origin is located at the center ofthe channel (Figure 1).

The Maxwell’s equations in steady state can be expressed as follows:

×E=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe Taey41aqRaaeyraiaai2dacaaIWaaaaa@3C6A@ ,(1)

×H=j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe Taey41aqRaaeisaiaai2dacaqGQbaaaa@3CA0@ , (2)

B=μH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOqai aai2dacqaH8oqBcaqGibaaaa@3A91@ . (3)

For per unit charge, Ohm’s Law can be written as

j=σ(E+v×B)=σ(E+μv×H) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOAai aai2dacqaHdpWCcaaIOaGaaeyraiabgUcaRiaabAhacqGHxdaTcaqG cbGaaGykaiaai2dacqaHdpWCcaaIOaGaaeyraiabgUcaRiabeY7aTj aabAhacqGHxdaTcaqGibGaaGykaaaa@4C09@ . (4) from (1) and (2), we obtain

×j=××H=σμ×(v×H) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe Taey41aqRaaeOAaiaai2dacqGHhis0cqGHxdaTcqGHhis0cqGHxdaT caqGibGaaGypaiabeo8aZjabeY7aTjabgEGirlabgEna0kaaiIcaca qG2bGaey41aqRaaeisaiaaiMcaaaa@50F7@ . (5 )

Through vector analysis, (5) can be written as follows

(H) 2 H=μσ[(H)v(v)H+(H)v(v)H]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe TaaGikaiabgEGirlabgwSixlaabIeacaaIPaGaeyOeI0Iaey4bIe9a aWbaaeqabaqcLbmacaaIYaaaaKqbakaabIeacaaI9aGaeqiVd0Maeq 4WdmNaaG4waiaaiIcacaqGibGaeyyXICTaey4bIeTaaGykaiaabAha cqGHsislcaaIOaGaaeODaiabgwSixlabgEGirlaaiMcacaqGibGaey 4kaSIaaGikaiabgEGirlabgwSixlaabIeacaaIPaGaaeODaiabgkHi TiaaiIcacqGHhis0cqGHflY1caqG2bGaaGykaiaabIeacaaIDbGaaG Olaaaa@6946@  (6)

When we apply Biot-Savart Law and the incompressible fluid property, H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe TaeyyXICTaaeisaaaa@3B1F@ and v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe TaeyyXICTaaeODaaaa@3B4D@  both vanish, then (6) becomes: 2 H+μσ[(H)v(v)H]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaeqabaqcLbmacaaIYaaaaKqbakaabIeacqGHRaWkcqaH8oqB cqaHdpWCcaaIBbGaaGikaiaabIeacqGHflY1cqGHhis0caaIPaGaae ODaiabgkHiTiaaiIcacaqG2bGaeyyXICTaey4bIeTaaGykaiaabIea caaIDbGaaGypaiaaicdaaaa@51F6@ . (7)

Adding Lorentz force (see Appendix A for more details) to the Navier-Stokes equations in a steady state problem, we have the following form:

μj×Hp+η 2 v=ρ(v)v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 MaaeOAaiabgEna0kaabIeacqGHsislcqGHhis0caWGWbGaey4kaSIa eq4TdGMaey4bIe9aaWbaaeqabaqcLbmacaaIYaaaaKqbakaabAhaca aI9aGaeqyWdiNaaGikaiaabAhacqGHflY1cqGHhis0caaIPaGaaeOD aaaa@50C6@ . (8)

From (2) and using a vector identity, we have

j×H=(H)H 1 2 |H | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOAai abgEna0kaabIeacaaI9aGaaGikaiaabIeacqGHflY1cqGHhis0caaI PaGaaeisaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaey4bIe TaaGiFaiaabIeacaaI8bWaaWbaaeqabaqcLbmacaaIYaaaaaaa@4AC2@ (9)

Substituting (8) into ( 7) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naiaaiM caaaa@376B@  , we will obtain the modified Navier-Stokes equations as follows:

η 2 v+μ(H)H=ρ(v)v+(p+ μ 2 |H | 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG Maey4bIe9aaWbaaeqabaqcLbmacaaIYaaaaKqbakaabAhacqGHRaWk cqaH8oqBcaaIOaGaaeisaiabgwSixlabgEGirlaaiMcacaqGibGaaG ypaiabeg8aYjaaiIcacaqG2bGaeyyXICTaey4bIeTaaGykaiaabAha cqGHRaWkcqGHhis0caaIOaGaamiCaiabgUcaRmaalaaabaGaeqiVd0 gabaGaaGOmaaaacaaI8bGaaeisaiaaiYhadaahaaqabeaajugWaiaa ikdaaaqcfaOaaGykaaaa@5DF1@ . (10)

Notice that all physical values except pressure gradient are unchanged in the z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOEaaaa@36F4@ -direction. Thus the fluid velocity v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaaaa@36F0@ , the magnetic field H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeisaa aa@374F@ , and the pressure gradient p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe TaamiCaaaa@38FF@  can be expressed in the following form:

v=(0,0, v z ),H=( H x , H y , B Z μ ),p=kη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeODai aai2dacaaIOaGaaGimaiaaiYcacaaIWaGaaGilaiaaysW7caqG2bWa aSbaaeaajugWaiaabQhaaKqbagqaaiaaiMcacaaISaGaaeisaiaai2 dacaaIOaGaamisaSWaaSbaaKqbagaajugWaiaadIhaaKqbagqaaiaa iYcacaWGibWaaSbaaeaajugWaiaadMhaaKqbagqaaiaaiYcadaWcaa qaaiaadkeadaWgaaqaaiaadQfaaeqaaaqaaiabeY7aTbaacaaIPaGa aGilaiabgEGirNqzadGaamiCaKqbakaai2dacqGHsislcaWGRbGaeq 4TdGgaaa@5BB4@ , (11)

where v z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeODam aaBaaabaqcLbmacaqG6baajuaGbeaaaaa@3A57@  is the z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOEaaaa@36F4@ -component fluid velocity, B Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaS WaaSbaaKqbagaajugWaiaadQfaaKqbagqaaaaa@3AA0@ is the induced magnetic field, k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aaa aa@3774@ is a constant, and

{ H X = H 0 sinα, H y = H 0 cosα, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqaaeGabaaabaGaamisamaaBaaabaqcLbmacaWGybaajuaGbeaa caaI9aGaamisamaaBaaabaqcLbmacaaIWaaajuaGbeaacaGGZbGaai yAaiaac6gacqaHXoqycaaISaaabaGaamisaSWaaSbaaKqbagaajugW aiaadMhaaKqbagqaaiaai2dacaWGibWaaSbaaeaajugWaiaaicdaaK qbagqaaiaacogacaGGVbGaai4Caiabeg7aHjaaiYcaaaaacaGL7baa aaa@5219@ (12)

are all constants. The z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOEaaaa@36F4@ -component of equations (7) and (10) becomes

1 μ 2 B z, +μσ H X v z x +μσ H y v z y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaaIXaaabaGaeqiVd0gaaiabgEGirpaaCaaabeqaaKqzadGaaGOm aaaajuaGcaWGcbWaaSbaaeaajugWaiaabQhajuaGcaaISaGaeyOKH4 kabeaacqGHRaWkcqaH8oqBcqaHdpWCcaWGibWaaSbaaeaacaWGybaa beaadaWcaaqaaiabgkGi2kaabAhadaWgaaqaaKqzadGaaeOEaaqcfa yabaaabaGaeyOaIyBcLbmacaWG4baaaKqbakabgUcaRiabeY7aTjab eo8aZjaadIeadaWgaaqaaKqzadGaamyEaaqcfayabaWaaSaaaeaacq GHciITcaqG2bWaaSbaaeaajugWaiaabQhaaKqbagqaaaqaaiabgkGi 2MqzadGaamyEaaaajuaGcaaI9aGaaGimaaaa@65E4@ (13)

η 2 v z + H X B x +μ H y B y +kη=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG Maey4bIe9aaWbaaeqabaqcLbmacaaIYaaaaKqbakaabAhadaWgaaqa aKqzadGaaeOEaaqcfayabaGaey4kaSIaamisamaaBaaabaGaamiwaa qabaWaaSaaaeaacqGHciITcaWGcbWaaSbaaeaacqGHsislaeqaaiab gkHiTaqaaiabgkGi2MqzadGaamiEaaaajuaGcqGHRaWkcqaH8oqBca WGibWaaSbaaeaajugWaiaadMhaaKqbagqaamaalaaabaGaeyOaIyRa amOqamaaBaaabaGaeyOeI0cabeaacqGHsislaeaacqGHciITjugWai aadMhaaaqcfaOaey4kaSIaam4AaKqzadGaeq4TdGwcfaOaaGypaiaa icdacaaIUaaaaa@6132@ (14)

It follows that we can substitute some non-dimensional variables [33]

v z = H 0 ση v z * , B z _ =μ H 0 B z _ * ,(x,y)=L( x * , y * ),k= H 0 L 2 ση k * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeODam aaBaaabaqcLbmacaqG6baajuaGbeaacaaI9aWaaSaaaeaacaWGibWa aSbaaeaajugWaiaaicdaaKqbagqaaaqaamaakaaabaGaeq4WdmNaeq 4TdGgabeaaaaGaaeODamaaDaaabaqcLbmacaqG6baajuaGbaqcLbma caaIQaaaaKqbakaaiYcacaWGcbWcdaWgaaqcfayaaSWaaWaaaKqbag aajugWaiaabQhaaaaajuaGbeaacaaI9aGaeqiVd0MaamisamaaBaaa baGaaGimaaqabaGaamOqamaaDaaabaWcdaadaaqcfayaaKqzadGaae OEaaaaaKqbagaajugWaiaaiQcaaaqcfaOaaGilaiaaiIcacaWG4bGa aGilaiaadMhacaaIPaGaaGypaiaadYeacaaIOaGaamiEaSWaaWbaaK qbagqabaqcLbmacaaIQaaaaKqbakaaiYcacaWG5bWcdaahaaqcfaya beaajugWaiaaiQcaaaqcfaOaaGykaiaaiYcacaWGRbGaaGypamaala aabaGaamisamaaBaaabaqcLbmacaaIWaaajuaGbeaaaeaacaWGmbWc daahaaqcfayabeaajugWaiaaikdaaaqcfa4aaOaaaeaacqaHdpWCcq aH3oaAaeqaaaaacaWGRbWaaWbaaeqabaqcLbmacaaIQaaaaaaa@79F6@ (15)

into equations (13) and (14). Then we have the following non-dimensional form:

2 B * +μ H 0 a σ η sinθ v z * x +μ H 0 a σ η cosθ V z * y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaeqabaqcLbmacaaIYaaaaKqbakaadkeadaqhaaqaaiabgkHi TaqaaKqzadGaaGOkaaaajuaGcqGHsislcqGHRaWkcqaH8oqBcaWGib WcdaWgaaqcfayaaKqzadGaaGimaaqcfayabaGaamyyamaakaaabaWa aSaaaeaacqaHdpWCaeaacqaH3oaAaaaabeaacaGGZbGaaiyAaiaac6 gacqaH4oqCdaWcaaqaaiabgkGi2kaabAhalmaaDaaajuaGbaqcLbma caqG6baajuaGbaqcLbmacaaIQaaaaaqcfayaaiabgkGi2MqzadGaam iEaaaajuaGcqGHRaWkcqaH8oqBcaWGibWaaSbaaeaajugWaiaaicda aKqbagqaaiaadggadaGcaaqaamaalaaabaGaeq4WdmhabaGaeq4TdG gaaaqabaGaai4yaiaac+gacaGGZbGaeqiUde3aaSaaaeaacqGHciIT daWgaaqaaiaabAfalmaaDaaajuaGbaqcLbmacaqG6baajuaGbaqcLb macaaIQaaaaaqcfayabaaabaGaeyOaIyRaamyEaaaacaaI9aGaaGim aaaa@7710@ (16)

2 v z * +μ H 0 a σ η sinα B * x +μ H 0 a σ η cosα B * y + k * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9cdaahaaqcfayabeaajugWaiaaikdaaaqcfaOaaeODaSWaa0baaKqb agaajugWaiaabQhaaKqbagaajugWaiaaiQcaaaqcfaOaey4kaSIaeq iVd0MaamisaSWaaSbaaKqbagaajugWaiaaicdaaKqbagqaaiaadgga daGcaaqaamaalaaabaGaeq4WdmhabaGaeq4TdGgaaaqabaGaai4Cai aacMgacaGGUbGaeqySde2aaSaaaeaacqGHciITcaWGcbWcdaqhaaqc fayaaKqzadGaeyOeI0IaeyOeI0cajuaGbaqcLbmacaaIQaaaaaqcfa yaaiabgkGi2MqzadGaamiEaaaajuaGcqGHRaWkcqaH8oqBcaWGibWa aSbaaeaajugWaiaaicdaaKqbagqaaiaadggadaGcaaqaamaalaaaba Gaeq4WdmhabaGaeq4TdGgaaaqabaGaai4yaiaac+gacaGGZbGaeqyS de2aaSaaaeaacqGHciITcaWGcbWcdaqhaaqcfayaaKqzadGaeyOeI0 IaeyOeI0cajuaGbaqcLbmacaaIQaaaaaqcfayaaiabgkGi2MqzadGa amyEaaaajuaGcqGHRaWkcaWGRbWaaWbaaeqabaqcLbmacaaIQaaaaK qbakaai2dacaaIWaaaaa@809A@ (17)

It is noted that there is a convenient independent dimensionless number, which is called Hartmann number, M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaa aa@3756@ ; and is defined by as follows:

M=μ H 0 a σ /η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacqaH8oqBcaWGibWcdaWgaaqcfayaaKqzadGaaGimaaqcfaya baGaamyyamaakaaabaGaeq4WdmhabeaacaaIVaGaeq4TdGgaaa@42EE@ ,      (18)

{ M X =Msinα, M y =Mcosα, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqaaeGabaaabaGaamytamaaBaaabaqcLbmacaWGybaajuaGbeaa caaI9aGaamytaiaacohacaGGPbGaaiOBaiabeg7aHjaaiYcaaeaaca WGnbWcdaWgaaqcfayaaKqzadGaamyEaaqcfayabaGaaGypaiaad2ea caGGJbGaai4BaiaacohacqaHXoqycaaISaaaaaGaay5Eaaaaaa@4CFF@ (19)

Equations (16) and (17) can be further simplified to the following forms:

2 B Z * + M x v z * x + M y v z * y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaeqabaqcLbmacaaIYaaaaKqbakaadkealmaaDaaajuaGbaqc LbmacaWGAbaajuaGbaqcLbmacaaIQaaaaKqbakabgUcaRiaad2eada WgaaqaaKqzadGaamiEaaqcfayabaWaaSaaaeaacqGHciITcaqG2bWc daqhaaqcfayaaKqzadGaaeOEaaqcfayaaKqzadGaaGOkaaaaaKqbag aacqGHciITjugWaiaadIhaaaqcfaOaey4kaSIaamytamaaBaaabaGa amyEaaqabaWaaSaaaeaacqGHciITcaqG2bWcdaqhaaqcfayaaKqzad GaaeOEaaqcfayaaKqzadGaaGOkaaaaaKqbagaacqGHciITjugWaiaa dMhaaaqcfaOaaGypaiaaicdaaaa@62F8@ , (20)

V z * 2 + M x B Z * x + M y B Z * y + k * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aa0baaeaajugWaiaabAfalmaaDaaajuaGbaqcLbmacaqG6baajuaG baqcLbmacaaIQaaaaaqcfayaaiaaikdaaaGaey4kaSIaamytamaaBa aabaGaamiEaaqabaWaaSaaaeaacqGHciITcaWGcbWcdaqhaaqcfaya aKqzadGaamOwaaqcfayaaKqzadGaaGOkaaaaaKqbagaacqGHciITju gWaiaadIhaaaqcfaOaey4kaSIaamytamaaBaaabaGaamyEaaqabaWa aSaaaeaacqGHciITcaWGcbWcdaqhaaqcfayaaKqzadGaamOwaaqcfa yaaKqzadGaaGOkaaaaaKqbagaacqGHciITjugWaiaadMhaaaqcfaOa ey4kaSIaam4AaSWaaWbaaKqbagqabaqcLbmacaaIQaaaaKqbakaai2 dacaaIWaaaaa@653B@ (21)

where k * =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aam aaCaaabeqaaiaaiQcaaaGaaGypaiaaigdaaaa@39CC@  is assumed.

To facilitate easy reading, we omit the symbol   and make   and   replace  and B z * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaS Waa0baaKqbagaajugWaiaabQhaaKqbagaajugWaiaaiQcaaaaaaa@3CA1@ respectively in the following sections.

Boundary conditions

We consider the following simplified dimensionless coupled diff erential equations

Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC LaaGilaaaa@38C8@ , in Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC LaaGilaaaa@38C8@ (22)

Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC LaaGilaaaa@38C8@ , in Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC LaaGilaaaa@38C8@ ,   (23)

where Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC LaaGilaaaa@38C8@ is the fluid region with the boundary Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOaIy RaeuyQdCfaaa@3978@  ; y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@ is the angle between imposed magnetic field and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@ -axis (Figure 2). The general boundary conditions which are suitable in practice for the MHD problems can be expressed as:

{ u=0, onΩ, B=0, on Γ 1 , B n =0, on Γ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqaaeWacaaabaGaamyDaiaai2dacaaIWaGaaGilaaqaaiaab+ga caqGUbGaaGjbVlabgkGi2kabfM6axjaaiYcaaeaacaWGcbGaaGypai aaicdacaaISaaabaGaae4Baiaab6gacaaMe8Uaeu4KdC0cdaWgaaqc fayaaKqzadGaaGymaaqcfayabaGaaGilaaqaamaalaaabaGaeyOaIy RaamOqaaqaaiabgkGi2kaad6gaaaGaaGypaiaaicdacaaISaaabaGa ae4Baiaab6gacaaMe8Uaeu4KdC0aaSbaaeaajugWaiaaikdaaKqbag qaaiaaiYcaaaaacaGL7baaaaa@5CAC@

where Ω= Γ 1 Γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOaIy RaeuyQdCLaaGypaiabfo5ahTWaaSbaaKqbagaajugWaiaaigdaaKqb agqaaiabgQIiilabfo5ahnaaBaaabaqcLbmacaaIYaaajuaGbeaaaa a@4479@ with Γ 1 Γ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC 0cdaWgaaqcfayaaKqzadGaaGymaaqcfayabaGaeyykICSaeu4KdC0a aSbaaeaajugWaiaaikdaaKqbagqaaiaai2dacaaIWaaaaa@423D@ . Let Γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC 0aaSbaaeaajugWaiaaigdaaKqbagqaaaaa@3A84@  be the insulated part and Γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC 0cdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaaaaa@3B1E@  be the conducting part of the boundary Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOaIy RaeuyQdCfaaa@3978@ .

Figure 1Duct problem setting.

Figure 2A 2D duct flow.

Numerical method

Decoupled governing equations

The MHD equations are coupled convection-diff usion equations. In general, solving coupled equations will consume more computational time and memory space than solving decoupled equations. Considering a rectangular duct with insulating walls, we can decouple the MHD equations.

First let us assume

U 1 =u+B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIXaaajuaGbeaacaaI9aGaamyDaiabgUcaRiaa dkeaaaa@3D60@ ; U 2 =uB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIYaaajuaGbeaacaaI9aGaamyDaiabgkHiTiaa dkeaaaa@3D6C@ ,    (24)

where u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36F1@  is the velocity of the flow and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@  is the induced magnetic field. We can obtain decoupled equations by substituting the two variables (24) into MHD equations to get:

2 U 1 + M x U 1 x + M y U 1 y =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9cdaahaaqcfayabeaajugWaiaaikdaaaqcfaOaamyvaSWaaSbaaKqb agaajugWaiaaigdaaKqbagqaaiabgUcaRiaad2eadaWgaaqaaiaadI haaeqaamaalaaabaGaeyOaIyRaamyvamaaBaaabaqcLbmacaaIXaaa juaGbeaaaeaacqGHciITcaWG4baaaiabgUcaRiaad2eadaWgaaqaai aadMhaaeqaamaalaaabaGaeyOaIyRaamyvaSWaaSbaaKqbagaajugW aiaaigdaaKqbagqaaaqaaiabgkGi2kaadMhaaaGaaGypaiabgkHiTi aaigdaaaa@568C@ , in Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC LaaGilaaaa@38C8@ ,   (25)

< 2 U 2 M x U 2 x M y U 2 y =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9cdaahaaqcfayabeaajugWaiaaikdaaaqcfaOaamyvaSWaaSbaaKqb agaajugWaiaaikdaaKqbagqaaiabgkHiTiaad2eadaWgaaqaaiaadI haaeqaamaalaaabaGaeyOaIyRaamyvamaaBaaabaqcLbmacaaIYaaa juaGbeaaaeaacqGHciITcaWG4baaaiabgkHiTiaad2eadaWgaaqaai aadMhaaeqaamaalaaabaGaeyOaIyRaamyvamaaBaaabaqcLbmacaaI YaaajuaGbeaaaeaacqGHciITcaWG5baaaiaai2dacqGHsislcaaIXa aaaa@560C@ , in Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC LaaGilaaaa@38C8@ (26)

U 1 = U 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiaai2dacaWGvbWcdaWg aaqcfayaaKqzadGaaGOmaaqcfayabaGaaGypaiaaicdaaaa@40E3@ on Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC eaaa@37EC@ >.           (27)

This decoupled method is feasible only when the walls of the channel are insulated, which allows the two variables U 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaa@3A8F@  and U 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIYaaajuaGbeaaaaa@39F7@  which are assumed to be zeroes on Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC eaaa@37EC@ . In another case for partly insulating and partly conducting walls, we cannot do the decoupled process if the induced magnetic field is zero or no zero on Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC eaaa@37EC@ of the conducting part, so that the decoupled method is not possible. As a result, we have to solve the original coupled MHD equations (22) and (23) directly.

Radial basis functions
A m-th order integrated TPS is defined as

φ( r j )= 2 Φ( r j )= r j 2m log( r j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdO MaaGikaiaadkhadaWgaaqaaKqzadGaamOAaaqcfayabaGaaGykaiaa i2dacqGHhis0lmaaCaaajuaGbeqaaKqzadGaaGOmaaaajuaGcqqHMo GrcaaIOaGaamOCamaaBaaabaGaamOAaaqabaGaaGykaiaai2dacaWG YbWcdaqhaaqcfayaaKqzadGaamOAaaqcfayaaKqzadGaaGOmaiaad2 gaaaqcfaOaaiiBaiaac+gacaGGNbGaaGikaiaadkhadaWgaaqaaKqz adGaamOAaaqcfayabaGaaGykaaaa@5853@ ,      (28)

where r j = P x x j P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaabaqcLbmacaWGQbaajuaGbeaacaaI9aGaamiuaiaabIhacqGH sislcaqG4bWcdaWgaaqcfayaaKqzadGaamOAaaqcfayabaGaamiuaa aa@4300@ is the Euclidean norm. Since ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ given by (28) is C 2 m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qaS WaaWbaaKqbagqabaqcLbmacaaIYaGaamyBaiabgkHiTiaaigdaaaaa aa@3C8B@ , a higher-order integrated Thin Plate Splines must be used.

Local i BF DQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyAam aakaaabaGaamOqaiaadAeaaeqaaiabgkHiTiaadseacaWGrbaaaa@3BA0@   method

The basic idea of iRBF-DQ method was originated fr om the traditional DQ method. The basic approach of DQ method implies that the partial derivative of a continuous function at a reference node can be approximated by a weighted linear sum of function values at all discrete points within its support. Thus, DQ approximation of m-th order derivate with respect to x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  -direction at a reference node x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiEamaaBa aaleaacaWGPbaabeaaaaa@380C@ can be expressed as

p f x p x= x j = j=1 (wx) ij (p) f( x j )N,j=1,2,,N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITdaahaaqabeaacaWGWbaaaKqzadGaamOzaaqcfayaaiab gkGi2kaadIhadaahaaqabeaajugWaiaadchaaaaaaKqbakaabIhaca aI9aGaaeiEaSWaaSbaaKqbagaajugWaiaadQgaaKqbagqaaiaai2da daaeqaqabeaajugWaiaadQgacaaI9aGaaGymaaqcfayabiabggHiLd GaaGikaiaadEhacaWG4bGaaGykaSWaa0baaKqbagaajugWaiaadMga caWGQbaajuaGbaqcLbmacaaIOaGaamiCaiaaiMcaaaqcfaOaamOzai aaiIcacaqG4bWaaSbaaeaajugWaiaadQgaaKqbagqaaiaaiMcacaWG obGaaGilaiaadQgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablA ciljaaiYcacaWGobaaaa@687C@ ,     (29)

where < x j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiEamaaBa aaleaacaWGQbaabeaaaaa@380D@  are the discrete nodes in the domain, f( x j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzai aaiIcacaqG4bWaaSbaaeaajugWaiaadQgaaKqbagqaaiaaiMcaaaa@3C9B@ and the (wx) ij (p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadEhacaWG4bGaaGykaSWaa0baaKqbagaajugWaiaadMgacaWGQbaa juaGbaqcLbmacaaIOaGaamiCaiaaiMcaaaaaaa@41BE@  are the values of function at supporting nodes and the related weighting coefficients respectively. In the local iRBF-DQ method, the number of each reference node corresponding to its supporting node can be diff erent and fixed. This means that, at any reference node, there is a supporting region, in which there are N l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtaS WaaSbaaKqbagaajugWaiaadYgaaKqbagqaaaaa@3ABE@  supporting nodes which can be arbitrarily distributed. Then, the local iRBF-DQ approximation of m-th order derivative with respect to x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@ -direction at a reference node x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEaS WaaSbaaKqbagaajugWaiaadQgaaKqbagqaaaaa@3AE4@  can be written as

p f x p | x= x j = k=1 N l (wx) jk (p) f( r jk ),j=1,2,, N l ,k=1,2,, N l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqGaae aadaWcaaqaaiabgkGi2oaaCaaabeqaaiaadchaaaqcLbmacaWGMbaa juaGbaGaeyOaIyRaamiEamaaCaaabeqaaKqzadGaamiCaaaaaaaaju aGcaGLiWoadaWgaaqaaKqzadGaaeiEaiaai2dacaqG4bWcdaWgaaqc fayaaKqzadGaamOAaaqcfayabaaabeaacaaI9aWaaCbmaeaacqGHri s5aeaajugWaiaadUgacaaI9aGaaGymaaqcfayaaKqzadGaamOtaSWa aSbaaKqbagaajugWaiaadYgaaKqbagqaaaaacaaIOaGaam4DaiaadI hacaaIPaWcdaqhaaqcfayaaKqzadGaamOAaiaadUgaaKqbagaajugW aiaaiIcacaWGWbGaaGykaaaajuaGcaWGMbGaaGikaiaadkhadaWgaa qaaKqzadGaamOAaiaadUgaaKqbagqaaiaaiMcacaaISaGaamOAaiaa i2dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaiaad6eada WgaaqaaKqzadGaamiBaaqcfayabaGaaGilaiaadUgacaaI9aGaaGym aiaaiYcacaaIYaGaaGilaiablAciljaaiYcacaWGobWaaSbaaeaaju gWaiaadYgaaKqbagqaaaaa@7EA1@     (30)

where r jk = x j x j k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaabaqcLbmacaWGQbGaam4AaaqcfayabaGaaGypamaafmaabaGa aeiEamaaBaaabaGaamOAaaqabaGaeyOeI0IaaeiEamaaDaaabaGaam OAaaqaaiaadUgaaaaacaGLjWUaayPcSdaaaa@4519@  is the Euclidean norm, x j k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEaS Waa0baaKqbagaajugWaiaadQgaaKqbagaajugWaiaadUgaaaaaaa@3D03@ are the corresponding supportin nodes near the reference node  x j , x j 1 = x j , N l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEam aaBaaabaqcLbmacaWGQbaajuaGbeaacaqGSaGaaGPaVlaabIhalmaa DaaajuaGbaqcLbmacaWGQbaajuaGbaqcLbmacaaIXaaaaKqbakaai2 dacaqG4bWaaSbaaeaajugWaiaadQgaaKqbagqaaiaacYcacaaMc8Ua amOtamaaBaaabaqcLbmacaWGSbaajuaGbeaaaaa@4DC7@ is the number of supporting nodes in the region, f( r jk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzai aaiIcacaWGYbWcdaWgaaqcfayaaKqzadGaamOAaiaadUgaaKqbagqa aiaaiMcaaaa@3E20@ and the (wx) jk (p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadEhacaWG4bGaaGykaSWaa0baaKqbagaajugWaiaadQgacaWGRbaa juaGbaqcLbmacaaIOaGaamiCaiaaiMcaaaaaaa@41C0@  denote the function values at supporting nodes and the related weighting coefficients respectively.

For the local iRBF-DQ method, m=l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai aai2dacaWGSbaaaa@392E@ is chosen (i.e. integrated first-order TPS) as the basis functions. Integrated TPS can be obtained as follows

Φ( r k )= ( r k ) 4 (2log r k 1) 32 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy KaaGikaiaadkhadaWgaaqaaKqzadGaam4AaaqcfayabaGaaGykaiaa i2dadaWcaaqaaiaaiIcacaWGYbWaaSbaaeaajugWaiaadUgaaKqbag qaaiaaiMcadaahaaqabeaajugWaiaaisdaaaqcfaOaaGikaiaaikda caGGSbGaai4BaiaacEgacaWGYbWaaSbaaeaajugWaiaadUgaaKqbag qaaiabgkHiTiaaigdacaaIPaaabaGaaG4maiaaikdaaaaaaa@5197@ (31)

where r k = x x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaabaqcLbmacaWGRbaajuaGbeaacaaI9aWaauWaaeaacaqG4bGa eyOeI0IaaeiEamaaBaaabaGaam4AaaqabaaacaGLjWUaayPcSdaaaa@422A@ r k = x x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaabaqcLbmacaWGRbaajuaGbeaacaaI9aWaauWaaeaacaqG4bGa eyOeI0IaaeiEamaaBaaabaGaam4AaaqabaaacaGLjWUaayPcSdaaaa@422A@ . By combining (30) and (31), we can obtain the values of corresponding coefficients for first-order derivative fr om the following system of equations:

Φ k x ( x j )= k=1 N l (wx) jk (1) Φ jk ( r jk ),j=1,2,, N T ,k=1,2,, N T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcqqHMoGrdaWgaaqaaKqzadGaam4AaaqcfayabaaabaGa eyOaIyRaamiEaaaacaaIOaGaaeiEamaaBaaabaqcLbmacaWGQbaaju aGbeaacaaIPaGaaGypamaaqadabeqaaKqzadGaam4Aaiaai2dacaaI XaaajuaGbaqcLbmacaWGobWcdaWgaaqcfayaaKqzadGaamiBaaqcfa yabaaacqGHris5aiaaiIcacaWG3bGaamiEaiaaiMcalmaaDaaajuaG baqcLbmacaWGQbGaam4AaaqcfayaaKqzadGaaGikaiaaigdacaaIPa aaaKqbakabfA6agnaaBaaabaqcLbmacaWGQbGaam4AaaqcfayabaGa aGikaiaadkhadaWgaaqaaKqzadGaamOAaiaadUgaaKqbagqaaiaaiM cacaaISaGaamOAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaeSOj GSKaaGilaiaad6eadaWgaaqaaKqzadGaamivaaqcfayabaGaaGilai aadUgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablAciljaaiYca caWGobWaaSbaaeaajugWaiaadsfaaKqbagqaaaaa@7C57@       (32)

For the given x j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiEamaaBa aaleaacaWGQbaabeaaaaa@380D@ , We can define Φ k ( x j )= Φ k , Φ jk = Φ jk ( r jk ),(wx ) k (1) =(wx ) jk (1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy 0aaSbaaeaajugWaiaadUgaaKqbagqaaiaaiIcacaqG4bWaaSbaaeaa jugWaiaadQgaaKqbagqaaiaaiMcacaaI9aGaeuOPdy0aaSbaaeaaju gWaiaadUgaaKqbagqaaiaaiYcacqqHMoGrdaWgaaqaaKqzadGaamOA aiaadUgaaKqbagqaaiaai2dacqqHMoGrdaWgaaqaaKqzadGaamOAai aadUgaaKqbagqaaiaaiIcacaWGYbWaaSbaaeaacaWGQbGaam4Aaaqa baGaaGykaiaaiYcacaaIOaGaam4DaiaadIhacaaIPaWcdaqhaaqcfa yaaKqzadGaam4AaaqcfayaaKqzadGaaGikaiaaigdacaaIPaaaaKqb akaai2dacaaIOaGaam4DaiaadIhacaaIPaWcdaqhaaqcfayaaKqzad GaamOAaiaadUgaaKqbagaajugWaiaaiIcacaaIXaGaaGykaaaaaaa@6C6A@  and express Eq. (32) as the numerical scheme form:

[ Φ 1 x Φ 2 x Φ N l x ]=[ Φ 11 Φ 12 Φ 1 N l Φ 21 Φ 22 Φ 2 N l Φ N l 1 Φ N l 2 Φ N l N l ]{ (wx) l (l) (wx) 2 (l) (wx) N 1 (l) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaq aabeqaamaalaaabaGaeyOaIyRaeuOPdy0cdaWgaaqcfayaaKqzadGa aGymaaqcfayabaaabaGaeyOaIyRaamiEaaaaaeaadaWcaaqaaiabgk Gi2kabfA6agnaaBaaabaqcLbmacaaIYaaajuaGbeaaaqaabeqaaiab gkGi2kaadIhaaeaadaWcaaqaaiabgkGi2kabfA6agnaaBaaabaqcLb macaWGobWcdaWgaaqcfayaaKqzadGaamiBaaqcfayabaaabeaaaeaa cqGHciITcaWG4baaaaaaaaaacaGLBbGaayzxaaGaeyypa0ZaamWaaq aabeqaaiabfA6agTWaaSbaaKqbagaajugWaiaaigdacaaIXaaajuaG beaajugWaiaaykW7juaGcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaeuOPdy0aaSbaaeaajugWaiaaigdacaaIYaqcfaOa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7aeqaaiaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaeuOPdy0cdaWgaaqcfayaaKqzadGaaGymaiaad6ealmaaBaaaju aGbaqcLbmacaWGSbaajuaGbeaaaeqaaaqaaiabfA6agTWaaSbaaKqb agaajugWaiaaikdacaaIXaaajuaGbeaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeuOPdy0aaSbaaeaajugWaiaaikda caaIYaqcfaOaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl+Uimjaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8oabeaacaaMc8UaeuOPdy0cdaWgaaqcfayaaKqzadGaaGOmaiaad6 ealmaaBaaajuaGbaqcLbmacaWGSbaajuaGbeaaaeqaaiaaykW7aeaa cqWIUlstcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstcaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7cqWIXlYtcaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlabl6UinbqaaiabfA6agnaaBaaaba qcLbmacaWGobWcdaWgaaqcfayaaKqzadGaamiBaaqcfayabaqcLbma caaIXaqcfaOaaGPaVlaaykW7caaMc8oabeaacaaMc8UaeuOPdy0aaS baaeaajugWaiaad6ealmaaBaaajuaGbaqcLbmacaWGSbaajuaGbeaa jugWaiaaikdajuaGcaaMc8oabeaacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 cqWIVlctcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaeuOPdy0aaSbaaeaajugWaiaad6ealmaaBaaajuaGbaqcLb macaWGSbaajuaGbeaajugWaiaad6ealmaaBaaajuaGbaqcLbmacaWG SbaajuaGbeaaaeqaaiaaykW7aeaacaaMc8UaaGPaVdaacaGLBbGaay zxaaWaaiWaaeaafaqaaeabbaaaaeaacaaIOaGaam4DaiaadIhacaaI PaWcdaqhaaqcfayaaKqzadGaaeiBaaqcfayaaKqzadGaaGikaiaabY gacaaIPaaaaaqcfayaaiaaiIcacaWG3bGaamiEaiaaiMcalmaaDaaa juaGbaqcLbmacaaIYaaajuaGbaqcLbmacaaIOaGaaeiBaiaaiMcaaa aajuaGbaGaeSO7I0eabaGaaGikaiaadEhacaWG4bGaaGykaSWaa0ba aKqbagaajugWaiaad6ealmaaBaaajuaGbaqcLbmacaaIXaaajuaGbe aaaeaajugWaiaaiIcacaqGSbGaaGykaaaaaaaajuaGcaGL7bGaayzF aaaaaa@E5BE@ (33)

Substituting (32) into ( 25), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiw dacaaIPaGaaGilaaaa@38DB@ (26) and (27), we have

{ i=1 N α ik U 1 U 1 ( j ) =1,i=1,2,,N,j=1,2,, N T ,k=1,2,, N T inΩ, i=1 N β ik U 2 U 2 ( j ) =1,i=1,2,,N,j=1,2,, N T ,k=1,2,, N T inΩ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqaaeGacaaabaWaaabCaeqabaqcLbmacaWGPbGaaGypaiaaigda aKqbagaajugWaiaad6eaaKqbakabggHiLdGaeqySde2aa0baaeaaju gWaiaadMgacaWGRbaajuaGbaqcLbmacaWGvbWcdaWgaaqcfayaaKqz adGaaGymaaqcfayabaaaaiaadwfalmaaBaaajuaGbaqcLbmacaaIXa aajuaGbeaalmaaBaaameaadaqadaqaaiaadQgaaiaawIcacaGLPaaa aeqaaKqbakaai2dacqGHsislcaaIXaGaaGilaiaaysW7caWGPbGaaG ypaiaaigdacaaISaGaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaa d6eacaaISaGaamOAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaaG jbVlablAciljaaiYcacaWGobWaaSbaaeaajugWaiaadsfaaKqbagqa aiaaiYcacaaMe8Uaam4Aaiaai2dacaaIXaGaaGilaiaaikdacaaISa GaaGjbVlablAciljaaiYcacaWGobWaaSbaaeaajugWaiaadsfaaKqb agqaaaqaaiaabMgacaqGUbGaaGjbVlabfM6axjaaiYcaaeaadaaeWb qabeaajugWaiaadMgacaaI9aGaaGymaaqcfayaaKqzadGaamOtaaqc faOaeyyeIuoacqaHYoGylmaaDaaajuaGbaqcLbmacaWGPbGaam4Aaa qcfayaaKqzadGaamyvaSWaaSbaaKqbagaajugWaiaaikdaaKqbagqa aaaacaWGvbWaaSbaaeaajugWaiaaikdalmaaBaaameaadaqadaqaai aadQgaaiaawIcacaGLPaaaaeqaaaqcfayabaGaaGypaiabgkHiTiaa igdacaaISaGaaGjbVlaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaG ilaiaaysW7cqWIMaYscaaISaGaamOtaiaaiYcacaWGQbGaaGypaiaa igdacaaISaGaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaad6eada WgaaqaaKqzadGaamivaaqcfayabaGaaGilaiaaysW7caWGRbGaaGyp aiaaigdacaaISaGaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaad6 eadaWgaaqaaKqzadGaamivaaqcfayabaaabaGaaeyAaiaab6gacaaM e8UaeuyQdCLaaGilaaaaaiaawUhaaaaa@C719@  (34)

U 1 = U 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIXaaajuaGbeaacaaI9aGaamyvamaaBaaabaqc LbmacaaIYaaajuaGbeaacaaI9aGaaGimaaaa@3FB1@ , on Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC eaaa@37EC@ , (35)

where N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@ is the number of all discrete nodes in the domain, and

{ a ik U 1 = j N ((wx ) jk (2) + (wy) j (2) k+ M X (wx) jk (1) + M y (wy) j (1) k),k=1,2,, N l β ik U 2 = i=1 N L ((wx ) jk (2) + (wy) j (2) k M X (wx) jk (1) M y (wy) j (1) k),k=1,2,, N l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqaaeGabaaabaGaamyyaSWaa0baaKqbagaajugWaiaadMgacaWG RbaajuaGbaqcLbmacaWGvbWcdaWgaaqcfayaaKqzadGaaGymaaqcfa yabaaaaiaai2dadaaeWbqabeaajugWaiaadQgaaKqbagaajugWaiaa d6eaaKqbakabggHiLdGaaGikaiaaiIcacaWG3bGaamiEaiaaiMcalm aaDaaajuaGbaqcLbmacaWGQbGaam4AaaqcfayaaKqzadGaaGikaiaa ikdacaaIPaaaaKqbakabgUcaRiaaiIcacaWG3bGaamyEaiaaiMcalm aaDaaajuaGbaqcLbmacaWGQbaajuaGbaqcLbmacaaIOaGaaGOmaiaa iMcaaaqcfaOaam4AaiabgUcaRiaad2eadaWgaaqaaiaadIfaaeqaai aaiIcacaWG3bGaamiEaiaaiMcalmaaDaaajuaGbaqcLbmacaWGQbGa am4AaaqcfayaaKqzadGaaGikaiaaigdacaaIPaaaaKqbakabgUcaRi aad2eadaWgaaqaaiaadMhaaeqaaiaaiIcacaWG3bGaamyEaiaaiMca lmaaDaaajuaGbaqcLbmacaWGQbaajuaGbaqcLbmacaaIOaGaaGymai aaiMcaaaqcfaOaam4AaiaaiMcacaaMe8UaaGilaiaaysW7caWGRbGa aGypaiaaigdacaaISaGaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilai aad6ealmaaBaaajuaGbaqcLbmacaWGSbaajuaGbeaaaeaacqaHYoGy lmaaDaaajuaGbaqcLbmacaWGPbGaam4AaaqcfayaaKqzadGaamyvaS WaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaaacaaI9aWaaabCaeqa baqcLbmacaWGPbGaaGypaiaaigdaaKqbagaajugWaiaad6ealmaaBa aajuaGbaqcLbmacaWGmbaajuaGbeaaaiabggHiLdGaaGikaiaaiIca caWG3bGaamiEaiaaiMcalmaaDaaajuaGbaqcLbmacaWGQbGaam4Aaa qcfayaaKqzadGaaGikaiaaikdacaaIPaaaaKqbakabgUcaRiaaiIca caWG3bGaamyEaiaaiMcalmaaDaaajuaGbaqcLbmacaWGQbaajuaGba qcLbmacaaIOaGaaGOmaiaaiMcaaaqcfaOaam4AaiabgkHiTiaad2ea daWgaaqaaiaadIfaaeqaaiaaiIcacaWG3bGaamiEaiaaiMcalmaaDa aajuaGbaqcLbmacaWGQbGaam4AaaqcfayaaKqzadGaaGikaiaaigda caaIPaaaaKqbakabgkHiTiaad2eadaWgaaqaaiaadMhaaeqaaiaaiI cacaWG3bGaamyEaiaaiMcalmaaDaaajuaGbaqcLbmacaWGQbaajuaG baqcLbmacaaIOaGaaGymaiaaiMcaaaqcfaOaam4AaiaaiMcacaaMe8 UaaGilaiaaysW7caWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYca caaMe8UaeSOjGSKaaGilaiaad6eadaWgaaqaaKqzadGaamiBaaqcfa yabaaaaaGaay5Eaaaaaa@ED8F@  (36)

U 1(j) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvaS WaaSbaaKqbagaajugWaiaaigdacaaIOaGaamOAaiaaiMcaaKqbagqa aaaa@3CE3@ and U 2(j) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvaS WaaSbaaKqbagaajugWaiaaikdacaaIOaGaamOAaiaaiMcaaKqbagqa aaaa@3CE4@  in (34) can be determined by the following numerical scheme:

{ U 1(1) U 1(2) U 1(BC) U 1(N) }=[ α 1,1 α 1,2 α 1, N l 00 α 1,2 α 2,2 α 2, N l 00 001000 00 α N,1 α N,2 α N, N l ]{ 1 1 0 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aafaqaaeqbbaaaaeaacaWGvbWaaSbaaeaajugWaiaaigdacaaIOaGa aGymaiaaiMcaaKqbagqaaaqaaiaadwfalmaaBaaajuaGbaqcLbmaca aIXaGaaGikaiaaikdacaaIPaaajuaGbeaaaeaacqWIUlstaeaacaWG vbWcdaWgaaqcfayaaKqzadGaaGymaiaaiIcacaWGcbGaae4qaiaaiM caaKqbagqaaaqaaiaadwfadaWgaaqaaKqzadGaaGymaiaaiIcacaWG obGaaGykaaqcfayabaaaaaGaay5Eaiaaw2haaiaai2dacaaMc8+aam Waaqaabeqaaiabeg7aHTWaaSbaaKqbagaajugWaiaaigdacaGGSaGa aGymaiaaykW7caaMc8UaaGPaVdqcfayabaGaeqySde2aaSbaaeaaju gWaiaaigdacaGGSaGaaGOmaKqbakaaykW7caaMc8UaaGPaVlaaykW7 caaMc8oabeaacqWIVlctcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaeqySde2aaSbaaeaajugWaiaaigdacaGGSaGaaiOt aSWaaSbaaKqbagaajugWaiaadYgaaKqbagqaaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8oabeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7aeaacqaHXoqydaWgaaqaaKqzadGa aGymaiaacYcacaaIYaqcfaOaaGPaVlaaykW7caaMc8UaaGPaVlabeg 7aHnaaBaaabaqcLbmacaaIYaGaaiilaiaaikdajuaGcaaMc8UaaGPa VlaaykW7caaMc8UaeS47IWKaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8oabeaacaaMc8UaeqySde2aaSbaaeaajugWaiaaikdacaGG SaGaaiOtaSWaaSbaaKqbagaajugWaiaadYgaaKqbagqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8oabeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGimaaqabaaabaGaeSO7I0KaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7cqWIXlYtcaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlablgVipjaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabl6UinjaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabl6UinbqaaiaaicdacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGimaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaaeaacaaIWaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaicdaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHXoqydaWgaaqa aKqzadGaaiOtaiaacYcacaaIXaqcfaOaaGPaVlaaykW7caaMc8UaaG PaVlabeg7aHnaaBaaabaqcLbmacaGGobGaaiilaiaaikdajuaGcaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabl+UimjaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaba aabeaacqaHXoqydaWgaaqaaKqzadGaaiOtaiaacYcacaGGobWcdaWg aaqcfayaaKqzadGaamiBaaqcfayabaGaaGPaVlaaykW7aeqaaiaayk W7aaGaay5waiaaw2faamaacmaabaqbaeaabuqaaaaabaGaeyOeI0Ia aGymaaqaaiabgkHiTiaaigdaaeaacqWIUlstaeaacaaIWaaabaGaey OeI0IaaGymaaaaaiaawUhacaGL9baaaaa@7BE9@ (37)

{ U 2(1) U 2(2) U 2(BC) U 2(N) }={ β 1,1 β 1,2 β 1, N l 0 0 β 2,1 β 2,2 β 2, N l 0 0 0 0 10 0 0 0 0 β N,,1 β N,,2 β N,, N l }{ 1 1 0 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aafaqaaeqbbaaaaeaacaWGvbWaaSbaaeaajugWaiaaikdacaaIOaGa aGymaiaaiMcaaKqbagqaaaqaaiaadwfadaWgaaqaaKqzadGaaGOmai aaiIcacaaIYaGaaGykaaqcfayabaaabaGaeSO7I0eabaGaamyvamaa BaaabaqcLbmacaaIYaGaaGikaiaadkeacaqGdbGaaGykaaqcfayaba aabaGaamyvamaaBaaabaqcLbmacaaIYaGaaGikaiaad6eacaaIPaaa juaGbeaaaaaacaGL7bGaayzFaaGaaGypamaacmaabaqbaeaabuacaa aaaaqaaiabek7aInaaBaaabaqcLbmacaaIXaGaaGilaiaaigdaaKqb agqaaaqaaiabek7aInaaBaaabaqcLbmacaaIXaGaaGilaiaaikdaaK qbagqaaaqaaiabl+Uimbqaaiabek7aInaaBaaabaqcLbmacaaIXaGa aGilaiaad6eajuaGdaWgaaqaaKqzadGaamiBaaqcfayabaaabeaaae aacaaIWaaabaaabaaabaGaaGimaaqaaiabek7aInaaBaaabaqcLbma caaIYaGaaGilaiaaigdaaKqbagqaaaqaaiabek7aInaaBaaabaqcLb macaaIYaGaaGilaiaaikdaaKqbagqaaaqaaiabl+Uimbqaaiabl+Ui mbqaaiabek7aITWaaSbaaKqbagaajugWaiaaikdacaaISaGaamOtaS WaaSbaaKqbagaajugWaiaadYgaaKqbagqaaaqabaqcLbmacaaIWaaa juaGbaaabaaabaGaaGimaaqaaiabl6Uinbqaaiabl6Uinbqaaaqaai ablgVipbqaaiabl6UinbqaaiablgVipbqaaaqaaiabl6Uinbqaaiaa icdaaeaacaaIWaaabaaabaaabaGaaGymaiaaicdaaeaacaaIWaaaba GaeSy8I8eabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaaabaaabaGa eqOSdi2aaSbaaeaajugWaiaad6eacaaISaGaaGilaiaaigdaaKqbag qaaaqaaiabek7aInaaBaaabaqcLbmacaWGobGaaGilaiaaiYcacaaI YaaajuaGbeaaaeaacqWIVlctaeaacqaHYoGydaWgaaqaaKqzadGaam OtaiaaiYcacaaISaGaamOtaSWaaSbaaKqbagaajugWaiaadYgaaKqb agqaaaqabaaaaaGaay5Eaiaaw2haamaacmaabaqbaeaabuqaaaaaba GaeyOeI0IaaGymaaqaaiabgkHiTiaaigdaaeaacqWIUlstaeaacaaI WaaabaGaeyOeI0IaaGymaaaaaiaawUhacaGL9baaaaa@BD8C@ (38)

and the velocity of the flow u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36F1@  and the induced magnetic field B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@ can be obtained by (37) and (38). From (24), we have

u= U 1 + U 2 2 ;B= U 1 U 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aai2dadaWcaaqaaiaadwfadaWgaaqaaKqzadGaaGymaaqcfayabaGa ey4kaSIaamyvamaaBaaabaqcLbmacaaIYaaajuaGbeaaaeaacaaIYa aaaiaaiUdacaWGcbGaaGypamaalaaabaGaamyvamaaBaaabaqcLbma caaIXaaajuaGbeaacqGHsislcaWGvbWaaSbaaeaajugWaiaaikdaaK qbagqaaaqaaiaaikdaaaaaaa@4BC9@ (39)

i BF MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyAam aakaaabaGaamOqaiaadAeaaeqaaaaa@3914@   collocation method

For iRBF collocation method, a m=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai2 dacaaIYaaaaa@386C@  is used (i.e. integrated second-order TPS) to guarantee at least C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGOmaaaaaaa@37A8@  continuity for U 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIXaaajuaGbeaaaaa@39F6@  and U 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIYaaajuaGbeaaaaa@39F7@ . The approximation of function U 1 ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIXaaajuaGbeaacaaIOaGaaeiEamaaBaaabaqc LbmacaWGPbaajuaGbeaacaaIPaaaaa@3F21@ and U 2 ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIYaaajuaGbeaacaaIOaGaaeiEamaaBaaabaqc LbmacaWGPbaajuaGbeaacaaIPaaaaa@3F22@  , using integrated radial basis functions, can be written as a linear combination of N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@  radial functions; i.e.,

U 1 ( x j ) j=1 N α j U 1 Φ( r ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIXaaajuaGbeaacaaIOaGaaeiEamaaBaaabaqc LbmacaWGQbaajuaGbeaacaaIPaGaeyyyIO7aaabmaeqabaqcLbmaca WGQbGaaGypaiaaigdaaKqbagaajugWaiaad6eaaKqbakabggHiLdGa eqySde2cdaqhaaqcfayaaKqzadGaamOAaaqcfayaaKqzadGaamyvaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaacqqHMoGrcaaIOaGa amOCaSWaaSbaaKqbagaajugWaiaadMgacaWGQbaajuaGbeaacaaIPa aaaa@5BF9@ , for x i Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEam aaBaaabaqcLbmacaWGPbaajuaGbeaacqGHiiIZcqqHPoWvaaa@3D5C@ (40)

U 2 ( x i ) j=1 N α j U 2 Φ( r ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIYaaajuaGbeaacaaIOaGaaeiEamaaBaaabaqc LbmacaWGPbaajuaGbeaacaaIPaGaeyyyIO7aaabmaeqabaqcLbmaca WGQbGaaGypaiaaigdaaKqbagaajugWaiaad6eaaKqbakabggHiLdGa eqySde2cdaqhaaqcfayaaKqzadGaamOAaaqcfayaaKqzadGaamyvaS WaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaaacqqHMoGrcaaIOaGa amOCaSWaaSbaaKqbagaajugWaiaadMgacaWGQbaajuaGbeaacaaIPa aaaa@5BFA@ , for < x i Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEam aaBaaabaqcLbmacaWGPbaajuaGbeaacqGHiiIZcqqHPoWvaaa@3D5C@  (41)

where 1 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaaIXaaabaGaaGymaiaaicdaaaaaaa@38C4@  is the Euclidean norm, N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@  is the number of data points, x i =( x 1 , x 2 ,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEam aaBaaabaqcLbmacaWGPbaajuaGbeaacaaI9aGaaGikaiaabIhadaWg aaqaaKqzadGaaGymaaqcfayabaGaaGilaiaabIhadaWgaaqaaKqzad GaaGOmaaqcfayabaGaaGilaiablAciljaaiMcaaaa@462B@ is the vector position, α 1 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaW baaSqabeaacaaIXaaaaOGaae4Caaaa@397E@  are coefficients to be determined, and Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGdcqqHMoGraa a@377E@  is the integrated radial basis function.

For any linear partial diff erential operator L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C8@ , the governing equation can be written in the following matrix form<

{ L 1 U 1 = f 1 L 2 U 2 = f 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaae aafaqaaeGabaaabaGaamitamaaBaaabaqcLbmacaaIXaaajuaGbeaa caWGvbWaaSbaaeaajugWaiaaigdaaKqbagqaaiaai2dacaWGMbWaaS baaeaajugWaiaaigdaaKqbagqaaaqaaiaadYeadaWgaaqaaKqzadGa aGOmaaqcfayabaGaamyvamaaBaaabaqcLbmacaaIYaaajuaGbeaaca aI9aGaamOzamaaBaaabaqcLbmacaaIYaaajuaGbeaacaaINaaaaaGa ay5Eaaaaaa@4EA8@ (42)

where

L 1 =[ 2 + M x x + M y y ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaabaqcLbmacaaIXaaajuaGbeaacaaI9aGaaG4waiabgEGirpaa CaaabeqaaKqzadGaaGOmaaaajuaGcqGHRaWkcaWGnbWaaSbaaeaaca WG4baabeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaey4k aSIaamytamaaBaaabaGaamyEaaqabaWaaSaaaeaacqGHciITaeaacq GHciITcaWG5baaaiaai2faaaa@4DF8@    (43)

L 2 =[ 2 M x x M y y ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaabaqcLbmacaaIYaaajuaGbeaacaaI9aGaaG4waiabgEGirpaa CaaabeqaaKqzadGaaGOmaaaajuaGcqGHsislcaWGnbWaaSbaaeaaca WG4baabeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaeyOe I0IaamytamaaBaaabaGaamyEaaqabaWaaSaaaeaacqGHciITaeaacq GHciITcaWG5baaaiaai2faaaa@4E0F@ (44) and

f 1 =[1], f 2 =[1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaaIXaaajuaGbeaacaaI9aGaaG4waiabgkHiTiaa igdacaaIDbGaaGilaiaadAgadaWgaaqaaKqzadGaaGOmaaqcfayaba GaaGypaiaaiUfacqGHsislcaaIXaGaaGyxaaaa@46B7@ (45)

For a functionx, we can use the collocation method and obtain the following form by substituting (40) and (41) into (42):

j=1 N α j U 1 [ 2 Φ( r j )+ M x Φ( r j ) x + M y Φ( r j ) y ]=1,inΩ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabmae qabaqcLbmacaWGQbGaaGypaiaaigdaaKqbagaajugWaiaad6eaaKqb akabggHiLdGaeqySde2cdaqhaaqcfayaaKqzadGaamOAaaqcfayaaK qzadGaamyvaSWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaacaaI BbGaey4bIe9aaWbaaeqabaqcLbmacaaIYaaaaKqbakabfA6agjaaiI cacaWGYbWaaSbaaeaacaWGQbaabeaacaaIPaGaey4kaSIaamytamaa BaaabaGaamiEaaqabaWaaSaaaeaacqGHciITcqqHMoGrcaaIOaGaam OCamaaBaaabaqcLbmacaWGQbaajuaGbeaacaaIPaaabaGaeyOaIyRa amiEaaaacqGHRaWkcaWGnbWaaSbaaeaacaWG5baabeaadaWcaaqaai abgkGi2kabfA6agjaaiIcacaWGYbWaaSbaaeaajugWaiaadQgaaKqb agqaaiaaiMcaaeaacqGHciITcaWG5baaaiaai2facaaI9aGaeyOeI0 IaaGymaiaaiYcacaqGPbGaaeOBaiabfM6axjaaiYcaaaa@761D@  (46)

j N α j U 2 [ 2 Φ( r j ) M x Φ( r j .) x M y Φ( r j .) y ]=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabmae qabaqcLbmacaWGQbaajuaGbaqcLbmacaWGobaajuaGcqGHris5aiab eg7aHTWaa0baaKqbagaajugWaiaadQgaaKqbagaajugWaiaadwfalm aaBaaajuaGbaqcLbmacaaIYaaajuaGbeaaaaGaaG4waiabgEGirpaa CaaabeqaaKqzadGaaGOmaaaajuaGcqqHMoGrcaaIOaGaamOCamaaBa aabaqcLbmacaWGQbaajuaGbeaacaaIPaGaeyOeI0IaamytamaaBaaa baqcLbmacaWG4baajuaGbeaadaWcaaqaaiabgkGi2kabfA6agjaaiI cacaWGYbWaaSbaaeaajugWaiaadQgaaKqbagqaaiaai6cacaaIPaaa baGaeyOaIyRaamiEaaaacqGHsislcaWGnbWaaSbaaeaacaWG5baabe aadaWcaaqaaiabgkGi2kabfA6agjaaiIcacaWGYbWaaSbaaeaajugW aiaadQgaaKqbagqaaiaai6cacaaIPaaabaGaeyOaIyRaamyEaaaaca aIDbGaaGypaiabgkHiTiaaigdaaaa@74C3@ , in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC faaa@3812@ ,  (47)

j N α J U 1 Φ( r j )= j N α J U 2 Φ( r j )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabmae qabaqcLbmacaWGQbaajuaGbaqcLbmacaWGobaajuaGcqGHris5aiab eg7aHTWaa0baaKqbagaajugWaiaadQeaaKqbagaajugWaiaadwfalm aaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaaGaeuOPdyKaaGikaiaa dkhadaWgaaqaaKqzadGaamOAaaqcfayabaGaaGykaiaai2dadaaeWa qabeaajugWaiaadQgaaKqbagaajugWaiaad6eaaKqbakabggHiLdGa eqySde2cdaqhaaqcfayaaKqzadGaamOsaaqcfayaaKqzadGaamyvaS WaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaaacqqHMoGrcaaIOaGa amOCamaaBaaabaqcLbmacaWGQbaajuaGbeaacaaIPaGaaGypaiaaic daaaa@6897@ on Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC eaaa@37EC@ ,                   (48)

where

2 Φ( r j )=ϕ( r j )= r J 4 log( r j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe 9aaWbaaeqabaqcLbmacaaIYaaaaKqbakabfA6agjaaiIcacaWGYbWa aSbaaeaajugWaiaadQgaaKqbagqaaiaaiMcacaaI9aGaeqy1dyMaaG ikaiaadkhadaWgaaqaaKqzadGaamOAaaqcfayabaGaaGykaiaai2da caWGYbWcdaqhaaqcfayaaKqzadGaamOsaaqcfayaaKqzadGaaGinaa aajuaGcaGGSbGaai4BaiaacEgacaaIOaGaamOCamaaBaaabaqcLbma caWGQbaajuaGbeaacaaIPaaaaa@5871@ (49)

Φ( r j )= r J 6 (3log r J .1) 108 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy KaaGikaiaadkhadaWgaaqaaKqzadGaamOAaaqcfayabaGaaGykaiaa i2dadaWcaaqaaiaadkhalmaaDaaajuaGbaqcLbmacaWGkbaajuaGba qcLbmacaaI2aaaaKqbakaaiIcacaaIZaGaaiiBaiaac+gacaGGNbGa amOCamaaBaaabaqcLbmacaWGkbaajuaGbeaacaaIUaGaeyOeI0IaaG ymaiaaiMcaaeaacaaIXaGaaGimaiaaiIdaaaaaaa@51E0@ (50)

Φ( r j ) x = x r j 4 (6log r j 1) 36 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcqqHMoGrcaaIOaGaamOCamaaBaaabaqcLbmacaWGQbaa juaGbeaacaaIPaaabaGaeyOaIyRaamiEaaaacaaI9aWaaSaaaeaaca WG4bGaamOCaSWaa0baaKqbagaajugWaiaadQgaaKqbagaajugWaiaa isdaaaqcfaOaaGikaiaaiAdacaGGSbGaai4BaiaacEgacaWGYbWaaS baaeaajugWaiaadQgaaKqbagqaaiabgkHiTiaaigdacaaIPaaabaGa aG4maiaaiAdaaaaaaa@5585@       (51)

Φ( r j ) y = y r j 4 (6log r j 1) 36 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcqqHMoGrcaaIOaGaamOCamaaBaaabaqcLbmacaWGQbaa juaGbeaacaaIPaaabaGaeyOaIyBcLbmacaWG5baaaKqbakaai2dada WcaaqaaiaadMhacaWGYbWcdaqhaaqcfayaaKqzadGaamOAaaqcfaya aKqzadGaaGinaaaajuaGcaaIOaGaaGOnaiaacYgacaGGVbGaai4zai aadkhadaWgaaqaaKqzadGaamOAaaqcfayabaGaeyOeI0IaaGymaiaa iMcaaeaacaaIZaGaaGOnaaaaaaa@5743@ (52)

We can define Φ ij =Φ( r ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuOPdy 0aaSbaaeaajugWaiaadMgacaWGQbaajuaGbeaacaaI9aGaeuOPdyKa aGikaiaadkhadaWgaaqaaKqzadGaamyAaiaadQgaaKqbagqaaiaaiM caaaa@440F@  and combine the equations (46), (47) and(48) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyyaiaab6 gacaqGKbGaaGikaiaaisdacaaI4aGaaGykaaaa@3B98@  into the global numerical scheme

{ L 1 ( Φ 11 ) L 1 ( Φ 12 ) L 1 ( Φ 1N ) L 1 ( Φ 21 ) L 1 ( Φ 22 ) L 1 ( Φ 2N ) Φ BC.1 Φ BC.2 Φ BCN L 1 ( Φ N1 ) L 1 ( Φ N2 ) L 1 ( Φ NN ) }{ α 1 U 1 α 2 U 1 α N U 1 }={ 1 1 0 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aafaqaaeqbdaaaaeaacaWGmbWaaSbaaeaajugWaiaaigdaaKqbagqa aiaaiIcacqqHMoGrdaWgaaqaaKqzadGaaGymaiaaigdaaKqbagqaai aaiMcaaeaacaWGmbWaaSbaaeaajugWaiaaigdaaKqbagqaaiaaiIca cqqHMoGrdaWgaaqaaKqzadGaaGymaiaaikdaaKqbagqaaiaaiMcaae aacaWGmbWaaSbaaeaajugWaiaaigdaaKqbagqaaiaaiIcacqqHMoGr lmaaBaaajuaGbaqcLbmacaaIXaGaamOtaaqcfayabaGaaGykaaqaai aadYeadaWgaaqaaKqzadGaaGymaaqcfayabaGaaGikaiabfA6agnaa BaaabaqcLbmacaaIYaGaaGymaaqcfayabaGaaGykaaqaaiaadYeada WgaaqaaKqzadGaaGymaaqcfayabaGaaGikaiabfA6agnaaBaaabaqc LbmacaaIYaGaaGOmaaqcfayabaGaaGykaaqaaiaadYeadaWgaaqaaK qzadGaaGymaaqcfayabaGaaGikaiabfA6agnaaBaaabaqcLbmacaaI YaGaamOtaaqcfayabaGaaGykaaqaaiabl6Uinbqaaiabl6Uinbqaai abl6UinbqaaiabfA6agnaaBaaabaGaamOqaiaadoeacaaIUaGaaGym aaqabaaabaGaeuOPdy0aaSbaaeaacaWGcbGaam4qaiaai6cacaaIYa aabeaaaeaacqqHMoGrdaWgaaqaaiaadkeacaWGdbGaamOtaaqabaaa baGaamitamaaBaaabaqcLbmacaaIXaaajuaGbeaacaaIOaGaeuOPdy 0cdaWgaaqcfayaaKqzadGaamOtaiaaigdaaKqbagqaaiaaiMcaaeaa caWGmbWaaSbaaeaajugWaiaaigdaaKqbagqaaiaaiIcacqqHMoGrda WgaaqaaKqzadGaamOtaiaaikdaaKqbagqaaiaaiMcaaeaacaWGmbWa aSbaaeaajugWaiaaigdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqaaK qzadGaamOtaiaad6eaaKqbagqaaiaaiMcaaaaacaGL7bGaayzFaaWa aiWaaeaafaqaaeabbaaaaeaacqaHXoqylmaaDaaajuaGbaqcLbmaca aIXaaajuaGbaqcLbmacaWGvbWcdaWgaaqcfayaaKqzadGaaGymaaqc fayabaaaaaqaaiabeg7aHTWaa0baaKqbagaajugWaiaaikdaaKqbag aajugWaiaadwfalmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaaaa baGaeSO7I0eabaGaeqySde2cdaqhaaqcfayaaKqzadGaamOtaaqcfa yaaKqzadGaamyvaSWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaa aaaacaGL7bGaayzFaaGaaGypamaacmaabaqbaeaabuqaaaaabaGaey OeI0IaaGymaaqaaiabgkHiTiaaigdaaeaacqWIUlstaeaacaaIWaaa baGaeyOeI0IaaGymaaaaaiaawUhacaGL9baaaaa@D120@ (59)

{ L 2 ( Φ 11 ) L 2 ( Φ 12 ) L 2 ( Φ 1N ) L 2 ( Φ 21 ) L 2 ( Φ 22 ) L 2 ( Φ 2N ) Φ BC.1 Φ BC.2 Φ BCN L 2 ( Φ N1 ) L 2 ( Φ N2 ) L 2 ( Φ NN ) }{ α 1 U 2 α 2 U 2 α N U 2 }={ 1 1 0 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aafaqaaeqbdaaaaeaacaWGmbWaaSbaaeaajugWaiaaikdaaKqbagqa aiaaiIcacqqHMoGrdaWgaaqaaKqzadGaaGymaiaaigdaaKqbagqaai aaiMcaaeaacaWGmbWaaSbaaeaajugWaiaaikdaaKqbagqaaiaaiIca cqqHMoGrdaWgaaqaaKqzadGaaGymaiaaikdaaKqbagqaaiaaiMcaae aacaWGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaeuOPdy0cdaWgaaqc fayaaKqzadGaaGymaiaad6eaaKqbagqaaiaaiMcaaeaacaWGmbWaaS baaeaajugWaiaaikdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqaaKqz adGaaGOmaiaaigdaaKqbagqaaiaaiMcaaeaacaWGmbWaaSbaaeaaju gWaiaaikdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqaaKqzadGaaGOm aiaaikdaaKqbagqaaiaaiMcaaeaacaWGmbWaaSbaaeaacaaIYaaabe aacaaIOaGaeuOPdy0aaSbaaeaajugWaiaaikdacaWGobaajuaGbeaa caaIPaaabaGaeSO7I0eabaGaeSO7I0eabaGaeSO7I0eabaGaeuOPdy 0aaSbaaeaacaWGcbGaam4qaiaai6cacaaIXaaabeaaaeaacqqHMoGr daWgaaqaaiaadkeacaWGdbGaaGOlaiaaikdaaeqaaaqaaiabfA6agn aaBaaabaGaamOqaiaadoeacaWGobaabeaaaeaacaWGmbWaaSbaaeaa jugWaiaaikdaaKqbagqaaiaaiIcacqqHMoGrlmaaBaaajuaGbaqcLb macaWGobGaaGymaaqcfayabaGaaGykaaqaaiaadYeadaWgaaqaaKqz adGaaGOmaaqcfayabaGaaGikaiabfA6agnaaBaaabaqcLbmacaWGob GaaGOmaaqcfayabaGaaGykaaqaaiaadYeadaWgaaqaaiaaikdaaeqa aiaaiIcacqqHMoGrdaWgaaqaaKqzadGaamOtaiaad6eaaKqbagqaai aaiMcaaaaacaGL7bGaayzFaaWaaiWaaeaafaqaaeabbaaaaeaacqaH XoqylmaaDaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaWGvbWcda WgaaqcfayaaKqzadGaaGOmaaqcfayabaaaaaqaaiabeg7aHTWaa0ba aKqbagaajugWaiaaikdaaKqbagaajugWaiaadwfalmaaBaaajuaGba qcLbmacaaIYaaajuaGbeaaaaaabaGaeSO7I0eabaGaeqySde2cdaqh aaqcfayaaKqzadGaamOtaaqcfayaaKqzadGaamyvaSWaaSbaaKqbag aajugWaiaaikdaaKqbagqaaaaaaaaacaGL7bGaayzFaaGaaGypamaa cmaabaqbaeaabuqaaaaabaGaeyOeI0IaaGymaaqaaiabgkHiTiaaig daaeaacqWIUlstaeaacaaIWaaabaGaeyOeI0IaaGymaaaaaiaawUha caGL9baaaaa@CBF8@ (60)

It follows that

{ α 1 U 1 α 2 U 2 α N U 1 }={ L 1 ( Φ 11 ) L 1 ( Φ 12 ) L 1 ( Φ 1N ) L 1 ( Φ 21 ) L 1 ( Φ 22 ) L 1 ( Φ 2N ) Φ BC.1 Φ BC.2 Φ BCN L 1 ( Φ N1 ) L 1 ( Φ N2 ) L 1 ( Φ NN ) }{ 1 1 0 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aafaqaaeabbaaaaeaacqaHXoqylmaaDaaajuaGbaqcLbmacaaIXaaa juaGbaqcLbmacaWGvbWcdaWgaaqcfayaaKqzadGaaGymaaqcfayaba aaaaqaaiabeg7aHTWaa0baaKqbagaajugWaiaaikdaaKqbagaajugW aiaadwfalmaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaaaaaabaGaeS O7I0eabaGaeqySde2cdaqhaaqcfayaaKqzadGaamOtaaqcfayaaKqz adGaamyvaSWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaaaaaaca GL7bGaayzFaaGaaGypamaacmaabaqbaeaabuWaaaaabaGaamitaSWa aSbaaKqbagaajugWaiaaigdaaKqbagqaaiaaiIcacqqHMoGrdaWgaa qaaKqzadGaaGymaiaaigdaaKqbagqaaiaaiMcaaeaacaWGmbWaaSba aeaajugWaiaaigdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqaaKqzad GaaGymaiaaikdaaKqbagqaaiaaiMcaaeaacaWGmbWaaSbaaeaajugW aiaaigdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqaaKqzadGaaGymai aad6eaaKqbagqaaiaaiMcaaeaacaWGmbWcdaWgaaqcfayaaKqzadGa aGymaaqcfayabaGaaGikaiabfA6agTWaaSbaaKqbagaajugWaiaaik dacaaIXaaajuaGbeaacaaIPaaabaGaamitamaaBaaabaqcLbmacaaI XaaajuaGbeaacaaIOaGaeuOPdy0aaSbaaeaajugWaiaaikdacaaIYa aajuaGbeaacaaIPaaabaGaamitamaaBaaabaqcLbmacaaIXaaajuaG beaacaaIOaGaeuOPdy0aaSbaaeaajugWaiaaikdacaWGobaajuaGbe aacaaIPaaabaGaeSO7I0eabaGaeSO7I0eabaGaeSO7I0eabaGaeuOP dy0aaSbaaeaacaWGcbGaam4qaiaai6cacaaIXaaabeaaaeaacqqHMo GrdaWgaaqaaiaadkeacaWGdbGaaGOlaiaaikdaaeqaaaqaaiabfA6a gnaaBaaabaGaamOqaiaadoeacaWGobaabeaaaeaacaWGmbWcdaWgaa qcfayaaKqzadGaaGymaaqcfayabaGaaGikaiabfA6agTWaaSbaaKqb agaajugWaiaad6eacaaIXaaajuaGbeaacaaIPaaabaGaamitaSWaaS baaKqbagaajugWaiaaigdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqa aKqzadGaamOtaiaaikdaaKqbagqaaiaaiMcaaeaacaWGmbWcdaWgaa qcfayaaKqzadGaaGymaaqcfayabaGaaGikaiabfA6agTWaaSbaaKqb agaajugWaiaad6eacaWGobaajuaGbeaacaaIPaaaaaGaay5Eaiaaw2 haamaacmaabaqbaeaabuqaaaaabaGaeyOeI0IaaGymaaqaaiabgkHi TiaaigdaaeaacqWIUlstaeaacaaIWaaabaGaeyOeI0IaaGymaaaaai aawUhacaGL9baaaaa@D4B7@ (61)

{ α 1 U 2 α 2 U 2 α N U 2 }={ L 2 ( Φ 11 ) L 2 ( Φ 12 ) L 2 ( Φ 1N ) L 2 ( Φ 21 ) L 2 ( Φ 22 ) L 2 ( Φ 2N ) Φ BC.1 Φ BC.2 Φ BCN L 2 ( Φ N1 ) L 2 ( Φ N2 ) L 2 ( Φ NN ) }{ 1 1 0 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aafaqaaeabbaaaaeaacqaHXoqylmaaDaaajuaGbaqcLbmacaaIXaaa juaGbaqcLbmacaWGvbWcdaWgaaqcfayaaKqzadGaaGOmaaqcfayaba aaaaqaaiabeg7aHTWaa0baaKqbagaajugWaiaaikdaaKqbagaajugW aiaadwfalmaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaaaaaabaGaeS O7I0eabaGaeqySde2cdaqhaaqcfayaaKqzadGaamOtaaqcfayaaKqz adGaamyvaSWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaaaaaaaca GL7bGaayzFaaGaaGypamaacmaabaqbaeaabuWaaaaabaGaamitaSWa aSbaaKqbagaajugWaiaaikdaaKqbagqaaiaaiIcacqqHMoGrdaWgaa qaaKqzadGaaGymaiaaigdaaKqbagqaaiaaiMcaaeaacaWGmbWaaSba aeaajugWaiaaikdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqaaKqzad GaaGymaiaaikdaaKqbagqaaiaaiMcaaeaacaWGmbWaaSbaaeaajugW aiaaikdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqaaKqzadGaaGymai aad6eaaKqbagqaaiaaiMcaaeaacaWGmbWcdaWgaaqcfayaaKqzadGa aGOmaaqcfayabaGaaGikaiabfA6agTWaaSbaaKqbagaajugWaiaaik dacaaIXaaajuaGbeaacaaIPaaabaGaamitamaaBaaabaqcLbmacaaI YaaajuaGbeaacaaIOaGaeuOPdy0aaSbaaeaajugWaiaaikdacaaIYa aajuaGbeaacaaIPaaabaGaamitamaaBaaabaqcLbmacaaIYaaajuaG beaacaaIOaGaeuOPdy0aaSbaaeaajugWaiaaikdacaWGobaajuaGbe aacaaIPaaabaGaeSO7I0eabaGaeSO7I0eabaGaeSO7I0eabaGaeuOP dy0aaSbaaeaacaWGcbGaam4qaiaai6cacaaIXaaabeaaaeaacqqHMo GrdaWgaaqaaiaadkeacaWGdbGaaGOlaiaaikdaaeqaaaqaaiabfA6a gnaaBaaabaGaamOqaiaadoeacaWGobaabeaaaeaacaWGmbWcdaWgaa qcfayaaKqzadGaaGOmaaqcfayabaGaaGikaiabfA6agTWaaSbaaKqb agaajugWaiaad6eacaaIXaaajuaGbeaacaaIPaaabaGaamitaSWaaS baaKqbagaajugWaiaaikdaaKqbagqaaiaaiIcacqqHMoGrdaWgaaqa aKqzadGaamOtaiaaikdaaKqbagqaaiaaiMcaaeaacaWGmbWcdaWgaa qcfayaaKqzadGaaGOmaaqcfayabaGaaGikaiabfA6agTWaaSbaaKqb agaajugWaiaad6eacaWGobaajuaGbeaacaaIPaaaaaGaay5Eaiaaw2 haamaacmaabaqbaeaabuqaaaaabaGaeyOeI0IaaGymaaqaaiabgkHi TiaaigdaaeaacqWIUlstaeaacaaIWaaabaGaeyOeI0IaaGymaaaaai aawUhacaGL9baaaaa@D4C2@        (62)

U 1 ( x i ) j=1 N α j U 1 Φ( r ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiaaiIcacaqG4bWcdaWg aaqcfayaaKqzadGaamyAaaqcfayabaGaaGykaiabggMi6oaaqadabe qaaKqzadGaamOAaiaai2dacaaIXaaajuaGbaqcLbmacaWGobaajuaG cqGHris5aKqzadGaeqySde2cdaqhaaqcfayaaKqzadGaamOAaaqcfa yaaKqzadGaamyvaSWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaa cqqHMoGrcaaIOaGaamOCaSWaaSbaaKqbagaajugWaiaadMgacaWGQb aajuaGbeaacaaIPaaaaa@5E58@ , for x i Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEaS WaaSbaaKqbagaajugWaiaadMgaaKqbagqaaiabgIGiolabfM6axbaa @3DF5@ (63)

U 2 ( x i ) j=1 N α j U 2 Φ( r ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvaS WaaSbaaKqbagaajugWaiaaikdaaKqbagqaaiaaiIcacaqG4bWcdaWg aaqcfayaaKqzadGaamyAaaqcfayabaGaaGykaiabggMi6oaaqadabe qaaKqzadGaamOAaiaai2dacaaIXaaajuaGbaqcLbmacaWGobaajuaG cqGHris5aKqzadGaeqySde2cdaqhaaqcfayaaKqzadGaamOAaaqcfa yaaKqzadGaamyvaSWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaaa cqqHMoGrcaaIOaGaamOCaSWaaSbaaKqbagaajugWaiaadMgacaWGQb aajuaGbeaacaaIPaaaaa@5E5A@ , for x i Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEaS WaaSbaaKqbagaajugWaiaadMgaaKqbagqaaiabgIGiolabfM6axbaa @3DF5@ (64)

Thus, U 1 ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaakiaaiIcacaqG4bWaaSbaaSqaaiaadMgaaeqa aOGaaGykaaaa@3B46@  and U 2 ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIYaaabeaakiaaiIcacaqG4bWaaSbaaSqaaiaadMgaaeqa aOGaaGykaaaa@3B47@  can be obtained. From (24), we haves

u= U 1 + U 2 2 ;B= U 1 U 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aai2dadaWcaaqaaiaadwfadaWgaaqaaKqzadGaaGymaaqcfayabaGa ey4kaSIaamyvaSWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaqaai aaikdaaaGaaG4oaiaadkeacaaI9aWaaSaaaeaacaWGvbWcdaWgaaqc fayaaKqzadGaaGymaaqcfayabaGaeyOeI0IaamyvaSWaaSbaaKqbag aajugWaiaaikdaaKqbagqaaaqaaiaaikdaaaaaaa@4D94@ (65)

Numerical Results

In this section we show the results of the MHD duct flows using the numerical methods introduced in the previous section. It is obvious that RBF collocation method and local RBF-DQ method do not need to mesh the complicated physical problems. In the following subsections, under diff erent influence of magnetic field and boundary conditions, the numerical results using small (<100) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aaiYdacaaIXaGaaGimaiaaicdacaaIPaaaaa@3ADE@  , moderate (>100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aai6dacaaIXaGaaGimaiaaicdaaaa@3A2D@  and <1000) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGipai aaigdacaaIWaGaaGimaiaaicdacaaIPaaaaa@3AE6@  , high (10000), and even to 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdadaahaaqabeaajugWaiaaiwdaaaaaaa@3A08@  Hartmann numbers are obtained.

Shercliff s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EF@   problem:  imposed transverse magnetic field outside a square channel with insulating walls
The MHD flow is in along duct channel with a cross section [1,1]×[1,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG4wai abgkHiTiaaigdacaaISaGaaGymaiaai2facqGHxdaTcaaIBbGaeyOe I0IaaGymaiaaiYcacaaIXaGaaGyxaaaa@4265@ , and the angle α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@378A@  between y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@ -axis and imposed magnetic field is π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiWda NaaG4laiaaikdaaaa@39B6@ (Figure 3). Shercliff [5] proposed this example where the walls ofthe channel are insulated (B=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadkeacaaI9aGaaGimaiaaiMcaaaa@3A31@  . The velocity is zero on the solid walls (u=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadwhacaaI9aGaaGimaiaaiMcaaaa@3A64@  . In Tables 1&2, the approximate solutions of iRBF collocation method and local iRBF-DQ method for velocity at Hartmann number 100 on x=0,y=11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEai aai2dacaaIWaGaaGilaiaabMhacaqG9aGaeyOeI0IaaGymaiablYJi 6iaaigdaaaa@3EFE@  are compared with uniform triangular element FEM and analytical solution, respectively. There are 10201 global nodes and 400 supporting nodes for local iRBF-DQ method, and 20000 elements for FEM. In Tables 1 and 2, we use 1681 and 2601 nodes for iRBF collocation method independently. The definition of relative error (i.e. R.E.) is E R =| e experimenta1 e exact e exact | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaabaqcLbmacaqGsbaajuaGbeaacaaI9aGaaGiFamaalaaabaGa amyzamaaBaaabaqcLbmacaqGLbGaaeiEaiaabchacaqGLbGaaeOCai aabMgacaqGTbGaaeyzaiaab6gacaqG0bGaaeyyaKqbakaaigdaaeqa aiabgkHiTiaadwgadaWgaaqaaKqzadGaaeyzaiaabIhacaqGHbGaae 4yaiaabshaaKqbagqaaaqaaiaadwgalmaaBaaajuaGbaqcLbmacaqG LbGaaeiEaiaabggacaqGJbGaaeiDaaqcfayabaaaaiaaiYhaaaa@5B04@ . We can find that the accuracy close to the walls becomes worse. In Figure 4, the relative errors at M=100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeytai aai2dacaaIXaGaaGimaiaaicdaaaa@3A4A@  of uniform FEM can only reach to at least about 10th power minus 1, but iRBF collocation method and local iRBF-DQ method can up to at least about 10th power minus 2 and 10th power minus 3, respectively. On the other hand, the relative errors at M=500 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeytai aai2dacaaI1aGaaGimaiaaicdaaaa@3A4E@  of uniform FEM and iRBF collocation method can only reach to at least about 10th power minus 1, but local iRBF-DQ method can get up to at least about 10th power minus 2. In these tables, the exact solutions of velocity and magnetic induction are presented in,5.

In order to apply the approximation data to real blanket channels (high magneticfield), the high Hartmann numbers (10 3 M 10 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aaigdacaaIWaWcdaahaaqcfayabeaajugWaiaaiodaaaqcfaOaeyiz ImQaamytaiabgsMiJkaaigdacaaIWaWcdaahaaqcfayabeaajugWai aaiwdaaaqcfaOaaGykaaaa@4579@  MHD problems must be solved. In Figures 5&6, the approximate solutions of velocity and magnetic induction using iRBF collocation method are compared with the approximate solutions of local iRBF-DQ method for Hartmann number M =10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacaaIXaGaaGimamaaCaaabeqaaKqzadGaaG4maaaaaaa@3B9F@  and 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdalmaaCaaajuaGbeqaaKqzadGaaGynaaaaaaa@3AA1@ . In Figure 7, the approximate solutions of velocity and magnetic induction using the local iRBF-DQ method at M =10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacaaIXaGaaGimamaaCaaabeqaaKqzadGaaGynaaaaaaa@3BA1@  is also presented independently. There are some oscillations near the walls of contour lines by iRBF collocation method as shown in Figures 5&6. However, the contour lines by local iRBF-DQ method are much smoother than by iRBF collocation method. The iRBF collocation method cannot obtain good numerical results of B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@ and u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36F1@  by the reason of ill-conditional matrix. However, local iRBF-DQ method can still obtain accurate numerical results of velocity and induced magnetic field, especially when Hartmann number is up to105. It can be seen that the boundary layers become thinner as Hartmann number increases (Figures 5-8). We also observe that the Hartmann number and the velocity and magnetic induction are varied inversely. It means that the values of velocity and magnetic induction approximate to 1/10 of their original values when Hartmann number becomes 10 times larger (see more detail in Appendix A).

Drectangular duct flow with insulating walls, under the influence of an oblique magnetic field

In this subsection, the numerical experiments are the same as the one in section 4.1 except the angle α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde gaaa@3823@ between y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@ -axis and imposed magnetic field changes fr om α=π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypaiabec8aWjaai+cacaaIYaaaaa@3C1C@  to < α=π/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypaiabec8aWjaai+cacaaIZaaaaa@3C1D@ and π/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiWda NaaG4laiaaisdaaaa@39B8@ . In order to understand how diff erent angles between imposed magnetic field and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@ -axis will aff ect the velocity and magnetic induction, the approximate solutions of u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36F1@  and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@  by iRBF collocation method are compared with the approximate solutions of u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36F1@  and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@  by local iRBF-DQ method for α=π/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypaiabec8aWjaai+cacaaIZaaaaa@3C1D@  and π/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiWda NaaG4laiaaisdaaaa@39B8@ in section 4.2. In Figures 9&10, we approximate a medium high Hartmann number M =10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacaaIXaGaaGimamaaCaaabeqaaKqzadGaaG4maaaaaaa@3B9F@  and 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdalmaaCaaajuaGbeqaaKqzadGaaGynaaaaaaa@3AA1@ , and the patterns show that the contour lines by iRBF collocation method are not smooth enough. There are some oscillations near the walls of velocity contour lines. We also show the capability to approximate the velocity and induced magnetic field by local iRBF-DQ method at M =10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacaaIXaGaaGimamaaCaaabeqaaKqzadGaaGynaaaaaaa@3BA1@  in Figure 11. The results show that as Hartmann number increases the boundary layers formation close to the walls for both velocity and magnetic induction is well observed. Velocity becomes stagnant at the center of the channel. We can also find an inverse ratio relationship between Hartmann numbers and the values of velocity and magnetic induction. It means that the values of velocity and magnetic induction approximate to 1 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaaIXaaabaGaaGymaiaaicdaaaaaaa@38C4@ when Hartmann number becomes 10 times larger. local nodes  In Figsures 12&13, we approximate a medium high Hartmann number M =10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeytai aai2dacaaIXaGaaGimaSWaaWbaaKqbagqabaqcLbmacaaIZaaaaaaa @3C36@  and < 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdalmaaCaaajuaGbeqaaKqzadGaaGinaaaaaaa@3AA0@  and the patterns show that the contour lines by iRBF collocation method are more smoother than the contour lines for α=π/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypaiabec8aWjaai+cacaaIZaaaaa@3C1D@ . This is because that the symmetrical feature of α=π/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypaiabec8aWjaai+cacaaI0aaaaa@3C1E@  causes the velocity contour lines parallel to x=y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEai aai2dacaWG5baaaa@3946@ . There are still some oscillations near the walls of velocity contour lines. We also show the capability to approximate the velocity and induced magnetic field by local iRBF-DQ method at M =10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacaaIXaGaaGimamaaCaaabeqaaKqzadGaaGynaaaaaaa@3BA1@  in Figure 14. The results show that as Hartmann number increases the boundary layers formation close to the walls for both velocity and magnetic induction is very obviously observed. The velocity becomes a little stagnant at the center of the channel. When external magnetic field applies obliquely, the boundary layers are concentrated near the corners in the direction of the field for both solutions of velocity and induced magnetic field. These are the well-known behaviors of the magnetohydrodynamic flows (see more details in Appendix A). We can also find an inverse ratio relationship between Hartmann number and the values of velocity and magnetic induction. It means that the values of velocity and magnetic induction approximate to 1 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaaIXaaabaGaaGymaiaaicdaaaaaaa@38C4@  when Hartmann number becomes 10 times larger. In case 4.1 and case 4.2, we show the capability of our local iRBF-DQ method scheme to establish numerical approximations to the solution of MHD duct flows for different angles between imposed magnetic field and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@ -axis even at very high Hartmann numbers

Imposed transverse magnetic field outside a square channel with partly insulating walls andpartly conducting walls

In this subsection, we consider an external imposed transverse magnetic field H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeisaS WaaSbaaKqbagaajugWaiaaicdaaKqbagqaaaaa@3A7F@  which is perpendicular to the wall at x=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiEai aai2dacqGHsislcaaIXaaaaa@39EE@ . This wall is partly electrically conducted for a length 2l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmai aadYgaaaa@3831@  at the center (Figure 15). The MHD flow is in a long duct channel with a cross section [1,1]×[1,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG4wai abgkHiTiaaigdacaaISaGaaGymaiaai2facqGHxdaTcaaIBbGaeyOe I0IaaGymaiaaiYcacaaIXaGaaGyxaaaa@4265@ , and the angle α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3796@  between y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F3@ -axis and imposed magnetic field is Zτ/2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOwai abes8a0jaai+cacaaIYaGaaGOlaaaa@3B55@

In Figure 16&17, we compare the approximate solutions of iRBF collocation method with the approximate solutions of local iRBF-DQ method at high Hartmann numbers M =10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeytai aai2dacaaIXaGaaGimaSWaaWbaaKqbagqabaqcLbmacaaIZaaaaaaa @3C36@  and 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGymai aaicdalmaaCaaajuaGbeqaaKqzadGaaGinaaaaaaa@3AA0@ . The patterns show that the contour lines by iRBF collocation method are almost the same with the contour lines by local iRBF-DQ method. However the approximate solutions near the walls of iRBF collocation method are worse than the approximate solution of local iRBF-DQ method. The contour lines near the edge by iRBF collocation method are not smooth enough. These figures show that there are more variations near the walls of velocity contour lines by iRBF collocation method as Hartmann number increases. However, the results for both u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36F1@  and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@ by local iRBF-DQ method are still accurate. We can find that the boundary layers become thinner as Hartmann number increases. In this case, the boundary layers are not only near to the walls but also inside the domain. Parabolic boundary layers are formed in the direction of imposed transverse magnetic field close to the discontinuity points y=l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEai aai2dacqGHsislcaWGSbaaaa@3A27@ and y=+l, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyEai aai2dacqGHRaWkcaWGSbGaaGilaaaa@3AD2@ and thus cause three stagnant regions for the velocity (Figures 16&17). We can also find the dominant characteristics ofMHD flows at very high Hartmann numbers. Flow in the channel is totally separately into two rectangular flow regions with the boundary layers leaving the heart regions stagnant. Therefore our local iRBF-DQ scheme has the capability to deal with this kind boundary condition of MHD problems for high Hartmann numbers.

2-D circular duct flow with insulating walls, under the influence of an imposed transverse magnetic field

In this subsection, we consider the MHD flows in a long pipe channel with a radius of circular section r= x 2 + y 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyi84V UaaeOCaiaai2dadaGcaaqaaiaabIhadaahaaqabeaajugWaiaaikda aaqcfaOaey4kaSIaaeyEaSWaaWbaaKqbagqabaqcLbmacaaIYaaaaa qcfayabaGaaGypaiaaigdacqGH7J=+aaa@4951@  , and the angle α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3796@  between y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyEaaaa@36F2@ -axis and imposed magnetic field is π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiWda NaaG4laiaaikdaaaa@39B6@ (Figure 18). The walls of the channel are insulated (u=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadwhacaaI9aGaaGimaiaaiMcaaaa@3A64@  and the velocity is zero on the solid walls (B=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadkeacaaI9aGaaGimaiaaiMcaaaa@3A31@  . In Figures 19-22, we presented the numerical results using the local iRBF-DQ method for Hartmann number M=100,500,1000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacaaIXaGaaGimaiaaicdacaaISaGaaGynaiaaicdacaaIWaGa aGilaiaaigdacaaIWaGaaGimaiaaicdaaaa@40D4@  and 10000. We notice that the boundary layers become thinner as Hartmann number becomes larger. We can also find an inverse ratio relationship between Hartmann numbers and the values of velocity and magnetic induction. In this case, we show the local iRBF-DQ method is capable to produce good numerical results for the MHD circular pipe flows at exceptionally high Hartmann numbers. We observe that for the liquid metals used in fusion blankets the Hartmann number is high, M =10 3 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai2dacaaIXaGaaGimaSWaaWbaaKqbagqabaqcLbmacaaIZaaaaSGa eSipIOtcfaOaaGymaiaaicdalmaaCaaajuaGbeqaaKqzadGaaGynaa aaaaa@4217@ , i.e., the electromagnetic forces dominate over the viscous ones. Furthermore, the shapes of fusion blankets are mostly circular ducts. Thus, there is some superiority for using this meshless local iRBF-DQ method for solving the MHD circular pipe flow problems.

Figure 3Shercliff’s problem.

Figure 4 The comparison of relative errors of velocity.

Figure 5 The velocity and magnetic induction at M=1000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaaaaa@3A77@ :(a)iRBF collocation method (61 61) and (b) local iRBF-DQ method (101 101); local nodes (20 20) 08.

  • Figure 6 The velocity and magnetic induction at M=10000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaGaaGimaaaa@3B31@ :(a)iRBF collocation method
    (71 71) and (b) local iRBF-DQ method (201 201); local nodes 0.8.

Figure 7 The velocity and magnetic induction oflocal iRBF-DQ method at M =10 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimamaaCaaaleqabaGaaGynaaaaaaa@39EF@ ge002_0009.gif" />
local iRBF-DQ method (401 401); local nodes(9 9) .

Figure 8 A rectangular flow with an oblique magnetic field.

Figure 9 The velocity and magnetic induction at M=1000(α=χ/3) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaGaaGikaiabeg7aHjaai2dacqaH hpWycaaIVaGaaG4maiaaiMcaaaa@416F@  : (a) iRBF collocation
method (61 61) and (b) local iRBF-DQ method (101 101); local nodes (20 20) 0.8.

Figure 10 The velocity and magnetic induction at M=10000(α=χ/3) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaGaaGimaiaaiIcacqaHXoqycaaI 9aGaeq4XdmMaaG4laiaaiodacaaIPaaaaa@4229@  : (a) iRBF collocation method (81 81) and (b) local iRBF-DQ method (191 191); local nodes (9 * 9) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaiM dadaahaaWcbeqaaiaaiQcaaaGccaaI5aGaaGykaaaa@39CD@

Figure 11 The velocity and magnetic induction oflocal iRBF-DQ method at, local iRBF-DQ method (401 401); local nodes .

Figure 12 The velocity and magnetic induction at M=1000(α=χ/4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaGaaGikaiabeg7aHjaai2dacqaH hpWycaaIVaGaaGinaiaaiMcaaaa@4170@  :(a)iRBF collocation method (61 61) and (b) local iRBF-DQ method (101 101); local nodes (2020).

Figure 13 The velocity and magnetic induction at M=10000(α=χ/4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaGaaGimaiaaiIcacqaHXoqycaaI 9aGaeq4XdmMaaG4laiaaisdacaaIPaaaaa@422A@ :(a)iRBF collocation method (81 81) and (b) local iRBF-DQ method (184 184); local nodes27

Figure 14 The velocity and magnetic induction oflocal iRBF-DQ method at , local iRBF-DQ method (391 391);

Figure 15 A rectangular flow with partly conducting walls.

Figure 16 The velocity and magnetic induction at M=1000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaaaaa@3A77@ :(a)iRBF collocation method(60 60) and (b) local iRBF-DQ method (101 101); local nodes (20 20).

Figure 17 The velocity and magnetic induction at M=10000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaGaaGimaaaa@3B31@ :(a)iRBF collocation method(90 90) and (b) local iRBF-DQ method (299 299); local nodes .

Figure 18 A circular flow with a transverse magnetic field.

Figure 19 The velocity and magnetic induction oflocal iRBF-DQ method at M=100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdaaaa@39BD@ local iRBF-DQ method (71082) ; local nodes(138).

Figure 20The velocity and magnetic induction oflocal iRBF-DQ method at M=500 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaI1aGaaGimaiaaicdaaaa@39C1@ local iRBF-DQ method (71082) ; local nodes(138).

Figure 21The velocity and magnetic induction oflocal iRBF-DQ method at M=1000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaaaaa@3A77@ local iRBF-DQ method (102263) ; local nodes (200).

Figure 22The velocity and magnetic induction oflocal iRBF-DQ method at M=10000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeytaiaai2 dacaaIXaGaaGimaiaaicdacaaIWaGaaGimaaaa@3B31@ local iRBF-DQ method (102263); local nodes(200).

Figure 23Formation of MHD Lorentz force.

Figure 24The velocity contour lines when x = 0, y = -1 ~ 1 at M = 100 ~ 105.

Figure 25 The diagram of Hartmann effect and Hartmann layer.

x

y

u (exact)

u (FEM)

u (iRBF)

u (Local iRBF-DQ)

R.E.(FEM)

R.E.(iRBF)

R.E. (Local iRBF-DQ)

0.00

-0.98

2.06E-03

1.49E-03

1.97E-03

2.05E-03

-2.77E-01

-4.48E-02

-4.48E-03

0.00

-0.78

9.59E-03

8.75E-03

9.58E-03

9.58E-03

-8.69E-02

-6.61E-04

-1.72E-04

0.00

-0.58

9.99E-03

9.90E-03

1.00E-02

9.99E-03

-9.67E-03

5.89E-04

-5.93E-06

0.00

-0.38

1.00E-02

1.00E-02

1.00E-02

1.00E-02

-5.00E-04

-1.21E-05

3.96E-06

0.00

-0.18

1.00E-02

1.00E-02

1.00E-02

1.00E-02

-2.71E-05

-1.26E-05

5.76E-06

0.00

0.02

1.00E-02

1.00E-02

1.00E-02

1.00E-02

-1.30E-05

-1.21E-05

6.31E-06

0.00

0.22

1.00E-02

1.00E-02

1.00E-02

1.00E-02

-4.30E-05

-1.27E-05

5.66E-06

0.00

0.42

1.00E-02

9.99E-03

1.00E-02

1.00E-02

-9.40E-04

-6.39E-06

3.81E-06

0.00

0.62

9.98E-03

9.82E-03

1.00E-02

9.98E-03

-1.62E-02

1.55E-03

-1.41E-05

0.00

0.82

9.17E-03

8.08E-03

9.16E-03

9.17E-03

-1.19E-01

-1.61E-03

-2.62E-04

Table 1 The velocity comparison of local iRBF-DQ method, iRBF collocation method, FEM (uniform) and exact solution in Shercliff’s problem at M=100 on x=0, y=-1~1

x

y

u (exact)

u (FEM)

u (iRBF)

u (Local iRBF-DQ)

R.E.(FEM)

R.E.(iRB)

R.E. (Local iRBF-DQ)

0.00

-0.98

8.29E-04

6.20E-04

7.66E-04

8.17E-04

2.52E-01

7.66E-02

1.52E-02

0.00

-0.78

2.00E-03

1.99E-03

2.05E-03

2.00E-03

2.64E-03

2.36E-02

9.20E-05

0.00

-0.58

2.00E-03

2.00E-03

2.05E-03

2.00E-03

1.01E-04

2.45E-02

7.80E-05

0.00

-0.38

2.00E-03

2.00E-03

2.05E-03

2.00E-03

7.39E-05

2.46E-02

5.50E-05

0.00

-0.18

2.00E-03

2.00E-03

2.05E-03

2.00E-03

6.32E-05

2.46E-02

4.45E-05

0.00

0.02

2.00E-03

2.00E-03

2.05E-03

2.00E-03

6.04E-05

2.46E-02

4.16E-05

0.00

0.22

2.00E-03

2.00E-03

2.05E-03

2.00E-03

6.37E-05

2.46E-02

4.50E-05

0.00

0.42

2.00E-03

2.00E-03

2.05E-03

2.00E-03

7.53E-05

2.46E-02

5.62E-05

0.00

0.62

2.00E-03

2.00E-03

2.05E-03

2.00E-03

1.05E-04

2.44E-02

7.69E-05

0.00

0.82

2.00E-03

1.98E-03

2.04E-03

2.00E-03

1.01E-02

2.24E-02

1.57E-04

Table 2 The velocity comparison of local iRBF-DQ method, iRBF collocation method, FEM (uniform) and exact solution in Shercliff’s problem at M=500 on x=0, y=-1~1

Conclusion

In this study, we have considered the application of local iRBF-DQ method to the MHD flow problems in a straight channel of uniform or arbitrary cross-sections. The main work of this investigation is an accurate approximation and easy implementation of the two-dimensional MHD flow problems. The results indicate that the local iRBF-DQ method is stable at moderate and high values of Hartmann number as comparing to the iRBF collocation method and FEM method. The localization feature reduces the computational time and solves the ill-condition problem of conventional RBFs methods. As the results shown we can conclude the present meshless local iRBF-DQ method can stably, accurately and quickly obtain the weighting coefficients of derivative approximation with arbitrary cross-sections even at very high Hartmann numbers in MHD flow problems.

Acknowledgement

None.

Conflict of interests

The authors declare that there is no conflict of interest.

References

  1. Molokov S, Reed CB. Liquid metal magnetohydrodynamic flows in circular ducts at intermediate hartmann numbers and interaction parameters. Magnetohydrodynamics. 2003;39(4):539–546.
  2. Buhler L. Liquid metal magnetohydrodynamics for fusion blankets. In: Molokov S, Moreau R, editors. Magnetohydrodynamics, Historical Evolution and Trends. 2007.
  3. Branover H. Manetohydrodynamic Flow in Ducts. New York: Wiley and Sons; 1984.
  4. Garner RA, Lykoudis PS. Magneto-fluid-mechanic pipe flow in a transverse magnetic field, Part 2: Heat transfer. J Fluid Mech. 1997;48(1):29–141.
  5. Dragos L. Magneto-Fluid dynamics. Abacus Press, UK, 1975.
  6. Shercliff JA. Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Cambridge Philos Soc. 1953;49:136–144.
  7. Singh B, Lal J. MHD axial flow in a triangular pipe under transverse magnetic field. Indian J Pure Appl Math 1978;9:01–115.
  8. Singh B, Lal J. MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle. IndJ Techno.1979;117(5):184–189.
  9. Singh B, Lal J. FEM in MHD channel flow problems. Int J Numer Methods Eng. 1982;18(7):1104–1111.
  10. Singh B, Lal J. FEM for MHD channel flow with arbitrary wall conductivity. J Math Phys Sci. 1984;18:501–516.
  11. Singh B, Lal J. FEM for unsteady MHD flow through pipes with arbitrary wall conductivity. Int J Numer Methods Fluids. 1984;4(3):291–302.
  12. Tezer Sezgin CM. Koksal S, Finite element method for solving MHD flow in a rectangular duct. Int J Numer Methods Eng. 1989;28(2):445–459.
  13. Demendy Z, Nagy T. A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers. Acta Mech 1997;123(4):135–149.
  14. Tezer–Sezgin CM, Han Aydn S, Solution of magnetohydrodynamic flow problems using the boundary element method. Eng Anal Bound Elem 2006;30(5): 411–418.
  15. Bozkaya C. Tezer Sezgin CM, Fundamental solution for coupled magnetohydrodynamic flow equations. J Comput Appl Math. 2007;203(1):125–144.
  16. Nesliturk AI, Tezer Sezgin CM, The finite element method for MHD flow at high Hartmann numbers. Comput Methods Appl Mech Eng. 2005;194(9–11):1201–1224.
  17. Kansa EJ. Multiquadrics: a scattered data approximation scheme with applications to computational fluid-dynamics. Comp Math Appl. 1990;19(8–9):147–161.
  18. Franke C, Schaback R, Solving partial diff erential equations by collocation using radial basis functions. Appl Math Comput 1998;93(1):73–82.
  19. Franke C, Schaback R. Convergence order estimates of mesh less collocation methods using radial basis functions. Adv Comput Math. 1998;8(4):381–399.
  20. Franke C, Scattered data interpolation: test of some methods. Math Comput. 1982;38:181–200.
  21. Carlson RE, Foley T. The parameter R in multiquadric interpolation. Comp Math App. 1991;21(9):29–42.
  22. Duchon J. Splines minimizing rotation invariant semi–norms in Sobolev spaces. Constructive Theory of Functions of Several Variables. 1977;38:85–100.
  23. Hardy RL. Theory and application of the multiquadric–biharmonic method. Comp Math Appl 1990;19(8–9):163–208.
  24. Wu YL, Shu C. Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli. Comput Mech. 2002;29(6):477–485.
  25. Kansa EJ, Hon YC. Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial diff erential equations. Comput Math App. 2000;39(7–8):123–137.
  26. Shu C, Yeo KS. Local radial basis diff erential quadrature method and its application to solve two–dimensional incompressible Navier–Strokes equations. Comput Meth Appl Mech Eng. 2003;192(7–8):941–954.  
  27. Mai Duy N, Tran Con T. Approximation of function and its derivatives using radial basis function networks. Appl Math Modelling. 2003;27(3):97–220.
  28. Mai Duy N, Tran Con T. Numerical solution of diff erential equations using multiquadric radial basis function networks. Neural Networks 2001;14(2):185–199.
  29. Ngo Cong D, Mai–Duy N, Karunasena K, et al. A numerical procedure based on –IRBFN and local MLS–ID–IRBFN methods for fluid–structure interaction analysis. CMES: Comput Modeling in Eng Sci. 2012;83(5):459–498.
  30. Thai Quang N, Le Cao K, Mai Duy N, et al. A numerical scheme based on compact integrated–RBFs and Adams Bash forth/Crank Nicolson algorithms for diffusion and unsteady fluid flow problems. Eng Anal Bound Elem. 2013;37(12):1657–1667.
  31. Ngo Cong D, Tien CM, Nguyen Ky T, et al. A generalised finite difference scheme based on compact integrated radial basis function for flow in heterogeneous soils. Int J Numer Meth Fluid. 2017;85(7):404–429.
  32. Shu C, Wu YL. Integrated radial basis functions–based diff erential quadrature method and its performance. Int J Numer Meth Fluid. 2007;53(6):969–84.
  33. Barrett KE. Duct flow with a transverse magnetic field at high Hartmann numbers. Int J Numer Meth Eng. 2001;50(8):1893–1906.
Creative Commons Attribution License

©2018 Wanga, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.