Submit manuscript...
Journal of
eISSN: 2377-4282

Nanomedicine Research

Mini Review Volume 7 Issue 4

Electromagnetoelastic actuator for nanomedicine research

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology, Russia

Received: May 16, 2018 | Published: July 18, 2018

Citation: Afonin SM. Electromagnetoelastic actuator for nanomedicine research. J Nanomed Res. 2018;7(4):231-233. DOI: 10.15406/jnmr.2018.07.00192

Download PDF

Abstract

In this work the static and dynamic characteristics, the structural diagram and the transfer functions of the electromagnetoelasticactuator are obtained. The generalized structural diagram, the matrix transfer functions of the electromagnetoelastic actuator make it possible to describe the static and dynamic characteristics of the actuator with regard to its physical parameters, external load.

Keywords: electromagnetoelasticactuator, piezoactuator, structural diagram, transfer function, static and dynamic characteristics

Introduction

The electromagnetoelastic actuator for nanodisplacement on the piezoelectric, piezomagnetic, electrostriction, magnetostriction effects is used in the electromechanics systems for the nanomedicine research in the scanning sensing microscopy and the adaptive optics.1‒8 For designing the nanotechnology equipment the static and dynamic characteristics, the mathematical model, the structural diagram and transfer functions of the electromagnetoelastic actuator are calculated.9‒18 The mathematical model, the structural diagram and transfer functions the electromagnetoelastic actuator based on the electromagnetoelasticity make it possible to describe the dynamic and static properties of the electromagnetoelastic actuator for the nanomedicine research with regard to its physical parameters and external load.19‒24 The static and dynamic characteristics, the mathematical model, the structural diagram and transfer functions of the electromagnetoelastic actuator are used for the nanomedicine research with the scanning sensing microscopy.

Structural diagram

Let us consider the structural diagram of the electromagnetoelastic actuator for the nanomedicine research in contrast Cady and Mason electrical equivalent circuits. The method of mathematical physics is applied for the solution the wave equation and for the determination the structural diagram of the electromagnetoelastic actuator for nanomedicine research.1‒18 The mathematical model and the generalized structural diagram of the actuator 7,14 on (Figure 1) are determined,using method of the mathematical physics for the joints solution of the wave equation, the boundary conditions and the equation of the electromagnet elasticity, in the form

Ξ 1 ( p )= [ 1/ ( M 1 p 2 ) ] × ×{ F 1 ( p )+ ( 1/ χ ij Ψ ) [ ν mi Ψ m ( p ) [ γ/ sh( lγ ) ] [ ch( lγ ) Ξ 1 ( p ) Ξ 2 ( p ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abf65ayTWaaSbaaeaajugWaiaaigdaaSqabaqcfa4aaeWaaOqaaKqz GeGaamiCaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWadaGcba qcfa4aaSGbaOqaaKqzGeGaaGymaaGcbaqcfa4aaeWaaOqaaKqzGeGa amytaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaWGWbqcfa4aaW baaSqabeaajugWaiaaikdaaaaakiaawIcacaGLPaaaaaaacaGLBbGa ayzxaaqcfa4aaWbaaSqabeaaaaqcLbsacqGHxdaTaOqaaKqzGeGaey 41aqBcfa4aaiWaaOqaaKqzGeGaeyOeI0IaamOraSWaaSbaaeaajugW aiaaigdaaSqabaqcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGaay zkaaqcLbsacqGHRaWkjuaGdaqadaGcbaqcfa4aaSGbaOqaaKqzGeGa aGymaaGcbaqcLbsacqaHhpWyjuaGdaqhaaWcbaqcLbmacaWGPbGaam OAaaWcbaqcLbmacqqHOoqwaaaaaaGccaGLOaGaayzkaaqcfa4aa0ba aSqaaaqaaaaajuaGdaWadaGcbaqcLbsacqaH9oGBlmaaBaaabaqcLb macaWGTbGaamyAaaWcbeaajugibiabfI6azLqbaoaaBaaaleaajugW aiaad2gaaSqabaqcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGaay zkaaqcLbsacqGHsisljuaGdaWadaGcbaqcfa4aaSGbaOqaaKqzGeGa eq4SdCgakeaajugibiaabohacaqGObqcfa4aaeWaaOqaaKqzGeGaam iBaiabeo7aNbGccaGLOaGaayzkaaaaaaGaay5waiaaw2faaKqbaoaa BaaaleaaaeqaaKqbaoaadmaakeaajugibiaabogacaqGObqcfa4aae WaaOqaaKqzGeGaamiBaiabeo7aNbGccaGLOaGaayzkaaqcLbsacqqH EoawjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqbaoaabmaakeaaju gibiaadchaaOGaayjkaiaawMcaaKqzGeGaeyOeI0IaeuONdG1cdaWg aaqaaKqzadGaaGOmaaWcbeaajuaGdaqadaGcbaqcLbsacaWGWbaaki aawIcacaGLPaaaaiaawUfacaGLDbaaaiaawUfacaGLDbaaaiaawUha caGL9baaaaaa@A9A7@ (1)
Ξ 2 ( p )= [ 1/ ( M 2 p 2 ) ] × ×{ F 2 ( p )+ ( 1/ χ ij Ψ ) [ ν mi Ψ m ( p ) [ γ/ sh( lγ ) ] [ ch( lγ ) Ξ 2 ( p ) Ξ 1 ( p ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abf65ayTWaaSbaaeaajugWaiaaikdaaSqabaqcfa4aaeWaaOqaaKqz GeGaamiCaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWadaGcba qcfa4aaSGbaOqaaKqzGeGaaGymaaGcbaqcfa4aaeWaaOqaaKqzGeGa amytaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaamiCaK qbaoaaCaaaleqabaqcLbmacaaIYaaaaaGccaGLOaGaayzkaaaaaaGa ay5waiaaw2faaKqbaoaaCaaaleqabaaaaKqzGeGaey41aqlakeaaju gibiabgEna0MqbaoaacmaakeaajugibiabgkHiTiaadAeajuaGdaWg aaqcbasaaKqzadGaaGOmaaWcbeaajuaGdaqadaGcbaqcLbsacaWGWb aakiaawIcacaGLPaaajugibiabgUcaRKqbaoaabmaakeaajuaGdaWc gaGcbaqcLbsacaaIXaaakeaajugibiabeE8aJLqbaoaaDaaajeaiba qcLbmacaWGPbGaamOAaaqcbasaaKqzadGaeuiQdKfaaaaaaOGaayjk aiaawMcaaKqbaoaaDaaaleaaaeaaaaqcfa4aamWaaOqaaKqzGeGaeq yVd4wcfa4aaSbaaKqaGeaajugWaiaad2gacaWGPbaaleqaaKqzGeGa euiQdKvcfa4aaSbaaKqaGeaajugWaiaad2gaaSqabaqcfa4aaeWaaO qaaKqzGeGaamiCaaGccaGLOaGaayzkaaqcLbsacqGHsisljuaGdaWa daGcbaqcfa4aaSGbaOqaaKqzGeGaeq4SdCgakeaajugibiaabohaca qGObqcfa4aaeWaaOqaaKqzGeGaamiBaiabeo7aNbGccaGLOaGaayzk aaaaaaGaay5waiaaw2faaKqbaoaaBaaaleaaaeqaaKqbaoaadmaake aajugibiaabogacaqGObqcfa4aaeWaaOqaaKqzGeGaamiBaiabeo7a NbGccaGLOaGaayzkaaqcLbsacqqHEoawjuaGdaWgaaqcbasaaKqzad GaaGOmaaWcbeaajuaGdaqadaGcbaqcLbsacaWGWbaakiaawIcacaGL PaaajugibiabgkHiTiabf65ayLqbaoaaBaaajeaibaqcLbmacaaIXa aaleqaaKqbaoaabmaakeaajugibiaadchaaOGaayjkaiaawMcaaaGa ay5waiaaw2faaaGaay5waiaaw2faaaGaay5Eaiaaw2haaaaaaa@ACD9@ (2)
Where v mi ={ d 33 , d 31 , d 15 g 33 , g 31 , g 15 d 33 , d 31 , d 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaKqaGeaajugWaiaad2gacaWGPbaaleqaaKqzGeGaeyyp a0tcfa4aaiqaaOqaaKqzGeqbaeqabmqaaaGcbaqcLbsacaWGKbqcfa 4aaSbaaKqaGeaajugWaiaaiodacaaIZaaaleqaaKqzGeGaaiilaiaa dsgajuaGdaWgaaqcbasaaKqzadGaaG4maiaaigdaaSqabaqcLbsaca GGSaGaamizaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGynaaWcbeaa aOqaaKqzGeGaam4zaKqbaoaaBaaajeaibaqcLbmacaaIZaGaaG4maa WcbeaajugibiaacYcacaWGNbqcfa4aaSbaaKqaGeaajugWaiaaioda caaIXaaaleqaaKqzGeGaaiilaiaadEgajuaGdaWgaaqcbasaaKqzad GaaGymaiaaiwdaaSqabaaakeaajugibiaadsgajuaGdaWgaaqcbasa aKqzadGaaG4maiaaiodaaSqabaqcLbsacaGGSaGaamizaKqbaoaaBa aajeaibaqcLbmacaaIZaGaaGymaaWcbeaajugibiaacYcacaWGKbqc fa4aaSbaaKqaGeaajugWaiaaigdacaaI1aaaleqaaaaaaOGaay5Eaa aaaa@70C7@ , Ψ m ={ E 3 , E 1 D 3 , D 1 H 3 , H 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHOo qwjuaGdaWgaaqcbasaaKqzadGaamyBaaWcbeaajugibiabg2da9Kqb aoaaceaakeaajugibuaabeqadeaaaOqaaKqzGeGaamyraKqbaoaaBa aajeaibaqcLbmacaaIZaaaleqaaKqzGeGaaiilaiaadweajuaGdaWg aaqcbasaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaamiraKqbaoaaBa aajeaibaqcLbmacaaIZaaaleqaaKqzGeGaaiilaiaadseajuaGdaWg aaqcbasaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaamisaKqbaoaaBa aajeaibaqcLbmacaaIZaaaleqaaKqzGeGaaiilaiaadIeajuaGdaWg aaqcbasaaKqzadGaaGymaaWcbeaaaaaakiaawUhaaaaa@5A24@ , s ij Ψ ={ s 33 E , s 11 E , s 55 E s 33 D , s 11 D , s 55 D s 33 H , s 11 H , s 55 H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb qcfa4aa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaeuiQdKfa aKqzGeGaeyypa0tcfa4aaiqaaOqaaKqzGeqbaeqabmqaaaGcbaqcLb sacaWGZbqcfa4aa0baaKqaGeaajugWaiaaiodacaaIZaaajeaibaqc LbmacaWGfbaaaKqzGeGaaiilaiaadohajuaGdaqhaaqcbasaaKqzad GaaGymaiaaigdaaKqaGeaajugWaiaadweaaaqcLbsacaGGSaGaam4C aKqbaoaaDaaajeaibaqcLbmacaaI1aGaaGynaaqcbasaaKqzadGaam yraaaaaOqaaKqzGeGaam4CaKqbaoaaDaaajeaibaqcLbmacaaIZaGa aG4maaqcbasaaKqzadGaamiraaaajugibiaacYcacaWGZbqcfa4aa0 baaKqaGeaajugWaiaaigdacaaIXaaajeaibaqcLbmacaWGebaaaKqz GeGaaiilaiaadohajuaGdaqhaaqcbasaaKqzadGaaGynaiaaiwdaaK qaGeaajugWaiaadseaaaaakeaajugibiaadohajuaGdaqhaaqcbasa aKqzadGaaG4maiaaiodaaKqaGeaajugWaiaadIeaaaqcLbsacaGGSa Gaam4CaKqbaoaaDaaajeaibaqcLbmacaaIXaGaaGymaaqcbasaaKqz adGaamisaaaajugibiaacYcacaWGZbqcfa4aa0baaKqaGeaajugWai aaiwdacaaI1aaajeaibaqcLbmacaWGibaaaaaaaOGaay5Eaaaaaa@86C1@ (3)
c Ψ ={ c E c D c H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaWbaaSqabeaajugWaiabfI6azbaajugibiabg2da9Kqbaoaa ceaakeaajugibuaabeqadeaaaOqaaKqzGeGaam4yaKqbaoaaCaaale qabaqcLbmacaWGfbaaaaGcbaqcLbsacaWGJbqcfa4aaWbaaSqabeaa jugWaiaadseaaaaakeaajugibiaadogajuaGdaahaaWcbeqaaKqzad GaamisaaaaaaaakiaawUhaaaaa@4B73@ , γ={ γ E γ D γ H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzcqGH9aqpjuaGdaGabaGcbaqcLbsafaqabeWabaaakeaajugibiab eo7aNLqbaoaaCaaaleqajeaibaqcLbmacaWGfbaaaaGcbaqcLbsacq aHZoWzjuaGdaahaaWcbeqcbasaaKqzadGaamiraaaaaOqaaKqzGeGa eq4SdCwcfa4aaWbaaSqabKqaGeaajugWaiaadIeaaaaaaaGccaGL7b aaaaa@4AE5@ , l={ δ h b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb Gaeyypa0tcfa4aaiqaaOqaaKqzGeqbaeqabmqaaaGcbaqcLbsacqaH 0oazaOqaaKqzGeGaamiAaaGcbaqcLbsacaWGIbaaaaGccaGL7baaaa a@401B@ , χ ij Ψ = s ij Ψ / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WyjuaGdaqhaaqcbasaaKqzadGaamyAaiaadQgaaKqaGeaajugWaiab fI6azbaajugibiabg2da9KqbaoaalyaakeaajugibiaadohajuaGda qhaaqcbasaaKqzadGaamyAaiaadQgaaKqaGeaajugWaiabfI6azbaa aOqaaKqzGeGaam4uaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaa aaaaa@4DDB@ (4)

Figure 1 Generalized structural diagram of electromagnetoelastic actuator for the nanomedicine research.

vmi is the coefficient electromagnetoelasticity, Ψ m ={ E m , D m , H m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaS baaSqaaiaad2gaaeqaaOGaeyypa0ZaaiqaaeaacaWGfbWaaSbaaSqa aiaad2gaaeqaaOGaaiilaiaadseadaWgaaWcbaGaamyBaaqabaaaki aawUhaaiaacYcacaWGibWaaSbaaSqaaiaad2gaaeqaaaaa@41F7@ is the control parameter, Em is the electric field strength for the voltage control along axis m, Dm is the electric induction for the current control along axis m, Hm for magnetic field strength control along axis m, dmi is the piezomoduleat the voltage-controlled piezoactuator or the coefficient of the magnetostriction at the magnetostrictive actuator, gmi is the piezomoduleat the current-controlled piezoactuator, s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaam4CaSWaa0 baaeaacaWGPbGaamOAaaqaaiabfI6azbaaaaa@3A83@ is the elastic complianceat Y = const, S0 is the cross section area, M1, M2 are the mass on the faces of the actuator, Ξ 1 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaa aa@3AE5@ , Ξ 2 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaa aa@3AE6@ and F 1 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaa @3A2C@ , F 2 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaa @3A2D@ are the Laplace transforms of the appropriate displacements and the forces on the faces 1, From equations of the forces acting on the faces of the actuator, the equation of the electromagnetoelasticity, the wave equation we obtain the generalized structural diagram of the electromagnetoelastic actuator. The structural diagrams of the voltage-controlled or current-controlled piezoactuator are determined from the mathematical model of the electromagnetoelastic actuator. (Figure 1) The generalized transfer functions of the of the electroelastic actuator are the ratio of the Laplace transform of the displacement of the face actuator and the Laplace transform of the corresponding control parameter or the force at zero initial conditions.

Characteristics of electromagnetoelastic actuator

The matrix transfer function of the actuator is deduced from its mathematical model (4)8,14,18 in the form

( Ξ( p ) )=( W( p ) )( P( p ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeuONdGvcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGa ayzkaaaacaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaqadaGcbaqcLb sacaWGxbqcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaaa caGLOaGaayzkaaqcLbsacaaMe8Ecfa4aaeWaaOqaaKqzGeGaamiuaK qbaoaabmaakeaajugibiaadchaaOGaayjkaiaawMcaaaGaayjkaiaa wMcaaaaa@4FFA@ (5)

( Ξ( p ) )=( Ξ 1 ( p ) Ξ 2 ( p ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeuONdGvcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGa ayzkaaaacaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaqadaGcbaqcLb safaqabeGabaaakeaajugibiabf65ayLqbaoaaBaaaleaajugibiaa igdaaSqabaqcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGaayzkaa aabaqcLbsacqqHEoawjuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqb aoaabmaakeaajugibiaadchaaOGaayjkaiaawMcaaaaaaiaawIcaca GLPaaaaaa@51D9@ ,

( W( p ) )=( W 11 ( p ) W 12 ( p ) W 13 ( p ) W 21 ( p ) W 22 ( p ) W 23 ( p ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaam4vaKqbaoaabmaakeaajugibiaadchaaOGaayjkaiaa wMcaaaGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaeWaaOqaaKqzGe qbaeqabiqaaaGcbaqcLbsafaqabeqadaaakeaajugibiaadEfajuaG daWgaaqcbasaaKqzadGaaGymaiaaigdaaSqabaqcfa4aaeWaaOqaaK qzGeGaamiCaaGccaGLOaGaayzkaaaabaqcLbsacaWGxbqcfa4aaSba aKqaGeaajugWaiaaigdacaaIYaaaleqaaKqbaoaabmaakeaajugibi aadchaaOGaayjkaiaawMcaaaqaaKqzGeGaam4vaKqbaoaaBaaajeai baqcLbmacaaIXaGaaG4maaWcbeaajuaGdaqadaGcbaqcLbsacaWGWb aakiaawIcacaGLPaaaaaaabaqcLbsafaqabeqadaaakeaajugibiaa dEfajuaGdaWgaaqcbasaaKqzadGaaGOmaiaaigdaaSqabaqcfa4aae WaaOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaaabaqcLbsacaWGxbqc fa4aaSbaaKqaGeaajugWaiaaikdacaaIYaaaleqaaKqbaoaabmaake aajugibiaadchaaOGaayjkaiaawMcaaaqaaKqzGeGaam4vaKqbaoaa BaaajeaibaqcLbmacaaIYaGaaG4maaWcbeaajuaGdaqadaGcbaqcLb sacaWGWbaakiaawIcacaGLPaaaaaaaaaGaayjkaiaawMcaaaaa@76B3@

( P( p ) )=( Ψ m ( p ) F 1 ( p ) F 2 ( p ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamiuaKqbaoaabmaakeaajugibiaadchaaOGaayjkaiaa wMcaaaGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaeWaaOqaaKqzGe qbaeqabmqaaaGcbaqcLbsacqqHOoqwjuaGdaWgaaqcbasaaKqzadGa amyBaaWcbeaajuaGdaqadaGcbaqcLbsacaWGWbaakiaawIcacaGLPa aaaeaajugibiaadAeajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaa juaGdaqadaGcbaqcLbsacaWGWbaakiaawIcacaGLPaaaaeaajugibi aadAeajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajuaGdaqadaGc baqcLbsacaWGWbaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaaaa@5A06@

Where ( Ξ( p ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq qHEoawdaqadaqaaiaadchaaiaawIcacaGLPaaaaiaawIcacaGLPaaa aaa@3B7D@ is the column-matrix of the Laplace transforms of the displacements for the faces of the electromagnetoelastic actuator, (W(p)) is the matrix transfer function, (P(p)) the column-matrix of the Laplace transforms of the control parameter and the forces.

At Ψ m = E 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeuiQdK1cda Wgaaqaaiaad2gaaeqaaiabg2da9OGaamyramaaBaaaleaacaaIZaaa keqaaaaa@3B6C@ and vmi =d31 we have transfer functions of the piezoactuator in the form

W 11 ( p )= Ξ 1 ( p )/ E 3 ( p ) = d 31 [ M 2 χ 11 E p 2 +γth( hγ/2 ) ] /A 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaKqbGeaajugWaiaaigdacaaIXaaajuaGbeaadaqadaqa aKqzGeGaamiCaaqcfaOaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaS Gbaeaajugibiabf65ayLqbaoaaBaaajuaibaqcLbmacaaIXaaajuaG beaadaqadaqaaKqzGeGaamiCaaqcfaOaayjkaiaawMcaaaqaaKqzGe GaamyraKqbaoaaBaaajuaibaqcLbmacaaIZaaajuaGbeaadaqadaqa aKqzGeGaamiCaaqcfaOaayjkaiaawMcaaaaajugibiabg2da9Kqbao aalyaabaqcLbsacaWGKbqcfa4aaSbaaKqbGeaajugWaiaaiodacaaI XaaajuaGbeaadaWadaqaaKqzGeGaamytaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaajugibiabeE8aJLqbaoaaDaaajuaibaqcLbma caaIXaGaaGymaaqcfasaaKqzadGaamyraaaajugibiaadchajuaGda ahaaqabKqbGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaHZoWzcaqG 0bGaaeiAaKqbaoaabmaabaWaaSGbaeaajugibiaadIgacqaHZoWzaK qbagaajugibiaaikdaaaaajuaGcaGLOaGaayzkaaaacaGLBbGaayzx aaWaa0baaeaaaeaaaaaabaqcLbsacaWGbbaaaKqbaoaaBaaajuaiba qcLbmacaaIXaGaaGymaaqcfayabaaaaa@7F6C@ χ 11 E = s 11 E / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WyjuaGdaqhaaqcbasaaKqzadGaaGymaiaaigdaaKqaGeaajugWaiaa dweaaaqcLbsacqGH9aqpjuaGdaWcgaGcbaqcLbsacaWGZbqcfa4aa0 baaKqaGeaajugWaiaaigdacaaIXaaajeaibaqcLbmacaWGfbaaaaGc baqcLbsacaWGtbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa aa@4B84@ A 11 = M 1 M 2 ( χ 11 E ) 2 p 4 +{ ( M 1 + M 2 ) χ 11 E / [ c E th( hγ ) ] } p 3 + +[ ( M 1 + M 2 ) χ 11 E α/ th( hγ ) +1/ ( c E ) 2 ] p 2 + 2αp/ c E + α 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadgeajuaGdaWgaaqcbasaaKqzadGaaGymaiaaigdaaSqabaqcLbsa cqGH9aqpcaWGnbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLb sacaWGnbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcfa4aaeWa aOqaaKqzGeGaeq4Xdmwcfa4aa0baaKqaGeaajugWaiaaigdacaaIXa aajeaibaqcLbmacaWGfbaaaaGccaGLOaGaayzkaaqcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaqcLbsacaWGWbqcfa4aaWbaaSqabKqaGe aajugWaiaaisdaaaqcLbsacqGHRaWkjuaGdaGadaGcbaqcfa4aaSGb aOqaaKqbaoaabmaakeaajugibiaad2eajuaGdaWgaaqcbasaaKqzad GaaGymaaWcbeaajugibiabgUcaRiaad2eajuaGdaWgaaqcbasaaKqz adGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeq4Xdmwcfa4aa0 baaKqaGeaajugWaiaaigdacaaIXaaajeaibaqcLbmacaWGfbaaaaGc baqcfa4aamWaaOqaaKqzGeGaam4yaKqbaoaaCaaakeqajeaibaqcLb macaWGfbaaaKqzGeGaaeiDaiaabIgajuaGdaqadaGcbaqcLbsacaWG ObGaeq4SdCgakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaaacaGL7b GaayzFaaqcLbsacaWGWbqcfa4aaWbaaSqabKqaGeaajugWaiaaioda aaqcLbsacqGHRaWkaOqaaKqzGeGaey4kaSscfa4aamWaaOqaaKqbao aalyaakeaajuaGdaqadaGcbaqcLbsacaWGnbqcfa4aaSbaaKqaGeaa jugWaiaaigdaaSqabaqcLbsacqGHRaWkcaWGnbqcfa4aaSbaaKqaGe aajugWaiaaikdaaSqabaaakiaawIcacaGLPaaajugibiabeE8aJLqb aoaaDaaajeaibaqcLbmacaaIXaGaaGymaaqcbasaaKqzadGaamyraa aajugibiabeg7aHbGcbaqcLbsacaqG0bGaaeiAaKqbaoaabmaakeaa jugibiaadIgacqaHZoWzaOGaayjkaiaawMcaaaaajugibiabgUcaRK qbaoaalyaakeaajugibiaaigdaaOqaaKqbaoaabmaakeaajugibiaa dogajuaGdaahaaGcbeqcbasaaKqzadGaamyraaaaaOGaayjkaiaawM caaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaaOGaay5waiaa w2faaKqzGeGaamiCaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaK qzGeGaey4kaSscfa4aaSGbaOqaaKqzGeGaaGOmaiabeg7aHjaadcha aOqaaKqzGeGaam4yaKqbaoaaCaaaleqajeaibaqcLbmacaWGfbaaaa aajugibiabgUcaRiabeg7aHLqbaoaaCaaaleqajeaibaqcLbmacaaI Yaaaaaaaaa@C568@ W 21 ( p )= Ξ 2 ( p )/ E 3 ( p ) = d 31 [ M 1 χ 11 E p 2 +γth( hγ/2 ) ] /A 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIXaaaleqaaKqbaoaabmaa keaajugibiaadchaaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaS GbaOqaaKqzGeGaeuONdGvcfa4aaSbaaKqaGeaajugWaiaaikdaaSqa baqcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaaabaqcLb sacaWGfbqcfa4aaSbaaKqaGeaajugWaiaaiodaaOqabaqcfa4aaeWa aOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaaaaKqzGeGaeyypa0tcfa 4aaSGbaOqaaKqzGeGaamizaKqbaoaaBaaajeaibaqcLbmacaaIZaGa aGymaaWcbeaajuaGdaWadaGcbaqcLbsacaWGnbqcfa4aaSbaaKqaGe aajugWaiaaigdaaSqabaqcLbsacqaHhpWyjuaGdaqhaaqcbasaaKqz adGaaGymaiaaigdaaKqaGeaajugWaiaadweaaaqcLbsacaWGWbqcfa 4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaHZoWz caqG0bGaaeiAaKqbaoaabmaakeaajuaGdaWcgaGcbaqcLbsacaWGOb Gaeq4SdCgakeaajugibiaaikdaaaaakiaawIcacaGLPaaaaiaawUfa caGLDbaajuaGdaqhaaWcbaaabaaaaaGcbaqcLbsacaWGbbaaaKqbao aaBaaajeaibaqcLbmacaaIXaGaaGymaaWcbeaaaaa@7D66@ W 12 ( p )= Ξ 1 ( p )/ F 1 ( p ) = χ 11 E [ M 2 χ 11 E p 2 +γ/ th( hγ ) ] /A 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIYaaaleqaaKqbaoaabmaa keaajugibiaadchaaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaS GbaOqaaKqzGeGaeuONdGvcfa4aaSbaaKqaGeaajugWaiaaigdaaSqa baqcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaaabaqcLb sacaWGgbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcfa4aaeWa aOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaaaaKqzGeGaeyypa0Jaey OeI0scfa4aaSGbaOqaaKqzGeGaeq4Xdmwcfa4aa0baaKqaGeaajugW aiaaigdacaaIXaaajeaibaqcLbmacaWGfbaaaKqbaoaadmaakeaaju gibiaad2eajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiab eE8aJLqbaoaaDaaajeaibaqcLbmacaaIXaGaaGymaaqcbasaaKqzad GaamyraaaajugibiaadchajuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaajugibiabgUcaRKqbaoaalyaakeaajugibiabeo7aNbGcbaqcLb sacaqG0bGaaeiAaKqbaoaabmaakeaajugibiaadIgacqaHZoWzaOGa ayjkaiaawMcaaaaaaiaawUfacaGLDbaajuaGdaqhaaWcbaaabaaaaa GcbaqcLbsacaWGbbaaaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGym aaWcbeaaaaa@810A@ W 13 ( p )= Ξ 1 ( p )/ F 2 ( p ) = = W 22 ( p )= Ξ 2 ( p )/ F 1 ( p ) = [ χ 11 E γ/ sh( hγ ) ]/A 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadEfajuaGdaWgaaqcbasaaKqzadGaaGymaiaaiodaaSqabaqcfa4a aeWaaOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaqcLbsacqGH9aqpju aGdaWcgaGcbaqcLbsacqqHEoawjuaGdaWgaaqcbasaaKqzadGaaGym aaWcbeaajuaGdaqadaGcbaqcLbsacaWGWbaakiaawIcacaGLPaaaae aajugibiaadAeajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajuaG daqadaGcbaqcLbsacaWGWbaakiaawIcacaGLPaaaaaqcLbsacqGH9a qpaOqaaKqzGeGaeyypa0Jaam4vaKqbaoaaBaaajeaibaqcLbmacaaI YaGaaGOmaaWcbeaajuaGdaqadaGcbaqcLbsacaWGWbaakiaawIcaca GLPaaajugibiabg2da9Kqbaoaalyaakeaajugibiabf65ayLqbaoaa BaaajeaibaqcLbmacaaIYaaaleqaaKqbaoaabmaakeaajugibiaadc haaOGaayjkaiaawMcaaaqaaKqzGeGaamOraKqbaoaaBaaajeaibaqc LbmacaaIXaaaleqaaKqbaoaabmaakeaajugibiaadchaaOGaayjkai aawMcaaaaajugibiabg2da9KqbaoaalyaakeaajuaGdaWadaGcbaqc fa4aaSGbaOqaaKqzGeGaeq4Xdmwcfa4aa0baaKqaGeaajugWaiaaig dacaaIXaaajeaibaqcLbmacaWGfbaaaKqzGeGaeq4SdCgakeaajugi biaabohacaqGObqcfa4aaeWaaOqaaKqzGeGaamiAaiabeo7aNbGcca GLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaKqzGeGaamyqaaaajuaG daWgaaqcbasaaKqzadGaaGymaiaaigdaaSqabaaaaaa@8B79@ W 23 ( p )= Ξ 2 ( p )/ F 2 ( p ) = χ 11 E [ M 1 χ 11 E p 2 +γ/ th( hγ ) ] /A 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaSbaaKqaGeaajugWaiaaikdacaaIZaaaleqaaKqbaoaabmaa keaajugibiaadchaaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaS GbaOqaaKqzGeGaeuONdGvcfa4aaSbaaKqaGeaajugWaiaaikdaaSqa baqcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaaabaqcLb sacaWGgbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcfa4aaeWa aOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaaaaKqzGeGaeyypa0Jaey OeI0scfa4aaSGbaOqaaKqzGeGaeq4Xdmwcfa4aa0baaKqaGeaajugW aiaaigdacaaIXaaajeaibaqcLbmacaWGfbaaaKqzGeGaaGjbVNqbao aadmaakeaajugibiaad2eajuaGdaWgaaqcbasaaKqzadGaaGymaaWc beaajugibiabeE8aJLqbaoaaDaaajeaibaqcLbmacaaIXaGaaGymaa qcbasaaKqzadGaamyraaaajugibiaadchajuaGdaahaaWcbeqcbasa aKqzadGaaGOmaaaajugibiabgUcaRKqbaoaalyaakeaajugibiabeo 7aNbGcbaqcLbsacaqG0bGaaeiAaKqbaoaabmaakeaajugibiaadIga cqaHZoWzaOGaayjkaiaawMcaaaaaaiaawUfacaGLDbaajuaGdaqhaa WcbaaabaaaaaGcbaqcLbsacaWGbbaaaKqbaoaaBaaajeaibaqcLbma caaIXaGaaGymaaWcbeaaaaa@8329@

The static characteristics of the actuator ξ 1 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa aaa@3BA0@ and ξ 2 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa aaa@3BA1@ have the form

ξ 1 ( )= ν mi Ψ m0 l( m/2 + M 2 )/ ( m+ M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajuaGdaqadaGcbaqc LbsacqGHEisPaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaSGbaO qaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaad2gacaWGPbaa leqaaKqzGeGaeuiQdKvcfa4aaSbaaKqaGeaajugWaiaad2gacaaIWa aaleqaaKqzGeGaamiBaKqbaoaabmaakeaajuaGdaWcgaGcbaqcLbsa caWGTbaakeaajugibiaaikdaaaGaey4kaSIaamytaKqbaoaaBaaaje aibaqcLbmacaaIYaaaleqaaaGccaGLOaGaayzkaaaabaqcfa4aaeWa aOqaaKqzGeGaamyBaiabgUcaRiaad2eajuaGdaWgaaqcbasaaKqzad GaaGymaaWcbeaajugibiabgUcaRiaad2eajuaGdaWgaaqcbasaaKqz adGaaGOmaaWcbeaaaOGaayjkaiaawMcaaaaaaaa@6687@ (6)

ξ 2 ( )= ν mi Ψ m0 l( m/2 + M 1 )/ ( m+ M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajuaGdaqadaGcbaqc LbsacqGHEisPaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaSGbaO qaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaad2gacaWGPbaa leqaaKqzGeGaeuiQdKvcfa4aaSbaaKqaGeaajugWaiaad2gacaaIWa aaleqaaKqzGeGaamiBaKqbaoaabmaakeaajuaGdaWcgaGcbaqcLbsa caWGTbaakeaajugibiaaikdaaaGaey4kaSIaamytaKqbaoaaBaaaje aibaqcLbmacaaIXaaaleqaaaGccaGLOaGaayzkaaaabaqcfa4aaeWa aOqaaKqzGeGaamyBaiabgUcaRiaad2eajuaGdaWgaaqcbasaaKqzad GaaGymaaWcbeaajugibiabgUcaRiaad2eajuaGdaWgaaqcbasaaKqz adGaaGOmaaWcbeaaaOGaayjkaiaawMcaaaaaaaa@6688@ (7)

The generalized structural scheme and the generalized transfer functions of the electromagnetoelastic actuator nano- and micro displacement are obtained from the generalized structural parametric model of the electromagnetoelastic actuator for the precision mechanics.

ξ 1 ()+ ξ 2 ( )= ν mi Ψ m0 l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaacIcacqGH EisPcaGGPaGaey4kaSIaeqOVdGxcfa4aaSbaaKqaGeaajugWaiaaik daaSqabaqcfa4aaeWaaOqaaKqzGeGaeyOhIukakiaawIcacaGLPaaa jugibiabg2da9iabe27aULqbaoaaBaaajeaibaqcLbmacaWGTbGaam yAaaWcbeaajugibiabfI6azLqbaoaaBaaajeaibaqcLbmacaWGTbGa aGimaaWcbeaajugibiaadYgaaaa@56A8@ (8)

Where m, M 1 , M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamyBaiaacY cacaaMe8UaamytamaaBaaaleaacaaIXaaabeaakiaacYcacaaMe8Ua amytamaaBaaaleaacaaIYaaabeaaaaa@3EDB@ are the mass of the actuator and load masses.

Let us consider the voltage-controlled the piezoactuator from PZT at the longitudinal piezo effect for m<< M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabgY da8iabgYda8iaad2eadaWgaaWcbaGaaGymaaqabaaaaa@3AA5@ , m<< M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabgY da8iabgYda8iaad2eadaWgaaWcbaGaaGOmaaqabaaaaa@3AA6@ .At d 33 =4 10 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaG4maaqabaGccqGH9aqpcaaI0aGaeyyXICTaaGym aiaaicdalmaaCaaabeqaaiabgkHiTiaaigdacaaIWaaaaaaa@409D@ m/V, U=150 V, M1 =1kg, M2=4kg the static characteristics of the actuatorhave following form ξ 1 ( )=48 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa cqGH9aqpcaaI0aGaaGioaaaa@3E26@ nm, ξ 2 ( )=12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaikdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa cqGH9aqpcaaIXaGaaGOmaaaa@3E1E@ nm, ξ 1 ( )+ ξ 2 ( )=60 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa cqGHRaWkcqaH+oaElmaaBaaabaGaaGOmaaqabaGcdaqadaqaaiabg6 HiLcGaayjkaiaawMcaaiabg2da9iaaiAdacaaIWaaaaa@44B1@ nm.

The transfer function of the voltage-controlled transverse piezoactuator at , M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIXaaabeaakiabgkziUkabg6HiLcaa@3B13@ have the form

m<< M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabgY da8iabgYda8iaad2eadaWgaaWcbaGaaGOmaaqabaaaaa@3AA6@ ,

W( p )= Ξ 2 ( p ) U( p ) = k a11 T t11 2 p 2 +2 T t11 ξ t11 p+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb qcfa4aaeWaaOqaaKqzGeGaamiCaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpjuaGdaWcaaGcbaqcLbsacqqHEoawjuaGdaWgaaqcbasaaKqzad GaaGOmaaWcbeaajuaGdaqadaGcbaqcLbsacaWGWbaakiaawIcacaGL PaaaaeaajugibiaadwfajuaGdaqadaGcbaqcLbsacaWGWbaakiaawI cacaGLPaaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGRbqc fa4aaSbaaKqaGeaajugWaiaadggacaaIXaGaaGymaaWcbeaaaOqaaK qzGeGaamivaKqbaoaaDaaajeaibaqcLbmacaWG0bGaaGymaiaaigda aKqaGeaajugWaiaaikdaaaqcLbsacaWGWbqcfa4aaWbaaSqabKqaGe aajugWaiaaikdaaaqcLbsacqGHRaWkcaaIYaGaamivaKqbaoaaBaaa jeaibaqcLbmacaWG0bGaaGymaiaaigdaaOqabaqcLbsacqaH+oaEju aGdaWgaaqcbasaaKqzadGaamiDaiaaigdacaaIXaaaleqaaKqzGeGa amiCaiabgUcaRiaaigdaaaaaaa@70E9@ k a11 = d 31 h/δ 1+ C e / C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb qcfa4aaSbaaKqaGeaajugWaiaadggacaaIXaGaaGymaaWcbeaajugi biabg2da9KqbaoaalaaakeaajugibiaadsgajuaGdaWgaaqcbasaaK qzadGaaG4maiaaigdaaOqabaqcfa4aaSGbaOqaaKqzGeGaamiAaaGc baqcLbsacqaH0oazaaaakeaajugibiaaigdacqGHRaWkjuaGdaWcga GcbaqcLbsacaWGdbqcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaaa keaajugibiaadoeajuaGdaqhaaqcbasaaKqzadGaaGymaiaaigdaaK qaGeaajugWaiaadweaaaaaaaaaaaa@55C2@ T t11 = M 2 / ( C + e C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaKqaGeaajugWaiaadshacaaIXaGaaGymaaWcbeaajugi biabg2da9KqbaoaakaaakeaajuaGdaWcgaGcbaqcLbsacaWGnbqcfa 4aaSbaaKqaGeaajugWaiaaikdaaSqabaaakeaajuaGdaqadaGcbaqc LbsacaWGdbqcfa4aaSraaKqaGeaajugWaiaadwgaaSqabaqcLbsacq GHRaWkcaWGdbqcfa4aa0baaKqaGeaajugWaiaaigdacaaIXaaajeai baqcLbmacaWGfbaaaaGccaGLOaGaayzkaaaaaaWcbeaaaaa@5167@ ξ t11 = α h 2 C 11 E / ( 3 c E M 2 ( C e + C 11 E ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEjuaGdaWgaaqcbasaaKqzadGaamiDaiaaigdacaaIXaaaleqaaKqz GeGaeyypa0tcfa4aaSGbaOqaaKqzGeGaeqySdeMaamiAaKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaKqzGeGaam4qaKqbaoaaDaaajeai baqcLbmacaaIXaGaaGymaaqcbasaaKqzadGaamyraaaaaOqaaKqbao aabmaakeaajugibiaaiodacaWGJbqcfa4aaWbaaSqabKqaGeaajugW aiaadweaaaqcfa4aaOaaaOqaaKqzGeGaamytaKqbaoaaBaaajeaiba qcLbmacaaIYaaaleqaaKqbaoaabmaakeaajugibiaadoeajuaGdaWg aaqcbasaaKqzadGaamyzaaWcbeaajugibiabgUcaRiaadoeajuaGda qhaaqcbasaaKqzadGaaGymaiaaigdaaKqaGeaajugWaiaadweaaaaa kiaawIcacaGLPaaaaeqaaaGaayjkaiaawMcaaaaaaaa@6658@

Were Tt11 is the time constant and ξ t11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadshacaaIXaGaaGymaaqabaaaaa@3A50@ is the damping coefficient for the piezoactuator. At M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIXaaabeaakiabgkziUkabg6HiLcaa@3B13@ , m<< M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabgY da8iabgYda8iaad2eadaWgaaWcbaGaaGOmaaqabaaaaa@3AA6@ . d31 = 2.10-10 m/V, h/δ =20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGObaabaGaeqiTdqgaaiabg2da9iaaikdacaaIWaaaaa@3B16@ , M2 = 1kg, C 11 E =2.4 10 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaam4qaSWaa0 baaeaacaaIXaGaaGymaaqaaiaadweaaaGccqGH9aqpcaaIYaGaaiOl aiaaisdacqGHflY1caaIXaGaaGimaSWaaWbaaeqabaGaaG4naaaaaa a@4110@ N/m, C e =0.1 10 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaam4qaSWaaS baaeaacaWGLbaabeaakiabg2da9iaaicdacaGGUaGaaGymaiabgwSi xlaaigdacaaIWaWcdaahaaqabeaacaaI3aaaaaaa@3FB4@ H/m the parameters of the transfer function have the form k a11 =3.84 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGHbGaaGymaiaaigdaaeqaaOGaeyypa0JaaG4maiaac6ca caaI4aGaaGinaaaa@3D69@ nm/V, Tt11= 0.2.10-3 c. Accordingly the static and dynamic characteristics of the voltage-controlled transverse piezoactuator for the nanomedicine research are determined.

Conclusion

The static and dynamic characteristics, the mathematical model, the structural diagram and transfer functions of the electromagnetoelastic actuator for the nanomedicine research are obtained. The generalized structural diagram, the transfers functions of the electromagnetoelastic actuator make it possible to describe the dynamic and static properties of the actuator with regard to its physical parameters, external load.

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular actuators. Oxford: Butterworth-Heinemann Publisher; 2017. 382 p.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady mathematics. 2006;74(3):943‒948
  3. Zhou S, Yao Z. Design and optimization of a modal-independent linear ultrasonic motor. IEEE transaction on ultrasonics, ferroelectrics, and frequency control. 2014;61(3):535‒546
  4. Przybylski J. Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation. Engineering structures. 2015;84:140‒151
  5. Ueda J, Secord T, Asada HH. Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME transactions on mechatronics.2010;15(5):770‒782.
  6. Karpelson M, Wei G-Y, Wood RJ. Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and actuators A: Physical. 2012;176:78‒89
  7. Afonin SM. Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of computer and systems sciences international. 2015;54(3):424‒439
  8. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transduser.  Doklady physics. 2008;53(3):137‒143
  9. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics. 2006;73(2):307‒313.
  10. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. London: McGraw-Hill Book Company; 1946. 806 p.
  11. Mason W. Physical acoustics: Principles and methods. Methods and devices. New York: Academic Press; 1964. 515p.
  12. Zwillinger D. Handbook of differential equations. Boston: Academic Press; 1989. 673 p.
  13. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and nanomaterials: Fundamentals, developments and applications. New York: Nova Science; 2015:225‒242.
  14. Afonin SM. Bartul Z, Trenor J. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in nanotechnology, New York: Nova Science. 2017;(19):259‒284.
  15. Afonin SM. Nano- and micro-scale piezomotors.Russian engineering research. 2012;32(7-8):519‒522.
  16. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of solids. 2007;42(1):43‒49.
  17. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of solids. 2014;49(2):196‒207.
  18. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International journal of physics. 2017;5(1):9‒15.
  19. Afonin SM. Structural-parametric model of piezoactuator nano- and microdisplacement for nanoscience. AASCIT Journal of Nanoscience. 2017;3(3):12‒18.
  20. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. I J of Mathematical Analysis and Applications. 2016;3(4):31‒38.
  21. Afonin SM. Structural-parametric model electromagnetoelastic actuator nano and microdisplacement for precision engineering. Engineering and Technology. 2016;3(6):110‒119.
  22. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1),6:1‒9.
  23. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2): 52‒59.
  24. Bhushan B. Springer Handbook of Nanotechnology. Berlin: Springer; 2004. 1222 p.
Creative Commons Attribution License

©2018 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.